WorldWideScience

Sample records for brookhaven graphite research reactor

  1. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  2. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.

    Science.gov (United States)

    Sierra Perler, Isabel Cecilia; Beer, Hans-Frieder; Müth, Joachim; Kramer, Andreas

    2017-08-16

    The research reactor DIORIT at the Paul Scherrer Institute was a natural uranium reactor moderated by D2O. It was put in operation in 1960 and finally shut down in August 1977. The dismantling project started in 1982 and could be successfully finished on September 11th, 2012. About 40 tons of activated reactor graphite had to be conditioned during the dismantling of this research reactor. The problem of conditioning of activated reactor graphite had not been solved so far worldwide. Therefore a conditioning method considering radiation protection and economic aspects had to be developed. As a result, the graphite was crushed to a particle size smaller than 5 mm and added as sand substitute to a specially developed grout. The produced graphite concrete was used as a matrix for embedding dismantling waste in containers. By conditioning the graphite conventionally, about 58.5 m3 (13 containers) of waste volume would have been generated. The new PSI invention resulted in no additional waste caused by graphite. Consequently, the resulting waste volume, as well as the costs, were substantially reduced. Copyright © 2017. Published by Elsevier Ltd.

  3. The High Flux Beam Reactor at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, S.M.

    1994-12-31

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  4. Development of reactor graphite

    Science.gov (United States)

    Haag, G.; Mindermann, D.; Wilhelmi, G.; Persicke, H.; Ulsamer, W.

    1990-04-01

    The German graphite development programme for High Temperature Reactors has been based on the assumption that reactor graphite for core components with lifetime fluences of up to 4 × 10 22 neutrons per cm 2 (EDN) at 400°C can be manufactured from regular pitch coke. The use of secondary coke and vibrational moulding techniques have allowed production of materials with very small anisotropy, high strength, and high purity which are the most important properties of reactor graphite. A variety of graphite grades has been tested in fast neutron irradiation experiments. The results show that suitable graphites for modern High Temperature Reactors with spherical fuel elements are available.

  5. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  6. Ageing Management of Beryllium and Graphite Blocks in Research Reactor MARIA

    Energy Technology Data Exchange (ETDEWEB)

    Golab, A. [National Centre for Nuclear Research, Warsaw (Poland)

    2013-07-01

    In the paper the phenomenon of beryllium moderator poisoning by thermal neutron absorption and the method and results of this phenomenon control is presented. Also the phenomenon of graphite blocks damage due to fast neutrons accumulation and the methods and results of this process supervising is described. These methods refer especially to: visual inspection of their state and radiography of graphite blocks. Special attention is paid to permanent estimate of fast neutron fluency accumulated in blocks and methods of their shuffling in the reactor core. The shuffling makes possible to increase the lifetime of beryllium and graphite blocks and decrease the cost of reactor operation.

  7. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  8. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  9. US graphite reactor D&D experience

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  10. Graphite distortion ``C`` Reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, N.H.

    1962-02-08

    This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.

  11. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Belford, M.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1993-12-31

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  12. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  13. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: wxu12@mails.tsinghua.edu.cn; Shi, Lei; Zheng, Yanhua

    2016-09-15

    Graphite is widely used as moderator, reflector and structural materials in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). In normal operating conditions or water/air ingress accident, the nuclear graphite in the reactor may be oxidized by air or steam. Oxidation behavior of nuclear graphite IG-110 which is used as the structural materials and reflector of HTR-PM is mainly researched in this paper. To investigate the penetration depth of oxygen in IG-110, this paper developed the one dimensional spherical oxidation model. In the oxidation model, the equations considered graphite porosity variation with the graphite weight loss. The effect of weight loss on the effective diffusion coefficient and the oxidation rate was also considered in this model. Based on this theoretical model, this paper obtained the relative concentration and local weight loss ratio profile in graphite. In addition, the local effective diffusion coefficient and oxidation rate in the graphite were also investigated.

  14. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Determination of floor response spectra for the Brookhaven HFBR reactor building structure

    Energy Technology Data Exchange (ETDEWEB)

    Subudhi, M.; Goradia, H.

    1978-11-01

    In order to perform the dynamic analysis of various structural components of the HFBR reactor building at Brookhaven National Laboratory (BNL) subjected to seismic disturbances, it is necessary to obtain the floor response spectra of the primary structure. The mathematical model includes the four floor levels of the internal structure, the dome, and soil spring effects. The standard time history analysis is adopted to obtain the response spectrum for each floor of the internal structure. This report summarizes the results both in tabular and graphical form for various damping values.

  16. Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B.; Hull, A.P.

    1998-10-01

    Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

  17. Brookhaven highlights

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. (eds.)

    1992-01-01

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  18. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  20. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    Science.gov (United States)

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  1. Brookhaven experience with handling and shipping of, and cask design for, reactor spent-fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Francis A.

    1965-12-01

    The general problems in the area are presented. Solutions to the specific problems at Brookhaven are discussed in relation to the general problem. Presentation covers (a) fuel removal tools and equipment, and canal storage facilities; (b) methods of shipment; (c) brief review of the AEC and ICC regulatory requirements; and (d) optimized design of the shipping container. Specific solutions used by BNL over a six -year period are described. The need for complete and early analysis of the specific problem is indicated.

  2. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

    1991-12-31

    This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  3. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H.

    1991-01-01

    This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  4. Brookhaven highlights, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  5. Production test PTA-002, increased graphite temperature limit -- B, C and D Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A.

    1965-12-17

    The fundamental objective of the graphite temperature limit is to prevent excessive oxidation of the graphite moderator blocks with carbon dioxide and water vapor in the reactor atmosphere. Laboratory tests have shown that 10% uniform oxidation of graphite results in a loss in strength of approximately 50%. Production Test IP-725 was conducted at F Reactor for a period of six months at graphite temperatures approximately 50 and 100 C higher than the present graphite temperature limit of 650 C. The results from the F Reactor test suggest that an increase in the graphite temperature limit from 650 C to 700 C is technically feasible from the standpoint of oxidation of the graphite moderator with CO{sub 2}. Any significant additional increase was shown to lead to excessively high oxidation rates and is therefore not considered feasible. The objective of this test, therefore, is to extend the higher temperature investigations to B, C, and D Reactors. For the duration of this test, the graphite temperature limit will be increased from 650 C and 700 C, corresponding to an increase in the graphite stringer temperature limit from 735 C to 790 C. The test is expected to last for approximately six months but may be terminated early on any or all the reactors.

  6. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  7. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  8. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  9. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  10. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  11. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  12. Diversion assumptions for high-powered research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  13. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  14. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  15. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  17. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  18. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  19. A reverse method for the determination of the radiological inventory of irradiated graphite at reactor scale

    Energy Technology Data Exchange (ETDEWEB)

    Nicaise, Gregory [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France); Poncet, Bernard [EDF-DP2D, Lyon (France)

    2016-11-15

    Irradiated graphite waste will be produced from the decommissioning of the six gas-cooled nuclear reactors operated by Electricite De France (EDF). Determining the radionuclide content of this waste is an important legal commitment for both safety reasons and in order to determine the best suited management strategy. As evidenced by numerous studies nuclear graphite is a very pure material, however, it cannot be considered from an analytical viewpoint as a usual homogeneous material. Because of graphite high purity, radionuclide measurements in irradiated graphite exhibit very high discrepancies especially when corresponding to precursors at trace level. Therefore the assessment of a radionuclide inventory only based on few number of radiochemical measurements leads in most of cases to a gross over or under-estimation that can be detrimental to graphite waste management. A reverse method using an identification calculation-measurement process is proposed in order to assess the radionuclide inventory as precisely as possible.

  20. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite

    Science.gov (United States)

    Strativnov, Eugene V.

    2015-05-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  1. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  2. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  3. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  4. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  5. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham Van Lam [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  6. Research on plasma core reactors

    Science.gov (United States)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  7. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  8. Strong interactions of hyperons. [Summaries of research activities of Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, P.; Hungerbuehler, V.; Majka, R.

    1975-01-01

    A summary of the strong interaction results obtained with the Yale--FNAL--BNL hyperon beam at the Brookhaven AGS is presented. Differential cross sections are reported for hyperon-proton elastic scattering with samples of 6200 ..sigma../sup -/p events and 67 ..xi../sup -/p events. Also a report is made on a search for hyperon resonances in inelastic scattering. Finally, the prospects for new results on hyperon interactions are reviewed.

  9. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  10. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  11. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  12. Brookhaven Highlights, January 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Kuper, J.B.H.; Rustad, M.C. (eds.)

    1983-01-01

    Research at Brookhaven National Laboratory is summarized. Major headings are high energy physics, physics and chemistry, life sciences, applied energy science, support activities and administration. (GHT)

  13. Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  14. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  15. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste

    Science.gov (United States)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Khodja, H.

    2015-06-01

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO2-cooled nuclear fission reactors (called UNGG for "Uranium Naturel-Graphite-Gaz") to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D+ ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO2) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the total amount produced

  16. Reactor Safety Research Programs Quarterly Report April- June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  18. Brookhaven highlights, fiscal year 1985, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Activities at Brookhaven National Laboratory are briefly discussed. These include work at the National Synchrotron Light Source, the High Flux Beam Reactor, and the Alternating Gradient Synchrotron. Areas of research include heavy ion reactions, neutrino oscillations, low-level waste, nuclear data, medicine, biology, chemistry, parallel computing, optics. Also provided are general and administrative news, a financial report. (LEW)

  19. Reactor Safety Research Programs Quarterly Report October - December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  20. Reactor Safety Research Programs Quarterly Report July- September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Reactor Safety Research Programs Quarterly Report April -June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  2. Experiences in the emptying of waste silos containing solid nuclear waste from graphite- moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wall, S.; Schwarz, T. [RWE NUKEM Limited, B7 Windscale, Seascale, Cumbria CA20 1PF (United Kingdom)

    2003-07-01

    Before reactor sites can be handed over for ultimate decommissioning, at some sites silos containing waste from operations need to be emptied. The form and physical condition of the waste demands sophisticated retrieval technologies taking into account the onsite situation in terms of infrastructure and silo geometry. Furthermore, in the case of graphite moderated reactors, this waste usually includes several tonnes of graphite waste requiring special HVAC and dust handling measures. RWE NUKEM Group has already performed several contracts dealing with such emptying tasks. Of particular interest for the upcoming decommissioning projects in France might be the activities at Vandellos, Spain and Trawsfynnyd, UK. Retrieval System for Vandellos NPP is discussed. Following an international competitive tender exercise, RWE NUKEM won the contract to provide a turn-key retrieval system. This involved the design, manufacture and installation of a system built around the modules of a 200 kg capacity version of the ARTISAN manipulator system. The ARTISAN 200 manipulator, with remote slave arm detach facility, was deployed on a telescopic mast inserted into the silos through the roof penetrations. The manipulator deployed a range of tools to gather the waste and load it into a transfer basket, deployed through an adjacent penetration. After commissioning, the system cleared the vaults in less than the scheduled period with no failures. At the Trawsfynnyd Magnox plants two types of intermediate level waste (ILW) accumulated on site; namely Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). MAC is predominantly components that have been activated by the reactor core and then discharged. FED mainly consists of fuel cladding produced when fuel elements were prepared for dispatch to the reprocessing facility. RWE NUKEM Ltd. was awarded a contract to design, supply, commission and operate equipment to retrieve, pack and immobilize the two waste streams. Major

  3. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-10-01

    The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  4. Failure prediction of full-size reactor components from tensile specimen data on NBG-18 nuclear graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Michael P., E-mail: makke@mweb.co.za [Pebble Bed Modular Reactor (Pty) Ltd., P.O. Box 9396, Centurion 0046 (South Africa); Blaine, Deborah C.; Groenwold, Albert A.; Becker, Thorsten H. [Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602 (South Africa)

    2015-04-01

    Highlights: • Predicts failure on a full scale reactor component and compare it to experiments. • Shows the effect of volume on NBG-18 nuclear graphite failure prediction. • Provide independent verification of a previously published methodology. • Describe the influence of multiple locations of high stress on failure prediction. - Abstract: This paper concerns itself with predicting the failure of a full-size NBG-18 nuclear graphite reactor component based only on test data obtained from standard tensile test specimens. A full-size specimen structural test was developed to simulate the same failure conditions expected during a normal operation of the reactor in order to validate the failure prediction. The full-size specimen designed for this test is almost a hundred times larger than the tensile test specimen, has a completely different geometry and experiences a different loading condition to the standard tensile test specimen. Failure of the full-size component is predicted realistically, but conservatively.

  5. Dr. Praveen Chaudhari named director of Brookhaven National Laboratory

    CERN Multimedia

    2003-01-01

    "Brookhaven Science Associates announced today the selection of Dr. Praveen Chaudhari as Director of the U.S. Department of Energy's Brookhaven National Laboratory. Dr. Chaudhari, who will begin his new duties on April 1, joins Brookhaven Lab after 36 years of distinguished service at IBM as a scientist and senior manager of research" (1 page).

  6. Utilisation of British University Research Reactors.

    Science.gov (United States)

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  7. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  8. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  9. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  10. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  11. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  12. Finite element based stress analysis of graphite component in high temperature gas cooled reactor core using linear and nonlinear irradiation creep models

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurindranath

    2015-10-15

    Highlights: • High temperature gas cooled reactor. • Finite element based stress analysis. • H-451 graphite. • Irradiation creep model. • Graphite reflector stress analysis. - Abstract: Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  13. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  14. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  15. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    Science.gov (United States)

    Rigali, Mark J.; Nagy, Bartholomew

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radionuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radionuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radionuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modern humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. Oklo solid bitumen samples were subjected to various pressures of O 2, a paramagnetic gas. O 2-organic free radical interactions, as revealed by ESR spectral line broadening, indicate that the organic free radicals of the Oklo solid bitumens

  16. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  17. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  18. Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. (Brookhaven National Lab., Upton, NY (USA). Medical Dept.); Benary, V. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Tel Aviv Univ. (Israel)); Kalef-Ezra, J. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Ioannina Univ. (Greece)); Wielopolski, L. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. State Univ. of New

    1990-01-01

    The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

  19. TRIGA research reactors; Reacteurs de recherche Triga

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, D.M.; Razvi, J.; Whittemore, W.L. [Triga General Atomics, San Diego, CA (United States); Duban, B.; Harbonnier, G.; Du Limbert, P.; Durand, J.P. [AREVA/FRAMATOME ANP/CERCA, 92 - Paris-La-Defence (France)

    2004-02-01

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  20. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor

    DEFF Research Database (Denmark)

    Hou, Xiaolin

    2005-01-01

    A rapid oxidizing combustion method using a commercial Sample Oxidizer has been investigated to determine separately the C-14 and H-3 activities in graphite and concrete. By this method the sample preparation time can be reduced to 2-3min. The detection limits for H-3 and C-14 are 0.96 and 0.58Bq...... the Danish Reactors DR-2 and DR-3, in addition to two concrete cores drilled in the Danish reactor DR-2; these were analysed for H-3 and C-14 using the method that has been developed. (c) 2005 Elsevier Ltd. All rights reserved....

  1. New research possibilities at the Budapest research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Vidovszky, I. [KFKI Atomic Energy Research Institute, H-1525 Budapest (Hungary)

    2001-07-01

    The Budapest Research Reactor is the first nuclear facility of Hungary. It was commissioned in 1959, reconstructed and upgraded in 1967 and 1986-92. The main purpose of the reactor is to serve neutron research. The reactor was extended by a liquid hydrogen type cold neutron source in 2000. The research possibilities are much improved by the CNS both in neutron scattering and neutron activation. (author)

  2. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  3. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  4. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Douglas [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-10-29

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room

  5. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  6. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  7. Brookhaven National Laboratory

    Science.gov (United States)

    ... Medical Data Analysis for U.S. Veterans Making Glass Invisible: A Nanoscience-Based Disappearing Act Our Mission We ... our diverse portfolio of licensable technologies. | More Outlook Web Access Brookhaven National Lab PO Box 5000 Upton, ...

  8. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  9. Brookhaven highlights, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L.; Kuper, J.B.H. (eds.)

    1990-01-01

    This report discusses research being conducted at Brookhaven National Laboratory. Highlights from all the department are illustrated. The main topics are on accelerator development and applications. (LSP)

  10. Energy-related perturbations of the northeast coastal zone: five years (1974-1979) of oceanographic research at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.

    1980-03-01

    Since inception of oceanographic research at Brookhaven National Laboratory in 1974, over 75 cruises and 150 papers and reports have been completed. In comparison of shelf ecosystems at high, mid, and low latitudes, an understanding of the natural variability of US coastal waters has been derived. Annual carbon and nitrogen budgets suggest that the energy flow is diverted to a pelagic food web in summer-fall and a demersal food web in winter-spring within the Mid-Atlantic Bight. The impact of energy-related perturbations can now be assessed within the context of natural oscillation of the coastal food web.

  11. Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gyanender, E-mail: sing0550@umn.edu [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Fok, Alex [Minnesota Dental Research in Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, 515, Delaware St. SE, Minneapolis, MN 55455 (United States); Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Mantell, Susan [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States)

    2017-06-15

    Highlights: • Failure probability of VHTR reflector bricks predicted though crack modeling. • Criterion chosen for defining failure strongly affects the predictions. • Breaching of the CRC could be significantly delayed through crack arrest. • Capability to predict crack initiation and propagation demonstrated. - Abstract: Graphite is used in nuclear reactor cores as a neutron moderator, reflector and structural material. The dimensions and physical properties of graphite change when it is exposed to neutron irradiation. The non-uniform changes in the dimensions and physical properties lead to the build-up of stresses over the course of time in the core components. When the stresses reach the critical limit, i.e. the strength of the material, cracking occurs and ultimately the components fail. In this paper, an explicit crack modeling approach to predict the probability of failure of a VHTR prismatic reactor core reflector brick is presented. Firstly, a constitutive model for graphite is constructed and used to predict the stress distribution in the reflector brick under in-reactor conditions of high temperature and irradiation. Fracture simulations are performed as part of a Monte Carlo analysis to predict the probability of failure. Failure probability is determined based on two different criteria for defining failure time: A) crack initiation and B) crack extension to near control rod channel. A significant difference is found between the failure probabilities based on the two criteria. It is predicted that the reflector bricks will start cracking during the time range of 5–9 years, while breaching of the control rod channels will occur during the period of 11–16 years. The results show that, due to crack arrest, there is a significantly delay between crack initiation and breaching of the control rod channel.

  12. Research on SiC-coatings for graphitic surfaces in HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, B. [Institute for Safety Research and Reactor Technology, Forschungszentrum Juelich, Juelich (Germany); Alkan, Z. [Institute of Reactor Safety and Technology, RWTH Aachen, Aachen (Germany); Pott, G. [Hot Cells, Research Centre Juelich, Juelich (Germany)

    1998-09-01

    In HTR-plants graphite materials are used for fuel elements and reflector structures. During the operation of HTR-plants (AVR,THTR) these graphitic components were extensively tested. Although the operation experiences of these graphitic components were very well, the research for improvement should continue. In certain cases of hypothetical accidents, e.g. massive air ingress it is possible that the graphite of the fuel elements will be corroded in such a manner that eventually a release of fission products is possible. Therefore it is suggested for future nuclear plants to protect the outer surface of the graphite fuel-elements by SiC-coating The main intention of SiC-coatings is to realize a corrosion resistance for graphitic structures, especially for graphitic fuel-elements (spheres), in the range of operating-and accident-temperatures. Different graphite qualities, e.g. A3-3, IG-110 and others have been used for the coating with silicon carbide. The coatings were produced by chemical vapour deposition or paste silicon methods. Several tests were carried out to test corrosion, mechanical and irradiation properties.The results show that SiC-coatings on certain graphites are corrosion-resistant and mechanically safe. The irradiation experiments have been performed, but the post-irradiation tests are not yet finished. 10 refs.

  13. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  14. The current status of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tri Wulan Tjiptono; Syarip

    1998-10-01

    The Kartini reactor reached the first criticality on January 25, 1979. In the first three years, the reactor power is limited up to 50 kW thermal power and on July 1, 1982 has been increased to 100 kW. It has been used as experiments facility by researcher of Atomic Energy National Agency and students of the Universities. Three beam tubes used as experiments facilities, the first, is used as a neutron source for H{sub 2}O-Natural Uranium Subcritical Assembly, the second, is developed for neutron radiography facility and the third, is used for gamma radiography facility. The other facilities are rotary rack and two pneumatic transfer systems, one for delayed neutron counting system and the other for the new Neutron Activation Analysis (NAA) facility. The rotary rack used for isotope production for NAA purpose (for long time irradiation), the delayed neutron counting system used for analysis the Uranium contents of the ores and the new NAA is provided for short live elements analysis. In the last three years the Reactor Division has a joint use program with the Nuclear Component and Engineering Center in research reactor instrumentation and control development. (author)

  15. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  16. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  17. Baseline Graphite Characterization: First Billet

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  18. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R. (ed.); Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

  19. Development of a Low Temperature Irradiation Capsule for Research Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee Nam; Cho, Man Soon; Lee, Cheol Yong; Yang, Sung Woo; Shin, Yoon Taek; Park, Seng Jae; Kang, Suk Hoon; Kang, Young Hwan; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    A new capsule design was prepared and tested at HANARO for a neutron irradiation of core materials of research reactors as a part of the research reactor development project. Irradiation testing of the materials including graphite, beryllium, and zircaloy-4 that are supposed to be used as core materials in research reactors was required for irradiation at up to 8 reactor operation cycles at low temperature (<100 .deg. C). Therefore, three instrumented capsules were designed and fabricated for an evaluation of the neutron irradiation properties of the core materials (Graphite, Be, Zircaloy-4) of research reactors. The capsules were first designed and fabricated to irradiate materials at low temperature (<100 .deg. C) for a long cycle of 8 irradiation cycles at HANARO. Therefore, the safety of the new designed capsule should be fully checked before irradiation testing. Out-pile performance and endurance testing before HANARO irradiation testing was performed using a capsule under a 110% condition of a reactor coolant flow amount. The structural integrity of the capsule was analyzed in terms of a vibration-induced fatigue cracking of a rod tip of the capsule that is suspected to be the most vulnerable part of a capsule. Another two capsules were irradiated at HANARO for 4 cycles, and one capsule was transferred to a hot cell to examine the integrity of the rod tip of the capsule. After confirming the soundness of the 4 cycle-irradiated capsule, the remaining capsule was irradiated at up to 8 cycles at HANARO. Based on the structural integrity analysis of the capsule, an improved capsule design will be suggested for a longer irradiation test at HANARO.

  20. 78 FR 58575 - Review of Experiments for Research Reactors

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer provides...

  1. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-06-10

    The aim of the research presented here was to identify the chemical form of 14C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14C, with a half-life of 5730 years.

  2. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  3. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  4. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  5. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  6. Fabrication of TREAT Fuel with Increased Graphite Loading

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leckie, Rafael M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-05

    As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standards that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.

  7. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  8. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  9. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  10. Dynamic feedback characteristics of Ghana Research Reactor-1 ...

    African Journals Online (AJOL)

    Dynamic experiments were performed to investigate the effects of insertions of step and ramp reactivities on Ghana Research Reactor-1. These safety performance tests of the reactor show that the reactor is inherently safe. The peak powers were found to be low and could not lead to damage of fuel meat and cladding.

  11. Graphite for fusion energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  12. Reactor Safety Research Programs Quarterly Report October - December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs Quarterly Report July - September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  15. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  16. Measurement of the stored energy in the NRX reactor reflector graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, H.B.; Larson, E.A.G.

    1959-07-15

    With the co-operation of workers at Windscale and Harwell, whose assistance is hereby gratefully acknowledged, the stored energy content of the inner reflector graphite of NRX has been measured. Measurements made at three different elevations and at different positions through the reflector show that there is, at present, no danger to NRX from an accidental release of the energy. The energy stored in the reflector in 1958 is less by a factor five to ten than the stored energy as measured in 1953. It appears that there has been a continual release of stored energy since 1954 when, after the rehabilitation, the maximum power was raised to 40 MW. Additional thermocouples have been installed in the inner reflector, and future stored energy measurements are being scheduled. (author)

  17. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  18. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  19. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  20. Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization.

    Science.gov (United States)

    Snoj, L; Trkov, A; Jaćimović, R; Rogan, P; Zerovnik, G; Ravnik, M

    2011-01-01

    In order to verify and validate the computational methods for neutron flux calculation in TRIGA research reactor calculations, a series of experiments has been performed. The neutron activation method was used to verify the calculated neutron flux distribution in the TRIGA reactor. Aluminium (99.9 wt%)-Gold (0.1 wt%) foils (disks of 5mm diameter and 0.2mm thick) were irradiated in 33 locations; 6 in the core and 27 in the carrousel facility in the reflector. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and experimental normalized reaction rates in the core are in very good agreement for both isotopes indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux and reaction rate distribution in the reactor core. In the reflector however, the accuracy of the epithermal and thermal neutron flux distribution and attenuation is lower, mainly due to lack of information about the material properties of the graphite reflector surrounding the core, but the differences between measurements and calculations are within 10%. Since our computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of research reactor utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  2. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Evan Harpeneau

    2011-06-24

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  3. Immobilization of {sup 14}C from reactor graphite waste by use of combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bosc Rouessac, Florence; Marin-Ayral, Rose-Marie; Haidoux, Abel; Massoni, Nicolas [Institut Charles Gerhardt UMR 5253 UM II /CNRS / ENSCM- cc1504, Place Eugene Bataillon 34095 Montpellier Cedex 5 (France); Bart, Florence [CEA Marcoule, Nuclear Energy Division, DTCD/ SECM/LM2C, BP 17171 30200 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: Among radio elements potentially present in future nuclear systems, exits long-lived radionuclide {sup 14}C. Thanks to their very interesting physico-chemical properties and more precisely their corrosion resistance, carbides (Ti,Si,C) are potential candidates for the preparation of ceramic matrices for immobilization of {sup 14}C. Several methods of synthesizing silicon carbide exist but this study deals with the utilization of combustion synthesis or SHS (Self propagating High temperature synthesis). Indeed, its rapidity and its low cost make this technique an excellent tool in conditioning {sup 14}C. The synthesis of SiC from elements by the SHS process can not be realized under normal conditions due to a low adiabatic combustion temperature of SiC system. It is calculated as 1600-1700 K which considerably lacks the empirically established minimum of 1800 K for SHS reaction. Hence, an additional energy source needs to be introduced into the system. In this work, our aim is to find experimental conditions to allow and to control ignition and propagation of the combustion wave along the sample. The reaction between silicon, titanium and graphite is optimized using two different ignition systems, with several nature and size of the carbon powders. Materials are characterized by X-ray diffraction and scanning electron microscopy. (authors)

  4. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  5. Brookhaven lecture series No. 227: The Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Kouts, H.

    1986-09-24

    This lecture discusses the events leading to, during, and following the Chernobyl Reactor number 4 accident. A description of the light water cooled, graphite moderated reactor, the reactor site conditions leading to meltdown is presented. The emission of radioactive effluents and the biological radiation effects is also discussed. (FI)

  6. Proceedings of the sixth Asian symposium on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: (1) status and future plan of research and testing reactors, (2) operating experiences, (3) design and modification of the facility, and reactor fuels, (4) irradiation studies, (5) irradiation facilities, (6) reactor characteristics and instrumentation, and (7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  7. Antineutrino and gamma emission from the OSIRIS research reactor

    Science.gov (United States)

    Giot, Lydie; Fallot, Muriel

    2017-09-01

    For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  8. FIRE-RESISTANCE PROPERTIES RESEARCH OF “WATER GLASS - GRAPHITE MICROPARTICLES” COMPOSITE MATERIAL

    OpenAIRE

    E. A. Pitukhin; A. S. Ustinov

    2016-01-01

    Subject of Research. Research results of the fire-resistance for “water glass - graphite microparticles” composite material (CM) are given. The method for fire-resistance test of the micro composition is suggested in order to determine the limit state of the experimental samples under hightemperature action. Method. Test-benchequipment being used for research includes metering devices of temperature and time, as well as laboratory electric furnace PL20 with a maximum temperature in the chambe...

  9. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  10. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  11. Brazing graphite to graphite

    Science.gov (United States)

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  12. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France; Quelques aspects economiques de la filiere uranium naturel - Graphite - gaz. Etat actuel et tendance des couts en France

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J.; Tanguy, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Leo, B. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  13. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-11-16

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... above, shall be submitted to the NRC to the attention of the Director, Office of Nuclear Reactor... properly marked and handled in accordance with 10 CFR 73.21. The Director, Office of Nuclear Reactor...

  14. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-12-20

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... Director, Office of Nuclear Reactor Regulation under 10 CFR 50.4. In addition, licensee submittals that... Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the above...

  15. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the National Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)

  16. A Potential NASA Research Reactor to Support NTR Development

    Science.gov (United States)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  17. IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    Science.gov (United States)

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18 - 22, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BLUM, T.; BOER, D.; CREUTZ, M.; OHTA, S.; ORGINOS, K.

    2002-03-18

    The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.

  19. Reactor safety research programs. Quarterly report, January-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  20. Reactor safety research programs. Quarterly report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  1. JPL in-house fluidized-bed reactor research

    Science.gov (United States)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  2. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  3. BROOKHAVEN NATIONAL LABORATORY SOURCE WATER ASSESSMENT FOR DRINKING WATER SUPPLY WELLS

    Energy Technology Data Exchange (ETDEWEB)

    BENNETT,D.B.; PAQUETTE,D.E.; KLAUS,K.; DORSCH,W.R.

    2000-12-18

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered

  4. A Design of Alarm System in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants.

  5. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  6. Development of Digital MMIS for Research Reactors: Graded Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khalil ur, Rahman; Shin, Jin Soo; Heo, Gyun Young [Kyunghee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu University, Geumsan (Korea, Republic of); Kim, Young Ki; Park, Jae Kwan; Seo, Sang Mun; Kim, Yong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Though research reactors are small in size yet they are important in terms of industrial applications and R and D, educational purposes. Keeping the eye on its importance, Korean government has intention to upgrade and extend this industry. Presently, Korea is operating only HANARO at Korea Atomic Energy Research Institute (KAERI) and AGN-201K at Kyung Hee University (KHU), which are not sufficient to meet the current requirements of research and education. In addition, we need self-sufficiency in design and selfreliance in design and operation, as we are installing research reactors in domestic as well as foreign territories for instance Jordan. Based on these demands, KAERI and universities initiated a 5 year research project since December 2011 collaboratly, for the deep study of reactor core, thermal hydraulics, materials and instrumentation and control (I and C). This particular study is being carried out to develop highly reliable advanced digital I and C systems using a grading approach. It is worth mentioning that next generation research reactor should be equipped with advance state of the art digital I and C for safe and reliable operation and impermeable cyber security system that is needed to be devised. Moreover, human error is one of important area which should be linked with I and C in terms of Man Machine Interface System (MMIS) and development of I and C should cover human factor engineering. Presently, the digital I and C and MMIS are well developed for commercial power stations whereas such level of development does not exist for research reactors in Korea. Since the functional and safety requirements of research reactors are not so strict as commercial power plants, the design of digital I and C systems for research reactors seems to be graded based on the stringency of regulatory requirements. This paper was motivated for the introduction of those missions, so it is going to describe the general overview of digital I and C systems, the graded

  7. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  8. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  9. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  10. Comparison of The Thermal Conductivity of selected Nuclear Graphite Grades for High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju; Chi, Se-Hwan; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    It is well known that the thermal conductivity of nuclear graphite is influenced by factors such as phonon boundary scattering processes, Umklapp processes, electron-phonon scattering etc, and a lot of studies have been performed to investigate the neutron-irradiation effects on the thermal conductivity of graphite. However, no studies have been reported yet for the overall differences in the thermal conductivity of the nuclear graphite grades for HTGR differing in coke source (petroleum, coal), forming method and particle size. In the present study, the thermal conductivities of seven candidate nuclear graphite grades for HTGR were determined and compared based on the microstructure of the grades. The thermal conductivity is an important material input data during the design, construction and operation of HTGR. The thermal conductivities of seven nuclear graphite grades for HTGR were determined by laser flash method from room temperature to 1,100 .deg. C and compared based on the microstructure of the grade. Conclusions obtained from the study are as follow. (1) The thermal conductivity of seven nuclear graphite grades appeared to be strongly influenced by the grain size at low temperature below about 500 .deg. C and by the phonon-phonon scattering at above 800 .deg. C. (2) All the grades show a decrease in TC of 55-60 % from their room temperature TCs with increasing temperature to 1,100 .deg. C.

  11. Operation of the FRG-research reactors at Geesthacht

    Energy Technology Data Exchange (ETDEWEB)

    Reymann, A.; Krull, W. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany)

    1997-07-01

    Two research reactors have been operated very successfully by the GKSS research centre over decades in a connected pool system. FRG-1: 5 MW, criticality October 1958, FRG-2: 15 MW, criticality March 1963 and decommissioned February 1995. The FRG-2 was scheduled to stop operation in 1991 for lack of scientific and technical interest for future use. The reactor has been used as Germany's largest material testing reactor for power reactor fuel and power reactor materials development and safety tests. The FRG-2 has also played an important role in the conversion activities at the GKSS research centre. The FRG-1 is being used with high availability for beam tube experiments for fundamental and applied research in biology, membrane development, materials research, neutron radiography, neutron activation analyses etc. To enable the sufficient and efficient use of long wave length neutrons a cold neutron source has been installed in one of the beam tubes. The GKSS research centre, the advisory board, the scientific community and other clients are demanding the ongoing operation of the FRG-1 for at least till the year 2010. GKSS has taken many actions to ensure the save operation with high utilization and availability for the next 15 years. (author)

  12. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  13. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  14. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T. Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  15. Brookhaven highlights. [Fiscal year 1992, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.S.; Cohen, A.; Greenberg, D.; Seubert, L. [eds.

    1992-12-31

    This publication provides a broad overview of the research programs and efforts being conducted, built, designed, and planned at Brookhaven National Laboratory. This work covers a broad range of scientific disciplines. Major facilities include the Alternating Gradient Synchrotron (AGS), with its newly completed booster, the National Synchrotron Light Source (NSLS), the High Flux Beam Reactor (HFBR), and the RHIC, which is under construction. Departments within the laboratory include the AGS department, accelerator development, physics, chemistry, biology, NSLS, medical, nuclear energy, and interdepartmental research efforts. Research ranges from the pure sciences, in nuclear physics and high energy physics as one example, to environmental work in applied science to study climatic effects, from efforts in biology which are a component of the human genome project to the study, production, and characterization of new materials. The paper provides an overview of the laboratory operations during 1992, including staffing, research, honors, funding, and general laboratory plans for the future.

  16. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  17. Radiation protection personnel training in Research Reactors; Capacitacion en proteccion radiologica para reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de [Comision Nacional de Energia Atomica, Rio Negro (Argentina). Centro Atomico Bariloche. Instituto Balseiro

    1996-07-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  18. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  19. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  20. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  1. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  2. Study on the Export Strategies for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. K.; Lee, Y. J.; Ham, T. K.; Hong, S. T.; Kim, J. H. [Ajou University, Suwon (Korea, Republic of)

    2008-12-15

    Key strategic considerations taken into account should be based on understanding in the forecasts of demand and supply balance as well as the missions of research reactor for customers. For timely arrival at the competition, it may be advantageous to categorize the potential customers into 3 groups, the developed, the developing and the underdeveloped countries in respect of nuclear technology, and to be ready for the group-wise reference designs of the key reactor systems. Customizing the design to specific owner's requirements can advance from one of these reference designs when competition starts. To mobilize this approach effectively, it is useful to establish an integral project and technology management system earlier. This system will function as an important success factor for international research reactor business, because it makes easy to accommodate customer requirements and to achieve the design-to-cost.

  3. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  4. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY..., Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Rockville, MD 20852. Telephone..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor...

  5. Best Safety Practices for the Operation of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H.; Villa, M. [Atominstitute of the Austrian Universities, 1020 Vienna (Austria)

    2002-07-01

    A survey on administrative, organisational and technical aspects for the safe and efficient operation of a 250 kW TRIGA Mark II research reactor is given. The replacement of the I and C system is discussed, maintenance procedures are presented and the fuel management is described. (author)

  6. Neutron spectrometric methods for core inventory verification in research reactors

    CERN Document Server

    Ellinger, A; Hansen, W; Knorr, J; Schneider, R

    2002-01-01

    In consequence of the Non-Proliferation Treaty safeguards, inspections are periodically made in nuclear facilities by the IAEA and the EURATOM Safeguards Directorate. The inspection methods are permanently improved. Therefore, the Core Inventory Verification method is being developed as an indirect method for the verification of the core inventory and to check the declared operation of research reactors.

  7. Epiboron Neutron Activation Analysis with Nigeria Research Reactor

    African Journals Online (AJOL)

    Epiboron neutron activation analysis is optimized using Nigeria Research Reactor-1. Data are given for 6 elements using boron as shielding. Boron shield are of particular practical value for rapid instrumental analysis. Advantage factors for the following elements: I, Br, Cl, K, Mn and Na under boron shield are given.

  8. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  9. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  10. Fault detection system for Argentine Research Reactor instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Polenta, H.P. (Argentine Navy, Comodoro Py 2055 Office 11-93, 1104 - Buenos Aires (Argentina)); Bernard, J.A. (Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, Massachusetts 02139 (United States)); Ray, A. (205 Mechanical Engineering Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States))

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  11. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  12. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  13. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  14. Neutron beams implemented at nuclear research reactors for BNCT

    Science.gov (United States)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  15. Calculation programme for the accidental transients in reactors of the gas-graphite type; Programme de calcul des transitoires accidentels des piles de la filiere graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Henri, Ch.; Bayard, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The study of the behaviour of the fuel during certain incidents or accidents in reactors is closely connected to the study of the changes in temperature. This document describes in the first part the main physical phenomena governing the kinetics of the accident. The aim is to know the temperatures at all points and at all times during the irregular regime which can follow the initial stable regime. In the second part an explanation is given of the numerical methods used. (authors) [French] L'etude du comportement du combustible lors de certains incidents ou accidents de pile est etroitement liee a l'etude de l'evolution des temperatures. Dans sa premiere partie, ce document decrit les phenomenes physiques principaux intervenant dans la cinetique de l'accident. Le but recherche est la connaissance des temperatures en tout point et a tout instant d'un regime varie, faisant suite a un regime initial stable. Dans la deuxieme partie les methodes numeriques employees sont explicitees. (auteurs)

  16. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina [CIEMAT, Av. Complutense, 22, 28040-MADRID (Spain); Fachinger, Johannes; Grosse, Karl-Heinz [Furnaces Nuclear Application Grenoble SAS (FNAG), 4, avenue Charles de Gaulle, 38800 Le Pont de Claix (France); Leganes Nieto, Jose Luis; Quiros Gracian, Maria [ENRESA, C/ Emilio Vargas,7 - 28043 - MADRID (Spain); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-07-01

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interim storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the

  17. Brookhaven highlights 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Established in 1947 on Long Island, New York, on the site of the former army Camp Upton, BNL is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated Universities, Inc., under contract to the US Department of Energy. BNL`s annual budget is about $400 million, and the Laboratory`s facilities are valued at replacements cost in excess of over $2.8 billion. Employees number around 3,300,and over 4,000 guests, collaborators and students come each year to use the Laboratory`s facilities and work with the staff. Scientific and technical achievements at BNL have made their way into daily life in areas as varied as health care, construction materials and video games. The backbone of these developments is fundamental research, which is and always will be an investment in the future.

  18. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  19. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu Univiersity, Geumsan (Korea, Republic of)

    2016-10-15

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  20. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-09-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor...

  1. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  2. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  3. Reactor-produced radionuclides at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J. [University of Missouri Research Reactor, Colombia (United States). Departments of Radiology, Chemistry and Nuclear Engineering

    1997-10-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta `crossfire` and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet{sup TM}, a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere{sup TM}, an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  4. IAEA designated international centre based on research reactors (ICERR)

    Energy Technology Data Exchange (ETDEWEB)

    Di Tigliole, Andrea Borio; Bradley, Edward; Khoroshev, Mikhail; Marshall, Frances; Morris, Charles; Tozser, Sandor [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Energy

    2016-04-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals. However, the needs of the nuclear community dictate that the majority of the research reactors continues to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. In view of this fact, the IAEA drew up a report presenting available reprocessing and recycling services for RR SNF.

  5. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  6. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  7. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Science.gov (United States)

    2012-07-20

    ... COMMISSION License Renewal for the Dow Chemical TRIGA Research Reactor AGENCY: Nuclear Regulatory Commission... Research Reactor is located on the Michigan Division of the Dow Chemical Company in Midland, MI and is a... INFORMATION CONTACT: Geoffrey A. Wertz, Project Manager, Research and Test Reactor Licensing Branch, Division...

  8. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  9. Characterization of radioactive aerosols in Tehran research reactor containment

    Directory of Open Access Journals (Sweden)

    Moradi Gholamreza

    2015-01-01

    Full Text Available The objectives of this research were to determine the levels of radioactivity in the Tehran research reactor containment and to investigate the mass-size distribution, composition, and concentration of radionuclides during operation of the reactor. A cascade impactor sampler was used to determine the size-activity distributions of radioactive aerosols in each of the sampling stations. Levels of a and b activities were determined based on a counting method using a liquid scintillation counter and smear tests. The total average mass fractions of fine particles (particle diameter dp < 1 mm in all of the sampling stations were approximately 26.75 %, with the mean and standard deviation of 52.15 ± 19.75 mg/m3. The total average mass fractions of coarse particles were approximately 73.2%, with the mean and standard deviation of 71.34 ± 24.57 mg/m3. In addition to natural radionuclides, artificial radionuclides, such as 24Na, 91Sr, 131I, 133I, 103Ru, 82Br, and 140La, may be released into the reactor containment structure. Maximum activity was associated with accumulation-mode particles with diameters less than 400 nm. The results obtained from liquid scintillation counting suggested that the mean specific activity of alpha particles in fine and coarse-modes were 89.7 % and 10.26 %, respectively. The mean specific activity of beta particles in fine and coarse-modes were 81.15 % and 18.51 %, respectively. A large fraction of the radionuclides' mass concentration in the Tehran research reactor containment was associated with coarse-mode particles, in addition, a large fraction of the activity in the aerosol particles was associated with accumulation-mode particles.

  10. The TRIGA Reactor Facility at the Armed Forces Radiobiology Research Institute: A Simplified Technical Description.

    Science.gov (United States)

    1986-05-01

    AD-AiS68 238 THE TRIGA REACTOR FACILITY AT THE ARMED FORCESI! RADIOBIOLOGY RESEARCH INST..(U) ARMED FORCES RADIOBIOLOGY RESEARCH INST BETHESDA NO...medium-power exposure. The reactor is also used to train military personnel in reactor operations., The AFRRI TRIGA Mark-F reactor facility is within the...AFRRI complex on the grounds ’of the Naval Medical Command National Capital Region, in Bethesda, Maryland.> TRIGA is an acronym for Training, Research

  11. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration.

  12. Developing strategic plans for effective utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, Danas [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Sciences and Applications

    2015-12-15

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  13. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  14. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  15. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  16. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  17. Contribution of CAD and PLM Research Reactors Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnetain, Xavier [AREVA TA, Paris (France)

    2013-07-01

    As all the reactors, the main stakes in the engineering of design and construction of the research reactors consist of the management and sharing of the technical data, the functional, physical and contractual interfaces data between the various contributors on the whole designs and construction cycle project. For 40 years, AREVA TA designs and builds reactors. Computer Aided Design (CAD) tools were introduced for 30 years into the engineering processes of AREVA TA, completed for 15 years by Product Lifecycle Management (PLM) tools. For 15 years AREVA TA pursues the integration since the feasibility of its newest Information Technologies (IT). In the first part, the paper presents IN the second part, the paper presents how the schematics and CAD tools support the engineering processes during the different phases of the project. CAD was used during the studies and now supports the management of the layout and design studies, including interfaces between suppliers, up to the constitution of the as built CAD mock-up. In the third part, the paper presents the relations between the various tools and the PLM solution implemented by AREVA TA to ensure the consistency between all tools and data for the benefit of the project.

  18. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Kim, H.; Lee, C. S.; Choi, C. O.; Jun, B. J. [KAERI, Taejon (Korea, Republic of); Vien, Luong Ba; Dien, Nguyen Nhi [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2004-05-01

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon.

  19. Study on the License Requirements for the SRO/RO of the Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Subeom; Shin, Taemyung [Korea Nat. University of Transportation, Seoul (Korea, Republic of); Chae, H. T.; Ahn, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, S. J.; Gam, S. C. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of the study is to propose an appropriate regulatory position for the Kijang reactor operator license requirement by the review of the applicability and compatibility of HANARO SRO/RO license holders for Kijang reactor operation. As the area using radioactive isotope became gradually enlarged both inside and outside of the country, the Kijang research reactor is planned and now under construction next to the HANARO research reactor now being operated in Taejon. In this paper, therefore, an establishment of revised operator license system is discussed for the new research reactor. The design and operation characteristics of the two (HANARO and Kijang) reactors are concluded to be very similar to each other, however, there still exist slight differences in some minor portions. It is recommendable to allow an independent license for each reactor if two reactors of the same power level have recognizable differences in the design and operation characteristics.

  20. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately.

  1. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  2. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    Science.gov (United States)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  3. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  4. Review of the status of low power research reactors and considerations for its development

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied.

  5. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  6. The Founding of the Brookhaven National Laboratory - Associated Universities, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    1948-01-15

    At the end of the war it became apparent that the teamwork of government and scientific institutions, which had been so effective in wartime work, must somehow be perpetuated in order to insure the continued progress of nuclear science in peace time. The enormous expense of the tools needed to pursue the next steps in this research -- nuclear reactors and high energy accelerators -- and the shortage of scientifically trained personnel pointed towards the establishment of a cooperative laboratory. Such a laboratory, using government funds, could carry out a comprehensive research program that would benefit the many interested research groups throughout the country. As a result of the wartime programs under the Manhattan District, centers of research in nuclear science were already active at the Radiation Laboratory in Berkeley, California, at Los Alamos in New Mexico, at the Clinton Laboratories in Oak Ridge, Tennessee and at the Argonne Laboratory in Chicago. No analogous nuclear research laboratories, however, had developed in the Northeast, and since so much of the nation's scientific talent and industrial activities are concentrated in the northeastern states, it was proposed that a new laboratory be established near New York City. As a result of this plan, the Brookhaven National Laboratory is now in operation at Upton, Long Island. The work of this Laboratory is performed under a contract between the Atomic Energy Commission (AEC) and a corporation, Associated Universities, Inc. (AUI) , formed by representatives of nine of the larger private universities in the northeast: Columbia, Cornell, Harvard, Johns Hopkins, the Massachusetts Institute of Technology, the University of Pennsylvania, Princeton, the University of Rochester, and Yale. The purpose of this laboratory is the advancement of knowledge in the fundamentals of nuclear science, the extension of its application to other fields, and the training of young scientists in these new subjects. This

  7. A scoping analysis of the neotronic design for a new South African research reactor / Vermaak J.I.C.

    OpenAIRE

    Vermaak, Jan Izak Cornelius

    2011-01-01

    Together with many other research reactors around the world, the SAFARI–1 reactor has been classified as an ageing research reactor. In order to continue the provision of the current irradiation services, the operator of the reactor, NECSA, needs to consider the replacement of SAFARI–1 with a new large neutron source, and therefore ultimately a new reactor. A replacement research reactor will have to provide irradiation services that primarily include: radio–isotope producti...

  8. Current Status of Periodic Safety Review of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin; Ahn, Guk-Hoon; Lee, Choong Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A PSR for a research reactor became a legal requirement as the Nuclear Safety Act was amended and came into effect in 2014. This paper describes the current status and methodology of the first Periodic Safety Review (PSR) of HANARO that is being performed. The legal requirements, work plan, and process of implementing a PSR are described. Because this is the first PSR for a research reactor, it is our understating that the operating organization and regulatory body should communicate well with each other to complete the PSR in a timely manner. The first PSR of HANARO is under way. In order to achieve a successful result, activities of the operation organization such as scheduling, maintaining consistency in input data for review, and reviewing the PSR reports that will require intensive resources should be well planned. This means the operating organization needs to incorporate appropriate measures to ensure the transfer of knowledge and expertise arising from the PSR via a contractor to the operation organization. It is desirable for the Regulatory Body to be involved in all stage of the PSR to prevent any waste of resources and minimize the potential for a reworking of the PSR and the need for an additional assessment and review as recommended by foreign experts.

  9. Neutronics analysis of TRIGA Mark II research reactor

    Directory of Open Access Journals (Sweden)

    Haseebur Rehman

    2018-02-01

    Full Text Available This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4 and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE codes. Cores 133 and 134 were analyzed in 2-D (r, θ and 3-D (r, θ, z, using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0, Joint Evaluated Fission and Fusion File (JEFF-3.1, Japanese Evaluated Nuclear Data Library (JENDL-3.2, and Joint Evaluated File (JEF-2.2 nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

  10. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  11. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  12. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  13. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  14. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  15. REFLECTOR FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  16. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D. [Vietnam Atomic Energy Agency, Hanoi (Viet Nam)

    1999-08-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  17. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K.F. [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  18. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  19. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  20. Very high flux research reactors based on particle fuels

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  1. Progress report on neutron beam experiments at Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Canh Hai; Tran Tuan Anh [Nuclear Physics Department, Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The conduct and the utilizations of neutron beams at Dalat Nuclear Research Reactor was reported. In 1998 and 1999 the filtered thermal neutron beam at the beam tube using substances Si, Ti, C, Pb was extracted. The investigations on physical characteristics of reactor; neutron spectra and fluxes at beam tube; safety conditions have been carried out by calculations and experiments. The physical characteristics for the purposes of prompt gamma neutron activation analysis (PGNAA) and nuclear data measurement were improved. The delayed neutron analysis method is used to detect the neutron emission fragments produced by neutron irradiation of uranium and thorium. This method is to determine the concentrations of uranium and thorium simultaneously and detect 10{sup -6} g of uranium and 8x10{sup -6} g thorium in 10 g sample with a precision of 8 per cent. Beside the delayed neutron analysis facility, a gamma spectrometer system with HP-Ge 90 cm{sup 3} semiconductor detector was installed at pneumatic transfer for cyclic activation analysis (CAA). The CAA method has given analytical results quickly and sensitively for the isotopes with half-lives in order of seconds to minutes. (author)

  2. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  3. ATLAS Overview Week at Brookhaven

    CERN Multimedia

    Pilcher, J

    Over 200 ATLAS participants gathered at Brookhaven National Laboratory during the first week of June for our annual overview week. Some system communities arrived early and held meetings on Saturday and Sunday, and the detector interface group (DIG) and Technical Coordination also took advantage of the time to discuss issues of interest for all detector systems. Sunday was also marked by a workshop on the possibilities for heavy ion physics with ATLAS. Beginning on Monday, and for the rest of the week, sessions were held in common in the well equipped Berkner Hall auditorium complex. Laptop computers became the norm for presentations and a wireless network kept laptop owners well connected. Most lunches and dinners were held on the lawn outside Berkner Hall. The weather was very cooperative and it was an extremely pleasant setting. This picture shows most of the participants from a view on the roof of Berkner Hall. Technical Coordination and Integration issues started the reports on Monday and became a...

  4. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip; Widi Setiawan [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)

    1998-10-01

    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  5. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  6. Inhibition of Oxidation in Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  7. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  8. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  9. Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

    Directory of Open Access Journals (Sweden)

    Sunday Arome Agbo

    2016-06-01

    Full Text Available This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1, a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW, half power (15 kW, and full power (30 kW. Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  10. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1967 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DEVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, F. W.; Bush, S. H.; Cadwell, J. J.; de Halas, D. R.; Worlton, D. C.

    1967-06-01

    Work is reported in the areas of: fast fuels oxides and nitrides; nuclear ceramics; nuclear graphite; basic swelling studies; irradiation damage to reactor metals; ATR gas loop operation and maintenance; metallic fuels; nondestructive testing research; and fast reactor dosimetry and damage analysis.

  11. Sodium fast reactor safety and licensing research plan. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  12. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  13. SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor

    OpenAIRE

    Michiels, Ianthe

    2016-01-01

    In the past decades, various nuclear reactor neutrino experiments have measured a deficit in the flux of antineutrinos coming from the reactor at short reactor-detector distances, when compared to theoretical calculations. One of the experiments designed to investigate this reactor antineutrino anomaly is the SoLid experiment. It uses the compact BR2 research reactor from the SCK-CEN in Mol, Belgium, to perform reactor antineutrino flux measurements at very short baseline. These proceedings d...

  14. Research and proposal on SCR reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced CFD software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two SCR reactors were developed: reactor #1 was optimized and #2 was developed based on #1. Various indicators including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle and system pressure drop were analyzed. The analysis indicated Reactor #2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of reactor was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG #3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle and temperature distribution are subjected to SCR reactor shape to a great extent and Reactor #2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to Ammonia injection grid (AIG) shape and AIG #3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The development above on the reactor and the AIG are both of great application value and social efficiency.

  15. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  16. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Science.gov (United States)

    2010-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of... Operating License No. R-98 for the Aerotest Radiography and Research Reactor (ARRR), currently held by...

  17. 75 FR 39985 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order..., use and operation of the Aerotest Radiography and Research Reactor (ARRR) located in San Ramon...

  18. Implementation of a management system for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes, E-mail: araquino@ipen.b, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  19. Status of reduced enrichment programs for research reactors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Nishihara, Hedeaki [Kyoto Univ., Osaka (Japan); Shirai, Eiji; Oyamada, Rokuro; Sanokawa, Konomo [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1997-08-01

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.

  20. PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD, R.J.

    2001-04-30

    BNL is proud to acknowledge all of our 2001 sponsors, with their help and support this has correctly become an oilheat industry conference. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole and to celebrate the beginning of the National Oilheat Research Alliance. This meeting is the fourteenth oil heat industry technology conference to be held since 1984 and the first under a new name, NORA, the National Oilheat research Alliance, and the very first in the new century. The conference is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program. The Oilheat Research Program at BNL is under the newly assigned program management at the Office of Power Technology within the US DOE. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation. Seventeen technical presentations will be made

  1. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Edwards

    2003-09-28

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

  2. Impact of a 2 MWth research reactor on radioactivity in sediments.

    Science.gov (United States)

    Bose, S R; Williamson, T G; Mulder, R U; Molla, M A

    1993-08-01

    The objective of this study was to determine the environmental impact caused by liquid effluent discharge from the University of Virginia's 2 MWth Research Reactor during the course of its first quarter-century of normal operation. Sediment samples were collected from the reactor pond (situated in a restricted area next to the Reactor Facility), the stream feeding it, and its exit stream. For a comparative study, sediment samples were taken from a nearby closed reference pond having no direct link with the reactor pond. Concentrations of long-lived alpha, beta and gamma emitting radionuclides, from natural and nuclear weapons fallout sources, were detected in pond and stream sediments. Low levels of activation product radioisotopes from the research reactor were detected in the reactor pond sediment. It was observed that both natural and artificial radionuclide concentrations were higher in the UVAR pond (with the exception of 54Mn and 65Zn) as compared to exist stream and reference sediments.

  3. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  4. GRAPHITE EXTRUSIONS

    Science.gov (United States)

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  5. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  6. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  7. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  8. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  9. Nuclear plant-aging research on reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  10. Radioactive waste management in Research Reactor Institute, Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Shimoura, Kazukuni [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-02-01

    The joint utilization by the researchers of the universities and others in whole Japan of the reactor facilities in Kyoto University was begun in 1965. The facility for abandoning radioactive waste was constructed in fiscal year 1963, and comprises 500 kg/h vaporization and concentration facility, 2 systems of 5 m{sup 3}/h flocculation, precipitation and filtration facility, and 2 systems of 5 m{sup 3}/h ion exchange facility for liquid waste, 50x10{sup 3} kg pressing capacity, four-column type press for reducing volume of solid waste, and waste store for 400 standard drums. Radioactive Waste Treatment Department was organized, and the stipulations on security and radiation injury prevention were enforced in 1964. Liquid and solid wastes have been accepted since 1964. The radioactivity in discharged water in each year is shown. About 600 m{sup 3} of waste liquid has been accepted in one year since 1980. The trust of solid waste treatment to Japan Radioisotope Association has been carried out 51 times. The radioactive waste which is temporarily stored in the waste store is reported. Hereafter, the construction of the facility for storing large finished equipment and the appearance of waste treatment enterprises are desirable. (K.I.)

  11. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  12. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  13. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  14. A Study on the demands of research reactors and considerations for an export

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, Young Jun

    2008-11-15

    Among around 240 research reactors in operation over the world, around 80% have been operated for more than 20 years and 65% for more than 30 years. Hence the number of operable reactors is expected, between 2010 and 2020, to be reduced to 1/3 of the present situation if the lifetime of a research reactor is assumed to be 40 years. However, considering the recent re-highlighting of nuclear energy as a practical mass energy source and the contributions to the overall areas of science and technology, the demands for constructing a new research reactor and replacing the existing research reactors will be increased in the near future. On the other hand, vendors which participate in providing research reactors are not few, and AREVA in France and INVAP in Argentina are example of them in a positive position. Japan and Russia are regarded as potential competitors, but they do not actively appear in the market so far. Comparing those competitors with Korea, we have weak points regarding experiences on exports and the organizational systems as an integrated vendor. But we may have a competitiveness by grafting our experiences on the development of nuclear power technology and the construction and operation of the HANARO. In this report, the future potential demands for research reactors and the related considerations for exports have been surveyed and described, particularly, centering around the Netherlands, Vietnam and Thailand that are countries which may construct research reactors in the near future. Considerations for exporting a research reactor have been categorized into two groups of technical and nontechnical items. From a technical point of view, the issues on fuel and reactor type, design data and design ability, design codes, and technology property rights have been reviewed. For the non-technical items, an integrated project system, reasonable estimate of demands, social and economic conditions for potential demand countries, MOU status, nuclear non

  15. Status of reactor-shielding research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study.

  16. Brookhaven highlights, July 1976-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Some of the most significant research accomplishments during this 27-month period are presented. Although some data are given, this report is primarily descriptive in outlook; detailed information on completed work should be sought from the references cited herein or from the usual sources of physics research information. The report is organized as follows: High-energy Physics (general introduction, physics research, accelerators, ISABELLE); Nuclear and Solid State Physics, and Chemistry; Life Sciences (biology, medicine); Applied Energy Science (energy and the environment, reactor systems and safety, National Nuclear Data Center, nuclear materials safeguards); Support Activities (applied mathematics, instrumentation, reactors, safety and environmental protection); and General and Administrative. 117 figures, 16 tables, 315 references. (RWR)

  17. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  18. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  19. LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

    OpenAIRE

    TARA E. SMITH; SHILO MCCRORY; MARY LOU DUNZIK-GOUGAR

    2013-01-01

    Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction o...

  20. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  1. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  2. Nuclear energy was the way of the future; 50 anniversary of the research reactor

    NARCIS (Netherlands)

    Wassink, J.

    2013-01-01

    It was the hidden jewel of TU Delft, according to the employees of the nuclear reactor. Others protested against it and insisted that it be eliminated. Following a major mid-life crisis, the Delft research reactor is now in better shape than ever before.

  3. Generating the flux map of Nigeria Research Reactor-1 for efficient ...

    African Journals Online (AJOL)

    One of the main uses to which the Nigeria Research Reactor-1 (NIRR-1) will be put is neutron activation analysis. The activation analyst requires information about the flux level at various points within and around the reactor core to enable him identify the point of optimum flux (at a given operating power) for any irradiation ...

  4. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  5. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  6. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Science.gov (United States)

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a renewed...

  7. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  8. Digital, remote control system for a 2-MW research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  9. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  11. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  12. Progress with OPAL, the new Australian research reactor

    Indian Academy of Sciences (India)

    Abstract. Australian science is entering a new 'golden age', with the start-up of bright new neutron and photon sources in Sydney and Melbourne, in 2006 and 2007 respectively. The OPAL reactor and the Australian Synchrotron can be considered as the greatest sin- gle investment in scientific infrastructure in Australia's ...

  13. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Administrator

    Cs, will be separated and used as a radiation source for various societal applications. This approach minimizes the quantity of waste to be immobilized. Separation of noble metals such as palladium for societal applications such as catalysts, fuel cells etc is also possible. 3. FBR Programme in India. The seed for fast reactor ...

  14. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  15. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  16. Proceedings of the 1997 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The 1997 Workshop on the Utilization of Research Reactors, which is the sixth Workshop on the theme of research reactor utilization was held in Bandung, Indonesia from November 6 to 13. This Workshop was executed based on the agreement in the Eighth International conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1997. The whole Workshop consists of the preceding Sub-workshop carried out the demonstration experiment of Radioisotope Production, and the Workshop on the theme of three fields (Neutron Scattering, Radioisotope production, Safe Operation and Maintenance of Research Reactor). The total number of participants for the workshop was about 100 people from 8 countries, i.e. China, Indonesia, Korea, Malaysia, Philippine, Thailand, Vietnam and Japan. It consists of the papers for Sub-workshop, Neutron Scattering, Radioisotope Production, Safe Operation and Maintenance of research reactor, and summary reports. The 53 of the presented papers are indexed individually. (J.P.N.)

  17. Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel

    National Research Council Canada - National Science Library

    KAMINAGA, Masanori; YAMAMOTO, Kazuyoshi; SUDO, Yukio

    1998-01-01

    ... reversal.The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition...

  18. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  19. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    National Research Council Canada - National Science Library

    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein

    2016-01-01

    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall...

  20. Core calculations for the upgrading of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adimir dos; Perrotta, Jose A.; Bastos, Jose Luis F.; Yamaguchi, Mitsuo; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: asantos@net.ipen.br; perrotta@net.ipen.br; mitsuo@net.ipen.br

    1998-07-01

    The IEA-R1 Research Reactor is a multipurpose reactor. It has been used for basic and applied research in the nuclear area, training and radioisotopes production since 1957. In 1995, the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) took the decision to modernize and upgrade the power from 2 to 5 MW and increase the operational cycle. This work presents the design requirements and the calculations effectuated to reach this goal. (author)

  1. Nuclear materials testing in the loops of the NRU research reactor using material test bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C.; Walters, L. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    The NRU research reactor has been used to obtain data to understand and quantify the effects of irradiation on nuclear reactor components through their in-service lives and to develop improved designs and components. Apart from the Mark-4 and Mark-7 fast neutron rod material testing facilities in NRU, the high-pressure/high-temperature experimental loops provide an environment similar to the CANDU reactor core, where test materials are subjected to simulated power reactor conditions. Nuclear materials are tested in the loops using Material Test Bundles (MTB). This paper describes how the MTB is designed to operate in the NRU loops. It also describes the physics calculation of the 89-energy-group neutron spectrum in the MTB and its comparison with the spectrum in CANDU power reactors. The predictions of spectral effects on nuclear material behaviour, such as material damage and helium generation are summarized. (author)

  2. 2012 Gordon Research Conference on Graphitic Carbon Materials, Chemistry and Physics of - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Herbert A. [Indiana Univ., Bloomington, IN (United States)

    2012-06-22

    The Gordon Research Conference on GRAPHITIC CARBON MATERIALS, CHEMISTRY AND PHYSICS OF was held at the Davidson College, Davidson, North Carolina, June 17 – 22, 2012. The Conference was well-attended with 95 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 95 attendees, 41 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 41 respondents, 49% were Minorities – 5% Hispanic, 44% Asian and 0% African American. Approximately 2% of the participants at the 2012 meeting were women. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. Carbon materials play an extremely important role in our society. They not only constitute the largest supply of energy we use today (i.e., coal) but also are the bases of many important technologies ranging from pencils, adsorbents, and metal strengtheners, to batteries and many others. Recent studies on graphitic carbon, including fullerenes, carbon nanotubes, and graphene, have further revealed novel optical and electrical properties, making it possible to use them for new applications in renewable energy as well as

  3. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  4. Proceedings of the first symposium on utilization of research reactors and JMTR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The first symposium on utilization of research reactors (JRR-2, JRR-3M, JRR-4) and Japan Materials Testing Reactor (JMTR) in JAERI was held from September 29th to 30th, 1997 at Sannomaru Hotel, Mito. The purpose of this symposium is to announce contribution to progress of scientific technology as well as to promote future utilization of the research reactors and JMTR. During the symposium, 16 reports were presented on nuclear fuel and material, neutron beam experiment, medical irradiation, radioisotope production and neutron activation analysis. The present status of the research reactors and JMTR were also reported. The special lecture titled `JRR-2 and Medical Irradiation` was given by Mr. Nakamura, former editorial writer of Yomiuri. Finally, panel discussion was carried on `The Role of Research Reactors and JMTR in Scientific Technology for the future` actively by the participants and experts in every field of research reactor utilization. 250 people participated in this symposium from universities, national research institutes, private corporations and JAERI. This proceedings briefly summarizes 16 reports, the content of panel discussion and so forth. (J.P.N.)

  5. Searching for the H dibaryon at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Princeton Univ., NJ (United States)

    1994-12-01

    This paper reviews the status of current experiments at Brookhaven, searching for the six-quark H dibaryon postulated by R. Jaffe in 1977. Two experiments, E813 and E888, have recently completed running and two new experiments, E836 and E885, are approved to run. The data recorded so far is under analysis and should have good sensitivity to both short-lived and long-lived Hs.

  6. The Brookhaven electron analogue, 1953--1957

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  7. Research reactor systems for the stable and efficient supply of RI

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Choel; Oh, Sooy Oul; Lee, Choong Sung; Jun, Byung Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-04-15

    The supply of medical isotopes has relied on the major four research reactors over the world and an unavailability of some of these reactors caused a problem in the stable supply of medical isotopes, especially {sup 9}9{sup M}o. There are several ways to produce {sup 9}9{sup M}o but is is believed that the use of a research reactor is the most efficient way. There are two ways to produce {sup 9}9{sup M}o in a research reactor; they are the separation of {sup 9}9{sup M}o from the fission product and the use of neutron capture reaction of {sup 9}8{sup M}o. For the former, various ways are available depending on the target morphology and the enrichment of uranium in the target. The efficiency of the neutron capture method depends on the available neutron flux, the enrichment of {sup 9}8{sup M}o in the target and the efficiency of the adsorption column. Besides these nuclear engineering aspects, other issues affect the use of the research reactor and they include the following; the on power loading of the target, the methods to reduce the cost for the production of RI in research reactors, the logistics between the producer and the consumer, and the coalition of research reactors. In addition, the producers of RI products or the distributors should become the prosumers in the production of sources. The stable and efficient supply of medical isotopes is believed to depend on all these factors and the future options on the use of a research reactor in Korea for the medical isotope supply should consider these.

  8. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  9. A study on the irradiated strength and stress evaluation of nuclear graphite material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M. [Mechanical Design Lab, Department of Mechanical Design Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Y.S., E-mail: leeys@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon (Korea, Republic of); Kim, J.H.; Lee, S.J. [Mechanical Design Lab, Department of Mechanical Design Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon (Korea, Republic of); Kang, Y.H.; Choo, K.N.; Cho, M.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-01

    In the investigative study of the Isotropic Graphite IG-110 of Toyo Tanso, the shore hardness test, compressive test, bending test and fracture toughness test were conducted. The compressive test, the bending test and the fracture toughness test were performed by MTS-810. Test velocity of the compressive and the bending test were 0.5 mm/min and the fracture toughness test were 0.1 mm/min. The results were compared with manufacturer data of Toyo Tanso. Through irradiation test using HANARO research reactor, hardness and strength of nuclear graphite IG-110 was examined. Strength and hardness of irradiated steel is higher than non-irradiated, but nuclear graphite IG-110 declined unlike steel. To search for characteristic change of nuclear graphite IG-110 under the amounts of neutron, a repeat of the experiment was conducted.

  10. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation.

  11. Production and release rate of 37Ar from the UT TRIGA Mark-II research reactor.

    Science.gov (United States)

    Johnson, Christine; Biegalski, Steven R; Artnak, Edward J; Moll, Ethan; Haas, Derek A; Lowrey, Justin D; Aalseth, Craig E; Seifert, Allen; Mace, Emily K; Woods, Vincent T; Humble, Paul

    2017-02-01

    Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of 37Ar, 41Ar, and 133Xe present. The measured ratio of 37Ar/41Ar and historical records of 41Ar releases were then utilized to estimate an annual average release rate of 37Ar from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release 37Ar in concentrations measurable by currently proposed OSI detection equipment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Event management in research reactors; Gestion de eventos en reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, C.D. [Coordinador Reactores de Investigacion y Conjuntos Criticos, Autoridad Regulatoria Nuclear (Argentina)]. e-mail: cperrin@sede.arn.gov.ar

    2006-07-01

    In the Radiological and Nuclear Safety field, the Nuclear Regulatory Authority of Argentina controls the activities of three investigation reactors and three critical groups, by means of evaluations, audits and inspections, in order to assure the execution of the requirements settled down in the Licenses of the facilities, in the regulatory standards and in the documentation of mandatory character in general. In this work one of the key strategies developed by the ARN to promote an appropriate level of radiological and nuclear safety, based on the control of the administration of the abnormal events that its could happen in the facilities is described. The established specific regulatory requirements in this respect and the activities developed in the entities operators are presented. (Author)

  13. Recent results of research on supercritical water-cooled reactors in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Koehly, C.; Schulenberg, T. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Toivonen, A.; Penttila, S. [VTT Technical Research Centre, Espoo (Finland); Chandra, L.; Lycklama a Nijeholt, J.A. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2009-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. The recent design of the HPLWR including flow paths is described in this paper. Exemplarily, design analyses are presented addressing neutronics, thermal-hydraulics, thermo-mechanics, materials investigations and heat transfer. (author)

  14. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  15. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    Directory of Open Access Journals (Sweden)

    M. Ajijul Hoq

    Full Text Available The Bangladesh Atomic Energy Commission (BAEC TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10−3 μCi/cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication. Keywords: TRIGA Research Reactor, Na-24, Activity concentration, Purification system, Water impurity, Radiological safety

  16. MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Trosman, H.G. [ed.; Lanning, D.D.; Harling, O.K.

    1994-08-01

    The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

  17. Design Guideline for Primary Heat Exchanger in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate.

  18. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  19. Quality management in BNCT at a nuclear research reactor.

    Science.gov (United States)

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Water treatment process in the JEN-1 Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Perez-Bustamante, J. A.; Batuecas, T.

    1965-07-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs.

  1. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R.M.; Madaras, J.J. (B and W Nuclear Technologies, Lynchburg, VA (USA). Space and Defense Systems); Trowbridge, F.R. Jr.; Talley, D.G.; Parma, E.J. Jr. (Sandia National Labs., Albuquerque, NM (USA))

    1991-01-01

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  2. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    OpenAIRE

    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein

    2016-01-01

    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in man...

  3. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongyun [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Ji, Zhengjia; Yuan, Jiao; Li, Ji; Liu, Min; Xu, Chunhui; Dong, Jie; Hou, Pan [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Hou, Shuen, E-mail: cugjin@gmail.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China)

    2015-01-25

    Graphical abstract: Amorphous Alumina-modified Expanded Graphite (Al{sub 2}O{sub 3}/EG) were prepared through mass appropriate Al(NO{sub 3}){sub 3} solution and EG, then calcinating at 450 °C for 2 h and used for F{sup −} adsorption. Al{sub 2}O{sub 3}/EG can remove trace amounts of F{sup −} in solution effectively and the final F{sup −} concentrate can be decreased to less than 0.28 ppm. The isotherms and thermodynamics parameters indicate that the adsorption is a multi-molecular layer adsorption between the adsorbed molecules, and the process is spontaneous endothermic. - Highlights: • We have grafted amorphous alumina nano-peas with a diameter of 10–30 nm. • The Al{sub 2}O{sub 3}/EG adsorbent showed a considerably high adsorption efficiency over a relatively wide pH range of 3.0–7.0. • Al{sub 2}O{sub 3}/EG can remove trace amounts of F{sup −} in solution effectively. • The final F{sup −} concentrate can be decreased to less than 0.28 ppm. - Abstract: Amorphous Alumina-modified Expanded Graphite (Al{sub 2}O{sub 3}/EG) composite was prepared via a facile solution method followed by thermal treatment at 450 °C for 2 h, which was used to remove trace F{sup −} in aqueous solution. Alumina nano-peas (with a diameter of 10–30 nm) were observed on the surface of EG by Field Scanning Electron Microscope (FSEM). The X-ray powder diffraction (XRD) results dominated the Alumina was amorphous. FTIR spectra analysis indicated that Al-F bends appeared after adsorption. The effect of pH and adsorbent dose were studied in a series of batch adsorption experiments. The Effect of pH results showed that the solution pH had no significant effect on F{sup −} removal between pH = 3.0–7.0. The superior adsorbent properties of Al{sub 2}O{sub 3}/EG proved highly effective in absorbing F{sup −}, where the removal rate reached 94.4% and the adsorption capacity reached 1.18 mg/g. The results showed that Al{sub 2}O{sub 3}/EG could removed trace amounts of F

  4. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not.

  5. Air leakage analysis of research reactor HANARO building in typhoon condition for the nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Goany Up; Lee, Hae Cho; Kim, Bong Seok; Kim, Jong Soo; Choi, Pyung Kyu [Dept. of Emergency Preparedness, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. It was found that the leak rate is 0.1%·day{sup -1} of air, 0.004%·day{sup -1} of noble gas and 3.7×10{sup -5}%·day{sup -1} of aerosol during typhoon passing. The air leak rate of 0.1%·day can be converted into 1.36 m{sup 3}·hr{sup -1} , but the design leak rate in HANARO safety analysis report was considered as 600 m3·hr{sup -1} under the condition of 20 m·sec{sup -1} wind speed outside of the building by typhoon. Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

  6. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  7. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  8. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  9. Ageing management and refurbishment of Ghana Research Reactor-1 (GHARR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Amponsahabu, Edward Oscar; Gbadago, Joseph Korbla; Addo, Moses Ankamah; Sogbadji, Robert Bright Mawuko; Odoi, Henry Cecil; Gyamfi, Kwame; Ampong, Atta Gyekye; Opate, Nicholas Sackitey [Ghana Atomic Energy Commission, Accra (Ghana)

    2013-07-01

    Ageing management is an essential component of the routine practices at the Ghana Research Reactor-1 (GHARR-1) Facility. The reactor is Miniature Neutron Source Reactor with a rated power of 30 kW. GHARR-1 was installed and attained criticality on December 17, 1994 and commissioned on 8th March, 1995. It has since been in operation. The routine practices and operational procedures have been set out with clear emphasis on ageing policy at the facility. Some electronic components are changed regularly during maintenance sessions and keeping to regular purification of the reactor and pool water to mitigate against corrosion. This paper outlines the ageing management programme, mitigation practices, strategies for ageing management, periodic safety reviews, consideration of ageing during designing, design features for components and unit replacement, top beryllium shim addition, and succession planning. Information sharing with other operating organization is one of the means considered by GHARR-1 to attain excellence.

  10. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  11. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  12. R and D on fuzzy control applications to the BR1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D.; Li, X. [Nuclear Research Center, Mol (Belgium)

    1998-12-31

    Fuzzy control applications in nuclear reactor operations present a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear industry and the very strict safety regulations in force for nuclear power plants. The very same regulations prevent a researcher from quickly introducing novel fuzzy-logic methods into this field. On the other hand, the application of fuzzy logic has, despite the ominous sound of the word `fuzzy` to nuclear engineers, a number of very desirable advantages over classical methods, e.g., its robustness and the capability to include human experience into the controller. In this paper we report an on-going R and D project for controlling the power level of the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK.CEN). The project started in 1995 and aims to investigate the added value of fuzzy control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project. After experimenting fuzzy logic control under off-line tests at the BR1 reactor, we now foresee a new development for a closed-loop fuzzy control as an on-line operation of the BR1 reactor. Finally, we present the new development for a closed-loop fuzzy logic control at BR1 with an understanding of the safety requirements for this real fuzzy logic control application in nuclear rectors. (author) 18 refs.

  13. Research and development of an electrochemical biocide reactor

    Science.gov (United States)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  14. Activity report on the utilization of research reactors. Japanese Fiscal Year, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masayuki; Koyama, Yoshimi [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    This is the second issue of the activity report on the utilization of research reactors in the fields of neutron beam experiments, neutron activation analysis, radioisotope production, etc., performed during Japanese Fiscal Year 1998 (April 1, 1998 - March 31, 1999). All reports in this volume were described by users from JAERI and also users from the other organizations, i.e., universities, national research institutes and private companies, who have utilized our research reactor utilization facilities for the purpose of the above studies. (author)

  15. Activity report on the utilization of research reactors. Japanese Fiscal Year, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masayuki [ed.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This is the second issue of the activity report on the utilization of research reactors in the fields of neutron beam experiments, neutron activation analysis, radioisotope production, etc., performed during Japanese Fiscal Year 1999 (April 1, 1999 - March 31, 2000). All reports in this volume were described by users from JAERI and also users from the other organizations, i.e., universities, national research institutes and private companies, who have utilized our research reactor utilization facilities for the purpose of the above studies. (author)

  16. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of `As Low As Reasonably Achievable` would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  17. Prediction of Decommissioning Cost for Kijang Research Reactor Using Power Data of DACCORD

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun Jeong; Jin, Hyung Gon; Park, Hee Seong; Park, Seung Kook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are 3 types of cost estimate that can be used, and each have a different level of accuracy: (i) Order of magnitude estimate: One without detailed engineering data, where an estimate is prepared using scale-up or -down factors and approximate ratios. It is likely that the overall scope of the project has not been well defined. The level of accuracy expected is -30% to +50%. The cost plans to predict referring to abroad examples as decommissioning cost estimation has still not developed and been commercial method for Kijang research reactor. In Kijang research reactor case, overall scope of business isn't yet decided. Then it is supposed to estimate cost with type (i). The IAEA project, entitled 'DACCORD' (Data Analysis and Collection for Costing of Research Reactor Decommissioning) performs decommissioning costing after collecting and analyzing the information related to research reactors around the world for several years. Also decommissioning costing method development tends to increase in the each country. This paper aims to estimate preliminary decommissioning cost based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD project' data which is collected by member state. In this paper, preliminary decommissioning cost is estimated based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD data which is collected by member state. Although there exists a general tendency for costs to increase with increasing thermal power, the limited data available show that decommissioning costs at any given power level can vary widely, with increased variability at higher power levels. Variations in decommissioning cost for the research reactors of the same or similar thermal power are caused by differences in reactor types and design, decommissioning project scopes, country- specific unit workforce costs, and other reactor or project factors. An important factor for the

  18. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature.

  19. Annual report of department of research reactors, 2001. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization of the JRR-3 and the JRR-4 and for the related R and D. Besides RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 2001 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. (author)

  20. Proceedings of the 1998 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The 1998 Workshop on the Utilization of Research Reactors, which is the seventh Workshop on the theme of research reactor utilization was held in Yogyakarta and Serpong, Indonesia from February 8 to 14. This Workshop was executed based on the agreement in the Ninth International Conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1998. The whole Workshop consists of the Workshop on the theme of following three fields, 1) Neutron Scattering, 2) Neutron Activation analysis and 3) Safe Operation and Maintenance of Research Reactor, and the Sub-workshop carried out the experiment of Neutron Activation analysis. The total number of participants for the workshop was about 100 people from 8 countries, i.e. Australia, China, Indonesia, Korea, Malaysia, Thailand, Vietnam and Japan. The 38 papers are indexed individually. (J.P.N.)

  1. Annual report of department of research reactor, 1995 (April 1, 1995 - March 31, 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1995 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  2. Analysis on safeguard approach of radioactive waste at KIJANG research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Kim, In Chul; Kim, Hyun Sook; Jung, Juang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    KIJANG Research Reactor (KJRR) will be constructed in Busan in order to provide the self-sufficiency of RI demand including Mo-99, to increase the neutron transmutation doping (NTD) capacity and to develop and validate technologies related to the research reactor. Considering the categorization of nuclear facility such as item counting and bulk facility, HANARO which is another research reactors in Korea is item counting facility because physical/chemical forms of nuclear material are not changes. During the dissolving process, radioactive wastes containing nuclear material are occurred at KJRR. In this paper, the features of the KJRR are described and safeguards approach on the radioactive wastes containing nuclear material occurred at KJRR are reviewed. This paper reviews the safeguards approach on radioactive wastes containing nuclear materials occurred during FM production at KJRR. Most uranium dissolved during FM production process are collected in U filter cakes and very tiny amount of uranium will be remained in the ILLW.

  3. Annual report of Department of Research Reactor, 1996. April 1, 1996 - March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1996 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  4. Annual report of department of research reactor, 1999. April 1, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization of the JRR-3M (new JRR-3) and the JRR-4 and for the related R and D. Besides the decommissioning of the JRR-2 and RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 1999 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. (author)

  5. Annual report of department of research reactor, 1994. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1994 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as well as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author).

  6. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  7. Development of a research reactor power measurement system using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Brício M.; Mesquita, Amir Z., E-mail: briciomares@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  8. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  9. European research activities within the project: High Performance Light Water Reactor phase 2 (HPLWR phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, Karlsruhe (Germany); Marsault, P. [CEA Cadarache (DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Bittermann, D. [AREVA NP, NEPR-G, Erlangen (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Laurien, E. [Stuttgart Univ. IKE (Germany); Lycklama, J.A. [NRG Petten, NL (Netherlands); Anglart, H. [KTH Energy Technology, Stockholm (Sweden); Aksan, N. [Paul Scherrer Institut CH, Villigen PSI (Switzerland); Ruzickova, M. [UJV Rez plc, Husinec-Rez c.p. (Czech Republic); Heikinheimo, L. [VTT, FIN (Finland)

    2007-07-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (25 MPa). It belongs to the six reactors currently being investigated under the framework of the Generation IV International Forum. The most visible advantage of the HPLWR shall be the low construction costs in the order of 1000 Euro/kWe, because of size reduction of components and buildings compared to current Light Water Reactors, and the low electricity production costs which are targeted at 3-4 cents/kWh. In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within 42 months, ten partners from eight European countries working on critical scientific issues shall show the feasibility of the HPLWR concept. This paper reports on 5 points relevant for HPLWR: 1) design and integration, 2) core design, 3) safety, 4) materials, and 5) heat transfer. The final goal is to assess the future potential of this reactor in the electricity market.

  10. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  11. Radioisotope radiotherapy research and achievements at the University of Missouri Research Reactor

    Science.gov (United States)

    Ehrhardt, G. J.; Ketring, A. R.; Cutler, C. S.

    2003-01-01

    The University of Missouri Research Reactor (MURR) in collaboration with faculty in other departments at the University of Missouri has been involved in developing new means of internal radioisotopic therapy for cancer for many years. These efforts have centered on methods of targeting radioisotopes such as brachytherapy, embolisation of liver tumors with radioactive microspheres, small-molecule-labelled chelates for the treatment of bone cancer, and various means of radioimmunotherapy or labelled receptor agent targeting. This work has produced two radioactive agents, Sm-153 Quadramet™ and Y-90 TheraSphere™, which have U.S. Food and Drug Administration approval for the palliation of bone cancer pain and treatment of inoperable liver cancer, respectively. MURR has also pioneered development of other beta-emitting isotopes for internal radiotherapy such as Re-186, Re-188, Rh-105, Ho-166, Lu-177, and Pm-149, many of which are in research and clinical trials throughout the U.S. and the world. This important work has been made possible by the very high neutron flux available at MURR combined with MURR's outstanding reliability of operation and flexibility in meeting the needs of researchers and the radiopharmaceutical industry.

  12. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    Science.gov (United States)

    Ajijul Hoq, M.; Malek Soner, M. A.; Salam, M. A.; Khanom, Salma; Fahad, S. M.

    The Bangladesh Atomic Energy Commission (BAEC) TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ) 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10-3 μCi /cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication.

  13. Improvement of the reactivity computer for HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jin; Park, S. J.; Jung, H. S.; Choi, Y. S.; Lee, K. H.; Seo, S. G

    2001-04-01

    The reactivity computer in HANARO has a dedicated neutron detection system for experiments and measurements of the reactor characteristics. This system consists of a personal computer and a multi-function I/O board, and collects the signals from the various neutron detectors. The existing hardware and software are developed under the DOS environment so that they are very inconvenient to use and have difficulties in finding replacement parts. Since the continuity of the signal is often lost when we process the wide rang signal, the need for its improvement has been an issue. The purpose of this project is to upgrade the hardware and software for data collection and processing in order for them to be compatible with Windows{sup TM} operating system and to solve the known issue. We have replaced the existing system with new multi-function I/O board and Pentium III class PC, and the application program for the wide range reactivity measurement and multi-function signal counter have been developed. The newly replaced multi-function I/O board has seven times fast A/D conversion rate and collects sufficient amount of data in a short time. The new application program is user-friendly and provides various useful information on its display screen so that the ability of data processing and storage has been very much enhanced.

  14. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  15. A reload and startup plan for conversion of the NIST research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-31

    The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reload portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.

  16. A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Varuttamaseni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-30

    The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.

  17. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sayyah, A. [Department of Radiation Application, Shahid Beheshti University (Iran, Islamic Republic of); Rahmani, F., E-mail: FRahamni@kntu.ac.in [K.N. Toosi University of Technology, Department of Physics (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute (NSTRI) (Iran, Islamic Republic of)

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  18. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  19. Decontamination and decommissioning project of the TRIGA Mark-2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, B. J.; Kim, J. K.; Yang, S. H

    2000-01-01

    During the review on the decommissioning plan and environmental impact assessment report by the KINS, the number of the inquired items were two hundred and fifty one, and the answers were made and sent until September 10, 1999, as the screened review results were reported to Ministry of Science and Technology(MOST) in December 14, 1999, all the reviews on the licence were over. Radioactive liquid wastes of 400 tons generated during the operation of the research reactors including reactor vessels are stored in the facility of the research reactor 1 and 2. Those liquid wastes have the low-level-radioactivity which can be discharged to the surroundings, but was wholly treated to be vaporized naturally by means of the increased numbers of the natural vaporization disposal facilities with the annual capacity of 200 tons for the purpose of the minimized environmental contamination.

  20. Corrosion of spent fuels from research and prototype reactors under conditions relevant to geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hilde; Bosbach, Dirk; Deissmann, Guido [Forschungszentrum Juelich GmbH (Germany). Inst. for Nuclear Waste Management and Reactor Safety (IEK-6)

    2015-07-01

    The reference inventory of high-level nuclear wastes designated for geological disposal in Germany as used within the preliminary safety assessment for a geological repository in the Gorleben salt dome (''vorlaeufige Sicherheitsanalyse Gorleben'', vSG) includes various types of spent nuclear fuels from research and prototype reactors, besides LWR spent fuels and vitrified high-level wastes. This paper will discuss the results of and conclusions from corrosion experiments on spent fuels from prototype high-temperature reactors (HTR) and research reactors that were performed under conditions relevant for a deep geological repository and provided the basis for the derivation of respective source terms in the vSG.

  1. Proceedings of the 1999 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 1999 workshop on the utilization of reactors, which is the eighth workshop on the theme of research reactor utilization was held at JAERI Tokai and Mito Plaza Hotel, in Japan from November 25 to December 2. This workshop was executed based on the agreement in the Tenth International conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1999. The whole workshop consists of the workshop on the theme of following three fields, 1) neutron scattering, 2) radioisotope production and 3) safe operation and maintenance of research reactor, and the sub-workshop carried out the experiments of small angle neutron scattering. The total number of participants for the workshop was about 70 people from 9 countries, i.e. Australia, China, Indonesia, Korea, Malaysia, The Philippines, Thailand, Vietnam and Japan. The 37 of the presented papers are indexed individually. (J.P.N.)

  2. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  3. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  4. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  5. Deconstructing graphite: graphenide solutions.

    Science.gov (United States)

    Pénicaud, Alain; Drummond, Carlos

    2013-01-15

    Growing interest in graphene over past few years has prompted researchers to find new routes for producing this material other than mechanical exfoliation or growth from silicon carbide. Chemical vapor deposition on metallic substrates now allows researchers to produce continuous graphene films over large areas. In parallel, researchers will need liquid, large scale, formulations of graphene to produce functional graphene materials that take advantage of graphene's mechanical, electrical, and barrier properties. In this Account, we describe methods for creating graphene solutions from graphite. Graphite provides a cheap source of carbon, but graphite is insoluble. With extensive sonication, it can be dispersed in organic solvents or water with adequate additives. Nevertheless, this process usually creates cracks and defects in the graphite. On the other hand, graphite intercalation compounds (GICs) provide a means to dissolve rather than disperse graphite. GICS can be obtained through the reaction of alkali metals with graphite. These compounds are a source of graphenide salts and also serve as an excellent electronic model of graphene due to the decoupling between graphene layers. The graphenide macroions, negatively charged graphene sheets, form supple two-dimensional polyelectrolytes that spontaneously dissolve in some organic solvents. The entropic gain from the dissolution of counterions and the increased degrees of freedom of graphene in solution drives this process. Notably, we can obtain graphenide solutions in easily processable solvents with low boiling points such as tetrahydrofuran or cyclopentylmethylether. We performed a statistical analysis of high resolution transmission electronic micrographs of graphene sheets deposited on grids from GICs solution to show that the dissolved material has been fully exfoliated. The thickness distribution peaks with single layers and includes a few double- or triple-layer objects. Light scattering analysis of the

  6. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  7. Experimental computer-controlled instrumentation system for the research reactor DR2

    DEFF Research Database (Denmark)

    Goodstein, L.P.

    1969-01-01

    An instrumentation system has been developed for one of the Danish Atomic Energy Commission's research reactors as part of an experiment on the advantages to be gained by the use of digital computers in a process plant application. Problem areas to be investigated include (a) reliability and safety...

  8. Annual report of department of research reactor, 2000. April 1, 2000 - March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The Department of Research Reactor is responsible for the operation, Maintenance, utilization of the JRR-3 and the JRR-4 and for the related R and D. Besides RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 2000 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI Production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. Although the term 'JRR-3M' was used to denote the JRR-3M modified 1990 until the 2000 annual report of the Department of Research Reactor, the term 'JRR-3' will be used from this annual report because the JRR-3 has been operated for about 10 years since the modification and is now under further modification and upgrading study. (author)

  9. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Science.gov (United States)

    2010-10-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday...

  10. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  11. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  12. Study on the Recycling of Nuclear Graphite after Micro-Oxidation

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-02-01

    Full Text Available In this paper, a feasible strategy for the recycling of nuclear graphite is reported, based on the formation mechanism and the removal of carbon-14 by micro-oxidation. We investigated whether ground micro-oxidation graphite could be used as a filler to make new recycled graphite and which graphite/pitch coke ratio will give the recycled graphite outstanding properties (e.g., apparent density, flexural strength, compressive strength, and tensile strength. According to the existing properties of nuclear graphite, the ratio of graphite to pitch coke should not exceed 3. The recycled reactor graphite has been proven superior in density, strength, and thermal conductivity. The micro-oxidation process enhances the strength of the recycled graphite because there are more pores and unsmooth surfaces on the oxidized graphite particles, which is beneficial for the access of the pitch binder and leads to efficient joint adhesion among the graphite particles.

  13. Irradiation of Electronic Components and Circuits at the Portuguese Research Reactor: Lessons Learned

    Science.gov (United States)

    Marques, J. G.; Ramos, A. R.; Fernandes, A. C.; Santos, J. P.

    2016-06-01

    A program was started in 1999 in the Portuguese Research Reactor to test electronics components and circuits for the LHC facility at CERN, initially with a dedicated in-pool irradiation container used at a reactor power of 2 kW and later an irradiation chamber outside the pool, with tailored neutron and gamma filters that could be used at 1 MW. Practice has shown the need to introduce several improvements to the irradiation procedures and infrastructures over the years. In this paper, we review the lessons learned and the major improvements introduced.

  14. Analysis of the Jamaican Slowpoke-2 Research Reactor for the Conversion from HEU to LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Puig, F.; Dennis, Haile T.

    2014-01-01

    The Jamaican SLOWPOKE-2 (JM-1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited that has been operating for 30 years at the University of the West Indies, Mona Campus in Kingston, Jamaica. The University, with IAEA assistance under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Full-reactor neutronic and thermal hydraulic analyses were performed, using MCNP5 and PLTEMP/ANL v4.1 respectively, on both the existing HEU and proposed LEU core configurations. Although conversion will result in the full nominal reactor power increasing from 20 kW to approximately 22 kW, in order to maintain the 1012 n·cm-2 s-1 flux in the inner irradiation channels, and maximum fuel temperature to increase from ~82°C to ~113°C, the analysis illustrates that increased safety margins will be obtained. No significant reactor behavior changes are expected and the characteristic SLOWPOKE-2 reactor inherent safety features will be preserved.

  15. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  16. Determination of the Design Speed of the Primary Cooling Pump in the Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyungi; Seo, Kyoungwoo; Chi, Daeyoung; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    An open-pool type research reactor is widely designed in consideration of the reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom. rimary cooling system circulates the coolant from the reactor core to the heat exchanger. Therefore the heat generated from the reactor core is continuously removed. After the primary cooling pumps stop, the decay heat is removed by the coastdown flow induced by the inertia force of a flywheel attached to each primary cooling pump. A pump coastdown flow means that the pump operates with the angular momentums of the shaft, impeller, and flywheel when a loss of electricity occurs. The primary cooling pump consists of the pump, flywheel, and moto. They are connected by flexible couplings. The primary cooling pump is conceptually designed based on the required flow rate and system constraints. A centrifugal pump of Case 1 with a non-dimensional specific speed of 0.59 and specific diameter of 4.94 is chosen as the primary cooling pump based on the hydraulic performance and mechanical integrity.

  17. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-07-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  18. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor, Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-12-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  19. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    Science.gov (United States)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  20. Risk of the research reactor BER II in Berlin; Risiken des Berliner Experimentierreaktors BER II

    Energy Technology Data Exchange (ETDEWEB)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-04-20

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  1. Anti-neutrino flux in a research reactor for non-proliferation application

    Energy Technology Data Exchange (ETDEWEB)

    Khakshournia, Samad; Foroughi, Shokoufeh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Atomic Energy Organization of Iran (AEOI)

    2017-11-15

    Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 x 10{sup 17} (v{sub e}/sec) in the core No. 57F of the TRR. Calculations indicated that evolution of antineutrino flux was very slow with time and the performed refueling had not an observable effect on antineutrino flux curve for a 5 MW reactor with the conventional refueling program. It is seen that for non-proliferation applications the measurement of the contribution of {sup 239}Pu to the fission using an antineutrino detector is not viable in the TRR.

  2. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  3. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  4. Graphic-object information system {open_quotes}research base for reactor materials science{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Markina, N.V.; Lebedeva, E.E.; Arkhangel`skii, N.V.; Semenov, S.B.; Moiseev, A.L.

    1994-11-01

    An information system developed for reactor materials research is described. The information system incorporates an expert system, MATREKS, and a heirarchial data base. The data base contains information from 20 Russian research reactors. The information system structure, data base structure, search methods, system output modes, and technical facilities and software required are briefly discussed. 6 refs., 2 figs.

  5. 77 FR 13376 - Notice of License Termination for the University of Arizona Research Reactor, License No. R-52

    Science.gov (United States)

    2012-03-06

    ... COMMISSION Notice of License Termination for the University of Arizona Research Reactor, License No. R-52 The... No. R-52, for the University of Arizona Research Reactor (UARR). The NRC has terminated the license... released for unrestricted use. Therefore, Facility Operating License No. R-52 is terminated. For further...

  6. Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dunkun; Kim, Jaehoon; Kim, Yeonwook [Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    The high temperature gas-cooled reactor (HTR-10) is designed to produce electricity and hydrogen. Graphite is used as reflector, support structures, and a moderator in reactor core; it has good resistance to neutron and is a suitable material at high temperatures. Friction is generated in the graphite structures for the core reflector, support structures, and moderator because of vibration from the HTR-10 fuel cycle flow. In this study, the wear characteristics of the isotropic graphite IG-110 used in HTR-10 were evaluated. The reciprocating wear test was carried out for graphite against graphite. The effects of changes in the contact load and sliding speeds at room temperature and 400℃ on the coefficient of friction and specific wear rate were evaluated. The wear behavior of graphite IG-110 was evaluated based on the wear surfaces.

  7. Major update of Safety Analysis Report for Thai Research Reactor-1/Modification 1

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, Chanatip [Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2013-07-01

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) was converted from a Material Testing Reactor in 1975 and it had been operated by Office of Atom for Peace (OAP) since 1977 until 2007. During the period, Office of Atom for Peace had two duties for the reactor, that is, to operate and to regulate the reactor. However, in 2007, there was governmental office reformation which resulted in the separation of the reactor operating organization from the regulatory body in order to comply with international standard. The new organization is called Thailand Institute of Nuclear Technology (TINT) which has the mission to promote peaceful utilization of nuclear technology while OAP remains essentially the regulatory body. After the separation, a new ministerial regulation was enforced reflecting a new licensing scheme in which TINT has to apply for a license to operate the reactor. The safety analysis report (SAR) shall be submitted as part of the license application. The ministerial regulation stipulates the outlines of the SAR almost equivalent to IAEA standard 35-G1. Comparing to the IAEA 35-G1 standard, there were several incomplete and missing chapters in the original SAR of TRR1/M1. The major update of the SAR was therefore conducted and took approximately one year. The update work included detail safety evaluation of core configuration which used two fuel element types, the classification of systems, structures and components (SSC), the compilation of detail descriptions of all SSCs and the review and evaluation of radiation protection program, emergency plan and emergency procedure. Additionally, the code of conduct and operating limits and conditions were revised and finalized in this work. A lot of new information was added to the SAR as well, for example, the description of commissioning program, information on environmental impact assessment, decommissioning program, quality assurance program and etc. Due to the complexity of this work, extensive knowledge was

  8. RETU. The Finnish research programme on reactor safety. Interim report 1995 - May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Vanttola, T.; Puska, E.K. [VTT Energy, Espoo (Finland). Nuclear Energy] [eds.

    1997-08-01

    The Finnish national research programme on Reactor Safety (RETU, 1995-1998) concentrates on the search of safe limits of nuclear fuel and the reactor core, accident management methods and risk management of the operation of nuclear power plants. The annual volume of the programme has been about 26 person years and the annual funding FIM 15 million. This report summarises the structure and objectives of the programme, research fields included and the main results obtained during the period 1995 - May 1997. In the field of operational margins of a nuclear reactor, the behaviour of high burnup nuclear fuel is studied both in normal operation and during power transients. The static and dynamic reactor analysis codes are developed and validated to cope with new fuel designs and complicated three-dimensional reactivity transients and accidents. Research on accident management aims at development and validation of calculation methods needed to plan preventive measures and to train the personnel to severe accident mitigation. Other goals are to reduce uncertainties in phenomena important in severe accidents and to study actions planned for accident management. In the field of risk management probabilistic methods are developed for safety related decision making and for complex phenomena and event sequences. Effects of maintenance on nuclear power plant safety are studied and more effective methods for the assessment of human reliability and safety critical organisations are searched. 135 refs.

  9. Studies on capacity management for factories of nuclear fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel Luiz Miotto; Durazzo, Michelangelo; Mesquita, Marco Aurélio de; Carvalho, Elita Fontenele Urano de; Andrade, Delvonei Alves de, E-mail: mlnegro@ipen.br, E-mail: mdurazzo@ipen.br, E-mail: elitaucf@ipen.br, E-mail: delvonei@ipen.br, E-mail: mamesqui@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Escola Politécnica. Departamento de Engenharia de Produção

    2017-11-01

    The use and the power of nuclear reactors for research and materials testing is increasing worldwide. That implies the demand for nuclear fuel for this kind of reactors is rising. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently, safely and keeping good quality. Focus is given to factories that produce plate type fuel elements loaded with LEU U{sub 3}Si{sub 2}-Al fuel, which are typically used in nuclear research reactors. Of the various production routes for this kind of fuel, we chose the route which uses hydrolysis of uranium hexafluoride. Raising the capacity of this kind of plants faces several problems, especially regarding safety against nuclear criticality. Some of these problems are briefly addressed. The new issue of the paper is the application of knowledge from the area of production administration to the fabrication of nuclear fuel for research reactors. A specific method for the increase in production capacity is proposed. That method was tested by means of discrete event simulation. The data were collected from the nuclear fuel factory at IPEN. The results indicated the proposed method achieved its goal as well as ways of raising production capacity in up to 50%. (author). (author)

  10. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Boustani Ehsan

    2016-01-01

    Full Text Available One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in many of abnormal situations. It is designed as much as practical based on neutron absorber solution injection into the existing core while the changes and interferences with the existing core structure are kept to a minimum. Core neutronic calculations were performed using MCNPX 2.6.0 and MTR_PC package for the current operational core equipped with the second shutdown system, and one experiment was conducted in the Tehran Research Reactor to test the neutronic calculations. A good agreement was seen between theoretical results and experimental ones. In addition, capability of the second shutdown system in the case of occurrence of design basis accident in the Tehran Research Reactor is demonstrated using PARET program.

  11. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  12. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  13. Comparison of AFRRI (Armed Forces Radiobiology Research Institute) and ETCA (Etablissement Technique Central de l’Armament) Dosimetry Measurements at AFRRI TRIGA (Training Research Isotopes General Atomic) Reactor

    Science.gov (United States)

    1987-11-01

    TECHNICAL REPORT Comparison of AFRRI and ETCA dosimetry measurements at AFRRI TRIGA reactor M. Dooley G. H. Zeman DEFENSE NUCLEAR AGENCY ARMED...Research Institute (AFRRI) TRIGA (Training Research Isotopes General Atomic) reactor on 10-12 September 1985. The purpose of the experiment was to...anthropomorphic dosimetry phantom (a Incite cylinder 30 cm in diameter and 60 cm tall) in exposure room 1 of the AFRRI TRIGA reactor. As reference

  14. Application of best estimate plus uncertainty in review of research reactor safety analysis

    Directory of Open Access Journals (Sweden)

    Adu Simon

    2015-01-01

    Full Text Available To construct and operate a nuclear research reactor, the licensee is required to obtain the authorization from the regulatory body. One of the tasks of the regulatory authority is to verify that the safety analysis fulfils safety requirements. Historically, the compliance with safety requirements was assessed using a deterministic approach and conservative assumptions. This provides sufficient safety margins with respect to the licensing limits on boundary and operational conditions. Conservative assumptions were introduced into safety analysis to account for the uncertainty associated with lack of knowledge. With the introduction of best estimate computational tools, safety analyses are usually carried out using the best estimate approach. Results of such analyses can be accepted by the regulatory authority only if appropriate uncertainty evaluation is carried out. Best estimate computer codes are capable of providing more realistic information on the status of the plant, allowing the prediction of real safety margins. The best estimate plus uncertainty approach has proven to be reliable and viable of supplying realistic results if all conditions are carefully followed. This paper, therefore, presents this concept and its possible application to research reactor safety analysis. The aim of the paper is to investigate the unprotected loss-of-flow transients "core blockage" of a miniature neutron source research reactor by applying best estimate plus uncertainty methodology. The results of our calculations show that the temperatures in the core are within the safety limits and do not pose any significant threat to the reactor, as far as the melting of the cladding is concerned. The work also discusses the methodology of the best estimate plus uncertainty approach when applied to the safety analysis of research reactors for licensing purposes.

  15. Application of coupled code technique to a safety analysis of a standard MTR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidouche, Tewfik [Division de l' Environnement, de la Surete et des Dechets Radioactifs, Centre de Recherche Nucleaire d' Alger (CRNA), Alger (Algeria); Laboratoire de Mecanique des Fluides Theorique et Appliquee, Faculte de Physique, Universite Des Sciences et de la Technologie Houari Boumediene, (USTHB), Bab-Ezzouar, Alger (Algeria)], E-mail: t.hamidouche@crna.dz; Bousbia-Salah, Anis [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione-Facolta di Ingegneria, Universita di Pisa, Pisa (Italy)], E-mail: b.salah@ing.unipi.it; Si-Ahmed, El Khider [Laboratoire de Mecanique des Fluides Theorique et Appliquee, Faculte de Physique, Universite Des Sciences et de la Technologie Houari Boumediene, (USTHB), Bab-Ezzouar, Alger (Algeria)], E-mail: esi-ahmed@usthb.dz; Mokeddem, Mohamed Yazid [Division de la Physique et des Applications Nucleaires, Centre de Recherche Nucleaire de Draria (CRND) (Algeria); D' Auria, Franscesco [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione-Facolta di Ingegneria, Universita di Pisa, Pisa (Italy)

    2009-10-15

    Accident analyses in nuclear research reactors have been performed, up to now, using simple computational tools based on conservative physical models. These codes, developed to focus on specific phenomena in the reactor, were widely used for licensing purposes. Nowadays, the advances in computer technology make it possible to switch to a new generation of computational tools that provides more realistic description of the phenomena occurring in a nuclear research reactor. Recent International Atomic Energy Agency (IAEA) activities have emphasized the maturity in using Best Estimate (BE) Codes in the analysis of accidents in research reactors. Indeed, some assessments have already been performed using BE thermal-hydraulic system codes such as RELAP5/Mod3. The challenge today is oriented to the application of coupled code techniques for research reactors safety analyses. Within the framework of the current study, a Three-Dimensional Neutron Kinetics Thermal-Hydraulic Model (3D-NKTH) based on coupled PARCS and RELAP5/Mod3.3 codes has been developed for the IAEA High Enriched Uranium (HEU) benchmark core. The results of the steady state calculations are sketched by comparison to tabulated results issued from the IAEA TECDOC 643. These data were obtained using conventional diffusion codes as well as Monte Carlo codes. On the other hand, the transient analysis was assessed with conventional coupled point kinetics-thermal-hydraulic channel codes such as RELAP5 stand alone, RETRAC-PC, and PARET codes. Through this study, the applicability of the coupled code technique is emphasized with an outline of some remaining challenges.

  16. Light-water-reactor safety research program: quarterly progress report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Progress is summarized on the Argonne National Laboratory work performed during July, August, and September 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of Zircaloy containing oxygen; and (4) steam-explosion studies.

  17. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    Energy Technology Data Exchange (ETDEWEB)

    Higinbotham, W.A.

    1994-11-07

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  18. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  19. Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor.

    Science.gov (United States)

    Guerra, Bruno T; Jacimovic, Radojko; Menezes, Maria Angela Bc; Leal, Alexandre S

    2013-01-01

    This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed. The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room's level where shall be located the rack containing the set sample/detector/shielding. The evaluation of the thermal and epithermal neutron flux in the sample position was done considering the experimental data obtained from a vertical neutron guide, already existent in the reactor, and the simulated model for the facility. The experimental determination of the neutron flux was obtained through the standard procedure of using Au monitors in different positions of the vertical tube. In order to validate both, this experiment and calculations of the simulated model, the flux was also determined in different positions in the core used for sample irradiation. The model of the system was developed using the Monte Carlo code MCNP5. The preliminary results suggest the possibility of obtaining a beam with minimum thermal flux of magnitude 10(6) cm(-2) s(-1), which confirm the technical feasibility of the installation of PGAA at the TRIGA IPR-R1 reactor. This beam would open new possibilities for enhancing the applications using the reactor.

  20. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad

    2017-11-02

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, high uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.

  1. A COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Creutz, E.C.

    1960-03-15

    A nuclear reactor comprising a pair of graphite blocks separated by an air gap is described. Each of the blocks contains a plurality of channels extending from the gap through the block with a plurality of fuel elements being located in the channels. Means are provided for introducing air into the gap between the graphite blocks and for exhausting the air from the ends of the channels opposite the gap.

  2. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, and up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them

  3. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  4. The International Science and Technology Center (ISTC) and ISTC projects related to research reactors: information review

    Energy Technology Data Exchange (ETDEWEB)

    Tocheniy, L. V.; Rudneva, V. Ya. [ISTC, Moscow (Russian Federation)

    1998-07-01

    The ISTC is an intergovernmental organization established by agreement between the Russian Federation, the European Union, Japan, and the United States. Since 1994, Finland, Sweden, Norway, Georgia, Belarus, Kazakhstan and the Kyrgyz Republic have acceded to the Agreement and Statute. At present, the Republic of Korea is finishing the process of accession to the ISTC. All work of the ISTC is aimed at the goals defined in the ISTC Agreement: To give CIS weapons scientists, particularly those who possess knowledge and skills related to weapons of mass destruction and their delivery systems, the opportunities to redirect their talents to peaceful activities; To contribute to solving national and international technical problems; To support the transition to market-based economics; To support basic and applied research; To help integrate CIS weapons scientists into the international scientific community. The projects may be funded both through governmental funds of the Funding partners of the ISTC. According to the ISTC Statute, approved by the appropriate national organizations, funds used within ISTC projects are exempt from CIS taxes. As of March 1998, more than 1500 proposals had been submitted to the Center, of which 551 were approved for funding, for a total value of approximately US$166 million. The number of scientists and engineers participating in the projects is more than 18000. There are about 20 funded and as yet nonfunded projects related to various problems of research reactors. Many of them address safety issues. Information review of the results and plans of both ongoing projects and as yet nonfunded proposals related to research reactors will be presented with the aim assisting international researchers to establish partnerships or collaboration with ISTC projects. The following groups of ISTC projects will be represented: 1. complex computer simulator s for research reactors; 2. reactor facility decommissioning; 3. neutron sources for medicine; 4

  5. Characterization and quantification of an in-core neutron irradiation facility at a TRIGA II research reactor

    Science.gov (United States)

    Aghara, Sukesh; Charlton, William

    2006-07-01

    Experiments have been performed to characterize the neutron environment at an in-core TRIGA type nuclear research reactor. Steady-state thermal and epithermal neutron environment testing is important for many applications including, materials, electronics and biological cells. A well characterized neutron environment at a research reactor, including energy spectrum and spatial distribution, can be useful to many research communities and for educational research. This paper describes the characterization process and an application of exposing electronics to high neutron fluence.

  6. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  7. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  8. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  9. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  10. The neutronic analysis of opportunity of ITER blanket element tests in RF research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Tocheniy, L. [ENTEK-RDIPE, Moscow (Russian Federation)

    1994-12-31

    In the framework of development of plan of in-pile radiative tests of ITER blanket elements the calculations are carried out of the models of tritium-producing elements in loop channels, placed in the number of Russian various type test reactors. There are presented: (1) The variants of models of blanket, on the base of which the set of experiment goal parameters and its ranges are formed; (2) Outline of loop channel; (3) The experimental opportunities of research reactors with thermal (SM-3, MIR, IVV-2M, RBT) and fast (BOR-60, EBR) spectra of neutrons; (4) The calculation procedures - settlement models, codes. The results are given: (1) power generation rates in components of channel; (2) the tritium breeding rate; (3) the helium production rate in beryllium; (4) the neutron group fluxes; (5) absorption rates in zones of loop channel. The possible reactivity effects due to experimental channel accommodation in reactor core and to radiated sample replace inside of the channel are shown. The last section includes the recommendations for the choice of reactor acceptable from the neutronics point of view, and for the next study directions and stages.

  11. Evaluation of Gamma Fluence Rate Predictions for 41-argon Releases to the Atmosphere at a Nuclear Research Reactor Site

    DEFF Research Database (Denmark)

    Rojas-Palma, Carlos; Aage, Helle Karina; Astrup, Poul

    2004-01-01

    An experimental study of radionuclide dispersion in the atmosphere has been conducted at the BR1 research reactor in Mol, Belgium. Artificially generated aerosols ('white smoke') were mixed with the routine releases of Ar-41 in the reactor's 60-m tall venting stack. The detailed plume geometry...

  12. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    Science.gov (United States)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  13. Increased intensity performance of the Brookhaven AGS

    Energy Technology Data Exchange (ETDEWEB)

    Raka, E.; Ahrens, L.; Frey, W.; Gill, E.; Glenn, J.W.; Sanders, R.; Weng, W.

    1985-05-01

    With the advent of H/sup -/ injection into the Brookhaven AGS, circulating beams of up to 3 x 10/sup 13/ protons at 200 MeV have been obtained. Rf capture of 2.2 x 10/sup 13/ and acceleration of 1.73 x 10/sup 13/ up to the transition energy (approx. = 8 GeV) and 1.64 x 10/sup 13/ to full energy (approx. = 29 GeV) has been achieved. This represents a 50% increase over the best performance obtained with H/sup +/ injection. The increase in circulation beam current is obtained without filling the horizontal aperture. This allows the rf capture process to utilize a larger longitudinal phase space area (approx. = 1 eV sec/bunch vs less than or equal to 0.6 eV sec with H/sup +/ operation). The resulting reduction in relative longitudinal density partially offsets the increase in space charge effects at higher currents. In order to make the capture process independent of injected beam current, a dynamic beam loading compensation loop was installed on the AGS rf system. This is the only addition to the synchrotron itself that was required to reach the new intensity records. A discussion of injection, the rf capture process, and space charge effects is presented. 9 refs., 5 figs.

  14. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  15. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  16. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  17. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K. [Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Aksan, S. N. [International Atomic Energy Agency, 1400 Vienna (Austria)

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  18. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  19. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  20. Event and fault tree model for reliability analysis of the greek research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Tob R.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes, E-mail: atalbuquerque@ien.gov.br, E-mail: btony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This work uses the methods of fault tree (FT) and event tree (ET) to perform the Probabilistic Safety Assessment (PSA) in research reactors. The PSA according to IAEA (International Atomic Energy Agency) is divided into Level 1, Level 2 and level 3. At Level 1, conceptually safety systems act to prevent the accident, at Level 2, the accident occurred and seeks to minimize the consequences, known as stage management of the accident, and at Level 3 are determined consequences. This paper focuses on Level 1 studies, and searches through the acquisition of knowledge consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR - 1, was used as a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from there were developed the possible accident sequences, using event tree, which could lead damage to the core. Furthermore, for each of the affected systems, the possible accidents sequences were made fault tree and evaluated the probability of each event top of the FT. The studies were conducted using a commercial computational tool SAPHIRE. The results thus obtained, performance or failure to act of the systems analyzed were considered satisfactory. This work is directed to the Greek Research Reactor due to data availability. (author)

  1. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  2. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available of Nuclear Materials, vol. 436(1-3), pp 167-174 Significance of primary irradiation creep in graphite Christiaan Erasmus a,⇑, Schalk Kok b, Michael P. Hindley a a Pebble Bed Modular Reactor (Proprietary) Limited, PO Box 9396, Centurion 0046, South...

  3. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  4. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  5. Reactor safety research programs. Quarterly progress report, January 1--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Romano, A.J. (comp.)

    1977-05-01

    The projects reported each quarter are the following: Gas Reactor Safety Evaluation, THOR Code Development, SSC Code Development, LMFBR and LWR Safety Experiments, Fast Reactor Safety Code Validation, Technical Coordination of Structural Integrity, and Fast Reactor Safety Reliability Assessment.

  6. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  7. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-10-20

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept.

  8. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Weimin Ma

    2016-03-01

    Full Text Available A historical review of in-vessel melt retention (IVR is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs. The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential phenomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV. For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contribute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.

  9. IGORR-1: Proceedings of the first meeting of the international group on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D. (comp.)

    1990-05-01

    Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately.

  10. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  11. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  12. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  13. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  14. Production and modeling of radioactive gold nanoparticles in Tehran research reactor.

    Science.gov (United States)

    Hosseini, Seyedeh Fatemeh; Sadeghi, Mahdi; Aboudzadeh, Mohammad Reza; Mohseni, Morteza

    2016-12-01

    Gold has two medically useful radioactive isotopes, 198Au and 199Au, for locally irradiating and killing tumor cells. 198Au radionuclide has been produced through the irradiation of the pure gold via 197Au(n,γ)198Au reaction in the Tehran Research Reactor at a thermal neutron flux of 4.5×1013ncm-2s-1 for the different irradiation times. In this paper, the activity of 198Au radionuclide has been determined using MCNPX-2.6 and TALYS-1.6 codes and also the theoretical approach. The calculated results were compared with the corresponding experimental values. The calculated results were in good agreement with the experimental data, thus the used codes can be used as a powerful tool to predict and optimize production conditions in reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

    2003-09-01

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and

  16. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  17. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    National Research Council Canada - National Science Library

    Rezaeian Mahdi; Kamali Jamshid; Roshanzamir Manoochehr; Moosakhani Alireza; Noori Elghar

    2015-01-01

    ... operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated...

  18. Decommissioning of the ASTRA research reactor: Planning, executing and summarizing the project

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2010-01-01

    Full Text Available The decommissioning of the ASTRA research reactor at the Austrian Research Centres Seibersdorf was described within three technical papers already released in Nuclear Technology & Radiation Protection throughout the years 2003, 2006, and 2008. Following a suggestion from IAEA the project was investigated well after the files were closed regarding rather administrative than technical matters starting with the project mission, explaining the project structure and identifying the key factors and the key performance indicators. The continuous documentary and reporting system as implemented to fulfil the informational needs of stake-holders, management, and project staff alike is described. Finally the project is summarized in relationship to the performance indicators.

  19. On estimating the fracture probability of nuclear graphite components

    Science.gov (United States)

    Srinivasan, Makuteswara

    2008-10-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation.

  20. The Operational Parameter Electronic Database of the IPR-R1 TRIGA Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Zacarias; Gomes do Prado Souza, Rose Mary [Nuclear Technology Development Center (CDTN), Belo Horizonte - MG (Brazil)

    2008-10-29

    it in a historical database. In every operation of the research reactor about forty variables are registered by the data acquisition system. The system provides data for the last five years (since 2004)

  1. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  2. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  3. RESEARCHES ON THE DIGESTERS AND REACTORS WHICH CAN BE USED IN A FARM SCALE BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2014-10-01

    Full Text Available In the general context of searching integrated system of renewable energy production, this paper present some researches on the reactors and the digesters, as a main part of a biogas plant at a farm scale. After we present the most used types of digesters, we also concentrated over the processes which take place into a digester, one of them being the removal of H2S from biogas (desulphurisation, which can be made by various methods, either biological or chemical, taking place inside or outside the digester. In the case of biological desulphurization outside the digester, we concentrate on the types of reactors which can be used in this case. Beside the well known types of reactors, we present the possibility of using an original self pressure membrane bioreactor. In this type of bioreactor, the metabolic activity of gas producing microorganisms, especially yeast, could obtain high pressure from gas produced in closed medium on the one hand, and separation of other products of metabolism through membrane on the other hand, using gas pressure as driving force. It is known that several strains of yeast resist on very high hydrostatic pressure heaving good activity. This fact give the possibility to use their energy for other purposes, such as producing mechanical work. Combination of both, gas pressure and alchool burning, increase the process efficiency.

  4. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  5. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    Science.gov (United States)

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Power up-grading study for the first Egyptian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Sawy Temraz, H.; Ashoub, N. E-mail: nageeb@pcn.aea.sci.eg; Fathallah, A

    2001-09-01

    In the present work, power up-grading study is performed, for the first Egyptian Research Reactor (ET-RR-1), using the present fuel basket with 4x4 fuel rods, (17.5 mm pitch), and a proposed fuel basket with 5x5 fuel rods, (14.0 mm pitch), without violating the thermal hydraulic safety criteria. These safety criteria are; fuel centerline temperature (fuel melting), clad surface temperature (surface boiling), outlet coolant temperature, and maximum heat flux (critical heat flux ratio). Different thermal reactor powers (2-10 MW) and different core coolant flow rates (450, 900, 1350 m{sup 3} h{sup -1}) are considered. The thermal hydraulic analysis was performed using the subchannel code COBRA-IIIC for the estimation of temperatures, coolant velocities and critical heat flux. The neutronic calculations were performed using WIMS-D4 code with 5-group neutron cross section library. These cross sections were adapted to use in the two-dimensional (2-D) diffusion code DIXY for core calculations. The study concluded that ET-RR-1 power can be upgraded safely up to 4 MW with the present 4x4-fuel basket and with the proposed 5x5-fuel basket up to 5 MW with the present coolant flow rate (900 m{sup 3} h{sup -1}). With the two fuel arrays, the reactor power can be upgraded to 6 MW with coolant flow rate of 1350 m{sup 3} h{sup -1} without violating the safety criterion. It is also concluded that, loading the ET-RR-1 core with the proposed fuel basket (5x5) increases the excess reactivity of the reactor core than the present 4x4 fuel matrix with equal U-235 mass load and gave better fuel economy of fuel utilization.

  7. Complementary Safety Margin Assessment f the Nuclear Installations of the research reactor in Petten, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    On March 11, 2011, a large part of the Japanese eastern coastal area was devastated by an earthquake, followed by an immense tsunami. As a result, thousands of people were killed, injured or made homeless. In the days that followed, the situation was further complicated because of the failing nuclear reactors on the Fukushima coast. The local environment suffered from radioactive releases, requiring evacuation zones, and generating international concerns about nuclear safety. In the wake of this disaster the European Union decided to assess safety on all operating nuclear reactors in its member states. This safety evaluation initiated by the European Union focusses on extreme natural hazards, beyond the standard safety evaluations which regularly have to be performed to demonstrate the safety of a nuclear power plant. Consequences of these extreme hazards for the research reactor in Petten, Netherlands, have been evaluated based on available safety analyses, supplemented by engineering judgement. In this way, the robustness of the existing plant has been assessed and possible measures to further increase the safety margins have been identified. This document presents the results of the Complementary Safety margin Assessment (CSA) performed for the 'Onderzoekslocatie Petten'. The distinct difference between this report and former risk analysis reports in general and the existing Safety Report of the Petten reactor is that the maximum resistance of the plant against redefined and more challenging events has been investigated, whereas traditionally the plant design is investigated against certain events that are determined on a historical basis. This different approach requires different analyses and studies, which in turn presents new insights into the robustness of the plant. The main purpose of this report is to answer the questions posed by the Ministry of Economic Affairs, Agriculture and Innovation. It was decided to write at the same time a report in

  8. Concept of a nuclear powered submersible research vessel and a compact reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Tokunaga, Sango [Japan Deep Sea Technology Association, Tokyo (Japan)

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  9. Comparison of Damage Formation and Crack Propagation Behavior of Selected Nuclear Graphite for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se-Hwan; Kim, Hyun-Ju; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Undoubtedly, these changes are attributed to the irradiation-induced changes in the microstructure of graphite components and finally result in an increase in the probability of fracture of graphite core components menacing the safety of reactor. Due to the nature of HTGR whose core components are made of quasi-brittle graphite, the graphite core components operating for 40-60 years without failure require knowledge and understanding on the characteristics of graphite fracture. In this study, two results on the fracture of nuclear graphite, i.e., fracture under cyclic compressive loading unloading and fracture under static loading, were reevaluated to understand the fracture characteristics of selected nuclear graphite grade for HTGR. Present observation may need to be considered in the graphite selection as well as in the design and safety evaluation of the graphite core components in HTGR.

  10. The irradiation dimensional changes of grade TSX graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C R; Woodruff, E M

    1988-01-01

    Grade TSX graphite is used as a moderator in the N Reactor which has operated since 1963. This reactor, designed for a 25-year life, is under study to determine the possibility of significantly extending the operating life. One limiting factor is dimensional growth of the graphite lattice making up the core of the reactor. Since the original demands (25-year life) were modest, the dimensional change behavior was derived from a compendium of irradiation data from other grades and only confirmed by a few low-exposure irradiation experiments. Therefore, to generate actual dimensional change data for grade TSX to exposures relevant to the life extension plans, a series of irradiations of TSX graphite were run in the High Flux Isotope Reactor (HFIR) at Oak Ridge. This report contains experimental results of such testing. 5 refs., 3 figs.

  11. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor.

    Science.gov (United States)

    Elyutina, A S; Kiger, W S; Portnov, A A

    2011-12-01

    The results of modeling of two therapeutic beams HEC-1 and HEC-4 at the NRNU "MEPhI" research nuclear reactor exploitable for preclinical treatments are reported. The exact models of the beams are constructed as an input to the NCTPlan code used for planning Neutron Capture Therapy (NCT) procedure. The computations are purposed to improve the accuracy of prediction of a dose absorbed in tissue with the account of all components of radiation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Decontamination and decommissioning project of the TRIGA mark - 2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Kim, J. K.; Lee, D. G.; Kim, H. R.; Lee, B. J.; Yang, S. H.

    2001-01-15

    The decommissioning license for KRR (Korea Research Reactor) 1 and 2 was issued Nov. 23, 2000. The atmospheric stability on the KRR site was evaluated using the meteorological data measured at the site. From the results of this evaluation, the population dose was evaluated for the public who lives at the periphery of the site. The Radiation Safety Management Guideline was developed and it will be used as a base line making Radiation Safety Management Procedure. The container was specially designed and manufactured for the storing of low level radioactive solid waste arising from the D and D activities. Firstly, the 50 containers were completely manufactured.

  14. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  15. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    Science.gov (United States)

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  17. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  18. Reliability studies in research reactors; Estudo de confiabilidade em reatores de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Tob Rodrigues de

    2013-08-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  19. Assessment of the reliability of neutronic parameters of Ghana Research Reactor-1 control systems

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah-Abu, E.O., E-mail: edwardabu2002@yahoo.com [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Gbadago, J.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Akaho, E.H.K.; Akoto-Bamford, S. [School of Nuclear and Allied Sciences, University of Ghana (Ghana); Gyamfi, K.; Asamoah, M.; Baidoo, I.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana)

    2015-01-15

    Highlights: • The reliability of neutronics parameters of GHARR-I was assessed. • The reactor was operated at different power levels of 5–30 kW. • The pre-set flux was compared with the flux in the inner irradiation site. • Decrease in the core reactivity caused difference in flux on the meters and site. • Neutronic parameters become reliable when operation is done at reactivity of 4 mk. - Abstract: The Ghana Research Reactor-1 (GHARR-1) has been in operation for the past 19 years using a Micro-Computer Closed Loop System (MCCLS) and Control Console (CC) as the control systems. The two control systems were each coupled separately with a micro-fission chamber to measure the current pulses of the neutron fluxes in the core at excess reactivity of 4 mk. The MCCLS and CC meter readings at a pre-set flux of 5.0 × 10{sup 11} n/cm{sup 2} s were 6.42 × 10{sup 11} n/cm{sup 2} s and 5.0 × 10{sup 11} n/cm{sup 2} s respectively. Due to ageing and obsolescence, the MCCLS and some components that control the sensitivity and the reading mechanism of the meters were replaced. One of the fission chambers was also removed and the two control systems were coupled to one fission chamber. The reliability of the neutronic parameters of the control systems was assessed after the replacement. The results showed that when the reactor is operated at different power levels of 5–30 kW using one micro-fission chamber, the pre-set neutron fluxes at the control systems is 1.6 times the neutron fluxes obtained using a flux monitor at the inner irradiation site two of the reactor. The average percentage deviations of the obtained fluxes from the pre-set values of 1.67 × 10{sup 11}–1.0 × 10{sup 12} n/cm{sup 2} s were 36.5%. This compares very well with the decrease in core excess reactivity of 36.3% of the nominal value of 4 mk, after operating the reactor at critical neutron flux of 1.0 × 10{sup 9} n/cm{sup 2} s.

  20. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  1. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  2. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  3. Investigation of Classification and Design Requirements for Digital Software for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gee Young; Jung, H. S.; Ryu, J. S.; Park, C

    2005-06-15

    As the digital technology is being developed drastically, it is being applied to various industrial instrumentation and control (I and C) fields. In the nuclear power plants, I and C systems are also being installed by digital systems replacing their corresponding analog systems installed previously. There had been I and C systems constructed by analog technology especially for the reactor protection system in the research reactor HANARO. Parallel to the pace of the current trend for digital technology, it is desirable that all I and C systems including the safety critical and non-safety systems in an advanced research reactor is to be installed based on the computer based system. There are many attractable features in using digital systems against existing analog systems in that the digital system has a superior performance for a function and it is more flexible than the analog system. And any fruit gained from the newly developed digital technology can be easily incorporated into the existing digital system and hence, the performance improvement of a computer based system can be implemented conveniently and promptly. Moreover, the capability of high integrity in electronic circuits reduces the electronic components needed to construct the processing device and makes the electronic board simple, and this fact reveals that the hardware failure itself are unlikely to occur in the electronic device other than some electric problems. Balanced the fact mentioned above are the roles and related issues of the software loaded on the digital integrated hardware. Some defects in the course of software development might induce a severe damage on the computer system and plant systems and therefore it is obvious that comprehensive and deep considerations are to be placed on the development of the software in the design of I and C system for use in an advanced research reactor. The work investigates the domestic and international standards on the classifications of digital

  4. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, Abdelkrim; Graham, Andy [RRT Radiation and Reactor Theory, South African Nuclear Energy Corporation - NECSA, PO Box 582 Pretoria 0001 (South Africa); D' Arcy, Alan; Oliver, Melissa [SAFARI-1 Research Reactor, South African Nuclear Energy Corporation - NECSA, PO Box 582 Pretoria 0001 (South Africa)

    2008-07-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  5. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    OpenAIRE

    Ketelaer, J.; Krämer, J.; Beck, D; Blaum, K; Block, M; Eberhardt, K.; Eitel, G.; Ferrer, R.; Geppert, C; George, S; Herfurth, F.; Ketter, J.; Nagy, Sz.; Neidherr, D.; Neugart, R

    2008-01-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also h...

  6. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    Science.gov (United States)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  7. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    OpenAIRE

    Simos, N; Nocera, P.; Z. Zhong; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Z. Kotsina

    2017-01-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Produce...

  8. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  9. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermalhydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermalhydraulic technology and the commercialization.

  10. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  11. The current state of the Russian reduced enrichment research reactors program

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A. [and others

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  12. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    Science.gov (United States)

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  14. Approaches to Deal with Irradiated Graphite in Russia - Proposal for New IAEA CRP on Graphite Waste Management - 12364

    Energy Technology Data Exchange (ETDEWEB)

    Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg [JSC ' VNIINM' , Center of SNF and RW Management, 5A Rogova st., Moscow 123060 (Russian Federation)

    2012-07-01

    The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shown the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)

  15. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  16. COMPUTATIONAL SCIENCE AT BROOKHAVEN NATIONAL LABORATORY: THREE SELECTED TOPICS.

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.W.DENG,Y.GLIMM,J.SAMULYAK,R.

    2003-09-15

    We present an overview of computational science at Brookhaven National Laboratory (BNL), with selections from three areas: fluids, nanoscience, and biology. The work at BNL in each of these areas is itself very broad, and we select a few topics for presentation within each of them.

  17. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  18. Review of Brookhaven nuclear transparency measurements in (p ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 5. Review of Brookhaven nuclear transparency ... First, we describe the measurements with the newer experiment, E850, which has more complete kinematic definition of quasi-elastic events. E850 covers a larger range of incident momenta, and thus ...

  19. Brookhaven National Laboratory moves to the fast lane

    CERN Multimedia

    2006-01-01

    "The U.S. Department of Energy's energy sciences network (ESnet) continues to roll out its next-generation architecture on schedule with the March 14 completion of the Long Island Metropolitan Area Network, connecting Brookhaven National Laboratory (BNL) to the ESnet point of presente (PO) 60 miles away in New York City." (1 page)

  20. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M.; Munoz-Reja, C.; Tverberg, T.; Jenssen, H. K.

    2010-07-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP). HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD - Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as a partner in the fuel research programs. Improving the NPP operations, fuel cycles were designed to increase fuel burnup. Higher fuel burnup reduces the number of spent fuel assemblies and thus the costs of new fuel as well as the costs of back-end management. Higher burnup is reached either by prolonging the reactor cycles or by increasing the number of reactor cycles for the fuel in the core. Both ways entail additional requirements concerning fuel enrichment and burnable absorbers as additives and adjustments on the cladding material properties, such as mechanical treatment and chemical composition of the alloys. For these demands and needs ENUSA promotes the research on high burnup effects, gadolinium doped fuels and cladding material behaviour under irradiation. Various experiments, called IFA, are developed and performed also by providing materials. ENUSA collaborates with HRP on various experiments investigating the fuel densification and swelling, fission gas release, pressure limits on UO{sub 2} and (U,Gd)O{sub 2} fuels (IFA-504, -515, -636, -681); the cladding creep, lift-off, corrosion and hydrides on different tubing materials (IFA-567, -610, -638); instrumentation of the experiments, especially on pre-irradiated materials (IFA-533). These experiments are combined with model calculations to improve predictions for higher burnups and to maintain safety margins (IFA-515, -636, -681). Besides these unique in-pile experiments PIEs are performed as well on fuel and structural materials to complete the scope of these

  1. Novel Cryogenic Engineering Solutions for the New Australian Research Reactor Opal

    Science.gov (United States)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.; Schulz, J. C.; Thiering, R.; Gilbert, E. P.; Lu, W.; James, M.; Robinson, R. A.

    2008-03-01

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons. The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption). A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2nd half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions. A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2nd GM cryocooler (4K-300K) and a variable electric field can be applied.

  2. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  3. Operational experiences and coping with ageing effects of the IRT-Sofia research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krezhov, K. [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    1995-12-31

    The present paper gives a review on the efforts to cope with reactor equipment ageing effects and describes the major experience gained in the maintenance work necessary to keep the reactor in good condition throughout the years. Also, a short description of the modernization project with preserved reactor power level of 2 MW is given. (orig.)

  4. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  5. Development of in-vessel type control rod drive mechanism for a innovative small reactor (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Although the control rod drive mechanism of an existing large scale light water reactor is generally installed outside the reactor vessel, an in-vessel type control rod drive mechanism (INV-CRDM) is installed inside the reactor vessel. The INV-CRDM contributes to compactness and simplicity of the reactor system, and it can eliminate the possibility of a rod ejection accident. Therefore, INV-CRDM is an important technology adopted in an innovative small reactor. Japan Atomic Energy Research Institute (JAERI) has developed this type of CRDM driven by an electric motor, which can work under high temperature and high pressure water for the advanced marine reactor. On the basis of this research result, a driving motor coil and a bearing were developed to be used under the high temperature steam, severe condition for an innovative small reactor. About the driving motor, we manufactured the driving motor available for high temperature steam and carried out performance test under room temperature atmosphere to confirm the electric characteristic and coolability of the driving coil. With these test results and the past test results under high temperature water, we analyzed and evaluated the electric performance and coolability of the driving coil under high temperature steam. Concerning bearing, we manufactured the test pieces using some candidate material for material characteristic test and carried out the rolling wear test under high temperature steam to select the material. Consequently, we confirmed that performance of the driving coil for the advanced type driving motor, is enough to be used under high temperature steam. And, we evaluated the performance of the bearing and selected the material of the bearing, which can be used under high temperature steam. From these results, we have obtained the prospect that the INV-CRDM can be used for an innovative small reactor under steam atmosphere could be developed. (author)

  6. Decommissioning of commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Kohei [Japan Atomic Power Co., Tokyo (Japan)

    1997-02-01

    In the case of nuclear reactors, the diversion is often difficult as they are highly purposive, the disassembling is not easy as they are robust, and attention is required to handle the equipment containing radioactive substances. Decommissioning is defined as all the measures taken from the state that facilities become unused to the state of becoming green field. In Japan, already 40 years have elapsed since the effort for nuclear power was begun, and in this paper, the present state and future subjects of the decommissioning of nuclear power stations are summarized at the opportunity that the stop of commercial operation of Tokai Nuclear Power Station was decided recently. In the Tokai Nuclear Power Station, 166 MWe graphite-moderated, carbon dioxide-cooled reactor called improved Calder Hall type is installed, which started the operation in 1966. The circumstances of the decision to stop its operation are explained. The basic policy of the decommissioning of commercial nuclear power stations has been already published by the Advisory Committee for Energy. The state of the decommissioning in various foreign countries is reported. In Japan, the state of green field was realized in 1996 in the decommissioning of the JPDR in Japan Atomic Energy Research institute, and the decommissioning of the atomic powered ship ``Mutsu`` was completed. (K.I.)

  7. Design of a Control Room for Jordan Research and Training Reactor (JRTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Suh, Sang Moon; Lee, Hyun Chul; Park, Je Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Since the main role of JRTR(Jordan Research and Training Reactor) operating personnel is safe and reliable operation of the reactor, MCR(Main Control Room) and SCR(Supplementary Control Room) must provide them with sufficient information and controls needed to optimize their performance. Before the TMI accident, control room were generally designed just with intuitive common sense, without using any proper HFE(human factors engineering) practices. Many results derived from the analysis of TMI accident showed that a more comprehensive and systematic approaches to develop MCR design requirements were needed. Moreover changes of operators' role as a decision maker from a physical controller in rapid improvement of control system which resulted in higher automation clearly needed more featured regulatory requirements and guidelines. So many regulatory and industrial guidance for control room design have been developed by relevant institution and regulatory bodies. In this paper, a conceptual design of the JRTR control room in the effort of satisfying current regulatory requirements and guidelines are presented. And some information display design is also presented

  8. The Multi一physics Research on I ron一Core Vibration Noise of Power Reactor

    Directory of Open Access Journals (Sweden)

    LI U Ja

    2017-02-01

    Full Text Available On the basis of theoretical research releted to the magnetostriction and maxwell’.s equations,the fi- nite element coupling in the transient electromagnetic field coupling,structure and sound field coupling has been developed In thts paper by using the flnlte element sOftWare CO}IS01., Whleh establish a serles three-phase COT’e re- actor model, to analyzing the power frequency magnetic field distribution,core magnetostrictive displacement,max- well force displacement and sound pressure level of the three-phase series core reactor under the power frequency working state. According to transient magnetic field distribution in the simulation of the reactor,the magnetic flux density distribution inside the reactor and the vibration displacement distribution are calculated,the acoustic field distribution is measured alao. It is shown that physical field simulation results and measured data are basically in consisent by experiment,it is proved multi-physics coupling is an effective method for forecast of noise.

  9. Intense positron source at the Munich research reactor FRM-II

    CERN Document Server

    Hugenschmidt, C; Schreckenbach, K; Strasser, B; Koegel, G; Sperr, P; Triftshaeuser, W

    2002-01-01

    The principle and the design of the in-pile positron source at the new Munich research reactor FRM-II are presented. Absorption of high-energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd generates positrons by pair production. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR11 in the neutron field of the reactor, where an undisturbed thermal neutron flux up to 2 x 10 sup 1 sup 4 n cm sup - sup 2 s sup - sup 1 is expected. At this position the flux ratio of thermal to fast neutrons will be better than 10 sup 4. Monte Carlo calculations showed that a mean capture rate in cadmium between 4.5 and 6.0 x 10 sup 1 sup 3 n cm sup - sup 2 s sup - sup 1 can be expected. Inside the cadmium cap a structure of platinum foils is placed for converting gamma-radiation into positron-electron pairs. The heated foils also act as positron moderators to generate monoenergetic positrons. After acceleration to 5 keV a positron beam is formed by electric lenses and guid...

  10. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P. [SSC RF-IPPE, Kaluga (Russian Federation)

    2003-07-01

    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model.

  11. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  12. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... COMMISSION The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R... Operating License No. R-84 (Application), which currently authorizes the Armed Forces Radiobiology Research... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to operate...

  13. Temperature effect on IG-11 graphite wear performance

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xiaowei [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: xwluo@mail.tsnghua.edu.cn; Yu Suyuan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); Sheng Xuanyu [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Shuyan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    IG-11 graphite, used in the 10 MW high temperature gas-cooled test reactor (HTR-10), was tested under different temperatures on an SRV standard wear performance tester. The experiment temperatures were room temperature, 100, 200, 300 and 400 deg C. According to the reactor structure, the experiments were designed to test graphite-graphite and graphite-stainless steel wear. The wear debris was collected, and the worn surfaces and debris were observed under scanning electronic microscope (SEM). It was found that there were different wear mechanisms at different temperatures. The main wear mechanism at room temperature was abrasive wear; at 200 deg C, it was fatigue wear; at 400 deg C, adhesive wear was observed. This difference was mainly due to the change of stress distribution at the contact area. The distribution of wear debris was also analyzed by EDX particle analysis software.

  14. Nuclear non-proliferation: the U.S. obligation to accept spent fuel from foreign research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shapar, Howard K.; Egan, Joseph R. [Shaw, Pittman, Potts and Trowbridge (United States)

    1995-12-31

    The U.S. Department of Energy (DOE) had a 35-year program for the sale and receipt (for reprocessing) of high-enriched research reactor fuel for foreign research reactors, executed pursuant to bilateral agreements with nuclear trading partners. In 1988, DOE abruptly let this program lapse, citing environmental obstacles. DOE promised to renew the program upon completion of an environmental review which was to take approximately six months. After three and a half years, an environmental assessment was finally produced.Over a year and half elapsed since publication of the assessment before DOE finally took action to renew the program. The paper sets forth the nuclear non-proliferation and related foreign policy considerations which support renewal of the program. It also summarized the contractual and other commitments made to foreign research reactors and foreign governments and aspects of U.S. environmental law as they apply to continuation of the program. (author).

  15. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  16. The Influence of Pores on Irradiation Property of Selected Nuclear Graphites

    Directory of Open Access Journals (Sweden)

    Zhengcao Li

    2012-01-01

    Full Text Available As structural material and moderator in high temperature gas-cooled reactor (HTGR, nuclear graphite endures large flux of irradiation in its service time. The microstructure of nuclear graphite is a topical issue studied to predict the irradiation property of graphite and improve manufacturing process. In our present work, the pores in graphite are focused, and the relationship between pore and irradiation behavior is discussed. Three kinds of nuclear graphite (IG-11, NBG-18, and HSM-SC are concerned, and their porosity, pore size, and morphology before and after irradiation are studied, respectively. A comparison between the three graphites shows that dense small pores which are uniformly distributed in graphite bring better irradiation property because the pores can accommodate some of the internal stress caused by irradiation expansion. Coke particles of small size and a thorough mixture between coke and binder are suggested to obtain such pores in nuclear graphite and thus improve irradiation property.

  17. Oxidation and Explosion Characteristics of Nuclear Graphite Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungseon; Kim, Minhwan; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yihyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Each sub-module has a seven-layer breeding zone: three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebble packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures due to the relative motion or thermal cycle during operation may produce graphite dust. It is thought that the graphite dust is more oxidative than bulk graphite, and thus oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the oxidation and explosion behaviors of ball-milled nuclear graphite powder were investigated. An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with a reduction of the particle size, but decreased with the chemisorption of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure.

  18. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  19. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  20. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  1. Assessment of the Implementation of a Neutron Measurement System During the Commissioning of the Jordan Research and Training Reactor

    Directory of Open Access Journals (Sweden)

    Sanghoon Bae

    2017-04-01

    Full Text Available The Jordan Research and Training Reactor (JRTR is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

  2. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  3. Fuel management optimization for the WWR-M research reactor in Kiev

    Energy Technology Data Exchange (ETDEWEB)

    Mahlers, Y.P. [Institute for Nuclear Research Prospect Nauki 47, Kiev 252022 (Ukraine)

    2002-07-01

    Core loading patterns, number and types of fuel assemblies in the core as well as discharged fuel burnup are determined for the WWR-M research reactor in Kiev by the optimization procedure providing high neutron flux under the safety and fuel constraints. For neutronics calculation, the iterational hybrid method combining diffusion model with higher approximations of neutron transport equation is applied. The results of calculation are shown to be consistent with the results of measurement. To determine the best placement of fuel assemblies in the core, successive mixed-integer linear programming and backward diffusion calculation is used. An example of maximization of thermal neutron flux in large channels in the core is demonstrated. (author)

  4. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Science.gov (United States)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  5. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  6. Elements of record management system for the RA research reactor decommissioning

    Directory of Open Access Journals (Sweden)

    Stejić Milijana

    2004-01-01

    Full Text Available According to latest recommendations, the record management system of a nuclear facility should operate as a part of the integrated management information system, and is implemented at the very beginning of the facility’s life cycle. The record management becomes particularly important at the end of the operation of a facility and then the operational record management system gradually transforms to a decommissioning one. However there is a significant number of nuclear facilities in the world which have reached the decommissioning stage with out having neither the initial decommissioning plan nor the established record management system. The objective of this paper is to introduce constituted elements of the record management system for the decommissioning of the RA research reactor in the VINČA Institute of Nuclear Sciences, and to discuss future planned actions related to this matter.

  7. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    Science.gov (United States)

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  8. Generation IV Reactor Safety and Materials Research by the Institute for Energy and Transport at the European Commission's Joint Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tuček, K., E-mail: kamil.tucek@ec.europa.eu; Tsige-Tamirat, H.; Ammirabile, L.; Lázaro, A.; Grah, A.; Carlsson, J.; Döderlein, Ch.; Oettingen, M.; Fütterer, M.A.; D’Agata, E.; Laurie, M.; Turba, K.; Ohms, C.; Nilsson, K.-F.; Hähner, P.

    2013-12-15

    To support the drafting, development, implementation and monitoring of European energy and transport policy, the Institute for Energy and Transport of the European Commissions’ Joint Research Centre conducts pre-competitive research in the areas of experimental qualification of advanced fuels and materials as well as simulation and modelling of reactor safety and material performance. The work covers assessments, design optimisation and improvements to the safety and performance of new, innovative reactor systems, materials and instrumentation, in order to meet the EU's long-term energy needs while respecting enhanced safety, sustainability, and economic aspects. The research is linked, and contributes, to related EURATOM Framework Programme projects, Generation IV International Forum (GIF), International Atomic Energy Agency as well as OECD's Nuclear Energy Agency (OECD NEA) activities. The current paper gives an overview and examples of past, current, and upcoming activities in the areas of reactor safety assessments, advanced fuel irradiation and materials research.

  9. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, October 1976-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, A.

    1979-01-01

    DOE Contract No. EY-76-S-02-4078 was started in October 1976 to set up an investigative radiochemical facility at the Yale Medical Center which would bridge the gap between current investigation with radionuclides at the Yale School of Medicine and the facilities in the Chemistry Department at the Brookhaven National Laboratory. To facilitate these goals, Dr. Mathew L. Thakur was recruited who joined the Yale University faculty in March of 1977. This report briefly summarizes our research accomplishments through the end of June 1979. These can be broadly classified into three categories: (1) research using indium-111 labelled cellular blood components; (2) development of new radiopharmaceuticals; and (3) interaction with Dr. Alfred Wolf and colleagues in the Chemistry Department of Brookhaven National Laboratory.

  10. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, G. van [Nuclear Fission and Radiation Protection European Commission, Building MO75-5-34, B-1049 Brussels (Belgium)]. E-mail: georges.van-goethem@cec.eu.int

    2004-07-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  11. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code shows good agreement between simulation and actual ACRR operations.

  12. Design and development of fast pneumatic transfer system (PTS) for instrumental neutron activation analysis at Jordan research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yongsam; Kim, Sunha; Moon, Jonghwa; Choi, Jinbok; Lee, Jongmin; Ryu, Jungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    A pneumatic transfer system (PTS) is one of the important equipment used for an neutron irradiation of a target material for an instrumental neutron activation analysis (INAA) in a research reactor. In particular, a rapid pneumatic transportation of irradiation capsule is essential for an accurate measurement of a short half-life nuclide. Three types of PTS for NAA facility at the Jordan Research and Training Reactor (JRTR) were newly developed for a functional improvement involving a manual and an automatic system which is equipped with programmable logic controller, software, and 13 devices to facilitate optimal operation of the system. In this paper, the designs and construction of these PTS, the operation and control of the system are described. In addition, a functional and operational test of the system were carried out as one of the basic requirement and characteristic parameters, and the results were reported to provide a user information as well as for the management and safety of the reactor.

  13. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  14. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  15. Modeling of graphite oxide

    OpenAIRE

    Boukhvalov, D. W.; Katsnelson, M. I.

    2008-01-01

    Based on density functional calculations, optimized structures of graphite oxide are found for various coverage by oxygen and hydroxyl groups, as well as their ratio corresponding to the minimum of total energy. The model proposed describes well known experimental results. In particular, it explains why it is so difficult to reduce the graphite oxide up to pure graphene. Evolution of the electronic structure of graphite oxide with the coverage change is investigated.

  16. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  17. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    Energy Technology Data Exchange (ETDEWEB)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F. [National Institute for Nuclear science and Technology French Atomic Energy and Alternative Energies Commission (CEA), Saclay Research Center, 91191 Gif-sur-Yvette (France)

    2015-07-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CF