WorldWideScience

Sample records for brucei trypanothione reductase

  1. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography.

    Science.gov (United States)

    Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2011-10-13

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.

  2. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    Science.gov (United States)

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  4. Trypanocidal Activity of Quinoxaline 1,4 Di-N-oxide Derivatives as Trypanothione Reductase Inhibitors

    Directory of Open Access Journals (Sweden)

    Karla Fabiola Chacón-Vargas

    2017-02-01

    Full Text Available Chagas disease or American trypanosomiasis is a worldwide public health problem. In this work, we evaluated 26 new propyl and isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential trypanocidal agents. Additionally, molecular docking and enzymatic assays on trypanothione reductase (TR were performed to provide a basis for their potential mechanism of action. Seven compounds showed better trypanocidal activity on epimastigotes than the reference drugs, and only four displayed activity on trypomastigotes; T-085 was the lead compound with an IC50 = 59.9 and 73.02 µM on NINOA and INC-5 strain, respectively. An in silico analysis proposed compound T-085 as a potential TR inhibitor with better affinity than the natural substrate. Enzymatic analysis revealed that T-085 inhibits parasite TR non-competitively. Compound T-085 carries a carbonyl, a CF3, and an isopropyl carboxylate group at 2-, 3- and 7-position, respectively. These results suggest the chemical structure of this compound as a good starting point for the design and synthesis of novel trypanocidal derivatives with higher TR inhibitory potency and lower toxicity.

  5. A potent trypanocidal component from the fungus Lentinus strigosus inhibits trypanothione reductase and modulates PBMC proliferation

    Directory of Open Access Journals (Sweden)

    Betania Barros Cota

    2008-05-01

    Full Text Available The fungus Lentinus strigosus (Pegler 1983 (Polyporaceae, basidiomycete was selected in a screen for inhibitory activity on Trypanosoma cruzi trypanothione reductase (TR. The crude extract of L. strigosus was able to completely inhibit TR at 20 µg/ml. Two triquinane sesquiterpenoids (dihydrohypnophilin and hypnophilin, in addition to two panepoxydol derivatives (neopanepoxydol and panepoxydone, were isolated using a bioassay-guided fractionation protocol. Hypnophilin and panepoxydone displayed IC50 values of 0.8 and 38.9 µM in the TR assay, respectively, while the other two compounds were inactive. The activity of hypnophilin was confirmed in a secondary assay with the intracellular amastigote forms of T. cruzi, in which it presented an IC50 value of 2.5 µ M. Quantitative flow cytometry experiments demonstrated that hypnophilin at 4 µM also reduced the proliferation of human peripheral blood monocluear cells (PBMC stimulated with phytohemaglutinin, without any apparent interference on the viability of lymphocytes and monocytes. As the host immune response plays a pivotal role in the adverse events triggered by antigen release during treatment with trypanocidal drugs, the ability of hypnophilin to kill the intracellular forms of T. cruzi while modulating human PBMC proliferation suggests that this terpenoid may be a promising prototype for the development of new chemotherapeutical agents for Chagas disease.

  6. Improved proteolytic stability and potent activity against Leishmania infantum trypanothione reductase of α/β-peptide foldamers conjugated to cell-penetrating peptides.

    Science.gov (United States)

    de Lucio, Héctor; Gamo, Ana María; Ruiz-Santaquiteria, Marta; de Castro, Sonia; Sánchez-Murcia, Pedro A; Toro, Miguel A; Gutiérrez, Kilian Jesús; Gago, Federico; Jiménez-Ruiz, Antonio; Camarasa, María-José; Velázquez, Sonsoles

    2017-11-10

    The objective of the current study was to enhance the proteolytic stability of peptide-based inhibitors that target critical protein-protein interactions at the dimerization interface of Leishmania infantum trypanothione reductase (Li-TryR) using a backbone modification strategy. To achieve this goal we carried out the synthesis, proteolytic stability studies and biological evaluation of a small library of α/β 3 -peptide foldamers of different length (from 9-mers to 13-mers) and different α→β substitution patterns related to prototype linear α-peptides. We show that several 13-residue α/β 3 -peptide foldamers retain inhibitory potency against the enzyme (in both activity and dimerization assays) while they are far less susceptible to proteolytic degradation than an analogous α-peptide. The strong dependence of the binding affinities for Li-TryR on the length of the α,β-peptides is supported by theoretical calculations on conformational ensembles of the resulting complexes. The conjugation of the most proteolytically stable α/β-peptide with oligoarginines results in a molecule with potent activity against L. infantum promastigotes and amastigotes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  8. Response of Tripanosoma brucei brucei –induced anaemia to a ...

    African Journals Online (AJOL)

    A study was therefore carried out to determine the effect of the preparation on packed cell volume (PCV) and haemoglobin (Hb) concentrations in anaemic rabbits. The PCV and Hb concentrations of healthy rabbits infected with Trypanosoma brucei brucei were monitored for 49 days. T. b. brucei produced a significant ...

  9. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-02-02

    Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  10. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sonja Krstin

    2018-02-01

    Full Text Available Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of “wild garlics” Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak—in most cases comparable—antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  11. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanoso...ma_brucei_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanoso...ma+brucei&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  12. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei

    NARCIS (Netherlands)

    Bienen, E. J.; Maturi, R. K.; Pollakis, G.; Clarkson, A. B.

    1993-01-01

    The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has

  13. Genetic control of resistance to Trypanosoma brucei brucei infection in mice

    Czech Academy of Sciences Publication Activity Database

    Šíma, Matyáš; Havelková, Helena; Quan, L.; Svobodová, M.; Jarošíková, T.; Vojtíšková, Jarmila; Stassen, A. P. M.; Demant, P.; Lipoldová, Marie

    2011-01-01

    Roč. 5, č. 6 (2011), e1173 ISSN 1935-2735 R&D Projects: GA AV ČR IAA500520606; GA MŠk(CZ) LC06009 Grant - others:NIH-NCI(US) 1R01CA127162-01 Institutional research plan: CEZ:AV0Z50520514 Keywords : Trypanosoma brucei brucei * mouse recombinant congenic strains * Tbbr Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  14. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Analytical purification of a 60-kDa target protein of artemisinin detected in Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Benetode Konziase

    2015-12-01

    Full Text Available Here we describe the isolation and purity determination of Trypanosoma brucei (T. b. brucei candidate target proteins of artemisinin. The candidate target proteins were detected and purified from their biological source (T. b. brucei lysate using the diazirine-free biotinylated probe 5 for an affinity binding to a streptavidin-tagged resin and, subsequently, the labeled target proteins were purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. We herein showed the electrophoresis gel and the immunoblotting film containing the 60-kDa trypanosomal candidate target protein of artemisinin as a single band, which was visualized on-gel by the reverse-staining method and on a Western blotting film by enhanced chemiluminescence. The data provided in this article are related to the original research article “Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins”, by Konziase (Anal. Biochem., vol. 482, 2015, pp. 25–31. http://dx.doi.org/10.1016/j.ab.2015.04.020.

  16. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  17. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.

    Science.gov (United States)

    Ariza, Antonio; Vickers, Tim J; Greig, Neil; Armour, Kirsten A; Dixon, Mark J; Eggleston, Ian M; Fairlamb, Alan H; Bond, Charles S

    2006-02-01

    Trypanothione replaces glutathione in defence against cellular damage caused by oxidants, xenobiotics and methylglyoxal in the trypanosomatid parasites, which cause trypanosomiasis and leishmaniasis. In Leishmania major, the first step in methylglyoxal detoxification is performed by a trypanothione-dependent glyoxalase I (GLO1) containing a nickel cofactor; all other characterized eukaryotic glyoxalases use zinc. In kinetic studies L. major and human enzymes were active with methylglyoxal derivatives of several thiols, but showed opposite substrate selectivities: N1-glutathionylspermidine hemithioacetal is 40-fold better with L. major GLO1, whereas glutathione hemithioacetal is 300-fold better with human GLO1. Similarly, S-4-bromobenzylglutathionylspermidine is a 24-fold more potent linear competitive inhibitor of L. major than human GLO1 (Kis of 0.54 microM and 12.6 microM, respectively), whereas S-4-bromobenzylglutathione is >4000-fold more active against human than L. major GLO1 (Kis of 0.13 microM and >500 microM respectively). The crystal structure of L. major GLO1 reveals differences in active site architecture to both human GLO1 and the nickel-dependent Escherichia coli GLO1, including increased negative charge and hydrophobic character and truncation of a loop that may regulate catalysis in the human enzyme. These differences correlate with the differential binding of glutathione and trypanothione-based substrates, and thus offer a route to the rational design of L. major-specific GLO1 inhibitors.

  18. CHARACTERIZATION AND ANTIPARASITIC ACTIVITY OF BENZOPHENONE THIOSEMICARBAZONES ON Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Georges C. Accrombessi

    2011-02-01

    Full Text Available The structure of four synthesized thiosemicarbazones, substituted or not, of benzophenone has been confirmed by spectrometrical analysis IR, NMR 1H and 13C. Their anti-trypanosomal activities were evaluated on Trypanosoma brucei brucei. Among these compounds, benzophenone 4 phenyl-3-thiosemicarbazone 4 has the highest activity with the half-inhibitory concentration (IC50 = 8.48 micromolar (µM. Benzophenone 4-methyl-3-thiosemicarbazone 3 and benzophenone thiosemicarbazone 1 showed moderate anti-trypanosomal activity with IC50 values equal to 23.27 µM and 67.17 µM respectively. Benzophenone 2 methyl-3-thiosemicarbazone 2 showed no activity up to IC50 = 371.74 µM.

  19. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.

    Directory of Open Access Journals (Sweden)

    Melissa L Sykes

    Full Text Available Human African Trypanosomiasis (HAT is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1 determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC, and 2 estimate the time to kill.

  20. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  1. The flagellum of Trypanosoma brucei: new tricks from an old dog

    Science.gov (United States)

    Ralston, Katherine S.; Hill, Kent L.

    2010-01-01

    African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102

  2. An in-silico investigation of anti-Chagas phytochemicals.

    Science.gov (United States)

    McCulley, Stephanie F; Setzer, William N

    2014-01-01

    Over 18 million people in tropical and subtropical America are afflicted by American trypanosomiasis or Chagas disease. In humans, symptoms of the disease include fever, swelling, and heart and brain damage, usually leading to death. There is currently no effective treatment for this disease. Plant products continue to be rich sources of clinically useful drugs, and the biodiversity of the Neotropics suggests great phytomedicinal potential. Screening programs have revealed numerous plant species and phytochemical agents that have shown in-vitro or in-vivo antitrypanosomal activity, but the biochemical targets of these phytochemicals are not known. In this work, we present a molecular docking analysis of Neotropical phytochemicals, which have already demonstrated antiparasitic activity against Trypanosoma cruzi, with potential druggable protein targets of the parasite. Several protein targets showed in-silico selectivity for trypanocidal phytochemicals, including trypanothione reductase, pteridine reductase 2, lipoamide dehydrogenase, glucokinase, dihydroorotate dehydrogenase, cruzain, dihydrofolate-reductase/thymidylate-synthase, and farnesyl diphosphate synthase. Some of the phytochemical ligands showed notable docking preference for trypanothione reductase, including flavonoids, fatty-acid-derived oxygenated hydrocarbons, geranylgeraniol and the lignans ganschisandrine and eupomatenoid-6.

  3. Classical clinical signs in rats experimemtally infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-02-01

    Full Text Available Objective: To investigate clinical signs in Trypanosoma brucei infection in albino rats. Methods: Fourteen rats grouped into 2 with 7 rats in each group were used to determine classical clinical manifestation of Trypanosoma brucei infection in rats. Group A rats were uninfected control and Group B rats were infected with Trypanosoma brucei. Results: Parasitaemia was recorded in Group B by (3.86±0.34 d and the peak of parasitaemia was observed at Day 5 post infection. Classical signs observed included squint eyes, raised whiskers, lethargy, no weight loss, pyrexia, isolation from the other rats, and starry hair coat. Conclusions: These signs could be diagnostic or aid in diagnosis of Trypanosoma brucei infection in rats.

  4. Regulation and spatial organization of PCNA in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas; Leonhardt, Heinrich; Janzen, Christian J.

    2012-01-01

    Highlights: ► Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). ► TbPCNA is a suitable marker to detect replication in T. brucei. ► TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  5. Regulation and spatial organization of PCNA in Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Doris; Gassen, Alwine [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Maiser, Andreas; Leonhardt, Heinrich [University of Munich (LMU), Department Biology II, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Janzen, Christian J., E-mail: christian.janzen@uni-wuerzburg.de [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  6. Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stefan Allmann

    Full Text Available Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.

  7. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-12-01

    Trypanosma brucei (T. Brucei) is an important pathogen agent of African trypanosomiasis. The flagellum is an essential and multifunctional organelle of T. Brucei, thus it is very important to recognize the flagellar proteins from T. Brucei proteins for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference of probability functions of flagella protein and the non-flagellar protein for the purpose of flagella protein recognition. We propose to learn a multi-kernel classification function to approximate this optimal decision function, by minimizing the information loss of such approximation which is measured by the Kull back-Leibler (KL) divergence. An iterative multi-kernel classifier learning algorithm is developed to minimize the KL divergence for the problem of T. Brucei flagella protein recognition, experiments show its advantage over other T. Brucei flagellar protein recognition and multi-kernel learning methods. © 2014 IEEE.

  8. In vivo trypanocidal activity of Nymphaea lotus Linn. methanol extract against Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Muhammad Haruna Garba

    2015-10-01

    Full Text Available Objective: To evaluate the antitrypanosomal potentials of methanol extract of Nymphaea lotus Linn. (N. lotus with the aim of obtaining a new lead for formulating safe, inexpensive, nontoxic and readily available trypanocidal drugs. Methods: Seventy percent (v/v (methanol/water crude extract of N. lotus was evaluated for antitrypanosomal activity in experimental trypanosomiasis using Trypanosoma brucei bruceiinfected mice. Infected mice in different groups were administered intraperitoneally 100, 200, 300 and 400 mg/kg body weight/day of the crude for two weeks, while a positive control group was treated with standard drug, berenil. Results: The crude extract at a dose of 100 mg/kg body weight/day was more effective than the higher doses in completely clearing parasites from the blood of mice infected with Trypanosoma brucei brucei. Pre-treatment of healthy mice with the crude extract for 5 days before infection did not prevent the establishment of the infection, indicating that the extract had no prophylactic activity. Subinoculation of the blood and cerebrospinal fluid drawn from the cured mice into healthy mice failed to produce any infection within 50 days post inoculation. Administration of 1 000 mg/kg body weight of the crude extract led to the death of 50% of the experimental animals indicating a high level of toxicity of the extract at higher doses. Conclusions: This study has demonstrated the potency of the crude extract of N. lotus in treating experimental trypanosomiasis at lower doses.

  9. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    Science.gov (United States)

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs. Georg Thieme Verlag KG Stuttgart · New York.

  10. Cyclobenzaprine Raises ROS Levels in Leishmania infantum and Reduces Parasite Burden in Infected Mice.

    Directory of Open Access Journals (Sweden)

    Edézio Ferreira Cunha-Júnior

    2017-01-01

    Full Text Available The leishmanicidal action of tricyclic antidepressants has been studied and evidences have pointed that their action is linked to inhibition of trypanothione reductase, a key enzyme in the redox metabolism of pathogenic trypanosomes. Cyclobenzaprine (CBP is a tricyclic structurally related to the antidepressant amitriptyline, differing only by the presence of a double bond in the central ring. This paper describes the effect of CBP in experimental visceral leishmaniasis, its inhibitory effect in trypanothione reductase and the potential immunomodulatory activity.In vitro antileishmanial activity was determined in promastigotes and in L. infantum-infected macrophages. For in vivo studies, L. infantum-infected BALB/c mice were treated with CBP by oral gavage for five days and the parasite load was estimated. Trypanothione reductase activity was assessed in the soluble fraction of promastigotes of L. infantum. For evaluation of cytokines, L. infantum-infected macrophages were co-cultured with BALB/c splenocytes and treated with CBP for 48 h. The supernatant was analyzed for IL-6, IL-10, MCP-1, IFN-γ and TNF-α. CBP demonstrated an IC50 of 14.5±1.1μM and an IC90 of 74.5±1.2 μM in promastigotes and an IC50 of 12.6±1.05 μM and an IC90 of 28.7±1.3 μM in intracellular amastigotes. CBP also reduced the parasite load in L. infantum-infected mice by 40.4±10.3% and 66.7±10.5% in spleen at 24.64 and 49.28 mg/kg, respectively and by 85.6±5.0 and 89.3±4.8% in liver at 24.64 and 49.28mg/kg, after a short-term treatment. CBP inhibited the trypanothione reductase activity with a Ki of 86 ± 7.7 μM and increased the ROS production in promastigotes. CBP inhibited in 53% the production of IL-6 in infected macrophages co-culture.To the best of our knowledge, this study is the first report of the in vivo antileishmanial activity of the FDA-approved drug CBP. Modulation of immune response and induction of oxidative stress in parasite seem to contribute to

  11. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2016-04-01

    Full Text Available Neglected tropical diseases (NTDs affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness, caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.

  12. Studies on the glycosome of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Aman, R.A.

    1985-01-01

    Glycosomes (microbodies) have been purified from bloodstream form Trypanosoma brucei by an improved procedure involving freezing and thawing live organisms in 15% glycerol prior to cell disruption. Highly purified organelles of bloodstream form T. brucei contain 11 major proteins of which 8 tentatively identified glycolytic enzymes make up about 90% of the total glycosomal protein. Treatment of these intact isolated organelles with the bisimidoester dimethylsuberimidate (DMSI) resulted in crosslinking of all glycosomal proteins into a large complex suggestive of juxtapositioning of the glycosomal proteins. The crosslinked complex was capable of catalyzing the multienzyme conversion of glucose to glycerol-3-phosphate but did not possess any special kinetic features different from those of the unaggregated enzymes represented by solubilized glycosomes. The multienzyme reaction had a lab phase associated with it and [ 14 C]-glucose label incorporation into sugar phosphate intermediates was effectively competed by unlabeled intermediates. Glycosomes were also purified from culture form T. brucei by several different procedures. Comparison of highly purified organelles from the two different life stages of the organism showed reduced specific activities and contents of the early glycolytic enzymes in organelles from the culture form with a decrease from 87% to 35% of the contribution of glycolytic enzymes to the total glycosomal protein

  13. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Chiara Tesoriero

    2018-02-01

    Full Text Available Trypanosoma brucei (T. b. gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN, have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes

  14. Evaluation of In Vitro Activity of Essential Oils against Trypanosoma brucei brucei and Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    Nathan Habila

    2010-01-01

    Full Text Available Essential oils (EOs from Cymbopogon citratus (CC, Eucalyptus citriodora (EC, Eucalyptus camaldulensis (ED, and Citrus sinensis (CS were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb and Trypanosoma evansi (T. evansi. The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09% in CS, 6-octenal (77.11% in EC, Eucalyptol (75% in ED, and Citral (38.32% in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.

  15. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger on Trypanosoma brucei brucei-infected Wistar mice

    Directory of Open Access Journals (Sweden)

    P. I. Kobo

    2014-10-01

    Full Text Available Aim: The study was carried out to determine the in vivo antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger in Trypanosoma brucei brucei-infected mice. Materials and Methods: Twenty-five mice were randomly allocated into five groups of five animals each. Group I and II were given Tween 80 (1 ml/kg and diminazene aceturate (3.5 mg/kg to serve as untreated and treated controls, respectively. Groups III-V received the extract at 200, 400 and 800 mg/kg body weight, respectively. All treatments were given for 6 consecutive days and through the oral route. The mean body weight, mean survival period and daily level of parasitaemia were evaluated. Results: Acute toxicity showed the extract to be relatively safe. There was an insignificant increase in body weight and survival rate of mice treated with the extract. The level of parasitaemia in the extract treated groups was decreased. Conclusion: This study shows the in vivo potential of methanolic extract of Z. officinale in the treatment of trypanosomiasis.

  17. Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2009-09-01

    Full Text Available Abstract Background Mating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei. Results We investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest

  18. Wild chimpanzees are infected by Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Milan Jirků

    2015-12-01

    Finally, we demonstrated that the mandrill serum was able to efficiently lyse T. b. brucei and T. b. rhodesiense, and to some extent T. b. gambiense, while the chimpanzee serum failed to lyse any of these subspecies.

  19. Interaction between Trypanosoma brucei and Haemonchus ...

    African Journals Online (AJOL)

    In order to investigate the immunomodulatory influence of concurrent T. brucei and H. contortus infection in West African Dwarf (WAD) goats, 28 infected and 7 uninfected (control) of 8-9 months old male WAD goats were studied. The infected goats were separated into resistant (Class 1) and susceptible (Class 2) Faecal ...

  20. Characterization of Trypanosoma brucei gambiense stocks isolated ...

    African Journals Online (AJOL)

    Trypanosoma brucei gambiense was isolated twice from each of 23 patients in Côte d'Ivoire. Genetic characterization using RAPD (Random Primed Amplified Polymorphic DNA) showed additional variability within a given isoenzyme profile (zymodeme), confirming that this fingerprinting method has a higher discriminative ...

  1. Detection of Trypanosoma brucei gambiense and T. b. rhodesiense ...

    African Journals Online (AJOL)

    Detection of Trypanosoma brucei gambiense and T. b. rhodesiense in Glossina fuscipes fuscipes ( Diptera: Glossinidae ) and Stomoxys flies using the polymerase chain reaction (PCR) technique in southern Sudan.

  2. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, Andres [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Altabe, Silvia G. [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Deumer, Gladys; Wallemacq, Pierre [Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, LTAP, Universite Catholique de Louvain, Brussels (Belgium); Michels, Paul A.M. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Uttaro, Antonio D., E-mail: toniuttaro@yahoo.com.ar [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina)

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  3. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    International Nuclear Information System (INIS)

    Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A.; Altabe, Silvia G.; Deumer, Gladys; Wallemacq, Pierre; Michels, Paul A.M.; Uttaro, Antonio D.

    2011-01-01

    Highlights: → Inhibiting Δ9 desaturase drastically changes T. brucei's fatty-acid composition. → Isoxyl specifically inhibits the Δ9 desaturase causing a growth arrest. → RNA interference of desaturase expression causes a similar effect. → Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. → 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC 50 ) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC 50 values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  4. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  5. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie

    2011-05-24

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F oF 1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Haematological indices in Trypanosoma brucei brucei (Federe isolate infected Nigerian donkeys (Equus asinus treated with homidium and isometamidium chloride of ciprofloxacin in broiler chickens after single intravenous and intraingluvial administration

    Directory of Open Access Journals (Sweden)

    Queen Nneka Oparah

    2017-03-01

    Full Text Available The efficacy of intramuscular administration of Homidium chloride (Novidium® and Isometamidium chloride (Sécuridium® in Nigerian donkeys (Equus asinus experimentally infected with T. b. brucei (Federe isolate was investigated. Changes in haematological and serum biochemical indices were evaluated using clinical haematology and biochemistry methods. Red blood cell (RBC count for the negative control group was significantly higher than for the positive control, Novidium® and Sécuridium®-treatment groups. Haemoglobin (Hb concentration significantly reduced in the infected untreated group compared with other groups. Packed cell volume (PCV was significantly different between negative and positive controls, and also between the infected untreated and treatment groups. There was significant reduction in platelet counts post-infection and post-treatment. Mean corpuscular volume (MCV increased significantly in the treatment groups while mean corpuscular haemoglobin concentration (MCHC significantly reduced only in the Sécuridium®-treatment group. Lymphocyte count for infected untreated was non-significantly higher than for the uninfected controls, but treatment with both trypanocides recorded further increases, which were higher compared with that of the uninfected group. Post infection and treatment, aspartate aminotransferase (AST levels increased significantly. There were non-significant differences in electrolyte ion concentrations across the groups except for chloride ion which recorded a significant reduction in the Novidium®-treatment group. This experiment revealed that Nigerian donkeys infected with T. brucei brucei (Federe isolate developed symptoms of trypanosomosis; anaemia, lymphocytosis and thrombocytopenia. Treatment with the trypanocides ameliorated effects of the infection, and results suggest that immunosuppression may not be a substantial clinical manifestation of T. brucei brucei (Federe isolate trypanosomosis in Nigerian

  7. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  8. Role of cytokines in Trypanosoma brucei-induced anaemia: A ...

    African Journals Online (AJOL)

    species Trypanosoma brucei that are transmitted by a tsetse fly (Glossina spp.) ... of autologous immunoglobulin antibodies on the red cell surfaces and also to ... development for the detection and management of anaemia in trypanosomiasis.

  9. Malleable Mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Basu, Somsuvro; Benz, C.; Dixit, S.; Dobáková, Eva; Faktorová, Drahomíra; Hashimi, Hassan; Horáková, Eva; Huang, Zhenqiu; Paris, Zdeněk; Peña-Diaz, Priscila; Ridlon, L.; Týč, Jiří; Wildridge, David; Zíková, Alena; Lukeš, Julius

    2015-01-01

    Roč. 315, 2015 Feb 07 (2015), s. 73-151 ISSN 1937-6448 R&D Projects: GA ČR GAP302/12/2513; GA MŠk LL1205; GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104; GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Kinetoplast * Metabolism * Mitochondrial transport * Mitochondrion * RNA import * T. brucei * Trypanosome * kDNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.752, year: 2015

  10. What controls glycolysis in bloodstream form Trypanosoma brucei?

    NARCIS (Netherlands)

    Bakker, B.M.; Michels, P.A.M.; Opperdoes, F.R.; Westerhoff, H.V.

    1999-01-01

    On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the

  11. No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Barend Mark de Clare Bronsvoort

    2010-01-01

    Full Text Available African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1=0.760 had a higher sensitivity than the ITS-PCR (Se2=0.640; both have high specificity (Sp1=0.998; Sp2=0.997. The true prevalences for livestock populations were estimated (pcattle=0.091, ppigs=0.066, pgoats=0.005, psheep=0.006, taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes and may thus be, overall, a better

  12. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    Science.gov (United States)

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  13. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.

    Science.gov (United States)

    Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M

    2016-11-01

    Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Changes in blood sugar levels of rats experimentally infected with Trypanosoma brucei and treated with imidocarb dipropionate and diminazene aceturate

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2016-01-01

    Full Text Available Objective: To determine the effect of Trypanosoma brucei (T. brucei on blood sugar level of infected rats. Methods: The experiment was done with 42 albino rats grouped into 3 groups of 14 members each. Group A was uninfected (control group, Group B was infected with T. brucei and treated with diminazene aceturate, and Group C was infected with T. brucei and treated with imidocarb dipropionate. Blood samples were collected from the media canthus of the experimental rats on Days 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 for the assessment of change in blood sugar levels. The blood sugar levels were determined with a glucometer (Accu-chek active serial No. GN: 10023338. Results: By 4 to 5 days post infection, there was a significant increase (P 0.05 was observed in the groups when compared with the control group till Day 12 of the experiment. Conclusions: T. brucei caused a significant increase in blood sugar of infected rats.

  15. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components.

    Science.gov (United States)

    Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria

    2018-07-01

    Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50  oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  17. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  18. Some liver function indices and blood parameters in T. brucei ...

    African Journals Online (AJOL)

    JTEkanem

    symptoms of African sleeping sickness9. Despite the prolific research ... is a disease for which both man and other animals whether ... on some symptoms caused by T. brucei infection. .... immune response is insufficient to clear infection21-23.

  19. Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei.

    Science.gov (United States)

    Kamina, Anyango D; Jaremko, Daniel; Christen, Linda; Williams, Noreen

    2017-01-01

    Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei , the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T . brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei . IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of

  20. Rab23 is a flagellar protein in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Field Mark C

    2011-06-01

    Full Text Available Abstract Background Rab small GTPases are important mediators of membrane transport, and orthologues frequently retain similar locations and functions, even between highly divergent taxa. In metazoan organisms Rab23 is an important negative regulator of Sonic hedgehog signaling and is crucial for correct development and differentiation of cellular lineages by virtue of an involvement in ciliary recycling. Previously, we reported that Trypanosoma brucei Rab23 localized to the nuclear envelope 1, which is clearly inconsistent with the mammalian location and function. As T. brucei is unicellular the potential that Rab23 has no role in cell signaling was possible. Here we sought to further investigate the role(s of Rab23 in T. brucei to determine if Rab23 was an example of a Rab protein with divergent function in distinct taxa. Methods/major findings The taxonomic distribution of Rab23 was examined and compared with the presence of flagella/cilia in representative taxa. Despite evidence for considerable secondary loss, we found a clear correlation between a conventional flagellar structure and the presence of a Rab23 orthologue in the genome. By epitope-tagging, Rab23 was localized and found to be present at the flagellum throughout the cell cycle. However, RNAi knockdown did not result in a flagellar defect, suggesting that Rab23 is not required for construction or maintenance of the flagellum. Conclusions The location of Rab23 at the flagellum is conserved between mammals and trypanosomes and the Rab23 gene is restricted to flagellated organisms. These data may suggest the presence of a Rab23-mediated signaling mechanism in trypanosomes.

  1. A tropical tale: how Naja nigricollis venom beats Trypanosoma brucei

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings [1]. During the parasite’s extracellular life in the mammalian host,its outer coat, mainly composed of Variable Surface Glycoproteins (VSGs)...

  2. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  3. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  4. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity.

    Directory of Open Access Journals (Sweden)

    Géraldine De Muylder

    2013-10-01

    Full Text Available In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.

  5. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Lai, D.-H.; Bontempi, E. J.; Lukeš, Julius

    2012-01-01

    Roč. 183, č. 2 (2012), s. 189-192 ISSN 0166-6851 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Sleeping sickness * Ubiquinone * Solanesyl-diphosphate synthase * Digitonin permeabilization * In situ tagging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112000539

  6. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  7. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  8. Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates

    Directory of Open Access Journals (Sweden)

    Fabrice E. Graf

    2015-08-01

    Full Text Available Aquaglyceroporin-2 is a known determinant of melarsoprol–pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2–AQP3 tandem locus was described from melarsoprol–pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2–aqp3 null T. b. brucei does not. This proves that AQP2–AQP3 chimerization is the cause of melarsoprol–pentamidine cross-resistance in the T. b. gambiense isolates.

  9. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Ana Brennand

    Full Text Available We have previously identified homologs for nearly half of the approximately 30 known yeast Atg's in the genome database of the human sleeping sickness parasite Trypanosoma brucei. So far, only a few of these homologs have their role in autophagy experimentally confirmed. Among the candidates was the ortholog of Atg24 that is involved in pexophagy in yeast. In T. brucei, the peroxisome-like organelles named glycosomes harbor core metabolic processes, especially glycolysis. In the autotrophic yeast, autophagy is essential for adaptation to different nutritional environments by participating in the renewal of the peroxisome population. We hypothesized that autophagic turnover of the parasite's glycosomes plays a role in differentiation during its life cycle, which demands adaptation to different host environments and associated dramatic changes in nutritional conditions. We therefore characterized T. brucei ATG24, the T. brucei ortholog of yeast Atg24 and mammalian SNX4, and found it to have a regulatory role in autophagy and differentiation as well as endocytic trafficking. ATG24 partially localized on endocytic membranes where it was recruited via PI3-kinase III/VPS34. ATG24 silencing severely impaired receptor-mediated endocytosis of transferrin, but not adsorptive uptake of a lectin, and caused a major enlargement of the flagellar pocket. ATG24 silencing approximately doubled the number of autophagosomes, suggesting a role in repressing autophagy, and strongly accelerated differentiation, in accordance with a role of autophagy in parasite differentiation. Overexpression of the two isoforms of T. brucei ATG8 fused to GFP slowed down differentiation, possibly by a dominant-negative effect. This was overcome by ATG24 depletion, further supporting its regulatory role.

  10. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  11. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  12. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Sharlow

    2010-04-01

    Full Text Available The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK, an enzyme essential to the parasite that transfers the gamma-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were approximately 20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.

  13. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation

    NARCIS (Netherlands)

    Weelden, van S.W.H.; Fast, B.; Vogt, A.; Meer, van der P.; Saas, J.; Hellemond, van J.J.; Tielens, A.G.M.; Boshart, M.

    2003-01-01

    The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene

  14. Studies on the localization of Trypanosoma brucei in the female reproductive tract of bka mice and hooded lister rats

    International Nuclear Information System (INIS)

    Chipepa, J.A.S.; Brown, H.; Holmes, P.

    1991-01-01

    A study was conducted to establish whether Trypanosoma brucei migrated preferentially to the reproductive tracts of female BKA mice, or Hooded Lister rats and lodged there as the site of choice compared to other organs. Blood flow to the reproductive tracts, the liver and spleen was measured using red blood cells labelled with chromium- 51. The distribution of trypanosomes labelled with 75 Se-methionine. The average percentage of the blood flow to the reproductive tract was 0.21Plus or minus0.08 in mice, while the mean concentration of trypanosomes there was 0.30% in both mice and rats. Blood flow to the liver was lower than the percentage distribution of Se-labelled T.Brucei(5.17Plus or minus1.34 versus 8.1Plus or Minus1.2). There were, on the contrary, less labelled trypanosomes as compared to the mean blood flow to the spleen (0.54% plus or minus0.18 versus 2.10%pPlus or minus0.88). After 24 hours there were adequate numbers of T. brucei in the reproductive tract to cause parasitaemia in recipient mice. From these preliminary data it was concluded that T. brucei did not lodge in the reproductive organ system a site of choice. (author). 9 refs., 3 tabs

  15. Novel 1,2-dihydroquinazolin-2-ones: Design, synthesis, and biological evaluation against Trypanosoma brucei.

    Science.gov (United States)

    Pham, ThanhTruc; Walden, Madeline; Butler, Christopher; Diaz-Gonzalez, Rosario; Pérez-Moreno, Guiomar; Ceballos-Pérez, Gloria; Gomez-Pérez, Veronica; García-Hernández, Raquel; Zecca, Henry; Krakoff, Emma; Kopec, Brian; Ichire, Ogar; Mackenzie, Caden; Pitot, Marika; Ruiz, Luis Miguel; Gamarro, Francisco; González-Pacanowska, Dolores; Navarro, Miguel; Dounay, Amy B

    2017-08-15

    In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei

    Science.gov (United States)

    Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita

    2018-01-01

    ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this

  17. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  18. Novel molecular mechanism for targeting the parasite Trypanosoma brucei with snake venom toxins

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings. During parasites’extracellular lives in the mammalian host, its outer coat, mainly composedof Variable surface glycoproteins (VSGs)[2...

  19. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form

    Czech Academy of Sciences Publication Activity Database

    Acestor, N.; Zíková, Alena; Dalley, R. A.; Anupama, A.; Panigrahi, A. K.; Stuart, K. D.

    2011-01-01

    Roč. 10, č. 9 (2011), s. 1-14 ISSN 1535-9476 R&D Projects: GA ČR GP204/09/P563 Institutional research plan: CEZ:AV0Z60220518 Keywords : SUCCINATE DEHYDROGENASE * EDITED MESSENGER-RNA * COMPLEX-I * TRYPANOSOMA-BRUCEI * UBIQUINONE OXIDOREDUCTASE * TAP-TAG * PROTEIN INTERACTION * ALTERNATIVE OXIDASE * STATISTICAL-MODEL * MASS-SPECTROMETRY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.398, year: 2011

  20. Arterial blood pressure changes in acute T. brucei infection of dogs ...

    African Journals Online (AJOL)

    The aim of this study is to find out the usefulness of serial arterial blood pressure measurements in predicting severity and outcome of acute Trypanosoma brucei infection in dogs. Twenty adult dogs of mixed sexes and aged between 2 and 5 years were used for this study. The dogs were of good cardiac health and were ...

  1. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    OpenAIRE

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human...

  2. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  3. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei.

    Science.gov (United States)

    Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G

    2016-01-01

    A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  5. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  6. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  7. Central Nervous System Parasitosis and Neuroinflammation Ameliorated by Systemic IL-10 Administration in Trypanosoma brucei-Infected Mice.

    Directory of Open Access Journals (Sweden)

    Jean Rodgers

    Full Text Available Invasion of the central nervous system (CNS by African trypanosomes represents a critical step in the development of human African trypanosomiasis. In both clinical cases and experimental mouse infections it has been demonstrated that predisposition to CNS invasion is associated with a type 1 systemic inflammatory response. Using the Trypanosoma brucei brucei GVR35 experimental infection model, we demonstrate that systemic delivery of the counter-inflammatory cytokine IL-10 lowers plasma IFN-γ and TNF-α concentrations, CNS parasitosis and ameliorates neuro-inflammatory pathology and clinical symptoms of disease. The results provide evidence that CNS invasion may be susceptible to immunological attenuation.

  8. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  9. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Eduard J Kerkhoven

    Full Text Available Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak" must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i including additional enzymatic reactions in the glycosome, or (ii adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.

  10. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference

  11. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit.

    Science.gov (United States)

    Gahura, Ondřej; Šubrtová, Karolína; Váchová, Hana; Panicucci, Brian; Fearnley, Ian M; Harbour, Michael E; Walker, John E; Zíková, Alena

    2018-02-01

    The F-ATPases (also called the F 1 F o -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F 1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F 1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F 1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F 1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F 1 domain. These unique features of the F 1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F 1 -ATPase complex is not strictly conserved in eukaryotes. © 2017 Federation of European Biochemical Societies.

  12. Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse.

    Directory of Open Access Journals (Sweden)

    Erik Vassella

    Full Text Available Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.

  13. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  14. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Alkhaldi, A.A.M.; Martínek, Jan; Panicucci, Brian; Dardonville, C.; Zíková, Alena; de Koning, H.P.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 23-34 ISSN 2211-3207 R&D Projects: GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * mitochondrion * FoF1 ATPase * succinate dehydrogenase * phosphonium salt * SDH complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.809, year: 2016

  15. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  16. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gunasekera Kapila

    2012-10-01

    Full Text Available Abstract Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS, short stumpy (SS mammalian bloodstream form stages relative to the procyclic (PC insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.

  17. Comparative Genomics of Glossina palpalis gambiensis and G. morsitans morsitans to Reveal Gene Orthologs Involved in Infection by Trypanosoma brucei gambiense.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Tchicaya, Bernadette; Rialle, Stéphanie; Parrinello, Hugues; Geiger, Anne

    2017-01-01

    Blood-feeding Glossina palpalis gambiense (Gpg) fly transmits the single-celled eukaryotic parasite Trypanosoma brucei gambiense (Tbg), the second Glossina fly African trypanosome pair being Glossina morsitans / T .brucei rhodesiense. Whatever the T. brucei subspecies, whereas the onset of their developmental program in the zoo-anthropophilic blood feeding flies does unfold in the fly midgut, its completion is taking place in the fly salivary gland where does emerge a low size metacyclic trypomastigote population displaying features that account for its establishment in mammals-human individuals included. Considering that the two Glossina - T. brucei pairs introduced above share similarity with respect to the developmental program of this African parasite, we were curious to map on the Glossina morsitans morsitans (Gmm), the Differentially Expressed Genes (DEGs) we listed in a previous study. Briefly, using the gut samples collected at days 3, 10, and 20 from Gpg that were fed or not at day 0 on Tbg-hosting mice, these DGE lists were obtained from RNA seq-based approaches. Here, post the mapping on the quality controlled DEGs on the Gmm genome, the identified ortholog genes were further annotated, the resulting datasets being compared. Around 50% of the Gpg DEGs were shown to have orthologs in the Gmm genome. Under one of the three Glossina midgut sampling conditions, the number of DEGs was even higher when mapping on the Gmm genome than initially recorded. Many Gmm genes annotated as "Hypothetical" were mapped and annotated on many distinct databases allowing some of them to be properly identified. We identify Glossina fly candidate genes encoding (a) a broad panel of proteases as well as (b) chitin-binding proteins, (c) antimicrobial peptide production-Pro3 protein, transferrin, mucin, atttacin, cecropin, etc-to further select in functional studies, the objectives being to probe and validated fly genome manipulation that prevents the onset of the developmental

  18. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Kuan Yoow Chan

    2010-08-01

    Full Text Available Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1 has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.

  19. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    Science.gov (United States)

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  20. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  1. The aldo-keto reductase superfamily homepage.

    Science.gov (United States)

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  2. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  3. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion.

    Science.gov (United States)

    McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P

    2016-11-29

    The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.

  4. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  5. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  6. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J

    2013-02-15

    Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms

  7. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  8. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  9. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-01-01

    The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545

  10. Peptide-targeted delivery of a pH sensor for quantitative measurements of intraglycosomal pH in live Trypanosoma brucei.

    Science.gov (United States)

    Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A

    2013-05-28

    Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.

  11. THE CYTOSOLIC AND GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM TRYPANOSOMA-BRUCEI - KINETIC-PROPERTIES AND COMPARISON WITH HOMOLOGOUS ENZYMES

    NARCIS (Netherlands)

    LAMBEIR, AM; LOISEAU, AM; KUNTZ, DA; VELLIEUX, FM; MICHELS, PAM; OPPERDOES, FR

    1991-01-01

    The protozoan haemoflagellate Trypanosoma brucei has two NAD-dependent glyceraldehyde-3-phosphate dehydrogenase isoenzymes, each with a different localization within the cell. One isoenzyme is found in the cytosol, as in other eukaryotes, while the other is found in the glycosome, a microbody-like

  12. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei.

    Science.gov (United States)

    Omar, Ruwida; Igoli, John O; Zhang, Tong; Gray, Alexander I; Ebiloma, Godwin U; Clements, Carol J; Fearnley, James; Edrada Ebel, RuAngeli; Paget, Tim; de Koning, Harry P; Watson, David G

    2017-04-19

    Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS 2 data, could be correlated to denticulatain isomers in the extracts.

  13. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  14. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; RUBIO, M. A. T.; Lukeš, Julius; Alfonzo, J. D.

    2009-01-01

    Roč. 15, č. 7 (2009), s. 1398-1406 ISSN 1355-8382 R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : T. brucei * tRNA import * 2-thiolation * RIC * Rieske * Fe-S cluster Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  15. Mating compatibility in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  16. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  17. Adaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from Tsetse flies and during differentiation of bloodstream forms.

    NARCIS (Netherlands)

    van Grinsven, K.W.A.; van den Abbeele, J.; van den Bossche, P.; van Hellemond, J.J.; Tielens, A.G.M.

    2009-01-01

    Procyclic forms of Trypanosoma brucei isolated from the midguts of infected tsetse flies, or freshly transformed from a strain that is close to field isolates, do not use a complete Krebs cycle. Furthermore, short stumpy bloodstream forms produce acetate and are apparently metabolically preadapted

  18. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Jason Carnes

    Full Text Available Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes that catalyze RNA editing but the relative roles of each protein are not known.The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity.KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.

  19. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function

    Czech Academy of Sciences Publication Activity Database

    Cristodero, M.; Mani, J.; Oeljeklaus, S.; Aeberhard, L.; Hashimi, Hassan; Ramrath, D.J.F.; Lukeš, Julius; Warscheid, B.; Schneider, A.

    2013-01-01

    Roč. 90, č. 4 (2013), s. 744-755 ISSN 0950-382X R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : mitochondrial translation * Trypanosoma brucei * EF-Tu Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.026, year: 2013

  20. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  1. Trypanosoma brucei gambiense: HMI-9 medium containing methylcellulose and human serum supports the continuous axenic in vitro propagation of the bloodstream form.

    Science.gov (United States)

    Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F

    2011-07-01

    Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The activity of aminoglycoside antibiotics against Trypanosoma brucei.

    Science.gov (United States)

    Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S

    1998-01-01

    The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.

  3. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Science.gov (United States)

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  4. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  5. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  6. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite.

    Directory of Open Access Journals (Sweden)

    Brian Panicucci

    2017-04-01

    Full Text Available The mitochondrial (mt FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF, but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF, which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm. Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1 binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1, but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.

  7. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  8. Diversity and spation distribution of vectors and hosts of T. brucei gambiense in forest zones of Southern Cameroon: Epidemiological implications

    NARCIS (Netherlands)

    Massussi, J.A.; Mbida Mbida, J.A.; Djieto-Lordon, C.; Njiokou, F.; Laveissière, C.; Ploeg, van der J.D.

    2010-01-01

    Host and vector distribution of Trypanosoma brucei gambiense was studied in relation to habitat types and seasons. Six (19.35%) of the 31 mammal species recorded in Bipindi were reservoir hosts. Cercopithecus nictitans was confined to the undisturbed forest and the low intensive shifting cultivation

  9. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  10. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Amy F Savage

    Full Text Available African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals, have a complex digenetic life cycle between a mammalian host and an insect vector, the blood-feeding tsetse fly. Although the importance of the insect vector to transmit the disease was first realized over a century ago, many aspects of trypanosome development in tsetse have not progressed beyond a morphological analysis, mainly due to considerable challenges to obtain sufficient material for molecular studies. Here, we used high-throughput RNA-Sequencing (RNA-Seq to profile Trypanosoma brucei transcript levels in three distinct tissues of the tsetse fly, namely the midgut, proventriculus and salivary glands. Consistent with current knowledge and providing a proof of principle, transcripts coding for procyclin isoforms and several components of the cytochrome oxidase complex were highly up-regulated in the midgut transcriptome, whereas transcripts encoding metacyclic VSGs (mVSGs and the surface coat protein brucei alanine rich protein or BARP were extremely up-regulated in the salivary gland transcriptome. Gene ontology analysis also supported the up-regulation of biological processes such as DNA metabolism and DNA replication in the proventriculus transcriptome and major changes in signal transduction and cyclic nucleotide metabolism in the salivary gland transcriptome. Our data highlight a small repertoire of expressed mVSGs and potential signaling pathways involving receptor-type adenylate cyclases and members of a surface carboxylate transporter family, called PADs (Proteins Associated with Differentiation, to cope with the changing environment, as well as RNA-binding proteins as a possible global regulators of gene expression.

  11. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-01-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M r of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M r of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and 35 S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed

  12. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrón-López, Melisa [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium); Michels, Paul A.M., E-mail: paul.michels@uclouvain.be [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium)

    2013-02-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  13. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  14. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei.

    Science.gov (United States)

    Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria

    2018-06-01

    The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.

  15. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  16. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  17. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.

    Science.gov (United States)

    Saraswat, Megha; Muthenna, P; Suryanarayana, P; Petrash, J Mark; Reddy, G Bhanuprakash

    2008-01-01

    Activation of polyol pathway due to increased aldose reductase activity is one of the several mechanisms that have been implicated in the development of various secondary complications of diabetes. Though numerous synthetic aldose reductase inhibitors have been tested, these have not been very successful clinically. Therefore, a number of common plant/ natural products used in Indian culinary have been evaluated for their aldose reductase inhibitory potential in the present study. The aqueous extracts of 22 plant-derived materials were prepared and evaluated for the inhibitory property against rat lens and human recombinant aldose reductase. Specificity of these extracts towards aldose reductase was established by testing their ability to inhibit a closely related enzyme viz, aldehyde reductase. The ex vivo incubation of erythrocytes in high glucose containing medium was used to underscore the significance in terms of prevention of intracellular sorbitol accumulation. Among the 22 dietary sources tested, 10 showed considerable inhibitory potential against both rat lens and human recombinant aldose reductase. Prominent inhibitory property was found in spinach, cumin, fennel, lemon, basil and black pepper with an approximate IC50 of 0.2 mg/mL with an excellent selectivity towards aldose reductase. As against this, 10 to 20 times higher concentrations were required for 50% inhibition of aldehyde reductase. Reduction in the accumulation of intracellular sorbitol by the dietary extracts further substantiated their in vivo efficacy. The findings reported here indicate the scope of adapting life-style modifications in the form of inclusion of certain common sources in the diet for the management of diabetic complications.

  18. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  19. Dynamics of Mitochondrial RNA-Binding Protein Complex in Trypanosoma brucei and Its Petite Mutant under Optimized Immobilization Conditions

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Kaltenbrunner, S.; Šimková, Eva; Staněk, David; Lukeš, Julius; Hashimi, Hassan

    2014-01-01

    Roč. 13, č. 9 (2014), s. 1232-1240 ISSN 1535-9778 R&D Projects: GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 ; RVO:68378050 Keywords : mitochondrion * Trypanosoma brucei * YFP Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 2.820, year: 2014

  20. Exosome secretion affects social motility in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Dror Eliaz

    2017-03-01

    Full Text Available Extracellular vesicles (EV secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB utilizing the endosomal sorting complexes required for transport (ESCRT, through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo. This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.

  1. Histochemical Localization of Glutathione Dependent NBT-Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. Methods The fresh frozen tissue sections (8m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. Results  The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. Conclusion The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  2. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    Science.gov (United States)

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  3. The Aurora Kinase in Trypanosoma brucei plays distinctive roles in metaphase-anaphase transition and cytokinetic initiation.

    Directory of Open Access Journals (Sweden)

    Ziyin Li

    2009-09-01

    Full Text Available Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC, consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and

  4. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase.

    Science.gov (United States)

    Herrmann, Fabian C; Lenz, Mairin; Jose, Joachim; Kaiser, Marcel; Brun, Reto; Schmidt, Thomas J

    2015-09-03

    As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP) databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany), against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH), a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9%) were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69%) showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  5. Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity

    NARCIS (Netherlands)

    Vanhamme, L.; Perez-Morga, D.; Marchal, C.; Speijer, D.; Lambert, L.; Geuskens, M.; Alexandre, S.; Ismaïli, N.; Göringer, U.; Benne, R.; Pays, E.

    1998-01-01

    We report the characterization of a Trypanosoma brucei 75-kDa protein of the RGG (Arg-Gly-Gly) type, termed TBRGG1. Dicistronic and monocistronic transcripts of the TBRGG1 gene were produced by both alternative splicing and polyadenylation. TBRGG1 was found in two or three forms that differ in their

  6. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  7. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    The thioredoxin system has evolved in all kingdoms of life acting as a key antioxidant system in the defense against oxidative stress. The thioredoxin system utilizes reducing equivalents from NADPH to reduce protein disulfide targets. The reducing equivalents are shuttled via a flavin and redox...... active dithiol motif in thioredoxin reductase (TrxR) to reduce the small ubiquitous thioredoxin (Trx). Trx in turn regulates the protein dithiol/disulfide balance by reduction of protein disulfide targets in e.g. ribonucleotide reductase, peroxiredoxins and methionine sulfoxide reductase. The glutathione......, thus expected to rely mainly on the Trx system for thiol-disulfide control. L. lactis is an important industrial microorganism used as starter culture in the dairy production of cheese, buttermilk etc. and known to be sensitive to oxidative stress. The L. lactis TrxR (LlTrxR) is a homodimeric...

  8. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2016-12-01

    Full Text Available The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  9. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  10. Secondary Metabolites from Vietnamese Marine Invertebrates with Activity against Trypanosoma brucei and T. cruzi

    Directory of Open Access Journals (Sweden)

    Nguyen Phuong Thao

    2014-06-01

    Full Text Available Marine-derived natural products from invertebrates comprise an extremely diverse and promising source of the compounds from a wide variety of structural classes. This study describes the discovery of five marine natural products with activity against Trypanosoma species by natural product library screening using whole cell in vitro assays. We investigated the anti-trypanosomal activity of the extracts from the soft corals and echinoderms living in Vietnamese seas. Of the samples screened, the methanolic extracts of several marine organisms exhibited potent activities against cultures of Trypanosoma brucei and T. cruzi (EC50 < 5.0 μg/mL. Among the compounds isolated from these extracts, laevigatol B (1 from Lobophytum crassum and L. laevigatum, (24S-ergost-4-ene-3-one (2 from Sinularia dissecta, astropectenol A (3 from Astropecten polyacanthus, and cholest-8-ene-3β,5α,6β,7α-tetraol (4 from Diadema savignyi showed inhibitory activity against T. brucei with EC50 values ranging from 1.57 ± 0.14 to 14.6 ± 1.36 μM, relative to the positive control, pentamidine (EC50 = 0.015 ± 0.003 μM. Laevigatol B (1 and 5α-cholest-8(14-ene-3β,7α-diol (5 exhibited also significant inhibitory effects on T. cruzi. The cytotoxic activity of the pure compounds on mammalian cells was also assessed and found to be insignificant in all cases. This is the first report on the inhibitory effects of marine organisms collected in Vietnamese seas against Trypanosoma species responsible for neglected tropical diseases.

  11. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 2; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  12. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  13. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    Science.gov (United States)

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  14. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  15. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  16. Kinetics of carbonyl reductase from human brain.

    OpenAIRE

    Bohren, K M; von Wartburg, J P; Wermuth, B

    1987-01-01

    Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. D...

  17. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  18. Nitrate reductase activity and its relationship with applied nitrogen in soybean

    International Nuclear Information System (INIS)

    Ge Wenting; Jin Xijun; Ma Chunmei; Dong Shoukun; Gong Zhenping; Zhang Lei

    2011-01-01

    Field experiments were conducted to study the nitrate reductase activity and its relationship to nitrogen by using frame tests (pot without bottom), sand culture and 15 N-urea at transplanting in soybean variety Suinong 14. Results showed that the activity of nitrate reductase in leaf changed as a signal peak curve with the soybean growth, lower in vegetative growth phase, higher in reproductive growth period and reached the peak in blooming period, then decreased gradually. Nitrogen application showed obvious effect on the nitrate reductase activity. The activities of nitrate reductase in leaves followed the order of N 135 > N 90 > N 45 > N 0 in vegetative growth stage, no clear regularity was found during the whole reproductive growth period. The activities of nitrate reductase in leaves were accorded with the order of upper leaves > mid leaves > lower leaves, and it was very significant differences (P 15 N labeling method during beginning seed stage and full seed stage shown that 15 N abundance in various organs at different node position also followed the same order, suggesting that high level of nitrate reductase activity at upper leaves of soybean promoted the assimilation of NO 3 - . (authors)

  19. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  20. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance.

    Directory of Open Access Journals (Sweden)

    Rebecca E Symula

    Full Text Available Trypanosoma brucei rhodesiense (Tbr and T. b. gambiense (Tbg, causative agents of Human African Trypanosomiasis (sleeping sickness in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs, components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR. HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb, a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1 and not found in related taxa, which are either human serum susceptible (Tbb or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2. We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.

  1. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  2. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  3. Expression and site-directed mutagenesis of human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-01-01

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 → Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by α-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme

  4. Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

    Directory of Open Access Journals (Sweden)

    Craig W Duffy

    2013-11-01

    Full Text Available African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda and Southern (Malawi Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.

  5. Trypanosoma brucei TbIF1 inhibits the essential Finf1/inf-ATPase in the infectious form of the parasite

    Czech Academy of Sciences Publication Activity Database

    Panicucci, Brian; Gahura, Ondřej; Zíková, Alena

    2017-01-01

    Roč. 11, č. 4 (2017), č. článku e0005552. ISSN 1935-2735 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA17-22248S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : mt * TblF1 * Trypanosoma brucei Subject RIV: EE - Microbiology, Virology OBOR OECD: Infectious Diseases Impact factor: 3.834, year: 2016

  6. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase

    Directory of Open Access Journals (Sweden)

    Fabian C. Herrmann

    2015-09-01

    Full Text Available As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany, against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH, a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9% were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69% showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  7. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation.

    Directory of Open Access Journals (Sweden)

    James P J Hall

    Full Text Available A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.

  8. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  9. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    International Nuclear Information System (INIS)

    Peters, J.

    1977-01-01

    Some experimental work is described showing that near-U.V. irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-U.V., and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex. (U.K.)

  10. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J [California Univ., Irvine (USA)

    1977-06-09

    Some experimental work is described showing that near-uv irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-uv, and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex.

  11. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.; Nguyen, B. N.; Lee, J. H.; Panigrahi, A. K.; Gunzl, A.

    2012-01-01

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface

  12. The 2’-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zamudio, J. R.; Mittra, B.; Foldynová-Trantírková, Silvie; Zeiner, G. M.; Lukeš, Julius; Bujnicki, J. M.; Sturm, N. R.; Campbell, D. A.

    2007-01-01

    Roč. 27, č. 17 (2007), s. 6084-6092 ISSN 0270-7306 R&D Projects: GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : methylation * Trypanosoma brucei * methyltransferase * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.420, year: 2007

  13. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  14. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei*

    Science.gov (United States)

    Oberholzer, Michael; Langousis, Gerasimos; Nguyen, HoangKim T.; Saada, Edwin A.; Shimogawa, Michelle M.; Jonsson, Zophonias O.; Nguyen, Steven M.; Wohlschlegel, James A.; Hill, Kent L.

    2011-01-01

    The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. PMID:21685506

  15. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  16. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  17. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    International Nuclear Information System (INIS)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222 1 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å

  18. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  19. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  1. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  2. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression. ...

  3. Effect of experimental single Ancylostoma caninum and mixed infections of Trypanosoma brucei and Trypanosoma congolense on the humoural immune response to anti-rabies vaccination in dogs

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-06-01

    Full Text Available Objective: To determine the effect of Ancylostoma caninum (A. caninum and trypanosome parasites on the immune response to vaccination in dogs in endemic environments. Methods: Sixteen dogs for the experiment were grouped into 4 of 4 members each. Group I was the uninfected control one, and GPII was infected with A. caninum; GPIII was infected with A. caninum/Trypanosoma congolense (T. congolense, and GPIV was infected with Trypanosoma brucei (T. brucei/A. caninum. The dogs were first vaccinated with antirabies vaccine before infecting GPII, GPIII and GPIV with A. caninum which were done 4 weeks after vaccination. By 2-week post-vaccination, trypanosome parasites were superimposed on both GPIII and GPIV. A secondary vaccination was given to GPI, GPII, GPIII, and GPIV by Week 12 of the experiment (4 weeks post treatment. Results: The prepatent period was (3.00 ± 1.40 days, in the conjunct infection of T. brucei/ A. caninum. It was (9.00 ± 1.10 days, in conjunct T. congolense/A. caninum. The prepatent period of A. caninum was (14.0 ± 2.0 days in the single A. caninum group and (13.0 ± 1.0 days in the conjunct trypanosome/A. caninum. At the 1st week after vaccination, the antibody titer in all the vaccinated groups (GPI, GPII, GPIII, and GPIV significantly increased (P < 0.05 and peaked at the 3rd week after vaccination. Following infections, there were marked significant decreases (P < 0.05 in the antibody production against rabies in GPII, GPIII and GPIV. The significant decrease (P < 0.05 in antibody titer was highest in the conjunct groups (GPIII and GPIV compared to the single infection (GPII. Treatment with diminazene aceturate and mebendazole did not significantly improve antibody response in the dogs. A secondary vaccination administered at the 12th week after the primary vaccination significantly increased (P < 0.05 the antibody titer with a peak at the 3rd week after the secondary vaccination. Conclusions: It was therefore concluded

  4. Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants

    Science.gov (United States)

    Basyuni, M.; Wati, R.

    2018-03-01

    The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.

  5. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  6. Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme

    Directory of Open Access Journals (Sweden)

    Alcione Silva de Carvalho

    2014-06-01

    Full Text Available Megazol (7 is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8 in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7 for nitrogen (in the triazole in 8, the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.

  7. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  8. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  9. Sleep and rhythm changes at the time of Trypanosoma brucei invasion of the brain parenchyma in the rat.

    Science.gov (United States)

    Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe

    2012-05-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.

  10. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  11. Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum

    International Nuclear Information System (INIS)

    Trincão, José; Sousa Silva, Marta; Barata, Lídia; Bonifácio, Cecília; Carvalho, Sandra; Tomás, Ana Maria; Ferreira, António E. N.; Cordeiro, Carlos; Ponces Freire, Ana; Romão, Maria João

    2006-01-01

    A glyoxalase II from L. infantum was cloned, purified and crystallized and its structure was solved by X-ray crystallography. In trypanosomatids, trypanothione replaces glutathione in all glutathione-dependent processes. Of the two enzymes involved in the glyoxalase pathway, glyoxalase I and glyoxalase II, the latter shows absolute specificity towards trypanothione thioester, making this enzyme an excellent model to understand the molecular basis of trypanothione binding. Cloned glyoxalase II from Leishmania infantum was overexpressed in Escherichia coli, purified and crystallized. Crystals belong to space group C222 1 (unit-cell parameters a = 65.6, b = 88.3, c = 85.2 Å) and diffract beyond 2.15 Å using synchrotron radiation. The structure was solved by molecular replacement using the human glyoxalase II structure as a search model. These results, together with future detailed kinetic characterization using lactoyltrypanothione, should shed light on the evolutionary selection of trypanothione instead of glutathione by trypano-somatids

  12. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.

    Science.gov (United States)

    Naguleswaran, Arunasalam; Doiron, Nicholas; Roditi, Isabel

    2018-04-02

    Trypanosoma brucei brucei, the parasite causing Nagana in domestic animals, is closely related to the parasites causing sleeping sickness, but does not infect humans. In addition to its importance as a pathogen, the relative ease of genetic manipulation and an innate capacity for RNAi extend its use as a model organism in cell and infection biology. During its development in its mammalian and insect (tsetse fly) hosts, T. b. brucei passes through several different life-cycle stages. There are currently four life-cycle stages that can be cultured: slender forms and stumpy forms, which are equivalent to forms found in the mammal, and early and late procyclic forms, which are equivalent to forms in the tsetse midgut. Early procyclic forms show coordinated group movement (social motility) on semi-solid surfaces, whereas late procyclic forms do not. RNA-Seq was performed on biological replicates of each life-cycle stage. These constitute the first datasets for culture-derived slender and stumpy bloodstream forms and early and late procyclic forms. Expression profiles confirmed that genes known to be stage-regulated in the animal and insect hosts were also regulated in culture. Sequence reads of 100-125 bases provided sufficient precision to uncover differential expression of closely related genes. More than 100 transcripts showed peak expression in stumpy forms, including adenylate cyclases and several components of inositol metabolism. Early and late procyclic forms showed differential expression of 73 transcripts, a number of which encoded proteins that were previously shown to be stage-regulated. Moreover, two adenylate cyclases previously shown to reduce social motility are up-regulated in late procyclic forms. This study validates the use of cultured bloodstream forms as alternatives to animal-derived parasites and yields new markers for all four stages. In addition to underpinning recent findings that early and late procyclic forms are distinct life-cycle stages

  13. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  14. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  16. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Melisa Gualdron-López

    Full Text Available BACKGROUND: Glycosomes are a specialized form of peroxisomes (microbodies present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte. All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+/P(Cl-∼0.31, while the other two types of channels are slightly selective for cations (P(K+/P(Cl- ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively. The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE: These results indicate that the membrane of glycosomes

  17. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  18. Substrate and cofactor binding to nitrile reductase : A mass spectrometry based study

    NARCIS (Netherlands)

    Gjonaj, L.; Pinkse, M.W.H.; Fernandez Fueyo, E.; Hollmann, F.; Hanefeld, U.

    2016-01-01

    Nitrile reductases catalyse a two-step reduction of nitriles to amines. This requires the binding of two NADPH molecules during one catalytic cycle. For the nitrile reductase from E. coli (EcoNR) mass spectrometry studies of the catalytic mechanism were performed. EcoNR is dimeric and has no Rossman

  19. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    Science.gov (United States)

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Prevalence of methylenetetrahydrofolate reductase ( MTHFR ) and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase (MTHFR) and Cytosolic serine hydroxymethyltransferase (cSHMT) are enzymes involve in folate regulation in human. The C to T transition of the cSHMT and MTHFR genes at the 1420 as well as 677 nucleotides both carries TT genotype respectively. These enzymes have direct and ...

  1. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  2. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    RBCs in physiological saline at normal Pco2 and pH. After initial loading of oxygenated RBCs with nitrite (partly oxidizing Hb to metHb), the nitrite is removed by three washes of the RBCs in nitrite-free physiological saline to enable the detection of RBC metHb reductase activity in the absence......Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs...

  3. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  4. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  5. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  6. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  7. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  8. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    International Nuclear Information System (INIS)

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-01-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR

  9. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    Science.gov (United States)

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  10. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Kaye, C; Crawford, N M; Malmberg, R L

    1997-04-01

    We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.

  11. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in-vivo function of reductase and thioredoxin domains

    Directory of Open Access Journals (Sweden)

    Jouni eToivola

    2013-10-01

    Full Text Available Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC contains both reductase (NTRd and thioredoxin (TRXd domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive thioredoxin domain, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modelling of the 3-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protected pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for

  12. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...

  13. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  14. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  15. Characterization of human warfarin reductase

    OpenAIRE

    Sokolová, Simona

    2016-01-01

    Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Simona Sokolová Supervisor: PharmDr. Petra Malátková, Ph.D. Title of diploma thesis: Characterization of human warfarin reductase Warfarin is widely used anticoagulant drug. Considering the narrow therapeutic window of warfarin, it is important to fully understand its metabolism in human body. Oxidative, reductive and conjugation reactions are involved in warfarin metabolism. Howev...

  16. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity.

    Science.gov (United States)

    Kato, A; Yasuko, H; Goto, H; Hollinshead, J; Nash, R J; Adachi, I

    2009-03-01

    Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC(50) values of 24.1 microM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 microM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.

  17. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1 in Trypanosoma brucei is an immunogenic self-assembling molecule.

    Directory of Open Access Journals (Sweden)

    Helen P Price

    Full Text Available Primary Sjögren's Syndrome (PSS is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14 is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13 and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.

  18. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione...

  19. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  20. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    Science.gov (United States)

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  1. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    International Nuclear Information System (INIS)

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-01-01

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC 50 - and K i -values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin reductases.

  2. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities

    DEFF Research Database (Denmark)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne

    2008-01-01

    nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation......Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour...... with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial...

  3. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  4. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene .... proteins with reversed coenzyme preference from NADPH to NADH ..... 399–404. Hasper A A, Visser J and de Graaff L H 2000 The Aspergillus.

  5. Regulation of schistosome egg production by HMG CoA reductase

    International Nuclear Information System (INIS)

    VandeWaa, E.A.; Bennett, J.L.

    1986-01-01

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of 14 C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production

  6. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    Science.gov (United States)

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  8. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    Science.gov (United States)

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  10. Inhibition of human anthracycline reductases by emodin — A possible remedy for anthracycline resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hintzpeter, Jan, E-mail: hintzpeter@toxi.uni-kiel.de [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Seliger, Jan Moritz [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Hofman, Jakub [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Martin, Hans-Joerg [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany); Wsol, Vladimir [Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove (Czech Republic); Maser, Edmund [Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel (Germany)

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC{sub 50}- and K{sub i}-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. - Highlights: • Natural and synthetic compounds were identified as inhibitors for human daunorubicin reductases. • Emodin is a potent inhibitor for human daunorubicin

  11. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  12. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis.

    Science.gov (United States)

    Sarwar, Hafiz S; Ashraf, Sehreen; Akhtar, Sohail; Sohail, Muhammad F; Hussain, Syed Z; Rafay, Muhammad; Yasinzai, Masoom; Hussain, Irshad; Shahnaz, Gul

    2018-01-01

    Our aim was to inhibit trypanothione reductase (TR) and P-gp efflux pump of Leishmania by the use of thiolated polymers. Thus, increasing the intracellular accumulation and therapeutic effectiveness of antimonial compounds. Mannosylated thiolated chitosan and mannosylated thiolated chitosan-polyethyleneimine graft were synthesized and characterized. Meglumine antimoniate-loaded nanoparticles were prepared and evaluated for TR and P-gp efflux pump inhibition, biocompatibility, macrophage uptake and antileishmanial potential. Thiomers inhibited TR with Ki 2.021. The macrophage uptake was 33.7- and 18.9-fold higher with mannosylated thiolated chitosan-polyethyleneimine graft and mannosylated thiolated chitosan nanoparticles, respectively, as compared with the glucantime. Moreover, the in vitro antileishmanial activity showed 14.41- and 7.4-fold improved IC 50 for M-TCS-g-PEI and M-TCS, respectively as compared with glucantime. These results encouraged the concept that TR and P-gp inhibition by the use of thiomers improves the therapeutic efficacy of antimonial drugs.

  13. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  14. Overview of Catalytic Properties of Fungal Xylose Reductases and Molecular Engineering Approaches for Improved Xylose Utilisation in Yeast

    Directory of Open Access Journals (Sweden)

    Sk Amir Hossain

    2018-03-01

    Full Text Available Background and Objective: Xylose reductases belong to the aldo-keto reductase family of enzymes, which catalyse the conversion of xylose to xylitol. Yeast xylose reductases have been intensively studied in the last two decades due to their significance in biotechnological production of ethanol and xylitol from xylose. Due to its GRAS status and pronounced tolerance to harsh conditions, Saccharomyces cerevisiae is the ideal organism for industrial production of both xylitol and ethanol. However, Saccharomyces cerevisiae is unable to use xylose as the sole carbon source due to the lack of xylose specific transporters and insufficient activity of metabolic pathways for xylose utilisation. The aim of this paper is to give an overview of attempts in increasing biotechnological potential of xylose reductases and to highlight the prospective of this application. Results and Conclusion: In order to create strains with improved xylose utilization, different approaches were attempted including simultaneous overexpression of xylitol dehydrogenase, xylose reductase and pentose phosphate pathway enzymes, heterologous expression of putative xylose transporters or heterologous expression of genes coding for enzymes included in the xylose metabolism, respectively. Furthermore, number of attempts to genetically modify different xylose reductases is increasing. This review presents current knowledge about yeast xylose reductases and the different approaches applied in order to improve xylose metabolism in yeast.Conflict of interest: The authors declare no conflict of interest.

  15. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  16. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    Science.gov (United States)

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  17. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  18. X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium

    OpenAIRE

    Osipiuk, J.; Zhou, M.; Moy, S.; Collart, F.; Joachimiak, A.

    2009-01-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determi...

  19. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  20. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  1. Effect of cystamine on rat tissue GSH level and glutathione reductase activity

    International Nuclear Information System (INIS)

    Kovarova, H.; Pulpanova, J.

    1979-01-01

    Reduced glutathione (GSH) level and glutathione reductase activity were determined by means of the spectrophotometric method in various rat tissues after i.p. administration of cystamine (50 mg/kg and 20 mg/kg). GSH amount dropped in the spleen and kidney at 10 and 20 min; following this interval, an increase of GSH level was observed in the liver at 20-30 min, in the spleen and kidney at 60 min after the treatment with a radioprotective cystamine dose (50 mg/kg). The changes in GSH level induced by a non-radioprotective cystamine dose (20 mg/kg) had an opposite tendency. The activity of glutathione reductase was decreased in all tissues studied. As to the mechanism of the radioprotective action, both the inactivation of glutathione reductase activity and the changes in GSH level seem to be the factors contributing to the radioprotective effect of cystamine by strengthening the cellular radioresistance. (orig.) 891 MG/orig. 892 RKD [de

  2. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  3. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  4. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  5. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes

    International Nuclear Information System (INIS)

    Liang, T.; Cheung, A.H.; Reynolds, G.F.; Rasmusson, G.H.

    1985-01-01

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a K/sub i/ value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [ 3 H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([ 3 H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2- 3 H]Diazo-MAPD binds to a single high affinity site in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000

  6. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase.

    Science.gov (United States)

    Liew, Li Phing; Lim, Zun Yi; Cohen, Matan; Kong, Ziqing; Marjavaara, Lisette; Chabes, Andrei; Bell, Stephen D

    2016-11-01

    In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  8. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  9. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    Science.gov (United States)

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

  10. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  11. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  12. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    Science.gov (United States)

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  13. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated ... reductase alpha polypeptides 1 and 2 in a set of 601 prostate cancer patients from four ..... tion in the key androgen-regulating genes androgen receptor, cytochrome ...

  14. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Trypanosoma brucei gambiense glycerol kinase

    International Nuclear Information System (INIS)

    Balogun, Emmanuel Oluwadare; Inaoka, Daniel Ken; Kido, Yasutoshi; Shiba, Tomoo; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Michels, Paul A. M.; Harada, Shigeharu; Kita, Kiyoshi

    2010-01-01

    Glycerol kinase from human African trypanosomes has been purified and crystallized for X-ray structure analysis. In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His 6 tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 Å resolution indicated that the crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 Å. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 , corresponding to 50% solvent content

  15. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  16. Research progress on the roles of aldose reductase in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Hong-Zhe Li

    2015-07-01

    Full Text Available Aldose reductase(ARbelonging to nicotinamide-adenine dinucleotide phosphate(NADPH-dependent aldehyde-keto reductase superfamily, is the key rate-limiting enzyme in the polyol pathway which plays an important role in the body's high-sugar metabolism. AR is widely present in the kidneys, blood vessels, lens, retina, heart, skeletal muscle and other tissues and organs, converts glucose to sorbitol which easy permeability of cell membranes, cause cell swelling, degeneration, necrosis, and have a close relationship with the development of chronic complications of diabetes mellitus. Diabetic retinopathy(DRis a multifactorial disease, the exact cause is currently unknown, but polyol pathway has been demonstrated to play an important role in the pathogenesis of DR. Clinical risk factors such as blood sugar control, blood pressure and other treatments for DR only play a part effect of remission or invalid, if we can find out DR genes associated with the disease, this will contribute to a better understanding of the pathological mechanisms and contribute to the development of new treatments and drugs. The current research progress of AR, AR gene polymorphism, Aldose reductase inhibitors to DR was reviewed in this article.

  17. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ward Pauline N

    2005-09-01

    Full Text Available Abstract Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs and atypical PKs (aPKs revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been

  18. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids.

    Science.gov (United States)

    Liang, T; Liao, S

    1992-01-01

    Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells. PMID:1637346

  19. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Science.gov (United States)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  20. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei.

    Science.gov (United States)

    McDermott, Suzanne M; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-10-09

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Trypanosoma brucei gambiense trypanosomiasis in Terego county, northern Uganda, 1996: a lot quality assurance sampling survey.

    Science.gov (United States)

    Hutin, Yvan J F; Legros, Dominique; Owini, Vincent; Brown, Vincent; Lee, Evan; Mbulamberi, Dawson; Paquet, Christophe

    2004-04-01

    We estimated the pre-intervention prevalence of Trypanosoma brucei gambiense (Tbg) trypanosomiasis using the lot quality assurance sampling (LQAS) methods in 14 parishes of Terego County in northern Uganda. A total of 826 participants were included in the survey sample in 1996. The prevalence of laboratory confirmed Tbg trypanosomiasis adjusted for parish population sizes was 2.2% (95% confidence interval =1.1-3.2). This estimate was consistent with the 1.1% period prevalence calculated on the basis of cases identified through passive and active screening in 1996-1999. Ranking of parishes in four categories according to LQAS analysis of the 1996 survey predicted the prevalences observed during the first round of active screening in the population in 1997-1998 (P LQAS were validated by the results of the population screening, suggesting that these survey methods may be useful in the pre-intervention phase of sleeping sickness control programs.

  2. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    Science.gov (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Cho Yeow Koh

    2014-04-01

    Full Text Available Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general 'ATP-engaging' binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen.

  4. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-01-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP + reductase. Ferredoxin-NADP + reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  8. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Pomowski, Anja; Zumft, Walter G.; Kroneck, Peter M. H.; Einsle, Oliver

    2010-01-01

    The physiologically active form of nitrous oxide reductase was isolated and crystallized under strict exclusion of dioxygen and diffraction data were collected from crystals belonging to two different space groups. Nitrous oxide reductase (N 2 OR) from Pseudomonas stutzeri catalyzes the final step in denitrification: the two-electron reduction of nitrous oxide to molecular dinitrogen. Crystals of the enzyme were grown under strict exclusion of dioxygen by sitting-drop vapour diffusion using 2R,3R-butanediol as a cryoprotectant. N 2 OR crystallized in either space group P1 or P6 5 . Interestingly, the key determinant for the resulting space group was the crystallization temperature. Crystals belonging to space group P1 contained four 130 kDa dimers in the asymmetric unit, while crystals belonging to space group P6 5 contained a single dimer in the asymmetric unit. Diffraction data were collected to resolutions better than 2 Å

  9. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  10. Role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications

    Directory of Open Access Journals (Sweden)

    Nermine Hossam Zakaria

    2014-04-01

    Full Text Available The aldose reductase pathway proves that elevated blood glucose promotes cellular dysfunction. The polyol pathway converts excess intracellular glucose into alcohols via activity of the aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol which triggers variety of intracellular changes in the tissues. Among diabetes, activity is drastically increased in association with three main consequences inside the cells. The aim of this study was to detect the association of the C-106 T polymorphism of the aldose reductase gene and its frequency among a sample of 150 Egyptian adults with type 2 diabetic patients having diabetic microvascular. The detection of the aldose reductase C-106 T polymorphism gene was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The genotype distribution of the C-106 T polymorphism showed that CC genotype was statistically significantly higher among patients with retinopathy compared to nephropathy. Patients with nephropathy had significant association with the TT genotype when compared with diabetic retinopathy patients. Follow up study after the genotype detection among recently diagnosed diabetic patients in order to give a prophylactic aldose reductase inhibitors; studying the microvascular complications and its relation to the genotype polymorphisms. The study may include multiple gene polymorphisms to make the relation between the gene and the occurrence of these complications more evident.

  11. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  12. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  13. DNA damage induction of ribonucleotide reductase.

    OpenAIRE

    Elledge, S J; Davis, R W

    1989-01-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidas...

  14. Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells.

    Directory of Open Access Journals (Sweden)

    Karin Anestål

    Full Text Available BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins can be formed from the selenoprotein thioredoxin reductase (TrxR by targeting of its selenocysteine (Sec residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity.

  15. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    International Nuclear Information System (INIS)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    The NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra was expressed, purified, and crystallized and X-ray diffraction data of this crystal were collected to 2.2 Å resolution. (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%

  16. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  17. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling

  18. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Alexander et al., 2005) and heme-type nitrite reductase gene (Smith and ... owing to a genotype-dependent response (Zhang et al.,. 1991; Sakhanokho et al., ..... Improvement of cell culture conditions for rice. Jpn. Agric. Res.

  19. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  20. Expression, purification and molecular structure modeling of thioredoxin (Trx) and thioredoxin reductase (TrxR) from Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Wang, Yiping; Zhang, Xiaojian; Liu, Qing; Ai, Chenbing; Mo, Hongyu; Zeng, Jia

    2009-07-01

    The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.

  1. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    International Nuclear Information System (INIS)

    Sueoka, Keigo; Yamazaki, Teruaki; Hiyama, Tetsuo; Nakamoto, Hitoshi

    2009-01-01

    An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H 2 O 2 . These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.

  2. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... and improvement in objective parameters for bladder outflow obstruction. Approximately 30 to 50% of patients will respond to treatment with 5 alpha-reductase inhibitors. The definitive role of pharmacological treatment in symptomatic BPH remains to be established, although it seems that patients unfit...

  3. Reconstitution of FMN-free NADPH-cytochrome P-450 reductase with a phosphorothioate analog of FMN: 31P NMR studies of the reconstituted protein

    International Nuclear Information System (INIS)

    Krum, D.P.; Otvos, J.D.; Calhoun, J.P.; Miziorko, H.M.; Masters, B.S.S.

    1987-01-01

    A phosphorothioate analog of FMN (FMNS) has been synthesized and shown to be completely competent in reconstituting the FMN-free form of NADPH-cytochrome P-450 reductase as evidenced by flavin determinations and cytochrome c reductase activity assays. The FMNS-reconstituted FMN-free reductase gives rise to an air-stable semiquinone, and the fluorescence of FMNS is quenched upon addition of FMN-free reductase. 31 P NMR spectra of the FMN-free reductase reveal only two resonances (-7.3 and -11.3 ppm), which are attributable to FAD. This result confirms the assignments of Otvos et al, and demonstrates unequivocally that there are no phosphate residues other than those of FMN and FAD attached to the steapsin-solubilized reductase. The addition of FMN to the FMN-free reductase resulted in the appearance of one additional resonance at 3.9 ppm. Addition of FMNS to the FMN-free reductase caused no change, surprisingly, in the 31 P NMR spectrum until Mn(II) was added, after which a peak centered at ∼ 45 ppm was observed. This unexpected result may be explained if the T 1 for the phosphate of FMNS is significantly longer than that of FMN, and suggests that the sulfur atom of FMNS may perturb the interaction of the phosphate with its protein environment. These results demonstrate the utility of phosphorothioate analogs as mechanistic probes for proteins containing nucleotide cofactors

  4. Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach

    Directory of Open Access Journals (Sweden)

    Amine Ghozlane

    2012-01-01

    Full Text Available Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s (bloodstream form and the insect vector (procyclic form, with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps.

  5. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  6. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  7. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites*

    Science.gov (United States)

    Hall, Belinda S.; Bot, Christopher; Wilkinson, Shane R.

    2011-01-01

    The prodrug nifurtimox has been used for more than 40 years to treat Chagas disease and forms part of a recently approved combinational therapy that targets West African trypanosomiasis. Despite this, its mode of action is poorly understood. Detection of reactive oxygen and nitrogen intermediates in nifurtimox-treated extracts led to the proposal that this drug induces oxidative stress in the target cell. Here, we outline an alternative mechanism involving reductive activation by a eukaryotic type I nitroreductase. Several enzymes proposed to metabolize nifurtimox, including prostaglandin F2α synthase and cytochrome P450 reductase, were overexpressed in bloodstream-form Trypanosoma brucei. Only cells with elevated levels of the nitroreductase displayed altered susceptibility to this nitrofuran, implying a key role in drug action. Reduction of nifurtimox by this enzyme was shown to be insensitive to oxygen and yields a product characterized by LC/MS as an unsaturated open-chain nitrile. This metabolite was shown to inhibit both parasite and mammalian cell growth at equivalent concentrations, in marked contrast to the parental prodrug. These experiments indicate that the basis for the selectivity of nifurtimox against T. brucei lies in the expression of a parasite-encoded type I nitroreductase. PMID:21345801

  8. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus).

    Science.gov (United States)

    Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo

    2017-07-06

    Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  9. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  10. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.

    Science.gov (United States)

    Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas

    2004-10-01

    In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.

  11. Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    A. Aremu

    2018-04-01

    Full Text Available Trypanosomosis is a major disease of Man and animals. This study investigated the effect of Moringa oleifera leaf extract on the survivability rate, weight gain and histopathological changes of Wister rats experimentally infected with Trypanosoma brucei. A total of thirty (30 rats randomly divided into six groups (A-F. Rats in group A remain untreated and uninfected while rates in group F were infected and untreated. Rats in groups B and C were treated with Moringa oleifera leave extract orally at 200 mg/kg for 14 days pre-infection and the treatment continued in B but not in C. Rats in groups D and E were treated with the extract orally for ninety days at 200 mg/kg (pre-infection and the treatment continued in D but not in E. The weight changes in all rats were monitored weekly. Rats in B-F groups were infected with 3 × 106 of Trypanosoma brucei per mL of blood. The results showed that all the infected rats died but the treated group survived extra two days when compared with the untreated group. The percentage weight gain of rats in groups B and C was high (23.9% and 21.1% respectively as against negative control (17.2%. The groups with chronic administration of the extract (D and E had a lower percentage weight gains (64.3% and 60.3% respectively when compared with negative control (71.8%. The histopathology results showed that the extract was a potent ameliorative agent that reduced neuronal degeneration and congestion in the brain and the spleen of the infected rats respectively. In conclusion, Moringa Oleifera leave extract has mitigative effects on the pathogenesis of trypanosomosis. Keywords: Histopathology, Moringa, Survivability, Trypanosoma, Weight, Wister rats

  12. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  13. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    Energy Technology Data Exchange (ETDEWEB)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-11-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-(2-(diethylamino)-ethoxy)androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy(/sup 3/H)anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  14. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis by oxylanosterols

    International Nuclear Information System (INIS)

    Panini, S.R.; Sexton, R.C.; Gupta, A.K.; Parish, E.J.; Chitrakorn, S.; Rudney, H.

    1986-01-01

    Treatment of rat intestinal epithelial cell cultures with the oxidosqualene cyclase inhibitor, 3 beta-[2-(diethylamino)-ethoxy]androst-5-en-17-one (U18666A), resulted in an accumulation of squalene 2,3:22,23-dioxide (SDO). When U18666A was withdrawn and the cells were treated with the sterol 14 alpha-demethylase inhibitor, ketoconazole, SDO was metabolized to a product identified as 24(S),25-epoxylanosterol. To test the biological effects and cellular metabolism of this compound, we prepared 24(RS),25-epoxylanosterol by chemical synthesis. The epimeric mixture of 24,25-epoxylanosterols could be resolved by high performance liquid chromatography on a wide-pore, non-endcapped, reverse phase column. Both epimers were effective suppressors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity of IEC-6 cells. The suppressive action of the natural epimer, 24(S),25-epoxylanosterol, but not that of 24(R),25-epoxylanosterol could be completely prevented by ketoconazole. IEC-6 cells could efficiently metabolize biosynthetic 24(S),25-epoxy[ 3 H]anosterol mainly to the known reductase-suppressor 24(S),25-epoxycholesterol. This metabolism was substantially reduced by ketoconazole. These data support the conclusion that 24(S),25-epoxylanosterol per se is not a suppressor of HMG-CoA reductase activity but is a precursor to a regulatory oxysterol(s). It has recently been reported that 25-hydroxycholesterol can occur naturally in cultured cells in amounts sufficient to effect regulation of HMG-CoA reductase. In order to investigate the biological effects of possible precursors of 25-hydroxycholesterol, we chemically synthesized 25-hydroxylanosterol and 25-hydroxylanostene-3-one. Both oxylanosterol derivatives suppressed cellular sterol synthesis at the level of HMG-CoA reductase. (Abstract Truncated)

  15. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  16. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.

    2012-10-26

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite\\'s ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, biochemical analyses of the T. brucei RNA pol I transcription machinery have elucidated the subunit structure of the enzyme and identified the class I transcription factor A (CITFA). CITFA binds to RNA pol I promoters, and its CITFA-2 subunit was shown to be absolutely essential for RNA pol I transcription in the parasite. Tandem affinity purification (TAP) of CITFA revealed the subunits CITFA-1 to -6, which are conserved only among kinetoplastid organisms, plus the dynein light chain DYNLL1. Here, by tagging CITFA-6 instead of CITFA-2, a complex was purified that contained all known CITFA subunits, as well as a novel proline-rich protein. Functional studies carried out in vivo and in vitro, as well as a colocalization study, unequivocally demonstrated that this protein is a bona fide CITFA subunit, essential for parasite viability and indispensable for RNA pol I transcription of ribosomal gene units and the active VSG expression site in the mammalian-infective life cycle stage of the parasite. Interestingly, CITFA-7 function appears to be species specific, because expression of an RNA interference (RNAi)-resistant CITFA-7 transgene from Trypanosoma cruzi could not rescue the lethal phenotype of silencing endogenous CITFA-7.

  17. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi

    1989-01-01

    Pneumocystis carinii dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) cDNA sequences have been isolated by their ability to confer trimethoprim resistance to Escherichia coli. Consistent with the recent conclusion that P. carinii is a member of the Fungi...

  18. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  19. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    Science.gov (United States)

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  20. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J. (Danforth)

    2011-11-18

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.

  1. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake:reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time, the basic differences in the two processes, and the differences in their measurement, the authors conclude that the NR activity measures the current nitrate-reducing potential, which relfects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling. Thus, considering the sampling time as a point of reference, the former is a measure of the past and the latter is a measure of the future

  2. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from Lactococcus lactis is compared with the well-characterized TrxR from Escherichia coli. The two...... enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...

  3. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  4. Synthesis and Activity of a New Series of(Z-3-Phenyl-2-benzoylpropenoic Acid Derivatives as Aldose Reductase Inhibitors

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2007-04-01

    Full Text Available During the course of studies directed towards the discovery of novel aldose reductase inhibitors for the treatment of diabetic complications, we synthesized a series of new (Z-3-phenyl-2-benzoylpropenoic acid derivatives and tested their in vitro inhibitory activities on rat lens aldose reductase. Of these compounds, (Z-3-(3,4-dihydroxyphenyl-2-(4-methylbenzoylpropenoicacid(3k was identified as the most potent inhibitor, with an IC50 of 0.49μM. The theoretical binding mode of 3k was obtained by simulation of its docking into the active site of the human aldose reductase crystal structure.

  5. Influence of rete testis fluid deprivation on the kinetic parameters of goat epididymal 5 alpha-reductase.

    Science.gov (United States)

    Kelce, W R; Lubis, A M; Braun, W F; Youngquist, R S; Ganjam, V K

    1990-01-01

    A surgical technique to cannulate the rete testis of the goat was utilized to examine the effects of rete testis fluid (RTF) deprivation on the enzymatic activity of epididymal 5 alpha-reductase. Kinetic techniques were used to determine whether the regional enzymatic effect of RTF deprivation is to decrease the apparent number of 5 alpha-reductase active sites or the catalytic activity of each active site within the epididymal epithelium. Paired comparisons of (Vmax)app and (Km)app values between control and RTF-deprived epididymides indicated that RTF deprivation affected the value of (Vmax)app with no apparent change in the values of (Km)app in caput, corpus, and cauda epididymal regions. We conclude that RTF deprivation in the goat epididymis for 7 days results in a decreased number of apparent 5 alpha-reductase active sites within the epididymal epithelium.

  6. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    Science.gov (United States)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  7. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  9. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  10. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda.

    Science.gov (United States)

    Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P

    2017-10-27

    Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.

  11. Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics.

    Science.gov (United States)

    Zallot, Rémi; Ross, Robert; Chen, Wei-Hung; Bruner, Steven D; Limbach, Patrick A; de Crécy-Lagard, Valérie

    2017-03-17

    The reduction of epoxyqueuosine (oQ) is the last step in the synthesis of the tRNA modification queuosine (Q). While the epoxyqueuosine reductase (EC 1.17.99.6) enzymatic activity was first described 30 years ago, the encoding gene queG was only identified in Escherichia coli in 2011. Interestingly, queG is absent from a large number of sequenced genomes that harbor Q synthesis or salvage genes, suggesting the existence of an alternative epoxyqueuosine reductase in these organisms. By analyzing phylogenetic distributions, physical gene clustering, and fusions, members of the Domain of Unknown Function 208 (DUF208) family were predicted to encode for an alternative epoxyqueuosine reductase. This prediction was validated with genetic methods. The Q modification is present in Lactobacillus salivarius, an organism missing queG but harboring the duf208 gene. Acinetobacter baylyi ADP1 is one of the few organisms that harbor both QueG and DUF208, and deletion of both corresponding genes was required to observe the absence of Q and the accumulation of oQ in tRNA. Finally, the conversion oQ to Q was restored in an E. coli queG mutant by complementation with plasmids harboring duf208 genes from different bacteria. Members of the DUF208 family are not homologous to QueG enzymes, and thus, duf208 is a non-orthologous replacement of queG. We propose to name DUF208 encoding genes as queH. While QueH contains conserved cysteines that could be involved in the coordination of a Fe/S center in a similar fashion to what has been identified in QueG, no cobalamin was identified associated with recombinant QueH protein.

  12. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham.

    Science.gov (United States)

    Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-07-01

    The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  14. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  15. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    International Nuclear Information System (INIS)

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1989-01-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change

  16. Cloning, expression and antigenicity of the L. donovani reductase

    DEFF Research Database (Denmark)

    Jensen, A T; Kemp, K; Theander, T G

    2001-01-01

    (K). Only 2 of 22 plasma samples from patients with visceral leishmaniasis were found to have detectable anti-reductase antibodies and peripheral blood mononuclear cells (PBMC) from one of three individuals previously infected with visceral leishmaniasis proliferated in the presence of recombinant...

  17. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2015-01-01

    . subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilis yumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently...... ribonucleotide reductase, which represents the workhorse for the bioconversion of nucleotides to deoxynucleotides in many prokaryotes and eukaryotic pathogens under aerobic conditions. As the partner of the flavodoxin (NrdI), the key FdR is missing in the current model describing the class Ib system...

  18. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction.

    Science.gov (United States)

    Wang, Jian; Yang, Yaping; Zhang, Ruihua; Shen, Xiaolin; Chen, Zhenya; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2018-01-01

    2-Methylsuccinic acid (2-MSA) is a C5 branched-chain dicarboxylate that serves as an attractive synthon for the synthesis of polymers with extensive applications in coatings, cosmetic solvents and bioplastics. However, the lack of natural pathways for 2-MSA biosynthesis has limited its application as a promising bio-replacement. Herein, we conceived a non-natural three-step biosynthetic route for 2-MSA, via employing the citramalate pathway in combination with enoate reductase-mediated bioreduction of the pathway intermediate citraconate. First, over-expression of codon-optimized citramalate synthase variant CimA* from Methanococcus jannaschii, endogenous isopropylmalate isomerase EcLeuCD and enoate reductase YqjM from Bacillus subtilis allowed the production of 2-MSA in Escherichia coli for the first time, with a titer of 0.35g/L in shake flask experiments. Subsequent screening of YqjM-like enoate reductases of different bacterial origins enabled identification and characterization of a new NAD(P)H-dependent enoate reductase KpnER from Klebsiella pneumoniae, which exhibited higher activity towards citraconate than YqjM. Incorporation of KpnER into the 2-MSA biosynthetic pathway led to 2-MSA production improvement to a titer of 0.96g/L in aerobic condition. Subsequent optimizations including cofactor regeneration, microaerobic cultivation and host strain engineering, boosted 2-MSA titer to 3.61g/L with a molar yield of 0.36 in shake flask experiments. This work established a promising platform for 2-MSA bioproduction, which enabled the highest titer of 2-MSA production in microbial hosts so far. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  20. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  1. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Giuseppe Forlani

    2017-08-01

    Full Text Available In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C catalyzed by P5C reductase (EC 1.5.1.2. In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  2. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  3. Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad S

    2015-12-01

    There are limited data on the role of methylenetetrahydrofolate reductase C677T polymorphism and hyperhomocysteinemia as risk factors for cerebral venous thrombosis in Iranian population. We examined a possible association between fasting plasma homocysteine levels, methylenetetrahydrofolate reductase C677T polymorphism, and cerebral venous thrombosis in 50 patients with a diagnosis of cerebral venous thrombosis (20-63 years old) and 75 healthy controls (18-65 years old). Genotyping of the methylenetetrahydrofolate reductase C677T gene polymorphism was performed by PCR-restriction fragment length polymorphism analysis, and homocysteine levels were measured by enzyme immunoassay. Fasting plasma homocysteine levels were significantly higher in cerebral venous thrombosis patients than in controls (P = 0.015). Moreover, plasma homocysteine levels were significantly higher in methylenetetrahydrofolate reductase 677TT genotype compared to 677CT and 677CC genotypes in both cerebral venous thrombosis patients (P = 0.01) and controls (P = 0.03). Neither 677CT heterozygote genotype [odds ratio (OR) 1.35, 95% confidence interval (CI) 0.64-2.84, P = 0.556] nor 677TT homozygote genotype (OR 1.73, 95% CI 0.32-9.21, P = 0.833) was significantly associated with cerebral venous thrombosis. Additionally, no significant differences in the frequency of 677T allele between cerebral venous thrombosis patients and controls were identified (OR 1.31, 95% CI 0.69-2.50, P = 0.512). In conclusion, our study demonstrated that elevated plasma homocysteine levels are significant risk factors for cerebral venous thrombosis. Also, methylenetetrahydrofolate reductase 677TT genotype is not linked with cerebral venous thrombosis, but is a determinant of elevated plasma homocysteine levels.

  4. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  5. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  6. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...... been determined. These structures reveal novel molecular features that provide further insight into the mechanisms behind the sensitivity of this enzyme toward visible light. We propose that a pocket on the si-face of the isoalloxazine ring accommodates oxygen that reacts with photo-excited FAD...... thus be a widespread feature among bacterial TrxR with the described characteristics, which affords applications in clinical photo-therapy of drug-resistant bacteria....

  7. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    International Nuclear Information System (INIS)

    Slabaugh, M.B.; Mathews, C.K.

    1986-01-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using [ 35 S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [ 3 H]thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses

  8. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  9. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    Science.gov (United States)

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  10. Streptococcus sanguinis Class Ib Ribonucleotide Reductase

    Science.gov (United States)

    Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.; Kitten, Todd; Rosenzweig, Amy C.; Stubbe, JoAnne

    2014-01-01

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y•) cofactor (1.2 Y•/β2) and with the help of NrdI can assemble a MnIII2-Y• cofactor (0.9 Y•/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μm) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR. PMID:24381172

  11. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  12. Characterisation of PduS, the pdu metabolosome corrin reductase, and evidence of substructural organisation within the bacterial microcompartment.

    Directory of Open Access Journals (Sweden)

    Joshua B Parsons

    2010-11-01

    Full Text Available PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(IIIalamin to cob(IIalamin and cob(IIalamin to cob(Ialamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment.

  13. X-ray crystal structure of GarR-tartronate semialdehyde reductase from Salmonella typhimurium.

    Science.gov (United States)

    Osipiuk, J; Zhou, M; Moy, S; Collart, F; Joachimiak, A

    2009-09-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related beta-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 A resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme.

  14. [Aldose reductase gene polymorphism and rate of appearance of retinopathy in non insulin dependent diabetics].

    Science.gov (United States)

    Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A

    1999-04-01

    Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.

  15. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Baskaran G

    2015-01-01

    Full Text Available Gunasekaran Baskaran,1 Shamala Salvamani,1 Siti Aqlima Ahmad,1 Noor Azmi Shaharuddin,1 Parveen Devi Pattiram,2 Mohd Yunus Shukor1 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, 2Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia Abstract: The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl, 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and a-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. Keywords: HMG-CoA reductase, Basella alba, phytochemical, GC-MS/MS, RP-HPLC, hypercholesterolemia

  16. Genetic and Biochemical Analysis of Intragenic Complementation Events among Nitrate Reductase Apoenzyme-Deficient Mutants of Nicotiana Plumbaginifolia

    OpenAIRE

    Pelsy, F.; Gonneau, M.

    1991-01-01

    Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These obser...

  17. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities.

    Science.gov (United States)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne; Tjener, Karsten; Stahnke, Louise H; Møller, Jens K S

    2008-04-01

    Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour was followed by L(∗)a(∗)b measurements and the content of nitrosylmyoglobin (MbFe(II)NO) quantified by electron spin resonance (ESR). MbFe(II)NO was rapidly formed in sausages with added nitrite independent of the presence of nitrite reducing bacteria, whereas the rate of MbFe(II)NO formation in sausages with added nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation by autofluorescence and hexanal content, respectively. No significant direct effect of the Staphylococcus addition was observed, however, there was a clear correspondence between high initial amount of MbFe(II)NO in the different sausages and the colour stability during storage. Autofluorescence data correlated well with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial for ensuring optimal colour formation during initial fermentation stages.

  18. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Chauhan, Archana; Islam, Zeyaul; Jain, Rakesh Kumar; Karthikeyan, Subramanian

    2009-01-01

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  19. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents

    Directory of Open Access Journals (Sweden)

    Louis Papageorgiou

    2017-03-01

    Full Text Available Trypanosoma brucei brucei (TBB belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All

  20. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  1. Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys

    DEFF Research Database (Denmark)

    Ngotho, Maina; Kagira, J.M.; Jensen, Henrik Michael Elvang

    2009-01-01

    and 140 days post-infection (dpi) respectively. Matched serum and CSF samples were obtained at regular intervals and immunospecific IgM, immunoglobulin G (IgG) and IL-10 were quantified by ELISA. RESULTS: There was no detectable immunospecific IgM and IgG in the CSF before 49 dpi. CSF IgM and Ig......OBJECTIVE: To determine the usefulness of IL-10 and immunoglobulin M (IgM) as biomarkers for staging HAT in vervet monkeys, a useful pathogenesis model for humans. METHODS: Vervet monkeys were infected with Trypanosoma brucei rhodesiense and subsequently given sub-curative and curative treatment 28...... curative treatment was given. After curative treatment, there was rapid and significant drop in serum IgM and IL-10 concentration as well as CSF WCC. However, the CSF IgM and IgG remained detectable to the end of the study. CONCLUSIONS: Serum and CSF concentrations of immunospecific IgM and CSF IgG changes...

  2. Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF

    Directory of Open Access Journals (Sweden)

    Röder Anja

    2008-06-01

    Full Text Available Abstract Background Pichia stipitis xylose reductase (Ps-XR has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21. Results In this study, we demonstrate that strain TMB3400 not only converts xylose, but also displays higher tolerance to lignocellulosic hydrolysate during anaerobic batch fermentation as well as 3 times higher in vitro HMF and furfural reduction activity than the control strain USM21. Using laboratory strains producing various levels of Ps-XR, we confirm that Ps-XR is able to reduce HMF both in vitro and in vivo. Ps-XR overexpression increases the in vivo HMF conversion rate by approximately 20%, thereby improving yeast tolerance towards HMF. Further purification of Ps-XR shows that HMF is a substrate inhibitor of the enzyme. Conclusion We demonstrate for the first time that xylose reductase is also able to reduce the furaldehyde compounds that are present in undetoxified lignocellulosic hydrolysates. Possible implications of this newly characterized activity of Ps-XR on lignocellulosic hydrolysate fermentation are discussed.

  3. X-Ray crystal structure of GarR—tartronate semialdehyde reductase from Salmonella typhimurium

    Science.gov (United States)

    Osipiuk, J.; Zhou, M.; Moy, S.; Collart, F.

    2009-01-01

    Tartronate semialdehyde reductases (TSRs), also known as 2-hydroxy-3-oxopropionate reductases, catalyze the reduction of tartronate semialdehyde using NAD as cofactor in the final stage of D-glycerate biosynthesis. These enzymes belong to family of structurally and mechanically related β-hydroxyacid dehydrogenases which differ in substrate specificity and catalyze reactions in specific metabolic pathways. Here, we present the crystal structure of GarR a TSR from Salmonella typhimurium determined by the single-wavelength anomalous diffraction method and refined to 1.65 Å resolution. The active site of the enzyme contains L-tartrate which most likely mimics a position of a glycerate which is a product of the enzyme reaction. The analysis of the TSR structure shows also a putative NADPH binding site in the enzyme. PMID:19184529

  4. Normal bone density in male pseudohermaphroditism due to 5a- reductase 2 deficiency

    Directory of Open Access Journals (Sweden)

    Costa Elaine Maria Frade

    2001-01-01

    Full Text Available Bone is an androgen-dependent tissue, but it is not clear whether the androgen action in bone depends on testosterone or on dihydrotestosterone. Patients with 5alpha-reductase 2 deficiency present normal levels of testosterone and low levels of dihydrotestosterone, providing an in vivo human model for the analysis of the effect of testosterone on bone. OBJECTIVE: To analyze bone mineral density in 4 adult patients with male pseudohermaphroditism due to 5alpha-reductase 2 deficiency. RESULTS: Three patients presented normal bone mineral density of the lumbar column (L1-L4 and femur neck, and the other patient presented a slight osteopenia in the lumbar column. CONCLUSION: Patients with dihydrotestosterone deficiency present normal bone mineral density, suggesting that dihydrotestosterone is not the main androgen acting in bone.

  5. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.

    Science.gov (United States)

    Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär

    2007-10-12

    We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.

  6. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Tanja Wenzler

    Full Text Available Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

  7. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    Science.gov (United States)

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  8. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity

  9. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  10. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M.

    1989-01-01

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by 31 P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase

  11. In silico molecular modeling and docking studies on the leishmanial tryparedoxin peroxidase

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2014-04-01

    Full Text Available Leishmaniasis is one of the most common form of neglected parasitic disease that affects about 350 million people worldwide. Leishmanias have a trypanothione mediated hydroperoxide metabolism to eliminate endogenous or exogenous oxidative agents. Both of 2-Cys peroxiredoxin (Prx and glutathione peroxidase type tryparedoxin peroxidase (Px are the terminal enzymes in the trypanothione dependent detoxification system. Therefore absence of trypanothione redox system in mammals and the sensitivity of trypanosomatids against oxidative stress, enzymes of this pathway are drug targets candidates. In this study, 3D structure of tryparedoxin peroxidase (2-Cys peroxiredoxin type from Leishmania donovani (LdTXNPx was described by homology modeling method based on the template of tryparedoxin peroxidase from Crithidia fasciculata and selected compounds were docked to the active site pocket. The quality of the 3D structure of the model was confirmed by various web based validation programs. When compared secondary and tertiary structure of the model, it showed a typical thioredoxin fold containing a central beta-sheet and three alpha-helices. Docking study showed that the selected compound 2 (CID 16073813 interacted with the active site amino acids and binding energy was -118.675 kcal/mol.

  12. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  13. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  14. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  15. Ebselen: A thioredoxin reductase-dependent catalyst for α-tocopherol quinone reduction

    International Nuclear Information System (INIS)

    Fang Jianguo; Zhong Liangwei; Zhao Rong; Holmgren, Arne

    2005-01-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if α-tocopherol quinone (TQ), a product of α-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity, while the product of reduction of TQ, α-tocopherolhydroquinone (TQH 2 ), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo

  16. Protective effect of Pterocarpus marsupium bark extracts against cataract through the inhibition of aldose reductase activity in streptozotocin-induced diabetic male albino rats.

    Science.gov (United States)

    Xu, YanLi; Zhao, Yongxia; Sui, YaNan; Lei, XiaoJun

    2018-04-01

    The present study was aimed to investigate the protective effect of Pterocarpus marsupium bark extracts against cataract in streptozotocin-induced diabetic male albino rats. Aldose reductase is a key enzyme in the intracellular polyol pathway, which plays a major role in the development of diabetic cataract. Rats were divided into five groups as normal control, diabetic control, and diabetic control treated with different concentrations of Pterocarpus marsupium bark extracts. Presence of major constituents in Pterocarpus marsupium bark extract was performed by qualitative analysis. Body weight changes, blood glucose, blood insulin, and reduced glutathione (GSH) and aldose reductase mRNA and protein expression were determined. Rat body weight gain was noted following treatment with bark extracts. The blood glucose was reduced up to 36% following treatment with bark extracts. The blood insulin and tissue GSH contents were substantially increased more than 100% in diabetic rats following treatment with extracts. Aldose reductase activity was reduced up to 79.3% in diabetic rats following treatment with extracts. V max , K m , and K i of aldose reductase were reduced in the lens tissue homogenate compared to the diabetic control. Aldose reductase mRNA and protein expression were reduced more than 50% following treatment with extracts. Treatment with Pterocarpus marsupium bark was able to normalize these levels. Taking all these data together, it is concluded that the use of Pterocarpus marsupium bark extracts could be the potential therapeutic approach for the reduction of aldose reductase against diabetic cataract.

  17. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  18. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  19. Unexpected ethical dilemmas in sex assignment in 46,XY DSD due to 5-alpha reductase type 2 deficiency.

    Science.gov (United States)

    Byers, Heather M; Mohnach, Lauren H; Fechner, Patricia Y; Chen, Ming; Thomas, Inas H; Ramsdell, Linda A; Shnorhavorian, Margarett; McCauley, Elizabeth A; Amies Oelschlager, Anne-Marie E; Park, John M; Sandberg, David E; Adam, Margaret P; Keegan, Catherine E

    2017-06-01

    Sex assignment at birth remains one of the most clinically challenging and controversial topics in 46,XY disorders of sexual development (DSD). This is particularly challenging in deficiency of 5-alpha reductase type 2 given that external genitalia are typically undervirilized at birth but typically virilize at puberty to a variable degree. Historically, most individuals with 5-alpha reductase deficiency were raised females. However, reports that over half of patients who underwent a virilizing puberty adopted an adult male gender identity have challenged this practice. Consensus guidelines on assignment of sex of rearing at birth are equivocal or favor male assignment in the most virilized cases. While a male sex of rearing assignment may avoid lifelong hormonal therapy and/or allow the potential for fertility, female sex assignment may be more consistent with external anatomy in the most severely undervirilized cases. Herein, we describe five patients with 46,XY DSD due 5-alpha-reductase type 2 deficiency, all with a severe phenotype. An inter-disciplinary DSD medical team at one of two academic centers evaluated each patient. This case series illustrates the complicated decision-making process of assignment of sex of rearing at birth in 5-alpha reductase type 2 deficiency and the challenges that arise when the interests of the child, parental wishes, recommendations of the medical team, and state law collide. © 2017 Wiley Periodicals, Inc.

  20. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    Science.gov (United States)

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in

  1. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L. and association with seed iron accumulation QTL

    Directory of Open Access Journals (Sweden)

    Fernandez Andrea C

    2010-10-01

    Full Text Available Abstract Background Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L. take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833, to identify quantitative trait loci (QTL for this trait, and to assess possible associations with seed iron levels. Results The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Conclusions Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity

  2. Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents

    Science.gov (United States)

    Baquedano, Ylenia; Alcolea, Verónica; Toro, Miguel Ángel; Gutiérrez, Killian Jesús; Nguewa, Paul; Font, María; Moreno, Esther; Espuelas, Socorro; Jiménez-Ruiz, Antonio; Palop, Juan Antonio; Plano, Daniel

    2016-01-01

    A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3′-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design. PMID:27067328

  3. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  4. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  5. Use of 5-alpha-reductase inhibitors did not increase the risk of cardiovascular diseases in patients with benign prostate hyperplasia: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Teng-Fu Hsieh

    Full Text Available This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH using the National Health Insurance Research Database (NHIRD in Taiwan.In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors.The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003. In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI 0.42 to 0.92; P=0.018, however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively.5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed.

  6. Crystallization and preliminary crystallographic analysis of selenomethionine-labelled progesterone 5β-reductase from Digitalis lanata Ehrh

    Energy Technology Data Exchange (ETDEWEB)

    Egerer-Sieber, Claudia [Lehrstuhl für Biotechnik, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen (Germany); Herl, Vanessa; Müller-Uri, Frieder; Kreis, Wolfgang [Lehrstuhl für Pharmazeutische Biologie, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen (Germany); Muller, Yves A., E-mail: ymuller@biologie.uni-erlangen.de [Lehrstuhl für Biotechnik, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen (Germany)

    2006-03-01

    Progesterone 5β-reductase is the first stereospecific enzyme in the pathway for the synthesis of cardenolides. To elucidate the structural mechanism of this reaction, we crystallized the selenomethionine-labelled enzyme from D. lanata and report the preliminary analysis of a MAD data set collected from these crystals. Progesterone 5β-reductase (5β-POR) catalyzes the reduction of progesterone to 5β-pregnane-3,20-dione and is the first stereospecific enzyme in the putative biosynthetic pathway of Digitalis cardenolides. Selenomethionine-derivatized 5β-POR from D. lanata was successfully overproduced and crystallized. The crystals belong to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 71.73, c = 186.64 Å. A MAD data set collected at 2.7 Å resolution allowed the identification of six out of eight possible Se-atom positions. A first inspection of the MAD-phased electron-density map shows that 5β-POR is a Rossmann-type reductase and the quality of the map is such that it is anticipated that a complete atomic model of 5β-POR will readily be built.

  7. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    Science.gov (United States)

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni

    2012-01-01

    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  9. Crystallization and preliminary characterization of dihydropteridine reductase from Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Chen, Cong; Seo, Kyung Hye; Kim, Hye Lim; Zhuang, Ningning; Park, Young Shik; Lee, Kon Ho

    2008-01-01

    The dihydropteridine reductase from D. discoideum has been crystallized. Diffraction data were collected from a rectangular-shaped crystal to 2.16 Å resolution. Dihydropteridine reductase from Dictyostelium discoideum (dicDHPR) can produce d-threo-BH 4 [6R-(1′R,2′R)-5,6,7,8-tetrahydrobiopterin], a stereoisomer of l-erythro-BH 4 , in the last step of tetrahydrobiopterin (BH 4 ) recycling. In this reaction, DHPR uses NADH as a cofactor to reduce quinonoid dihydrobiopterin back to BH 4 . To date, the enzyme has been purified to homogeneity from many sources. In this report, the dicDHPR–NAD complex has been crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as a precipitant. Rectangular-shaped crystals were obtained. Crystals grew to maximum dimensions of 0.4 × 0.6 × 0.1 mm. The crystal belonged to space group P2 1 , with unit-cell parameters a = 49.81, b = 129.90, c = 78.76 Å, β = 100.00°, and contained four molecules in the asymmetric unit, forming two closely interacting dicDHPR–NAD dimers. Diffraction data were collected to 2.16 Å resolution using synchrotron radiation. The crystal structure has been determined using the molecular-replacement method

  10. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    Dawn Nyawira Maranga

    2013-01-01

    Full Text Available The management of human African trypanosomiasis (HAT is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P<0.05 elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.

  11. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms

    International Nuclear Information System (INIS)

    Yagi, T.

    1987-01-01

    The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and BacilLus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [ 14 C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [ 14 C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity

  12. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.

    Science.gov (United States)

    Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J

    2005-09-01

    Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.

  13. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    International Nuclear Information System (INIS)

    Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.

    2011-01-01

    B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported. Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H 2 AsO 4 − ), a compound that is toxic to bacteria, to arsenite ion (AsO 2 − ), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15 N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3 CX 3 R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm

  14. The role of quinone reductase (NQO1) and quinone chemistry in quercetin cytotoxicity

    NARCIS (Netherlands)

    Gliszczynska-Swiglo, A.; Woude, van der H.; Haan, de L.H.J.; Tyrakowska, B.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M.

    2003-01-01

    The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly

  15. Positive correlation between decreased cellular uptake, NADPH-glutathione reductase activity and adriamycin resistance in Ehrlich ascites tumor lines.

    Science.gov (United States)

    Scheulen, M E; Hoensch, H; Kappus, H; Seeber, S; Schmidt, C G

    1987-01-01

    From a wild type strain of Ehrlich ascites tumor (EATWT) sublines resistant to daunorubicin (EATDNM), etoposide (EATETO), and cisplatinum (EATCIS) have been developed in vivo. Increase in survival and cure rate caused by adriamycin (doxorubicin) have been determined in female NMRI mice which were inoculated i.p. with EAT cells. Adriamycin concentrations causing 50% inhibition of 3H-thymidine (ICT) and 3H-uridine incorporation (ICU) and intracellular adriamycin steady-state concentrations (SSC) were measured in vitro. Adriamycin resistance increased and SSC decreased in the following sequence: EATWT - EATCIS - EATDNM - EATETO. When ICT and ICU were corrected for intracellular adriamycin concentrations in consideration of the different SSC (ICTc, ICUc), ICTc and ICUc still varied up to the 3.2 fold in EATCIS, EATDNM and EATETO in comparison to EATWT. Thus, in addition to different SSC other factors must be responsible for adriamycin resistance. Therefore, enzymes which may play a role in the cytotoxicity related to adriamycin metabolism (NADPH-cytochrome P-450 reductase, NADPH-glutathione reductase, NADP-glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) were measured. In contrast to the other parameters determined, NADPH-glutathione reductase was significantly (p less than 0.01) increased up to the 3.2 fold parallel to adriamycin resistance as determined by increase in life span, cure rate, ICTc, and ICUc, respectively. It is concluded that high activities of NADPH-glutathione reductase may contribute to an increase in adriamycin resistance of malignant tumors.

  16. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  17. Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal.

    Directory of Open Access Journals (Sweden)

    Anne J N Kazibwe

    Full Text Available BACKGROUND: The development of arsenical and diamidine resistance in Trypanosoma brucei is associated with loss of drug uptake by the P2 purine transporter as a result of alterations in the corresponding T. brucei adenosine transporter 1 gene (TbAT1. Previously, specific TbAT1 mutant type alleles linked to melarsoprol treatment failure were significantly more prevalent in T. b. gambiense from relapse patients at Omugo health centre in Arua district. Relapse rates of up to 30% prompted a shift from melarsoprol to eflornithine (alpha-difluoromethylornithine, DFMO as first-line treatment at this centre. The aim of this study was to determine the status of TbAT1 in recent isolates collected from T. b. gambiense sleeping sickness patients from Arua and Moyo districts in Northwestern Uganda after this shift in first-line drug choice. METHODOLOGY AND RESULTS: Blood and cerebrospinal fluids of consenting patients were collected for DNA preparation and subsequent amplification. All of the 105 isolates from Omugo that we successfully analysed by PCR-RFLP possessed the TbAT1 wild type allele. In addition, PCR/RFLP analysis was performed for 74 samples from Moyo, where melarsoprol is still the first line drug; 61 samples displayed the wild genotype while six were mutant and seven had a mixed pattern of both mutant and wild-type TbAT1. The melarsoprol treatment failure rate at Moyo over the same period was nine out of 101 stage II cases that were followed up at least once. Five of the relapse cases harboured mutant TbAT1, one had the wild type, while no amplification was achieved from the remaining three samples. CONCLUSIONS/SIGNIFICANCE: The apparent disappearance of mutant alleles at Omugo may correlate with melarsoprol withdrawal as first-line treatment. Our results suggest that melarsoprol could successfully be reintroduced following a time lag subsequent to its replacement. A field-applicable test to predict melarsoprol treatment outcome and identify

  18. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  19. Reduction of azo dyes by flavin reductase from Citrobacter freundii A1

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Abdul-Wahab

    2012-12-01

    Full Text Available Citrobacter freundii A1 isolated from a sewage treatment facility was demonstrated to be able to effectively decolorize azo dyes as pure and mixed culture. This study reports on the investigation on the enzymatic systems involved. An assay performed suggested the possible involvement of flavin reductase (Fre as an azo reductase. A heterologouslyexpressed recombinant Fre from C. freundii A1 was used to investigate its involvement in the azo reduction process. Three model dyes were used, namely Acid Red 27 (AR27, Direct Blue 15 (DB15 and Reactive Black 5 (RB5. AR27 was found to be reduced the fastest by Fre, followed by RB5, and lastly DB15. Redox mediators nicotinamide adenine dinucleotide (NADH and riboflavin enhance the reduction, suggesting the redox activity of the enzyme. The rate and extent of reduction of the model dyes correlate well with the reduction potentials (Ep. The data presented here strongly suggest that Fre is one of the enzymes responsible for azo reduction in C. freundii A1, acting via an oxidation-reduction reaction.

  20. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    Science.gov (United States)

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  1. Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase.

    Science.gov (United States)

    Changklungmoa, Narin; Kueakhai, Pornanan; Sangpairoj, Kant; Chaichanasak, Pannigan; Jaikua, Wipaphorn; Riengrojpitak, Suda; Sobhon, Prasert; Chaithirayanon, Kulathida

    2015-06-01

    The Fasciola gigantica thioredoxin-glutathione reductase (FgTGR) gene is a fusion between thioredoxin reductase (TR) and a glutaredoxin (Grx) gene. FgTGR was cloned by polymerase chain reaction (PCR) from adult complementary DNA (cDNA), and its sequences showed two isoforms, i.e., the cytosolic and mitochondrial FgTGR. Cytosolic FgTGR (cytFgTGR) was composed of 2370 bp, and its peptide had no signal sequence and hence was not a secreted protein. Mitochondrial FgTGR (mitFgTGR) was composed of 2506 bp with a signal peptide of 43 amino acids; therefore, it was a secreted protein. The putative cytFgTGR and mitFgTGR peptides comprised of 598 and 641 amino acids, respectively, with a molecular weight of 65.8 kDa for cytFgTGR and mitFgTGR, with a conserved sequence (CPYC) of TR, and ACUG and CVNVGC of Grx domains. The recombinant FgTGR (rFgTGR) was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTGR). The FgTGR protein expression, estimated by indirect ELISA using the rabbit anti-rFgTGR as probe, showed high levels of expression in eggs, and 2- and 4-week-old juveniles and adults. The rFgTGR exhibited specific activities in the 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) reductase assay for TR activity and in β-hydroxyethul disulfide (HED) for Grx activity. When analyzed by immunoblotting and immunohistochemistry, rabbit anti-rFgTGR reacted with natural FgTGR at a molecular weight of 66 kDa from eggs, whole body fraction (WB) of metacercariae, NEJ, 2- and 4-week-old juveniles and adults, and the tegumental antigen (TA) of adult. The FgTGR protein was expressed at high levels in the tegument of 2- and 4-week-old juveniles. The FgTGR may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or a drug target.

  2. Molecular Diagnosis of 5α-Reductase Type II Deficiency in Brazilian Siblings with 46,XY Disorder of Sex Development

    Directory of Open Access Journals (Sweden)

    Maricilda Palandi de Mello

    2011-12-01

    Full Text Available The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T to dihydrotestosterone (DHT, and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2 was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency.

  3. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  4. Purification, crystallization and preliminary X-ray analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhang, Liping; Feng, Lingling; Zhou, Li; Gui, Jie; Wan, Jian; Hu, Xiaopeng

    2010-01-01

    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of Streptococcus pneumoniae has been cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. Class II 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases are potential targets for novel antibiotic development. In order to obtain a precise structural model for use in virtual screening and inhibitor design, HMG-CoA reductase of Streptococcus pneumoniae was cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. A complete data set was collected from a single frozen crystal on a home X-ray source. The crystal diffracted to 2.3 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 773.4836, b = 90.3055, c = 160.5592 Å, α = β = γ = 90°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54.1% (V M = 2.68 Å 3 Da −1 )

  5. Homology modeling of dissimilatory APS reductases (AprBA of sulfur-oxidizing and sulfate-reducing prokaryotes.

    Directory of Open Access Journals (Sweden)

    Birte Meyer

    Full Text Available BACKGROUND: The dissimilatory adenosine-5'-phosphosulfate (APS reductase (cofactors flavin adenine dinucleotide, FAD, and two [4Fe-4S] centers catalyzes the transformation of APS to sulfite and AMP in sulfate-reducing prokaryotes (SRP; in sulfur-oxidizing bacteria (SOB it has been suggested to operate in the reverse direction. Recently, the three-dimensional structure of the Archaeoglobus fulgidus enzyme has been determined in different catalytically relevant states providing insights into its reaction cycle. METHODOLOGY/PRINCIPAL FINDINGS: Full-length AprBA sequences from 20 phylogenetically distinct SRP and SOB species were used for homology modeling. In general, the average accuracy of the calculated models was sufficiently good to allow a structural and functional comparison between the beta- and alpha-subunit structures (78.8-99.3% and 89.5-96.8% of the AprB and AprA main chain atoms, respectively, had root mean square deviations below 1 A with respect to the template structures. Besides their overall conformity, the SRP- and SOB-derived models revealed the existence of individual adaptations at the electron-transferring AprB protein surface presumably resulting from docking to different electron donor/acceptor proteins. These structural alterations correlated with the protein phylogeny (three major phylogenetic lineages: (1 SRP including LGT-affected Archaeoglobi and SOB of Apr lineage II, (2 crenarchaeal SRP Caldivirga and Pyrobaculum, and (3 SOB of the distinct Apr lineage I and the presence of potential APS reductase-interacting redox complexes. The almost identical protein matrices surrounding both [4Fe-4S] clusters, the FAD cofactor, the active site channel and center within the AprB/A models of SRP and SOB point to a highly similar catalytic process of APS reduction/sulfite oxidation independent of the metabolism type the APS reductase is involved in and the species it has been originated from. CONCLUSIONS: Based on the comparative

  6. Molecular Evidence of a Trypanosoma brucei gambiense Sylvatic Cycle in the Human African Trypanosomiasis Foci of Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Carlos eCordon-Obras

    2015-07-01

    Full Text Available Gambiense trypanosomiasis is considered an anthroponotic disease. Consequently, control programs are generally aimed at stopping transmission of Trypanosoma brucei gambiense (T. b. gambiense by detecting and treating human cases. However, the persistence of numerous foci despite efforts to eliminate this disease questions this strategy as unique tool to pursue the eradication. The role of animals as a reservoir of T. b. gambiense is still controversial, but could partly explain maintenance of the infection at hypo-endemic levels. In the present study, we evaluated the presence of T. b. gambiense in wild animals in Equatorial Guinea. The infection rate ranged from 0.8% in the insular focus of Luba to more than 12% in Mbini, a focus with a constant trickle of human cases. The parasite was detected in a wide range of animal species including four species never described previously as putative reservoirs. Our study comes to reinforce the hypothesis that animals may play a role in the persistence of T. b. gambiense transmission, being particularly relevant in low transmission settings. Under these conditions the integration of sustained vector control and medical interventions should be considered to achieve the elimination of Gambiense trypanosomiasis.

  7. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  8. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    Directory of Open Access Journals (Sweden)

    Giuseppe eForlani

    2015-07-01

    Full Text Available The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L. for δ1-pyrroline-5-carboxylate (P5C reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in E. coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human and bacterial enzymes.

  9. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  10. Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2013-11-01

    Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.

  11. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  12. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  13. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    Science.gov (United States)

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  15. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    Full Text Available We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51" that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  16. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Science.gov (United States)

    Mashiyama, Susan T; Koupparis, Kyriacos; Caffrey, Conor R; McKerrow, James H; Babbitt, Patricia C

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51") that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  17. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  18. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    Science.gov (United States)

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P 1 . In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys 55 and Lys 268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys 55 and Lys 268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pharmacogenetics of aldo-keto reductase 1C (AKR1C) enzymes.

    Science.gov (United States)

    Alshogran, Osama Y

    2017-10-01

    Genetic variation in metabolizing enzymes contributes to variable drug response and disease risk. Aldo-keto reductase type 1C (AKR1C) comprises a sub-family of reductase enzymes that play critical roles in the biotransformation of various drug substrates and endogenous compounds such as steroids. Several single nucleotide polymorphisms have been reported among AKR1C encoding genes, which may affect the functional expression of the enzymes. Areas covered: This review highlights and comprehensively discusses previous pharmacogenetic reports that have examined genetic variations in AKR1C and their association with disease development, drug disposition, and therapeutic outcomes. The article also provides information about the effect of AKR1C genetic variants on enzyme function in vitro. Expert opinion: The current evidence that links the effect of AKR1C gene polymorphisms to disease progression and development is inconsistent and needs further validation, despite of the tremendous knowledge available. Information about association of AKR1C genetic variants and drug efficacy, safety, and pharmacokinetics is limited, thus, future studies that advance our understanding about these relationships and their clinical relevance are needed. It is imperative to achieve consistent findings before the potential translation and adoption of AKR1C genetic variants in clinical practice.

  20. Comparative Antitrypanosomal Screening Of Methanolic Extracts

    African Journals Online (AJOL)

    activities with per cent drop in parasite population of. 43.76 and 29.46 ... Intraperitoneal treatment of T. brucei brucei-infected mice using these stem extracts at ... brucei brucei, Traditional medicine. ..... Journal of Biological Chemistry. 214:839-.

  1. Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Katherine Woods

    Full Text Available Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.

  2. Evaluation of constitutive iron reductase (AtFRO2 expression on mineral accumulation and distribution in soybean (Glycine max. L

    Directory of Open Access Journals (Sweden)

    Marta Wilton Vasconcelos

    2014-04-01

    Full Text Available Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg and Mo, pod walls (Fe, K, P, Cu and Ni, leaves (Fe, P, Cu, Ca, Ni and Mg and seeds (Fe, Zn, Cu and Ni. Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  3. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  4. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    Science.gov (United States)

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B

  5. Direct antioxidant properties of bilirubin andbiliverdin. Is there a role for biliverdin reductase?

    Directory of Open Access Journals (Sweden)

    Thomas eJansen

    2012-03-01

    Full Text Available Reactive oxygen species (ROS and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on reactive oxygen species. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g. HOPE, HOPE-TOO, antioxidant molecules and agents are important players to influence the critical balance between production and elimination of RONS. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide (CO, biliverdin/bilirubin, and the release of free iron with subsequent ferritin induction. With the present review we would like to highlight the important antioxidant role of the heme oxygenase system and especially discuss the contribution of the biliverdin, bilirubin and biliverdin reductase to these beneficial effects. The bilierdin reductase was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the biliverdin reductase, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.

  6. Identification of HMG-CoA Reductase Inhibitor Active Compound in Medicinal Forest Plants

    Directory of Open Access Journals (Sweden)

    Shelly Rahmania

    2017-08-01

    Full Text Available Cardiovascular disease is a leading cause of death worldwide, hypercholesterolemia is one of the causes. Three medicinal forest plants are potential natural resources to be developed as cholesterol-reducing herbal product, but scientific informations on their mechanism is still limited. The objective of this research is to explore the potency of the leaf of Jati Belanda (Guazuma ulmifolia, Jabon (Antocephalus macrophyllus, and Mindi (Melia azedarach as inhibitor of HMG-CoA reductase (HMGR, a key enzyme in the regulation of cholesterol biosynthesis. Samples were macerated in ethanol 96% and the filtrate was partitioned using n-hexane and chloroform to obtain the ethanolic flavonoid extract. The effect of each extracts on the HMG-CoA reductase activity were analyzed using HMGR assay kit. At concentration of 10 ppm the G.ulmifolia ethanolic extract showed the highest inhibitory activity as well as pravastatin control inhibitor.  The phenolic content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 11.00, 34.83, and 13.67 mg gallic acid AE/g dried leaves, respectively. The flavonoid content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 0.22, 0.64, and 0.78 mg QE/g dried leaves, respectively. Interestingly, G.ulmifolia extract the lowest concentration of phenolic and flavonoid content. HPLC analysis showed that all samples contain quercetin at similiar small concentrations (6.7%, 6.6%, and 7.0% for G.ulmifolia, A.macrophyllus, and M.azedarach, respectively. This indicating other active compounds may play some roles in this inhibitory action on HMG-CoA reductase activity. Further identification using LC-MS/MS showed that G.ulmifolia flavonoid extract contained an unidetified coumpound with molecural weight of 380.0723 Da.  

  7. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  8. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    of the genes described from eukaryotic organisms and the deduced amino acid sequence could be aligned with the C-terminal half of animal and plant reductases exhibiting pronounced similarity to other eukaryotic counterparts. Further examination of the 5' flanking region by cDNA analysis and establishment...

  9. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  10. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van

    2014-01-01

    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES

  11. The Inhibitory Effect of Prunella vulgaris L. on Aldose Reductase and Protein Glycation

    Directory of Open Access Journals (Sweden)

    Hong Mei Li

    2012-01-01

    Full Text Available To evaluate the aldose reductase (AR enzyme inhibitory ability of Prunella vulgaris L. extract, six compounds were isolated and tested for their effects. The components were subjected to in vitro bioassays to investigate their inhibitory assays using rat lens aldose reductase (rAR and human recombinant AR (rhAR. Among them, caffeic acid ethylene ester showed the potent inhibition, with the IC50 values of rAR and rhAR at 3.2±0.55 μM and 12.58±0.32 μM, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, this compound showed noncompetitive inhibition against rhAR. Furthermore, it inhibited galactitol formation in a rat lens incubated with a high concentration of galactose. Also it has antioxidative as well as advanced glycation end products (AGEs inhibitory effects. As a result, this compound could be offered as a leading compound for further study as a new natural products drug for diabetic complications.

  12. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.

    Science.gov (United States)

    Menon, Binuraj R K; Latham, Jonathan; Dunstan, Mark S; Brandenburger, Eileen; Klemstein, Ulrike; Leys, David; Karthikeyan, Chinnan; Greaney, Michael F; Shepherd, Sarah A; Micklefield, Jason

    2016-10-04

    Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.

  13. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  14. Excreted/Secreted Proteins from Trypanosome Procyclic Strains

    Directory of Open Access Journals (Sweden)

    Celestine Michelle Atyame Nten

    2010-01-01

    Full Text Available Trypanosoma secretome was shown to be involved in parasite virulence and is suspected of interfering in parasite life-cycle steps such as establishment in the Glossina midgut, metacyclogenesis. Therefore, we attempted to identify the proteins secreted by procyclic strains of T. brucei gambiense and T. brucei brucei, responsible for human and animal trypanosomiasis, respectively. Using mass spectrometry, 427 and 483 nonredundant proteins were characterized in T. brucei brucei and T. brucei gambiense secretomes, respectively; 35% and 42% of the corresponding secretome proteins were specifically secreted by T. brucei brucei and T. brucei gambiense, respectively, while 279 proteins were common to both subspecies. The proteins were assigned to 12 functional classes. Special attention was paid to the most abundant proteases (14 families because of their potential implication in the infection process and nutrient supply. The presence of proteins usually secreted via an exosome pathway suggests that this type of process is involved in trypanosome ESP secretion. The overall results provide leads for further research to develop novel tools for blocking trypanosome transmission.

  15. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  16. Peroxo-Type Intermediates in Class I Ribonucleotide Reductase and Related Binuclear Non-Heme Iron Enzymes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Bell, Caleb B.; Clay, MIchael D.

    2009-01-01

    We have performed a systematic study of chemically possible peroxo-type intermediates occurring in the non-heme di-iron enzyme class la ribonucleotide reductase, using spectroscopically calibrated computational chemistry. Density functional computations of equilibrium structures, Fe-O and O-O str...

  17. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  18. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  19. Cdna cloning and expression analyses of the isoflavone reductase-like gene of dendrobium officinale

    International Nuclear Information System (INIS)

    Qian, X.; Xu, S.Z.

    2015-01-01

    The full length of the isoflavone reductase-like gene (IRL) cDNA of Dendrobium officinale was cloned by using reverse transcription (RT) PCR combined with cDNA library, the IRL function was identified by Bioinformatics and prokaryotic expression analyses, and the IRL expression levels in the organs and tissues of D. officinale plants with different ages were determined by using real-time quantitative PCR (RT-qPCR). The results indicated that the full length of the cDNA of D. officinale IRL, DoIRL, was 1238 bp (accession no. KJ661023). Its open reading frame (ORF) was 930 bp which encoded 309 amino acids with a predicted molecular mass of 34 kDa, the 5 untranslated region (UTR) was 61 bp and the 3 UTR containing a poly (A) tail was 247 bp. The deduced amino acid sequence of DoIRL, DoIRL, was forecast to contain a NAD(P)H-binding motif (GGTGYIG) in the N-terminal region, two conserved N-glycosylation sites, a conserved nitrogen metabolite repression regulator (NmrA) domain and a phenylcoumaran benzylic ether reductase (PCBER) domain, to hold the nearest phylogenetic relationship with the PCBER of Striga asiatica, and to share both 73% identity with the isoflavone reductases-like (IRLs) of Cucumis sativus and Striga asiatica. In Escherichia coli 'BL21' cells, the DoIRL cDNA expression produced a protein band holding the predicted molecular mass of 34 kDa. DoIRL expressed in all organs and tissues of D. officinale plants with different ages at comparatively low levels, and the expression level in the leaves of the two-year-old plants was the highest. (author)

  20. Caracemide, a site-specific irreversible inhibitor of protein R1 of Escherichia coli ribonucleotide reductase

    DEFF Research Database (Denmark)

    Larsen, I. K.; Cornett, Claus; Karlsson, M.

    1992-01-01

    The anticancer drug caracemide, N-acetyl-N,O-di(methylcarbamoyl)hydroxylamine, and one of its degradation products, N-acetyl-O-methylcarbamoyl-hydroxylamine, were found to inhibit the enzyme ribonucleotide reductase of Escherichia coli by specific interaction with its larger component protein R1....

  1. Structure and expression of human dihydropteridine reductase

    International Nuclear Information System (INIS)

    Lockyer, J.; Cook, R.G.; Milstien, S.; Kaufman, S.; Woo, S.L.C.; Ledley, F.D.

    1987-01-01

    Dihydropteridine reductase catalyzes the NADH-mediated reduction of quinonoid dihydrobiopterin and is an essential component of the pterindependent aromatic amino acid hydroxylating systems. A cDNA for human DHPR was isolated from a human liver cDNA library in the vector λgt11 using a monospecific antibody against sheep DHPR. The nucleic acid sequence and amino acid sequence of human DHPR were determined from a full-length clone. A 112 amino acid sequence of sheep DHPR was obtained by sequencing purified sheep DHPR. This sequence is highly homologous to the predicted amino acid sequence of the human protein. Gene transfer of the recombinant human DHPR into COS cells leads to expression of DHPR enzymatic activity. These results indicate that the cDNA clone identified by antibody screening is an authentic and full-length cDNA for human DHPR

  2. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  3. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  4. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  5. [Effect of UV-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens].

    Science.gov (United States)

    Byshneva, L N; Senchuk, V V

    2002-01-01

    The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.

  6. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  7. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  8. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Crystallization and preliminary X-ray diffraction analysis of salutaridine reductase from the opium poppy Papaver somniferum

    International Nuclear Information System (INIS)

    Higashi, Yasuhiro; Smith, Thomas J.; Jez, Joseph M.; Kutchan, Toni M.

    2010-01-01

    Recombinant P. somniferum salutaridine reductase (SalR) was purified and crystallized with NADPH using the hanging-drop vapor-diffusion method. Crystals of the SalR–NADPH complex diffracted X-rays to a resolution of 1.9 Å. The opium poppy Papaver somniferum is the source of the narcotic analgesics morphine and codeine. Salutaridine reductase (SalR; EC 1.1.1.248) reduces the C-7 keto group of salutaridine to the C-7 (S)-hydroxyl group of salutaridinol in the biosynthetic pathway that leads to morphine in the opium poppy plant. P. somniferum SalR was overproduced in Escherichia coli and purified using cobalt-affinity and size-exclusion chromatography. Hexagonal crystals belonging to space group P6 4 22 or P6 2 22 were obtained using ammonium sulfate as precipitant and diffracted to a resolution of 1.9 Å

  11. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.

  12. A case of severe methylenetetrahydrofolate reductase deficiency presenting as neonatal encephalopathy, seizures, microcephaly and central hypoventilation

    NARCIS (Netherlands)

    Balasubramaniam, S.; Salomons, G.S.; Blom, H.J.

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in the remethylation of homocysteine to methionine. S-adenosylmethionine, formed from methionine and adenosine triphosphate, is the methyl donor in crucial reactions for brain development and function. MTHFR deficiency is the

  13. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    Science.gov (United States)

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Expression, purification, crystallization and X-ray analysis of 3-quinuclidinone reductase from Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Takeshita, Daijiro; Kataoka, Michihiko; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2012-01-01

    The purification and crystallization of 3-quinuclidinone reductase from A. tumefaciens allowed the collection of a diffraction data set to 1.72 Å resolution. (R)-3-Quinuclidinol is a useful chiral building block for the synthesis of various pharmaceuticals and can be produced from 3-quinuclidinone by asymmetric reduction. A novel 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol with NADH as a cofactor. Recombinant AtQR was overexpressed in Escherichia coli, purified and crystallized with NADH using the sitting-drop vapour-diffusion method at 293 K. Crystals were obtained using a reservoir solution containing PEG 3350 as a precipitant. X-ray diffraction data were collected to 1.72 Å resolution on beamline BL-5A at the Photon Factory. The crystal belonged to space group P2 1 , with unit-cell parameters a = 62.0, b = 126.4, c = 62.0 Å, β = 110.5°, and was suggested to contain four molecules in the asymmetric unit (V M = 2.08 Å 3 Da −1 )

  15. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    Directory of Open Access Journals (Sweden)

    Pais P

    2016-04-01

    Full Text Available Pilar Pais, Agustí Villar, Santiago Rull Euromed, Barcelona, Spain Background: The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH. The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose: To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE, an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods: The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results: By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 µg/mL, SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion: SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The

  16. Mechanistic studies with solubilized rat liver steroid 5 alpha-reductase: Elucidation of the kinetic mechanism

    International Nuclear Information System (INIS)

    Levy, M.A.; Brandt, M.; Greway, A.T.

    1990-01-01

    A solubilized preparation of steroid 5 alpha-reductase from rat liver has been used in studies focused toward an understanding of the kinetic mechanism associated with enzyme catalysis. From the results of analyses with product and dead-end inhibitors, a preferentially ordered binding of substrates and release of products from the surface of the enzyme is proposed. The observations from these experiments were identical with those using the steroid 5 alpha-reductase activity associated with rat liver microsomes. The primary isotope effects on steady-state kinetic parameters when [4S-2H]NADPH was used also were consistent with an ordered kinetic mechanism. Normal isotope effects were observed for all three kinetic parameters (Vm/Km for both testosterone and NADPH and Vm) at all substrate concentrations used experimentally. Upon extrapolation to infinite concentration of testosterone, the isotope effect on Vm/Km for NADPH approached unity, indicating that the nicotinamide dinucleotide phosphate is the first substrate binding to and the second product released from the enzyme. The isotope effects on Vm/Km for testosterone at infinite concentration of cofactor and on Vm were 3.8 +/- 0.5 and 3.3 +/- 0.4, respectively. Data from the pH profiles of these three steady-state parameters and the inhibition constants (1/Ki) of competitive inhibitors versus both substrates indicate that the binding of nicotinamide dinucleotide phosphate involves coordination of its anionic 2'-phosphate to a protonated enzyme-associated base with an apparent pK near 8.0. From these results, relative limits have been placed on several of the internal rate constants used to describe the ordered mechanism of the rat liver steroid 5 alpha-reductase

  17. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Maurice, M. M.; Nakamura, H.; Gringhuis, S.; Okamoto, T.; Yoshida, S.; Kullmann, F.; Lechner, S.; van der Voort, E. A.; Leow, A.; Versendaal, J.; Muller-Ladner, U.; Yodoi, J.; Tak, P. P.; Breedveld, F. C.; Verweij, C. L.

    1999-01-01

    OBJECTIVE: To examine the expression of the thioredoxin (TRX)-thioredoxin reductase (TR) system in patients with rheumatoid arthritis (RA) and patients with other rheumatic diseases. METHODS: Levels of TRX in plasma and synovial fluid (SF) were measured using enzyme-linked immunosorbent assay.

  18. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily

    NARCIS (Netherlands)

    Machielsen, M.P.; Uria, A.R.; Kengen, S.W.M.; Oost, van der J.

    2006-01-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The

  19. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  20. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system.

    Science.gov (United States)

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride

  2. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    Science.gov (United States)

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  4. Crystallization and preliminary X-ray crystallographic analysis of enoyl-ACP reductase III (FabL) from Bacillus subtilis

    International Nuclear Information System (INIS)

    Kim, Kook-Han; Park, Joon Kyu; Ha, Byung Hak; Moon, Jin Ho; Kim, Eunice EunKyeong

    2007-01-01

    Enoyl-ACP reductase III (FabL) from B. subtilis has been overexpressed, purified and crystallized. The crystal belongs to space group P622, with unit-cell parameters a = b = 139.56, c = 62.75 Å, α = β = 90, γ = 120°, and data were collected to 2.5 Å resolution using synchrotron radiation. Enoyl-[acyl-carrier protein] reductase (enoyl-ACP reductase; ENR) is a key enzyme in type II fatty-acid synthase that catalyzes the last step in each elongation cycle. It has been considered as an antibiotic target since it is an essential enzyme in bacteria. However, recent studies indicate that some pathogens have more than one ENR. Bacillus subtilis is reported to have two ENRs, namely BsFabI and BsFabL. While BsFabI is similar to other FabIs, BsFabL shows very little sequence similarity and is NADPH-dependent instead of NADH-dependent as in the case of FabI. In order to understand these differences on a structural basis, BsFabL has been cloned, expressed and and crystallized. The crystal belongs to space group P622, with unit-cell parameters a = b = 139.56, c = 62.75 Å, α = β = 90, γ = 120° and one molecule of FabL in the asymmetric unit. Data were collected using synchrotron radiation (beamline 4A at the Pohang Light Source, Korea). The crystal diffracted to 2.5 Å resolution

  5. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities

    DEFF Research Database (Denmark)

    Fago, Angela; Dalsgaard, Thomas; Fago, Angela

    2007-01-01

    is largely intrinsic to the vessel and that under hypoxia physiological nitrite concentrations are sufficient to induce NO-mediated vasodilation independently of the nitrite reductase activities investigated here. Possible reaction mechanisms for nitrite vasoactivity, including formation of S...

  7. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    OpenAIRE

    Almasi, Joel N.; Bushnell, Eric A.C.; Gauld, James W.

    2011-01-01

    Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM) ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein...

  8. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Parmida Ranji

    Full Text Available HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368 mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368 mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  9. The function and properties of the iron-sulfur center in spinach ferredoxin: Thioredoxin reductase: A new biological role for iron-sulfur clusters

    Energy Technology Data Exchange (ETDEWEB)

    Staples, C.R.; Ameyibor, E.; Fu, Weiguang; Johnson, M.K. [Univ. of Georgia, Athens, GA (United States)] [and others

    1996-09-03

    Thioredoxin reduction in chloroplasts in catalyzed by a unique class of disulfide reductases which use a [2Fe-2S]{sup 2+/+} ferredoxin as the electron donor and contain an Fe-S cluster as the sole prosthetic group in addition to the active-site disulfide. The nature, properties, and function of the Fe-S cluster in spinach ferredoxin: thioredoxin reductase (FTR) have been investigated by the combination of UV/visible absorption, variable-temperature magnetic circular dichroism (MCD), EPR, and resonance Raman (RR) spectroscopies. 66 refs., 5 figs., 1 tab.

  10. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    Science.gov (United States)

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  11. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    Science.gov (United States)

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  12. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    Science.gov (United States)

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  13. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  14. Cloning, purification, crystallization and preliminary X-ray analysis of a chimeric NADPH-cytochrome P450 reductase

    International Nuclear Information System (INIS)

    Aigrain, Louise; Pompon, Denis; Truan, Gilles; Moréra, Solange

    2009-01-01

    A 2.5 Å resolution data set was collected from a crystal of a soluble chimeric form of NADPH-cytochrome P450 reductase (CPR) produced using a fusion gene composed of the yeast FMN and the human FAD domains. The chimeric protein was crystallized in a modified conformation compared with the previously solved structures. NADPH-cytochrome P450 reductase (CPR) is the favoured redox partner of microsomal cytochromes P450. This protein is composed of two flavin-containing domains (FMN and FAD) connected by a structured linker. An active CPR chimera consisting of the yeast FMN and human FAD domains has been produced, purified and crystallized. The crystals belonged to the monoclinic space group C2 and contained one molecule per asymmetric unit. Molecular replacement was performed using the published rat and yeast structures as search models. The initial electron-density maps revealed that the chimeric enzyme had crystallized in a conformation that differed from those of previously solved structures

  15. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; van Stralen, K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, Catharina Jacoba Maria

    2009-01-01

    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet

  16. Stereochemistry of Furfural Reduction by a Saccharomyces cerevisiae Aldehyde Reductase That Contributes to In Situ Furfural Detoxification

    Science.gov (United States)

    Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by the yeast, particularly when the carbon source is acid-treated lignocell...

  17. Human and animal Trypanosomes in Côte d'Ivoire form a single breeding population.

    Directory of Open Access Journals (Sweden)

    Paul Capewell

    Full Text Available Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits.A collection of sympatric T. brucei isolates from Côte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium.Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.

  18. S-Nitrosomycothiol Reductase and Mycothiol Are Required for Survival Under Aldehyde Stress and Biofilm Formation in Mycobacterium smegmatis

    Science.gov (United States)

    Vargas, Derek; Hageman, Samantha; Gulati, Megha; Nobile, Clarissa J.; Rawat, Mamta

    2017-01-01

    We show that Mycobacterium smegmatis mutants disrupted in mscR, coding for a dual function S-nitrosomycothiol reductase and formaldehyde dehydrogenase, and mshC, coding for a mycothiol ligase and lacking mycothiol (MSH), are more susceptible to S-nitrosoglutathione (GSNO) and aldehydes than wild type. MSH is a cofactor for MscR, and both mshC and mscR are induced by GSNO and aldehydes. We also show that a mutant disrupted in egtA, coding for a γ-glutamyl cysteine synthetase and lacking in ergothioneine, is sensitive to nitrosative stress but not to aldehydes. In addition, we find that MSH and S-nitrosomycothiol reductase are required for normal biofilm formation in M. smegmatis, suggesting potential new therapeutic pathways to target to inhibit or disrupt biofilm formation. PMID:27321674

  19. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  20. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  1. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities.

    Science.gov (United States)

    Jinnelov, Anders; Ali, Liaqat; Tinti, Michele; Güther, Maria Lucia S; Ferguson, Michael A J

    2017-12-08

    Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, Tb STT3A and Tb STT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N -glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the Tb STT3A and Tb STT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide: N -glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N -glycosylation sites by endoglycosidase H-resistant N -glycans originating from Man 5 GlcNAc 2 -PP-dolichol transferred by Tb STT3A, and endoglycosidase H-sensitive N -glycans originating from Man 9 GlcNAc 2 -PP-dolichol transferred by Tb STT3B. Using machine learning, we assessed the features that best define Tb STT3A and Tb STT3B substrates in vivo and built an algorithm to predict the types of N -glycan most likely to predominate at all the putative N -glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why Tb STT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N -glycosylation to provide protein sequence-specific N -glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267

  2. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 from C. parapsilosis IFO 0708 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystal belonged to space group P2 1 2 1 2 1 and diffracted X-rays to 1.7 Å resolution. Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 Å resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 Å. The Matthews coefficient (V M = 1.76 Å 3 Da −1 ) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit

  3. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  4. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D.; Wels, M.W.W.; Teusink, B.; Bron, P.A.; Vos, de W.M.; Smid, E.J.

    2007-01-01

    Background - Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results - We have identified the

  5. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D; Sanders, M.W.W.; Teusink, B.; Bron, P.A.; Vos, W.M. de; Smid, E.J.

    2007-01-01

    ABSTRACT: BACKGROUND: Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. RESULTS: We have

  6. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  7. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo.

    Science.gov (United States)

    Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A

    2016-12-01

    Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  9. Differential stress-induced regulation of two quinone reductases in the brown rot Basidiomycete Gloeophyllum trabeum

    Science.gov (United States)

    Roni Cohen; Melissa R. Suzuki; Kenneth E. Hammel

    2004-01-01

    Quinone reductases (QRDs) have two important functions in the basidiomycete Gloeophyllum trabeum, which causes brown rot of wood. First, a QRD is required to generate biodegradative hydroxyl radicals via redox cycling between two G. trabeum extracellular metabolites, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 2,5-dimethoxy-1,4-benzoquinone (2,5- DMBQ). Second, because 2,...

  10. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    Science.gov (United States)

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  11. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    Science.gov (United States)

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  12. Chemical modification of human muscle aldose reductase by pyridoxal 5'-phosphate

    International Nuclear Information System (INIS)

    Morjana, N.A.; Lyons, C.; Flynn, T.G.

    1987-01-01

    Aldose reductase (ALR2) is a monomeric oxidoreductase (Mr, 37,000). This enzyme catalyzes the reduction of a wide variety of aliphatic and aromatic aldehydes to their corresponding alcohols. The ability to reduce D-glucose and utilize NADH distinguishes ALR2 from aldehyde reductase (ALR1) which is exclusively NADPH-dependent. As part of a study to determine active site residues critical for binding and catalysis they have investigated the behavior of ALR2 with pyridoxal phosphate (PLP). In contrast to ALR1, which is inactivated by PLP, the reaction of ALR2 with PLP results in a 2-3 fold activation with the incorporation of 1 mol of PLP/mol enzyme. However, despite a 3-fold increase in k/sub cat/, there is also a 13-14 fold increase in the Km for both coenzyme and substrate and catalytic efficiency (k/sub cat//Km) is actually decreased. Reaction of ALR2 with 3 [H] PLP followed by digestion with endoproteinase Lys-C enabled the separation and purification by HPLC of a peptide containing a single pyridoxyllysine residue. The sequence of this 32 residue peptide is highly homologous with a peptide similarly obtained from pig and human ALR1 and is identical with one from pig ALR2. In all four enzymes, pig ALR1, ALR2; human ALR1, ALR2, a tetrapeptide containing the pyridoxylated lysine (I-P-K-S) shows absolute identity. Thus, despite differences in substrate and coenzyme specificity, the active site in both ALR1 and ALR2 is relatively conserved

  13. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  14. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H.; Appleman, J.R.; Blakley, R.L.; Sheridan, R.P.; Venkataraghavan, R.

    1990-01-01

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K m values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K m and k cat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K m (NADH)/K m (NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2'-phosphate, makes a major contribution in terms of binding energy and differentiation of K m values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme

  15. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  16. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids

  17. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.

    Science.gov (United States)

    Frederiksen, Trine-Maria; Finster, Kai

    2003-06-01

    The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.

  18. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    Science.gov (United States)

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  19. A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase

    NARCIS (Netherlands)

    Wijma, HJ; Jeuken, LJC; Verbeet, MP; Armstrong, FA; Canters, GW

    2006-01-01

    The homotrimeric copper-containing nitrite reductase ( NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of

  20. Systemic and ocular pharmacokinetics of N-4-benzoylaminophenylsulfonylglycine (BAPSG), a novel aldose reductase inhibitor

    OpenAIRE

    Sunkara, Gangadhar; Ayalasomayajula, Surya P.; Rao, Cheruku S.; Vennerstrom, Jonathan L.; DeRuiter, Jack; Kompella, Uday B.

    2004-01-01

    To better develop N-[4-(benzoylamino)phenylsulfonyl]glycine (BAPSG), a potent and selective aldose reductase inhibitor capable of delaying the progression of ocular diabetic complications, the objective of this study was to assess its pharmacokinetics. The plasma pharmacokinetics of BASPG was assessed in male Sprague-Dawley rats following intravenous, intraperitoneal and oral routes of administration and its distribution to various tissues including those of the eye was studied following intr...

  1. Binding of Fidarestat Stereoisomers with Aldose Reductase

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-11-01

    Full Text Available The stereospecificity in binding to aldose reductase (ALR2 of two fidarestat {6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazolidine]-2-carboxamide} stereoisomers [(2S,4Sand (2R,4S] has been investigated by means of molecular dynamics simulations using freeenergy integration techniques. The difference in the free energy of binding was found to be2.0 ± 1.7 kJ/mol in favour of the (2S,4S-form, in agreement with the experimentalinhibition data. The relative mobilities of the fidarestats complexed with ALR2 indicate alarger entropic penalty for hydrophobic binding of (2R,4S-fidarestat compared to (2S,4S-fidarestat, partially explaining its lower binding affinity. The two stereoisomers differmainly in the orientation of the carbamoyl moiety with respect to the active site and rotationof the bond joining the carbamoyl substituent to the ring. The detailed structural andenergetic insights obtained from out simulations allow for a better understanding of thefactors determining stereospecific inhibitor-ALR2 binding in the EPF charges model.

  2. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting

  3. Cyclohex-1-ene carboxylic acids: synthesis and biological evaluation of novel inhibitors of human 5 alpha reductase.

    Science.gov (United States)

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2003-03-01

    In search of novel nonsteroidal mimics of steroidal inhibitors of 5 alpha reductase, 4-(2-phenylethyl)cyclohex-1-ene carboxylic acids 1-5 were synthesized with different substituents in para position of the phenyl ring (1: N, N-diisopropylcarbamoyl, 2: phenyl, 3: phenoxy, 4: benzoyl, and 5: benzyl). The principal synthetic approach for the desired compounds consisted of a Wittig olefination between 1, 4-dioxaspiro [4.5]-decane-8-carbaldehyde (4g and the appropriate phosphonium salts. The compounds were tested for inhibition of human 5 alpha reductase isozymes 1 and 2 using DU 145 cells and preparations from prostatic tissue, respectively. They turned out to be good inhibitors of the prostatic isozyme 2 with compound 1 being the most potent one (IC(50) = 760 nM). Isozyme 1 was only slightly inhibited. It is concluded that the novel structures are appropriate for being further optimized, aiming at the development of a novel drug for the treatment of benign prostatic hyperplasia.

  4. 15N studies on the in-vivo assay of nitrate reductase in leaves

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu

    1981-01-01

    The reduction of nitrate and nitrite in the leaf disks of seven di- and two mono-cotyledonous species under the in-vivo assay conditions of nitrate reductase was studied using N-15 labeled substrates. The significant reduction of both nitrate and nitrite into ammonia and amino acids was detected in the atmosphere of air. In the atmosphere of N 2 gas, anaerobic incubation enhanced the accumulation of nitrite, but the subsequent reduction to the basic nitrogen compounds was from 40 to 180 % of the aerobic rate. The present examination indicated that the in-vivo assay of nitrate reductase under aerobic condition may give greatly underestimated results due to nitrite reduction, and that the exclusion of oxygen from the in-vivo assay mixture is desirable. The addition of n- propanol may be desirable for the assay under aerobic condition. Significant difference was not observed in the reduction of nitrate supplied as sodium and potassium salts on the nitrite formation and on the incorporation of nitrate-N into basic fractions. The N-15 experiment on the dark assimilation of nitrate, nitrite and ammonia into amino acids in wheat leaves showed that these three nitrogen sources were assimilated through the same route, and that the glutamine synthetase/glutamate synthetase pathway was the main route. By anaerobic treatment, the incorporation of nitrogen into alanine and serine was relatively high. (Kako, I.)

  5. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  6. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  7. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.

    Science.gov (United States)

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-05-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  9. The miRNA and mRNA Signatures of Peripheral Blood Cells in Humans Infected with Trypanosoma brucei gambiense.

    Directory of Open Access Journals (Sweden)

    Smiths Lueong

    Full Text Available Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II and without (stage I brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II, 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.

  10. Multiple evolutionary origins of Trypanosoma evansi in Kenya.

    Directory of Open Access Journals (Sweden)

    Christine M Kamidi

    2017-09-01

    Full Text Available Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51 and T. b. rhodesiense (n = 15, including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.

  11. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : Evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I.; Preiss, David; Kuchenbaecker, Karoline B.; Holmes, Michael V.; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A.; Leusink, Maarten; Verweij, Niek; Sharp, Stephen J.; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, Kawah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A.; Drenos, Fotios; Li, Yun R.; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G.; Van Der A, Daphne L.; Forouhi, Nita G.; Onland-Moret, N. Charlotte; Van Der Schouw, Yvonne T.; Schnabel, Renate B.; Hubacek, Jaroslav A.; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; De Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J. Wouter; Westendorp, Rudi G J; De Borst, Gert Jan; De Jong, Pim A.; Algra, Ale; Spiering, Wilko; Der Zee, Anke H Maitland Van; Klungel, Olaf H.; De Boer, Anthonius; Doevendans, Pieter A.; Eaton, Charles B.; Robinson, Jennifer G.; Duggan, David; Kjekshus, John; Downs, John R.; Gotto, Antonio M.; Keech, Anthony C.; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S.; Poulter, Neil R.; Waters, David D.; Pedersen, Terje R.; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D.; Chasman, Daniel I.; Ridker, Paul M.; Maggioni, Aldo P.; Tavazzi, Luigi; Ray, Kausik K.; Seshasai, Sreenivasa Rao Kondapally; Manson, Joann E.; Price, Jackie F.; Whincup, Peter H.; Morris, Richard W.; Lawlor, Debbie A.; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J.; Fornage, Myriam; Siscovick, David S.; Cushman, Mary; Kumari, Meena; Wareham, Nick J.; Verschuren, W. M Monique; Redline, Susan; Patel, Sanjay R.; Whittaker, John C.; Hamsten, Anders; Delaney, Joseph A.; Dale, Caroline; Gaunt, Tom R.; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A.; Van Der Harst, Pim; Brunner, Eric J.; Tybjaerg-Hansen, Anne; Marmot, Michael G.; Krauss, Ronald M.; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C.; Psaty, Bruce M.; Lange, Leslie A.; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E.; Talmud, Philippa J.; Kivimäki, Mika; Timpson, Nicholas J.; Langenberg, Claudia; Asselbergs, Folkert W.; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G.; Reiner, Alex P.; Keating, Brendan J.; Hingorani, Aroon D.; Sattar, Naveed

    2015-01-01

    Background Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. Methods We used single nucleotide polymorphisms in the HMGCR

  12. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight : evidence from genetic analysis and randomised trials

    NARCIS (Netherlands)

    Swerdlow, Daniel I; Preiss, David; Kuchenbaecker, Karoline B; Holmes, Michael V; Engmann, Jorgen E L; Shah, Tina; Sofat, Reecha; Stender, Stefan; Johnson, Paul C D; Scott, Robert A; Leusink, Maarten|info:eu-repo/dai/nl/357581164; Verweij, Niek; Sharp, Stephen J; Guo, Yiran; Giambartolomei, Claudia; Chung, Christina; Peasey, Anne; Amuzu, Antoinette; Li, KaWah; Palmen, Jutta; Howard, Philip; Cooper, Jackie A; Drenos, Fotios; Li, Yun R; Lowe, Gordon; Gallacher, John; Stewart, Marlene C W; Tzoulaki, Ioanna; Buxbaum, Sarah G; van der A, Daphne L; Forouhi, Nita G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Schnabel, Renate B; Hubacek, Jaroslav A; Kubinova, Ruzena; Baceviciene, Migle; Tamosiunas, Abdonas; Pajak, Andrzej; Topor-Madry, Romanvan; Stepaniak, Urszula; Malyutina, Sofia; Baldassarre, Damiano; Sennblad, Bengt; Tremoli, Elena; de Faire, Ulf; Veglia, Fabrizio; Ford, Ian; Jukema, J Wouter; Westendorp, Rudi G J; de Borst, Gert Jan; de Jong, Pim A; Algra, Ale; Spiering, Wilko; der Zee, Anke H Maitland-van|info:eu-repo/dai/nl/255164688; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; de Boer, Anthonius|info:eu-repo/dai/nl/075097346; Doevendans, Pieter A; Eaton, Charles B; Robinson, Jennifer G; Duggan, David; Kjekshus, John; Downs, John R; Gotto, Antonio M; Keech, Anthony C; Marchioli, Roberto; Tognoni, Gianni; Sever, Peter S; Poulter, Neil R; Waters, David D; Pedersen, Terje R; Amarenco, Pierre; Nakamura, Haruo; McMurray, John J V; Lewsey, James D; Chasman, Daniel I; Ridker, Paul M; Maggioni, Aldo P; Tavazzi, Luigi; Ray, Kausik K; Seshasai, Sreenivasa Rao Kondapally; Manson, JoAnn E; Price, Jackie F; Whincup, Peter H; Morris, Richard W; Lawlor, Debbie A; Smith, George Davey; Ben-Shlomo, Yoav; Schreiner, Pamela J; Fornage, Myriam; Siscovick, David S; Cushman, Mary; Kumari, Meena; Wareham, Nick J; Verschuren, W M Monique; Redline, Susan; Patel, Sanjay R; Whittaker, John C; Hamsten, Anders; Delaney, Joseph A; Dale, Caroline; Gaunt, Tom R; Wong, Andrew; Kuh, Diana; Hardy, Rebecca; Kathiresan, Sekar; Castillo, Berta A; van der Harst, Pim; Brunner, Eric J; Tybjaerg-Hansen, Anne; Marmot, Michael G; Krauss, Ronald M; Tsai, Michael; Coresh, Josef; Hoogeveen, Ronald C; Psaty, Bruce M; Lange, Leslie A; Hakonarson, Hakon; Dudbridge, Frank; Humphries, Steve E; Talmud, Philippa J; Kivimäki, Mika; Timpson, Nicholas J; Langenberg, Claudia; Asselbergs, Folkert W; Voevoda, Mikhail; Bobak, Martin; Pikhart, Hynek; Wilson, James G; Reiner, Alex P; Keating, Brendan J; Hingorani, Aroon D; Sattar, Naveed; DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium

    2014-01-01

    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR

  13. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-01-01

    A cDNA coding for human liver NADH-cytochrome b 5 reductase was cloned from a human liver cDNA library constructed in phage λgt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b 5 reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb 5 R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb 5 R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  14. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver

    International Nuclear Information System (INIS)

    Yoneda, Kazunari; Fukuda, Yudai; Shibata, Takeshi; Araki, Tomohiro; Nikki, Takahiro; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2012-01-01

    An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was successfully isolated and crystallized. An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 300 as the precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.26, b = 81.32, c = 77.27 Å, β = 119.43°, and diffracted to 1.86 Å resolution on beamline NE3A at the Photon Factory. The overall R merge was 5.4% and the data completeness was 99.4%

  15. High-resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase

    International Nuclear Information System (INIS)

    Hazemann, I.; Dauvergne, M.T.; Blakeley, M.P.; Meilleur, Flora; Haertlein, M.; Van Dorsselaer, A.; Mitschler, A.; Myles, Dean A.A.; Podjarny, A.

    2005-01-01

    Neutron diffraction data have been collected to 2.2 (angstrom) resolution from a small (0.15 mm 3 ) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase (h-AR(D)), subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm 3 are reported. Neutron data were recorded to 2 (angstrom) resolution, with subsequent data analysis using data to 2.2 (angstrom). This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples.

  16. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  17. Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia.

    OpenAIRE

    Burns, J L; Lien, D M; Hedin, L A

    1989-01-01

    Trimethoprim resistance was investigated in cystic fibrosis isolates of Pseudomonas cepacia. Determination of the MIC of trimethoprim for 111 strains revealed at least two populations of resistant organisms, suggesting the presence of more than one mechanism of resistance. Investigation of the antibiotic target, dihydrofolate reductase, was undertaken in both a susceptible strain and a strain with high-level resistance (MIC, greater than 1,000 micrograms/ml). The enzyme was purified by using ...

  18. Methylenetetrahydrofolate reductase homozygous mutation in a young boy with cerebellar infarction

    Directory of Open Access Journals (Sweden)

    Alberto Spalice

    2009-11-01

    Full Text Available Posterior circulation vascular occlusive disease in children is a rare and uncommonly reported event. Among the numerous risk factors, the methylenetetrahydrofolate reductase (MTHFR mutation is considered to be a common genetic cause of thrombosis in adults and children. Recently, a link between the MTHFR mutation and cerebrovascular disorders was reported in children. Diffusion tensor imaging (DTI is a great improvement on magnetic resonance imaging (MRI, making the in vivo anatomical and pathological study of the brain and its fibers possible. In our patient cerebellar infarction was associated with MTHFR mutation and, in a standard neurological examination, DTI revealed normal white matter tracts.

  19. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  20. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, Deepak [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2016-09-09

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.