WorldWideScience

Sample records for bromide-polysulphide redox flow

  1. Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: Evaluation of a utility-scale system

    International Nuclear Information System (INIS)

    Scamman, Daniel P.; Roberts, Edward P.L.; Reade, Gavin W.

    2009-01-01

    Numerical modelling of redox flow battery (RFB) systems allows the technical and commercial performance of different designs to be predicted without costly lab, pilot and full-scale testing. A numerical model of a redox flow battery was used in conjunction with a simple cost model incorporating capital and operating costs to predict the technical and commercial performance of a 120 MWh/15 MW utility-scale polysulphide-bromine (PSB) storage plant for arbitrage applications. Based on 2006 prices, the system was predicted to make a net loss of 0.45 p kWh -1 at an optimum current density of 500 A m -2 and an energy efficiency of 64%. The system was predicted to become economic for arbitrage (assuming no further costs were incurred) if the rate constants of both electrolytes could be increased to 10 -5 m s -1 , for example by using a suitable (low cost) electrocatalyst. The economic viability was found to be strongly sensitive to the costs of the electrochemical cells and the electrical energy price differential. (author)

  2. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  3. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  4. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  5. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  6. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  7. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  8. Redox flow batteries having multiple electroactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Liyu; Yang, Zhenguo; Nie, Zimin

    2018-05-01

    Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.

  9. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  10. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  11. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  12. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu

    2006-01-01

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np 3+ ,Np 4+ ||NpO 2 + ,NpO 2 2+ |(+), and U battery (-)|[U III T 2 ] - ,[U IV T 2 ] 0 ||[U V O 2 T] - ,[U VI O 2 T] 0 |(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm 2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  13. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  14. Polyarene mediators for mediated redox flow battery

    Science.gov (United States)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  15. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  16. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  17. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  18. Aqueous electrolytes for redox flow battery systems

    Science.gov (United States)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  19. Fe-V redox flow batteries

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  20. High energy density redox flow device

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  1. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  2. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  3. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  4. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  5. Redox active polymers and colloidal particles for flow batteries

    Science.gov (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy

    2018-05-29

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  6. A biomimetic redox flow battery based on flavin mononucleotide

    OpenAIRE

    Orita, A; Verde, MG; Sakai, M; Meng, YS

    2016-01-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactio...

  7. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  8. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  10. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  11. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    OpenAIRE

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes ...

  12. A biomimetic redox flow battery based on flavin mononucleotide.

    Science.gov (United States)

    Orita, Akihiro; Verde, Michael G; Sakai, Masanori; Meng, Ying Shirley

    2016-10-21

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  13. A biomimetic redox flow battery based on flavin mononucleotide

    Science.gov (United States)

    Orita, Akihiro; Verde, Michael G.; Sakai, Masanori; Meng, Ying Shirley

    2016-10-01

    The versatility in design of redox flow batteries makes them apt to efficiently store energy in large-scale applications at low cost. The discovery of inexpensive organic electroactive materials for use in aqueous flow battery electrolytes is highly attractive, but is thus far limited. Here we report on a flow battery using an aqueous electrolyte based on the sodium salt of flavin mononucleotide. Flavins are highly versatile electroactive molecules, which catalyse a multitude of redox reactions in biological systems. We use nicotinamide (vitamin B3) as a hydrotropic agent to enhance the water solubility of flavin mononucleotide. A redox flow battery using flavin mononucleotide negative and ferrocyanide positive electrolytes in strong base shows stable cycling performance, with over 99% capacity retention over the course of 100 cycles. We hypothesize that this is enabled due to the oxidized and reduced forms of FMN-Na being stabilized by resonance structures.

  14. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  15. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    Science.gov (United States)

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  16. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  17. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  18. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  19. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  1. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    Science.gov (United States)

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  2. Neutral Red and Ferroin as Reversible and Rapid Redox Materials for Redox Flow Batteries.

    Science.gov (United States)

    Hong, Jeehoon; Kim, Ketack

    2018-04-17

    Neutral red and ferroin are used as redox indicators (RINs) in potentiometric titrations. The rapid response and reversibility that are prerequisites for RINs are also desirable properties for the active materials in redox flow batteries (RFBs). This study describes the electrochemical properties of ferroin and neutral red as a redox pair. The rapid reaction rates of the RINs allow a cell to run at a rate of 4 C with 89 % capacity retention after the 100 th  cycle. The diffusion coefficients, electrode reaction rates, and solubilities of the RINs were determined. The electron-transfer rate constants of ferroin and neutral red are 0.11 and 0.027 cm s -1 , respectively, which are greater than those of the components of all-vanadium and Zn/Br 2 cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Double-membrane triple-electrolyte redox flow battery design

    Science.gov (United States)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  4. Towards a thermally regenerative all-copper redox flow battery

    OpenAIRE

    Peljo, Pekka; Lloyd, David; Nguyet, Doan; Majaneva, Marko; Kontturi, Kyosti

    2014-01-01

    An all-copper redox flow battery based on strong complexation of Cu+ with acetonitrile is demonstrated, exhibiting reasonable battery performance. More interestingly, the battery can be charged by heat sources of 100 degrees C, by distilling off the acetonitrile. This destabilizes the Cu+ complex, leading to recovery of the starting materials.

  5. Towards a thermally regenerative all-copper redox flow battery.

    Science.gov (United States)

    Peljo, Pekka; Lloyd, David; Doan, Nguyet; Majaneva, Marko; Kontturi, Kyösti

    2014-02-21

    An all-copper redox flow battery based on strong complexation of Cu(+) with acetonitrile is demonstrated, exhibiting reasonable battery performance. More interestingly, the battery can be charged by heat sources of 100 °C, by distilling off the acetonitrile. This destabilizes the Cu(+) complex, leading to recovery of the starting materials.

  6. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  7. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  8. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  9. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  10. Evaluation of electrolytes for redox flow battery applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.

    2007-01-01

    A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac) 3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy) 3 ](ClO 4 ) 2 in acetonitrile was found to exhibit poor charge/discharge performance

  11. Redox flow batteries based on supporting solutions containing chloride

    Science.gov (United States)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  12. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  13. Redox flow batteries based on supporting solutions containing chloride

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  14. Optimization of a Vanadium Redox Flow Battery with Hydrogen generation

    OpenAIRE

    Wrang, Daniel

    2016-01-01

    We consider the modelling and optimal control of energy storage systems, in this study a Vanadium Redox Flow Battery. Such a battery can be introduced in the electrical grid to be charged when demand is low and discharged when demand is high, increasing the overall efficiency of the network while reducing costs and emission of greenhouse gases. The model of the battery proposed in this study is less complex than the majority of models on batteries and energy storage systems found in literatur...

  15. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  16. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  17. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  18. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  20. Critical safety features of the vanadium redox flow battery

    Science.gov (United States)

    Whitehead, A. H.; Rabbow, T. J.; Trampert, M.; Pokorny, P.

    2017-05-01

    In this work the behaviour of the vanadium redox flow battery is examined under a variety of short-circuit conditions (e.g. with and without the pumps stopping as a result of the short). In contrast to other battery types, only a small proportion of the electroactive material, in a flow battery, is held between the electrodes at any given time. Therefore, together with the relatively low energy density of the vanadium electrolyte, the immediate release of energy, which occurs as a result of electrical shorting, is somewhat limited. The high heat capacity of the aqueous electrolyte is also beneficial in limiting the temperature rise. It will be seen that the flow battery is therefore considerably safer than other battery types, in this respect.

  1. Optimal scheduling for distribution network with redox flow battery storage

    International Nuclear Information System (INIS)

    Hosseina, Majid; Bathaee, Seyed Mohammad Taghi

    2016-01-01

    Highlights: • A novel method for optimal scheduling of storages in radial network is presented. • Peak shaving and load leveling are the main objectives. • Vanadium redox flow battery is considered as the energy storage unit. • Real data is used for simulation. - Abstract: There are many advantages to utilize storages in electric power system. Peak shaving, load leveling, load frequency control, integration of renewable, energy trading and spinning reserve are the most important of them. Batteries, especially redox flow batteries, are one of the appropriate storages for utilization in distribution network. This paper presents a novel, heuristic and practical method for optimal scheduling in distribution network with flow battery storage. This heuristic method is more suitable for scheduling and operation of distribution networks which require installation of storages. Peak shaving and load leveling is considered as the main objective in this paper. Several indices are presented in this paper for determine the place of storages and also scheduling for optimal use of energy in them. Simulations of this paper are based on real information of distribution network substation that located in Semnan, Iran.

  2. Redox-Flow-Batterie mit außenliegender Versorgungsleitung

    OpenAIRE

    Seipp, Thorsten; Dötsch, Christian; Berthold, Sascha

    2011-01-01

    A redox flow battery (1, 1') is presented and described, having at least one cell frame (4) surrounding a cell interior space (7) and having at least one supply line (2, 2') provided outside the cell frame (4) for supplying electrolyte to the cell interior space (7) and/or at least one disposal line (3, 3') provided outside the cell frame (4) for removing electrolyte from the cell interior space (4). In order to make greater degrees of freedom available in designing the cell so as to provide ...

  3. Zelle und Zellstack einer Redox-Flow-Batterie

    OpenAIRE

    Seipp, Thorsten; Berthold, Sascha; Burfeind, Jens; Kopietz, Lukas

    2015-01-01

    Source: WO15007543A1 [EN] The invention illustrates and describes a cell (1) of a redox flow battery, having at least one cell frame element (2, 3, 4), a diaphragm (15) and two electrodes (5), wherein the at least one cell frame element (2, 3, 4), the diaphragm (15) and the two electrodes (5) surround two cell interior spaces (10) which are separate from one another, wherein at least four separate channels (6, 7, 8, 9) are provided in the at least one cell frame element (2, 3, 4) such that di...

  4. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  5. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  6. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  7. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    Science.gov (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  9. Ruthenium based redox flow battery for solar energy storage

    International Nuclear Information System (INIS)

    Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung; Saleem, Muhammad

    2011-01-01

    Research highlights: → Undivided redox flow battery employing porous graphite felt electrodes was used. → Ruthenium acetylacetonate dissolved in acetonitrile was the electrolyte. → Charge/discharge conditions were determined for both 0.02 M and 0.1 M electrolytes. → Optimum power output of 0.180 W was also determined for 0.1 M electrolyte. → 55% voltage efficiency was obtained when battery was full of electrolytes. -- Abstract: The technical performance for the operation of a stand alone redox flow battery system for solar energy storage is presented. An undivided reactor configuration has been employed along with porous graphite felt electrodes and ruthenium acetylacetonate as electrolyte in acetonitrile solvent. Limiting current densities are determined for concentrations of 0.02 M and 0.1 M ruthenium acetylacetonate. Based on these, operating conditions for 0.02 M ruthenium acetylacetonate are determined as charging current density of 7 mA/cm 2 , charge electrolyte superficial velocity of 0.0072 cm/s (through the porous electrodes), discharge current density of 2 mA/cm 2 and discharge electrolyte superficial velocity of 0.0045 cm/s. An optimum power output of 35 mW is also obtained upon discharge at 2.1 mA/cm 2 . With an increase in the concentration of ruthenium species from 0.02 M to 0.1 M, the current densities and power output are higher by a factor of five approximately (at same superficial velocities) due to higher mass transport phenomenon. Moreover at 0.02 M concentration the voltage efficiency is better for battery full of electrolytes prior to charging (52.1%) in comparison to an empty battery (40.5%) due to better mass transport phenomenon. Voltage efficiencies are higher as expected at concentrations of 0.1 M ruthenium acetylacetonate (55% when battery is full of electrolytes and 48% when empty) showing that the all-ruthenium redox flow battery has some promise for future applications in solar energy storage. Some improvements for the

  10. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  11. Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery.

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-07-07

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of ~82% and a specific discharge energy density similar to those of aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  12. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  13. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  14. Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Sang-Ho Cha

    2015-01-01

    Full Text Available The vanadium redox flow battery (VRB has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low pollution emissions in large-scale energy storage. The key component of VRB is an ion exchange membrane that prevents cross mixing of the positive and negative electrolytes by separating two electrolyte solutions, while allowing the conduction of ions. This review summarizes efforts in developing nanocomposite membranes with reduced vanadium ion permeability and improved proton conductivity in order to achieve high performance and long life of VRB systems. Moreover, functionalized nanocomposite membranes will be reviewed for the development of next-generation materials to further improve the performance of VRB, focusing on their properties and performance of VRB.

  15. Performance Modeling of a Vanadium Redox Flow Battery during Discharging

    International Nuclear Information System (INIS)

    Yang, W.W.; He, Y.L.; Li, Y.S.

    2015-01-01

    A two-dimensional quasi-steady-state model is presented to simulate coupled mass-species-charge transfer and electrochemical reactions in all vanadium redox flow battery. Emphasis is located on examining the influences of applied current density, initial vanadium concentration, initial acid concentration and electrolyte flow rate on overpotentials in both electrodes, ohmic loss in electrolyte phase as well as battery discharging voltage. It is indicated that overpotential in negative electrode is the dominant factor causing the loss of battery discharging voltage at relatively lower or higher state of charge, while ohmic loss in electrolyte phase is dominant when discharging at moderate state of charge. Increasing initial vanadium concentration, the battery discharging voltage is significantly increased due to the reduced overpotentials in both electrodes. With the increase in initial acid concentration, the battery discharging voltage is also obviously increased because of increased open circuit voltage and decreased ohmic loss in electrolyte phase. As the electrolyte flow rate increases, the total discharging time is extended due to the retarded concentration polarization and the battery discharging voltage is obviously increased at lower state of charge

  16. Performance of a vanadium redox flow battery with and without flow fields

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The performances of a VRFB with/without flow fields are compared. • The respective maximum power efficiency occurs at different flow rates. • The battery with flow fields Exhibits 5% higher energy efficiency. - Abstract: A flow field is an indispensable component for fuel cells to macroscopically distribute reactants onto electrodes. However, it is still unknown whether flow fields are also required in all-vanadium redox flow batteries (VRFBs). In this work, the performance of a VRFB with flow fields is analyzed and compared with the performance of a VRFB without flow fields. It is demonstrated that the battery with flow fields has a higher discharge voltage at higher flow rates, but exhibits a larger pressure drop. The maximum power-based efficiency occurs at different flow rates for the both batteries with and without flow fields. It is found that the battery with flow fields Exhibits 5% higher energy efficiency than the battery without flow fields, when operating at the flow rates corresponding to each battery's maximum power-based efficiency. Therefore, the inclusion of flow fields in VRFBs can be an effective approach for improving system efficiency

  17. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  18. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  19. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A coupled three dimensional model of vanadium redox flow battery for flow field designs

    International Nuclear Information System (INIS)

    Yin, Cong; Gao, Yan; Guo, Shaoyun; Tang, Hao

    2014-01-01

    A 3D (three-dimensional) model of VRB (vanadium redox flow battery) with interdigitated flow channel design is proposed. Two different stack inlet designs, single-inlet and multi-inlet, are structured in the model to study the distributions of fluid pressure, electric potential, current density and overpotential during operation of VRB cell. Electrolyte flow rate and stack channel dimension are proved to be the critical factors affecting flow distribution and cell performance. The model developed in this paper can be employed to optimize both VRB stack design and system operation conditions. Further improvements of the model concerning current density and electrode properties are also suggested in the paper. - Highlights: • A coupled three-dimensional model of vanadium redox flow cell is proposed. • Interdigitated flow channels with two different manifold designs are simulated. • Manifold structure affects uniformity of distribution patterns significantly. • Increased electrolyte flow rate improves cell performance for both designs. • Decreased channel size and enlarged land width enhance cell voltage

  1. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    International Nuclear Information System (INIS)

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  2. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    Science.gov (United States)

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  4. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  5. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  6. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    Science.gov (United States)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  7. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  8. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  9. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Chunmei; Wang, Haining; Lu, Shanfu; Wu, Chunxiao; Liu, Yiyang; Tan, Qinglong; Liang, Dawei; Xiang, Yan

    2015-01-01

    Titanium nitride nanoparticles (TiN NPs) are proposed as a novel catalyst towards the V(II)/V(III) redox pair for the negative electrode in vanadium redox flow batteries (VRFB). Electrochemical properties of TiN NPs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that TiN NPs demonstrate better electrochemical activity and reversibility for the processes of V(II)/V(III) redox couples as compared with the graphite NPs. TiN NPs facilitate the charge transfer in the V(II)/V(III) redox reaction. Performance of a VRFB using a TiN NPs coated carbon paper as a negative electrode is much higher than that of a VRFB with a raw carbon paper electrode. The columbic efficiency (CE), the voltage efficiency (VE) and the energy efficiency (EE) of the VRFB single cell at charge-discharge current density of 30 mA/cm 2 are 91.74%, 89.11% and 81.74%, respectively. During a 50 charge-discharge cycles test, the CE values of VRFB with TiN NPs consistently remain higher than 90%.

  10. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    DEFF Research Database (Denmark)

    Liao, Shichao; Zong, Xu; Seger, Brian

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelect......Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient...... photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge...

  11. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  12. Multicomponent transport in membranes for redox flow batteries

    Science.gov (United States)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  13. Innovative model-based flow rate optimization for vanadium redox flow batteries

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2016-11-01

    In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.

  14. High-energy-density, aqueous, metal-polyiodide redox flow batteries

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-08-29

    Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M.sup.2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I.sup.-, anions of I.sub.x (for x.gtoreq.3), or both in an aqueous solution, wherein the I.sup.- and the anions of I.sub.x (for x.gtoreq.3) compose an active redox couple in a second half-cell.

  15. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pezeshki, Alan M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delnick, Frank M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, Douglas S. [Univ. of Tennessee, Knoxville, TN (United States); Mench, Matthew M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-16

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V2+/V3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  16. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    International Nuclear Information System (INIS)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.; Aaron, Douglas S.; Mench, Matthew M.

    2017-01-01

    An improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+ /V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  17. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application

    International Nuclear Information System (INIS)

    Wen, Y.H.; Zhang, H.M.; Qian, P.; Zhou, H.T.; Zhao, P.; Yi, B.L.; Yang, Y.S.

    2006-01-01

    The electrochemical behavior of the Fe(III)/Fe(II)-triethanolamine(TEA) complex redox couple in alkaline medium and influence of the concentration of TEA were investigated. A change of the concentration of TEA mainly produces the following two results. (1) With an increase of the concentration of TEA, the solubility of the Fe(III)-TEA can be increased to 0.6 M, and the solubility of the Fe(II)-TEA is up to 0.4 M. (2) In high concentration of TEA with the ratio of TEA to NaOH ranging from 1 to 6, side reaction peaks on the cathodic main reaction of the Fe(III)-TEA complex at low scan rate can be minimized. The electrode process of Fe(III)-TEA/Fe(II)-TEA is electrochemically reversible with higher reaction rate constant than the uncomplexed species. Constant current charge-discharge shows that applying anodic active materials of relatively high concentrations facilitates the improvement of cell performance. The open-circuit voltage of the Fe-TEA/Br 2 cell with the Fe(III)-TEA of 0.4 M, after full charging, is nearly 2.0 V and is about 32% higher than that of the all-vanadium batteries, together with the energy efficiency of approximately 70%. The preliminary exploration shows that the Fe(III)-TEA/Fe(II)-TEA couple is electrochemically promising as negative redox couple for redox flow battery (RFB) application

  18. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Redox flow batteries. Already an alternative storage solution for hybrid PV mini-grids?

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Dennenmoser, Martin; Schwunk, Simon; Smolinka, Tom [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Doetsch, Christian; Berthold, Sascha [Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Oberhausen (Germany); Tuebke, Jens; Noack, Jens [Fraunhofer Institute for Chemical Technology (ICT), Karlsruhe (Germany)

    2010-07-01

    Due to the flexible scalability of the power to energy ratio redox flow batteries are a suitable solution for quite a lot of decentralized applications. E.g. the autonomy time of a stand-alone system or mini-grid can be raised by increasing the tank size of the redox flow battery. In this paper the test site ''Rappenecker Hof'' in the black forest is used as an example for simulation based life cycle cost analyses of a vanadium redox flow battery integrated in an autonomous hybrid PV system. Two cases with lead acid batteries are considered as benchmarks for economic viability of the redox flow battery solution in such applications. At the moment a 1 KW / 6 kWh system for decentralized solutions is developed and will be installed in the ''Solarhaus'' in Freiburg. The main results of the cell stack and system design as well as performance data are presented. Furthermore simulation models and the model based development of the ''Smart Redox flow Control'' are described. For the optimized integration of the storage unit in the energy system a communication interface for exchanging data with the supervisory energy management system is introduced. On this basis a SOC forecast according to a given demand profile can be determined. (orig.)

  20. A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2017-08-01

    A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.

  1. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  2. Electrocatalysis in the vanadium redox flow battery and coupling the redox flow battery with the fuel cell

    OpenAIRE

    Britz, Anette Beata

    2015-01-01

    In den Redox-Fluss-Batterien (RFB) bilden die Funktionskomponenten: Elektrode, Membran und Elektrolyt die limitierenden Faktoren für die Leistung der Batterie. Als Elektrodenmaterial werden kohlenstoffbasierte Materialien verwendet. Durch geeignete Modifizierung dieser Elektroden kann die Stromdichte sowie die Energieeffizienz verbessert werden. Die richtige Wahl der Membran kann einem Kapazitätsverlust während der Lade- und Entladezyklen entgegenwirken. In dieser Arbeit wurden die Funktio...

  3. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    Science.gov (United States)

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-05-04

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

  4. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  5. Measurement of the Structure and Molecular Dynamics of Ionic Solutions for Redox Flow Battery

    Science.gov (United States)

    Li, Zhixia; Robertson, Lily; Moore, Jeffery; Zhang, Yang

    Redox flow battery (RFB) is a promising electrical energy storage technology with great potential to finally realize alternative energy sources for the next-generation vehicles and at grid scales. The design of RFB is unique as the power scales separately from the energy capacity. The latter depends on the size of storage tanks and the concentration of the active materials. Redox-active organic molecules are excellent candidates with high synthetic tunability for both redox properties as well as, importantly, solubility. However, upon increasing concentrations, the flow cell has less cycling stability and more capacity fade. Further, after charging the battery, the viscosity increases while the ionic conductivity decreases, and thus the cell becomes overall ineffective. To understand the mechanism of the increased viscosity, we performed differential scanning calorimetry, wide and small angle X-rays scattering, and quasi-elastic neutron scattering measurements. Herein, we will present the measurement results and relative analysis.

  6. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  7. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  8. Real-time monitoring of capacity loss for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  9. A Step-by-Step Design Methodology for a Base Case Vanadium Redox-Flow Battery

    Science.gov (United States)

    Moore, Mark; Counce, Robert M.; Watson, Jack S.; Zawodzinski, Thomas A.; Kamath, Haresh

    2012-01-01

    The purpose of this work is to develop an evolutionary procedure to be used by Chemical Engineering students for the base-case design of a Vanadium Redox-Flow Battery. The design methodology is based on the work of Douglas (1985) and provides a profitability analysis at each decision level so that more profitable alternatives and directions can be…

  10. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  11. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A high-energy-density redox flow battery based on zinc/polyhalide chemistry.

    Science.gov (United States)

    Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin

    2012-05-01

    Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    Science.gov (United States)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  14. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  15. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  16. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains.

    Science.gov (United States)

    Léger, Christophe; Lederer, Florence; Guigliarelli, Bruno; Bertrand, Patrick

    2006-01-11

    In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".

  17. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries

    Science.gov (United States)

    Hollas, Aaron; Wei, Xiaoliang; Murugesan, Vijayakumar; Nie, Zimin; Li, Bin; Reed, David; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2018-06-01

    Aqueous soluble organic (ASO) redox-active materials have recently attracted significant attention as alternatives to traditional transition metal ions in redox flow batteries (RFB). However, reported reversible capacities of ASO are often substantially lower than their theoretical values based on the reported maximum solubilities. Here, we describe a phenazine-based ASO compound with an exceptionally high reversible capacity that exceeds 90% of its theoretical value. By strategically modifying the phenazine molecular structure, we demonstrate an increased solubility from near-zero with pristine phenazine to as much as 1.8 M while also shifting its redox potential by more than 400 mV. An RFB based on a phenazine derivative (7,8-dihydroxyphenazine-2-sulfonic acid) at its near-saturation concentration exhibits an operating voltage of 1.4 V with a reversible anolyte capacity of 67 Ah l-1 and a capacity retention of 99.98% per cycle over 500 cycles.

  18. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A redox-flow battery with an alloxazine-based organic electrolyte

    Science.gov (United States)

    Lin, Kaixiang; Gómez-Bombarelli, Rafael; Beh, Eugene S.; Tong, Liuchuan; Chen, Qing; Valle, Alvaro; Aspuru-Guzik, Alán; Aziz, Michael J.; Gordon, Roy G.

    2016-09-01

    Redox-flow batteries (RFBs) can store large amounts of electrical energy from variable sources, such as solar and wind. Recently, redox-active organic molecules in aqueous RFBs have drawn substantial attention due to their rapid kinetics and low membrane crossover rates. Drawing inspiration from nature, here we report a high-performance aqueous RFB utilizing an organic redox compound, alloxazine, which is a tautomer of the isoalloxazine backbone of vitamin B2. It can be synthesized in high yield at room temperature by single-step coupling of inexpensive o-phenylenediamine derivatives and alloxan. The highly alkaline-soluble alloxazine 7/8-carboxylic acid produces a RFB exhibiting open-circuit voltage approaching 1.2 V and current efficiency and capacity retention exceeding 99.7% and 99.98% per cycle, respectively. Theoretical studies indicate that structural modification of alloxazine with electron-donating groups should allow further increases in battery voltage. As an aza-aromatic molecule that undergoes reversible redox cycling in aqueous electrolyte, alloxazine represents a class of radical-free redox-active organics for use in large-scale energy storage.

  20. The quasi-steady state of all-vanadium redox flow batteries: A scale analysis

    International Nuclear Information System (INIS)

    Sharma, A.K.; Vynnycky, M.; Ling, C.Y.; Birgersson, E.; Han, M.

    2014-01-01

    Highlights: • We present a transient 2D model for a VRFB (conservation of species and charge); • Carry out scale analysis of the species conservation equation; • Derive the condition characterizing the quasi-steadiness of VRFB operation; • Verify it by comparing charge-discharge curve with transient simulations. - Abstract: In general, mathematical models for all-vanadium redox flow batteries (VRFB) that seek to capture the transport phenomena are transient in nature. In this paper, we carry out scale analysis of VRFB operation and derive the conditions when it can be assumed to be quasi-steady state in nature, i.e., time-dependence only through a boundary condition. We find that it is true for typical tank volume and flow rate employed for VRFBs. The proposed analysis is generic and can also be employed for other types of redox flow batteries

  1. Operating a redox flow battery with a negative electrolyte imbalance

    Science.gov (United States)

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  2. A dynamic performance model for redox-flow batteries involving soluble species

    International Nuclear Information System (INIS)

    Shah, A.A.; Watt-Smith, M.J.; Walsh, F.C.

    2008-01-01

    A transient modelling framework for a vanadium redox-flow battery (RFB) is developed and experiments covering a range of vanadium concentration and electrolyte flow rate are conducted. The two-dimensional model is based on a comprehensive description of mass, charge and momentum transport and conservation, and is combined with a global kinetic model for reactions involving vanadium species. The model is validated against the experimental data and is used to study the effects of variations in concentration, electrolyte flow rate and electrode porosity. Extensions to the model and future work are suggested

  3. Critical transport issues for improving the performance of aqueous redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2017-01-01

    As the fraction of electricity generated from intermittent renewable sources (such as solar and wind) grows, developing reliable energy storage technologies to store electrical energy in large scale is of increasing importance. Redox flow batteries are now enjoying a renaissance and regarded as a leading technology in providing a well-balanced solution for current daunting challenges. In this article, state-of-the-art studies of the complex multicomponent transport phenomena in aqueous redox flow batteries, with a special emphasis on all-vanadium redox flow batteries, are reviewed and summarized. Rather than elaborating on the details of previous experimental and numerical investigations, this article highlights: i) the key transport issues in each battery's component that need to be tackled so that the rate capability and cycling stability of flow batteries can be significantly improved, ii) the basic mechanisms that control the active species/ion/electron transport behaviors in each battery's component, and iii) the key experimental and numerical findings regarding the correlations between the multicomponent transport processes and battery performance.

  4. State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density

    Science.gov (United States)

    Ressel, Simon; Bill, Florian; Holtz, Lucas; Janshen, Niklas; Chica, Antonio; Flower, Thomas; Weidlich, Claudia; Struckmann, Thorsten

    2018-02-01

    The operation of vanadium redox flow batteries requires reliable in situ state of charge (SOC) monitoring. In this study, two SOC estimation approaches for the negative half cell are investigated. First, in situ open circuit potential measurements are combined with Coulomb counting in a one-step calibration of SOC and Nernst potential which doesn't need additional reference SOCs. In-sample and out-of-sample SOCs are estimated and analyzed, estimation errors ≤ 0.04 are obtained. In the second approach, temperature corrected in situ electrolyte density measurements are used for the first time in vanadium redox flow batteries for SOC estimation. In-sample and out-of-sample SOC estimation errors ≤ 0.04 demonstrate the feasibility of this approach. Both methods allow recalibration during battery operation. The actual capacity obtained from SOC calibration can be used in a state of health model.

  5. A three-dimensional model for negative half cell of the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Ma Xiangkun; Zhang Huamin; Xing Feng

    2011-01-01

    A stationary, isothermal, three-dimensional model for negative half cell of the vanadium redox flow battery is developed, which is based on the comprehensive conservation laws, such as charge, mass and momentum, together with a kinetic model for reaction involving vanadium species. The model is validated against the results calculated by the available two-dimensional model. With the given geometry of the negative half cell, the distributions of velocity, concentration, overpotential and transfer current density in the sections that are perpendicular and parallel to the applied current are studied. It is shown that the distribution of the electrolyte velocity in the electrode has significant impact on the distribution of concentration, overpotential and transfer current density. The lower velocity in the electrode will cause the higher overpotential, further result in the side reaction and corrosion of key materials locally. The development of the design of the vanadium redox flow battery is discussed, and the further research is proposed.

  6. Assessment of the development of a battery charging infrastructure for a redox flow battery based electromobility concept; Bewertung des Aufbaus einer Ladeinfrastruktur fuer eine Redox-Flow-Batteriebasierte Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Arpad Funke, Simon; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energietechnologien und Energiesysteme

    2012-07-01

    Apart from the high acquisition cost, the major obstacles to widespread use of electric-powered vehicles today are long battery charging times and limited mileage. Rechargeable batteries might be a solution. The publication investigates a potential infrastructure for electric-powered vehicles based on so-called redox flow batteries. Redox flow batteries are characterized in that active materials are dissolved in liquid electrolyte and are stored outside the cell. Batteries are recharged by exchanging charged electrolyte for discharged electrolyte, which can be done in fuel stations. Redox flow batteries have the drawback of low energy and power density and were hardly ever considered for mobile applications so far. A technical analysis of RFB technology identified the vanadium oxygen redox flow fuel cell (VOFC) as a promising version. It provides higher energy density than conventional redox flow batteries, but development is still in an early stage. Assuming a 'best case' scenario, a refuelling infrastructure for VOFC vehicles was developed and compared with battery-powered vehicles (BEV) and fuel cell vehicles (FVEV). It was found that electromobility based on VOFC may be a promising alternative to current electromobility concepts. (orig./AKB) [German] Neben den Anschaffungsausgaben stehen lange Ladezeiten und eine beschraenkte Reichweite dem heutigen Einsatz von Elektrofahrzeugen oft entgegen. Eine moegliche Abhilfe koennten betankbare Batterien leisten. In der vorliegenden Arbeit soll ein moeglicher Infrastrukturaufbau fuer Elektrofahrzeuge mit sogenannten Redox-Flow-Batterien untersucht werden. Redox-Flow-Batterien besitzen die Eigenschaft, dass aktive Materialien geloest in Fluessigelektrolyten ausserhalb der Zelle gespeichert werden. Dieser Aufbau ermoeglicht das Aufladen der Batterie, indem der entladene Elektrolyt durch geladenen ausgetauscht wird. Dieser Tausch kann an einer Tankstelle durchgefuehrt werden. Ein wesentlicher Nachteil von Redox-Flow

  7. All-Vanadium Dual Circuit Redox Flow Battery for Renewable Hydrogen Generation and Desulfurisation

    OpenAIRE

    Peljo, Pekka Eero; Vrubel, Heron; Amstutz, Veronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frederic; Dennison, C R; Toghill, Kathryn; Girault, Hubert

    2016-01-01

    An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system capable to function as a conventional battery, but also to produce hydrogen and perform desulfurization when surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including ox...

  8. Renewable hydrogen generation from a dual-circuit redox flow battery

    OpenAIRE

    Amstutz, Veronique; Toghill, Kathryn Ellen; Powlesland, Francis; Vrubel, Heron; Comninellis, Christos; Hu, Xile; Girault, Hubert H.

    2014-01-01

    Redox flow batteries (RFBs) are particularly well suited for storing the intermittent excess supply of renewable electricity; so-called “junk” electricity. Conventional RFBs are charged and discharged electrochemically, with electricity stored as chemical energy in the electrolytes. In the RFB system reported here, the electrolytes are conventionally charged but are then chemically discharged over catalytic beds in separate external circuits. The catalytic reaction of particular interest gene...

  9. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Science.gov (United States)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  10. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  11. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  12. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  13. Cyclic electron flow is redox-controlled but independent of state transition.

    Science.gov (United States)

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  14. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries.

    Science.gov (United States)

    Hu, Bo; Tang, Yijie; Luo, Jian; Grove, Grant; Guo, Yisong; Liu, T Leo

    2018-05-09

    A high voltage (1.38 V) total organic aqueous redox flow battery is reported using 1,1'-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium tetrachloride ((NPr)2V) as an anolyte and 4-trimethylammonium-TEMPO chloride (NMe-TEMPO) as a catholyte. The exceptional radical stability of [(NPr)2V]+˙ enabled the flow battery in achieving 97.48% capacity retention for 500 cycles and a power density of 128.2 mW cm-2.

  15. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  16. A study of tiron in aqueous solutions for redox flow battery application

    International Nuclear Information System (INIS)

    Xu Yan; Wen Yuehua; Cheng Jie; Cao Gaoping; Yang Yusheng

    2010-01-01

    In this study, the electrochemical behavior of tiron in aqueous solutions and the influence of pH were investigated. A change of pH mainly produces the following results. In acidic solutions of pH below 4, the electrode reaction of tiron exhibits a simple process at a relatively high potential with a favorable quasi-reversibility. The tiron redox reaction exhibits fast electrode kinetics and a diffusion-controlled process. In solutions of pH above 4, the electrode reaction of tiron tends to be complicated. Thus, acidic aqueous solutions of pH below 4 are favorable for the tiron as active species of a redox flow battery (RFB). Constant-current electrolysis shows that a part of capacity is irreversible and the structure of tiron is changed for the first electrolysis, which may result from an ECE process for the tiron electro-oxidation. Thus, the tiron needs an activation process for the application of a RFB. Average coulombic and energy efficiencies of the tiron/Pb battery are 93 and 82%, respectively, showing that self-discharge is small during the short-term cycling. The preliminary exploration shows that the tiron is electrochemically promising for redox flow battery application.

  17. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  18. Computational design of molecules for an all-quinone redox flow battery.

    Science.gov (United States)

    Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán

    2015-02-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.

  19. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  1. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  2. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  3. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  4. Enhanced vanadium redox flow battery performance using graphene nanoplatelets to decorate carbon electrodes

    Science.gov (United States)

    Sankar, Abhinandh; Michos, Ioannis; Dutta, Indrajit; Dong, Junhang; Angelopoulos, Anastasios P.

    2018-05-01

    Rotating Disk Electrode (RDE) measurements on model glassy carbon (GC) substrates and Cyclic Voltammetry on more practical commercial carbon supports are used to demonstrate that the kinetics of the positive VO2+/VO2+ redox reaction can be substantially enhanced by using electrostatic layer-by-layer assembly (LbL) to decorate their surface with graphene nanoplatelets (GNPs). An exchange current density, i0, is obtained that is more than two orders of magnitude greater than that observed with standard carbon supported Pt nanocatalyst with the deposition of only 20 GNP layers. Tafel slope analysis is compared to electron microscopy imaging to conclude that while faster redox kinetics is associated with an increase in the available active area, the prevalence of smaller GNPs and associated edge sites the can attenuate activity gains with increasing number of layers. Practical implementation to existing Vanadium Redox Flow Battery (VRFB) configurations was demonstrated through the application of a 370 nm (20 layer) LbL GNP coating on carbon felt (CF). The GNP coating yielded a 5% increase relative in voltage and overall efficiency of charge discharge curves obtained under typical VRFB cell operating conditions at 40 mA cm-2. Furthermore, a substantial increase in the discharge time is observed with this GNP coating on CF.

  5. Characterization of a BODIPY Dye as an Active Species for Redox Flow Batteries.

    Science.gov (United States)

    Kosswattaarachchi, Anjula M; Friedman, Alan E; Cook, Timothy R

    2016-12-08

    An all-organic redox flow battery (RFB) employing a fluorescent boron-dipyrromethene (BODIPY) dye (PM567) was investigated. In a RFB, the stability of the electrolyte in all charged states is critically linked to coulombic efficiency. To evaluate stability, bulk electrolysis and cyclic voltammetry (CV) experiments were performed. Oxidized and reduced, PM567 does not remain intact; however, the products of bulk electrolysis evolve over time to show stable redox behavior, making the dye a precursor for the active species of an RFB. A theoretical cell potential of 2.32 V was predicted from CV experiments with a working discharge voltage of approximately 1.6 V in a static test cell. Mass spectrometry was used to identify the products of bulk electrolysis. Related experiments were carried out using ferrocene and cobaltocenium hexafluorophosphate as redox-stable benchmarks to further explain the stability results. The coulombic efficiency of a model cell using PM567 as a precursor for charge carriers stabilized around 73 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

    Science.gov (United States)

    Cao, Jianyu; Tao, Meng; Chen, Hongping; Xu, Juan; Chen, Zhidong

    2018-05-01

    The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open-circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm-2 at 100% SOC and 45 °C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.

  7. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    Science.gov (United States)

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shah, A.A.; Al-Fetlawi, H.; Walsh, F.C.

    2010-01-01

    A model for hydrogen evolution in an all-vanadium redox flow battery is developed, coupling the dynamic conservation equations for charge, mass and momentum with a detailed description of the electrochemical reactions. Bubble formation at the negative electrode is included in the model, taking into account the attendant reduction in the liquid volume and the transfer of momentum between the gas and liquid phases, using a modified multiphase-mixture approach. Numerical simulations are compared to experimental data for different vanadium concentrations and mean linear electrolyte flow rates, demonstrating good agreement. Comparisons to simulations with negligible hydrogen evolution demonstrate the effect of gas evolution on the efficiency of the battery. The effects of reactant concentration, flow rate, applied current density and gas bubble diameter on hydrogen evolution are investigated. Significant variations in the gas volume fraction and the bubble velocity are predicted, depending on the operating conditions.

  9. Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Ikeda, Yasuhisa

    2002-01-01

    For active materials of the all-uranium redox flow battery for the power storage, tetravalent uranium β-diketones were investigated. The electrode reactions of U(ba) 4 and U(btfa) 4 were examined in comparison with that of U(acac) 4 , where ba denotes benzoylacetone, btfa benzoyltrifluoroacetone and acac acetylacetone. The cyclic voltammograms of U(ba) 4 and U(btfa) 4 solutions indicate that there are two series of redox reactions corresponding to the complexes with different coordination numbers of four and three. The electrode kinetics of the U(IV)/U(III) redox reactions for btfa complexes is examined. The obtained result supports that the uranium β-diketone complexes examined in the present study will serve as excellent active materials for negative electrolyte in the redox flow battery. (author)

  10. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2010-01-01

    The impact of oxygen evolution and bubble formation on the performance of an all-vanadium redox flow battery is investigated using a two-dimensional, non-isothermal model. The model is based on mass, charge, energy and momentum conservation, together with a kinetic model for the redox and gas-evolving reactions. The multi-phase mixture model is used to describe the transport of oxygen in the form of gas bubbles. Numerical simulations are compared to experimental data, demonstrating good agreement. Parametric studies are performed to investigate the effects of changes in the operating temperature, electrolyte flow rate and bubble diameter on the extent of oxygen evolution. Increasing the electrolyte flow rate is found to reduce the volume of the oxygen gas evolved in the positive electrode. A larger bubble diameter is demonstrated to increase the buoyancy force exerted on the bubbles, leading to a faster slip velocity and a lower gas volume fraction. Substantial changes are observed over the range of reported bubble diameters. Increasing the operating temperature was found to increase the gas volume as a result of the enhanced rate of O 2 evolution. The charge efficiency of the cell drops markedly as a consequence.

  11. Vanadium Redox Flow Battery : Sizing of VRB in electrified heavy construction equipment

    OpenAIRE

    Zimmerman, Nathan

    2014-01-01

    In an effort to reduce global emissions by electrifying vehicles and machines with internal combustion engines has led to the development of batteries that are more powerful and efficient than the common lead acid battery.  One of the most popular batteries being used for such an installation is lithium ion, but due to its short effective usable lifetime, charging time, and costs has driven researcher to other technologies to replace it.  Vanadium redox flow batteries have come into the spotl...

  12. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  13. Performance of a vanadium redox flow battery with tubular cell design

    Science.gov (United States)

    Ressel, Simon; Laube, Armin; Fischer, Simon; Chica, Antonio; Flower, Thomas; Struckmann, Thorsten

    2017-07-01

    We present a vanadium redox flow battery with a tubular cell design which shall lead to a reduction of cell manufacturing costs and the realization of cell stacks with reduced shunt current losses. Charge/discharge cycling and polarization curve measurements are performed to characterize the single test cell performance. A maximum current density of 70 mAcm-2 and power density of 142 Wl-1 (per cell volume) is achieved and Ohmic overpotential is identified as the dominant portion of the total cell overpotential. Cycling displays Coulomb efficiencies of ≈95% and energy efficiencies of ≈55%. During 113 h of operation a stable Ohmic cell resistance is observed.

  14. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  15. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  16. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  17. Bioelectrocatalytic NAD+/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery.

    Science.gov (United States)

    Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D

    2017-07-25

    Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.

  18. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  19. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    Science.gov (United States)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  20. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  1. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  2. Efficiency improvement of an all-vanadium redox flow battery by harvesting low-grade heat

    Science.gov (United States)

    Reynard, Danick; Dennison, C. R.; Battistel, Alberto; Girault, Hubert H.

    2018-06-01

    Redox flow batteries (RFBs) are rugged systems, which can withstand several thousand cycles and last many years. However, they suffer from low energy density, low power density, and low efficiency. Integrating a Thermally Regenerative Electrochemical Cycle (TREC) into the RFB, it is possible to mitigate some of these drawbacks. The TREC takes advantage of the temperature dependence of the cell voltage to convert heat directly into electrical energy. Here, the performance increase of a TREC-RFB is investigated using two kinds of all-vanadium electrolyte chemistries: one containing a typical concentration of sulfuric acid and one containing a large excess of hydrochloric acid. The results show that the energy density of the system was increased by 1.3Wh L-1 and 0.8Wh L-1, respectively and the overall energy efficiency also increased by 9 and 5 percentage points, respectively. The integration of the heat exchangers necessary to change the battery temperature is readily facilitated by the design of the redox flow battery, which already utilizes fluid circulation loops.

  3. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi, E-mail: haryadi@polban.ac.id [Department of Chemical Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Gunawan, Y. B.; Harjogi, D. [Department of Electronic Engineering, PoliteknikNegeri Bandung Indonesia (Indonesia); Mursid, S. P. [Department of Energy Engineering, PoliteknikNegeri Bandung. Jl. GegerkalongHilir, Ds, Ciwaruga, Bandung, West Java Indonesia (Indonesia)

    2016-04-19

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  4. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-08

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.

  5. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  6. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    Science.gov (United States)

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO 2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  7. Numerical studies of carbon paper-based vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Won, Seongyeon; Oh, Kyeongmin; Ju, Hyunchul

    2016-01-01

    ABSTRACT: This study analyzed theoretically the effects of a carbon paper (CP)-based electrode on the performance of a vanadium redox flow battery (VRFB). Compared to conventional carbon felt-based electrode materials, the CP-based electrode showed superior characteristics in facilitating the redox reactions of VO"2"+/VO_2"+ and V"2"+/V"3"+ couples, such as better electrochemical activity and higher electronic conductivity. A three-dimensional, non-isothermal VRFB model developed in a previous study was applied to a range of single cell structures equipped with CP-based electrodes and flow channels in the current collectors. The model was then validated using the experimental data measured under the CP- and channel-based VRFB geometries. The model successfully captured the experimental trend that showed a higher discharging performance with increasing number of CP layers used for each electrode. The simulation results clearly showed that the activation overpotentials in the electrodes were reduced significantly using more CP layers, which dominated over the effects of increased mass transport limitation of vanadium ions due to the thicker electrode.

  8. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    International Nuclear Information System (INIS)

    Haryadi; Gunawan, Y. B.; Harjogi, D.; Mursid, S. P.

    2016-01-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  9. The development of an all copper hybrid redox flow battery using deep eutectic solvents

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Kontturi, Kyösti

    2013-01-01

    Highlights: • A novel redox flow battery based on a deep eutectic solvent is reported. • Favourable kinetics of the positive electrode reaction are shown. • The cell potential is 0.7 V. • Coulombic and energy efficiency are 95% and 62% respectively. • A separator based on jellifying the electrolyte using polyvinyl alcohol is reported. -- Abstract: The performance of a redox flow battery based on chlorocuprates dissolved in an ionic liquid analogue is reported at 50 °C. The kinetics of the positive electrode reaction at a graphite electrode are favourable with a heterogeneous rate constant, k 0 , of 9.5 × 10 −4 cm s −1 . Coulombic efficiency was typically 94% and independent of current density. The small cell potential of 0.75 V and slow mass transport result in energy efficiencies of only 52% and 62% at current densities of 10 and 7.5 mA/cm 2 respectively. The successful development of a separator by jellifying the electrolyte using polyvinyl alcohol is reported

  10. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  11. Review of material research and development for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Parasuraman, Aishwarya; Lim, Tuti Mariana; Menictas, Chris; Skyllas-Kazacos, Maria

    2013-01-01

    The vanadium redox flow battery (VRB) is one of the most promising electrochemical energy storage systems deemed suitable for a wide range of renewable energy applications that are emerging rapidly to reduce the carbon footprint of electricity generation. Though the Generation 1 Vanadium redox flow battery (G1 VRB) has been successfully implemented in a number of field trials and demonstration projects around the world, it suffers from low energy density that limits its use to stationary applications. Extensive research is thus being carried out to improve its energy density and enhance its performance to enable mobile applications while simultaneously trying to minimize the cost by employing cost effective stack materials and effectively controlling the current operating procedures. The vast bulk of this research was conducted at the University of New South Wales (UNSW) in Sydney during the period 1985–2005, with a large number of other research groups contributing to novel membrane and electrode material development since then. This paper presents a historical overview of materials research and development for the VRB at UNSW, highlighting some of the significant findings that have contributed to improving the battery's performance over the years. Relevant work in this field by other research groups in recent times has also been reviewed and discussed

  12. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  13. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Li, Liyu; Nie, Zimin; Chen, Baowei; Vijayakumar, M.; Kim, Soowhan; Wang, Wei; Schwenzer, Birgit; Liu, Jun; Yang, Zhenguo

    2011-01-01

    The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in-situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 C.

  14. A high-performance dual-scale porous electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.

    2016-09-01

    In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.

  15. Non-isothermal modelling of the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2009-01-01

    An non-isothermal model for the all-vanadium redox flow battery (RFB) is presented. The two-dimensional model is based on a comprehensive description of mass, charge, energy and momentum transport and conservation, and is combined with a global kinetic model for reactions involving vanadium species. Heat is generated as a result of activation losses, electrochemical reaction and ohmic resistance. Numerical simulations demonstrate the effects of changes in the operating temperature on performance. It is shown that variations in the electrolyte flow rate and the magnitude of the applied current substantially alter the charge/discharge characteristics, the temperature rise and the distribution of temperature. The influence of heat losses on the charge/discharge behaviour and temperature distribution is investigated. Conditions for localised heating and membrane degradation are discussed.

  16. A Quaternized Polysulfone Membrane for Zinc-Bromine Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Mingqiang Li

    2014-01-01

    Full Text Available A quaternized polysulfone (QNPSU composite membrane is fabricated for zinc-bromine redox flow battery. The structure of the membrane is examined by FT-IR spectra and SEM. The conductivity of the membrane is tested by electrochemical analyzer. After a zinc-bromine battery with this composite membrane is operated at different voltage while charging and at different current while discharging to examine the performance of the membrane, it is found that the discharge voltage was 0.9672 V and the power density was 6 mW/cm2 at a current of 0.1 A, which indicated that the novel composite membrane is a promising material for the flow battery.

  17. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon

    2017-08-01

    Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.

  18. Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-wässrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    OpenAIRE

    Herr, Tatjana

    2015-01-01

    Die Redox-Flow-Batterie ist eine vielversprechende Speicherungsmöglichkeit für stationäre Anwendungen. Bei dieser Batterie wird die Energie in einem flüssigen Elektrolyt gespeichert, wobei die Energiedichte von der Konzentration und dem Potentialfenster der gelösten redoxaktiven Substanz abhängt. Zur Steigerung der Energiedichte einer nicht-wässrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie wurden organische Lösungsmittel, welche ein Potentialfenster bis zu 5 V aufweisen, und Lösungsmittel...

  19. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  20. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  2. Development of a Novel Iodine-Vitamin C/Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Chen, Mei-Ling; Huang, Shu-Ling; Hsieh, Chin-Lung; Lee, Jan- Yen; Tsai, Tz-Jiun

    2014-01-01

    A novel (I + /I 2 )/vitamin C vs. V 4+ /V 5+ semi-vanadium redox flow battery (semi-VRFB) with iodine, vitamin C, and V 4+ /V 5+ redox couples, using multiple electrodes was investigated. The electrodes, Ni-P/carbon paper and Ni-P/TiO 2 /carbon paper, were modified by the electroless plating method and sol-gel process. The electrochemical characteristics and the performance of the semi-VRFB were verified by the cyclic voltammetry method and a charge-discharge test. This study shows modified electrodes can improve the reversibility and symmetry of the oxidation-reduction reaction of the semi-VRFB system, and effectively raise its storage ability. The coulomb efficiency of the semi-VRFB system is close to 96%, which is higher than the all-VRFB. The semi-VRFB system can reduce the amount of vanadium salt, therefore, it is not only a reduction in cost, but also has a great potential for the development of energy storage systems

  3. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application

    Science.gov (United States)

    González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo

    2017-01-01

    The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.

  4. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process

    International Nuclear Information System (INIS)

    Jeong, Sanghyun; Kim, Sunhoe; Kwon, Yongchai

    2013-01-01

    Sluggish reaction rate of [VO] 2+ /[VO 2 ] + redox couple is an obstacle to be addressed in vanadium redox flow battery (VRFB). To improve the slow reaction rate, Pt/C catalyst synthesized by polyol method is suggested. Its catalytic activity, reaction reversibility and charge–discharge performance are evaluated by half cell and single cell tests, while its crystal structure, particle size and particle distribution are measured by XRD and TEM. The XRD and TEM measurements show the polyol Pt/C catalyst has larger electrochemically active surface (EAS) area and smaller particle size than commercial Pt/C catalyst. When catalytic activities of all the catalysts are estimated, the Pt-included catalysts demonstrate high peak current ratio, small peak potential difference and high electron transfer rate constant, confirming that their catalytic activity and reaction reversibility are excellent. In charge–discharge performance tests, the catalysts indicate high efficiencies as well as low overpotential and internal resistance. Excellent performances of the Pt-included catalysts are attributed to positively charged Pts that serve as active sites for activating [VO] 2+ /[VO 2 ] + reaction. Indeed, adoption of the Pt-included catalysts, especially, use of the polyol Pt/C consisting of uniform and small particles helps improve performance of VRFB

  5. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Zeng, L.; Zhou, X.L.; Zeng, Y.K.

    2016-01-01

    Highlights: • Copper nanoparticle is proposed as electrocatalyst for VRFBs for the first time. • Propose a binder-free copper nanoparticle decorated electrode. • The energy efficiency is up to 80.1% at 300 mA cm"−"2, enhancing more than 17%. • High stability and capacity retention are achieved by battery with copper catalyst. - Abstract: A copper nanoparticle deposited graphite felt electrode for all vanadium redox flow batteries (VRFBs) is developed and tested. It is found that the copper catalyst enables a significant improvement in the electrochemical kinetics of the V"3"+/V"2"+ redox reaction. The battery’s utilization of the electrolyte and energy efficiency are found to be as high as 83.7% and 80.1%, at a current density of 300 mA cm"−"2, which are 53.1% and 17.8% higher than those of the battery without the catalyst. Moreover, the present battery shows a good stability during the cycle test. The results suggest that the inexpensive copper nanoparticle catalyst without tedious preparation process offers a great promise for VRFB application.

  6. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chang Fang; Hu Changwei; Liu Xiaojiang; Liu Lian; Zhang Jianwen

    2012-01-01

    Coulter dispersants were investigated as the additive into the positive electrolyte (more than 1.8 M vanadium ions) of vanadium redox flow battery (VRB). The electrolyte stability tests showed that, at 45, 50 and 60 °C, the addition of 0.050–0.10 w/w Coulter dispersant IIIA (mainly containing coconut oil amine adduct with 15 ethylene oxide groups) into the positive electrolyte of VRB could significantly delay the time of precipitate formation from 1.8–12.3 h to 30.3 h ∼ 19.3 days. Moreover, the trace amount of Coulter dispersant IIIA as the additive can enhance the electrolyte stability without changing the valence state of vanadium ions, reducing the reversibility of the redox reactions and incurring other side reactions at the electrode. Using the Coulter IIIA dispersant as the additive also improved the energy efficiency of the VRB. The UV–vis spectra confirmed that the trace amount of Coulter IIIA dispersant did not chemically react with V(V) to form new substances. The synergy of Coulombic repulsion and steric hindrance between the macromolecular cationic surfactant additive and the solution reduced the aggregation of vanadium ions into V 2 O 5 and increased the supersaturation of V 2 O 5 crystal in the solution.

  8. A non-aqueous all-copper redox flow battery with highly soluble active species

    International Nuclear Information System (INIS)

    Li, Yun; Sniekers, Jeroen; Malaquias, João; Li, Xianfeng; Schaltin, Stijn; Stappers, Linda; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F.J.

    2017-01-01

    A metal-based redox pair with acetonitrile as ligand [Cu(MeCN)_4][Tf_2N] is described for use in non-aqueous redox flow battery (RFB). The electrode kinetics of the anode and cathode are studied using cyclic voltammetry. The Cu"2"+/Cu"+ and Cu"+/Cu couples in this system yield a cell potential of 1.24 V. The diffusion coefficient for [Cu(MeCN)_4][Tf_2N] in acetonitrile is estimated to be 6.8 × 10"−"6 cm"2 s"−"1 at room temperature. The copper-acetonitrile complex has a very high solubility of 1.68 M in acetonitrile, the most widely used organic solvent for non-aqueous electrochemical applications. Hence, a maximum theoretical energy density around 28 Wh L"−"1 can be reached with the reported system. The RFB with this electrolyte shows a promising performance, with coulombic efficiencies of 87% and energy efficiencies of 44% (5 mA cm"−"2).

  9. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    Science.gov (United States)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  10. Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2002-01-01

    The redox flow battery using uranium as the negative and the positive active materials in polar aprotic solvents was proposed. In order to establish the guiding principle for the uranium compounds as the active materials, the investigation of uranium β-diketonate complexes was conducted on (i) the solubility of active materials, (ii) the electrode reaction of U(VI) and U(IV) β-diketonate complexes and (iii) the estimation of the open circuit voltage of the battery. The solubilities of higher than 0.8 mol dm -3 of U(VI) complexes and higher than 0.4 mol dm -3 of a U(IV) complex were obtained in the solvents. The electrode reactions of U(pta) 4 , UO 2 (dpm) 2 , UO 2 (fod) 2 and UO 2 (pta) 2 were first studied and the redox potentials of uranium β-diketonates were thermodynamically discussed. The open circuit voltage is estimated more than 1 V by using Hacac or Hdpm. The larger open circuit voltage is expected when a ligand with the larger basicity is used

  11. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  12. An enhancement to Vynnycky's model for the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chen, Ching Liang; Yeoh, Hak Koon; Chakrabarti, Mohammed Harun

    2014-01-01

    Highlights: • Improvements are made on an existing 1-D stationary VRFB model. • Effects of species concentration and electrolyte flow rate are captured. • Predictions on charge-discharge curves are improved over existing 1-D model. - Abstract: An enhanced one-dimensional (1-D) stationary model for the all-vanadium redox flow battery (VRFB) is developed based on an existing 1-D model proposed by Vynnycky [Energy, 36 (2011): 2242 – 2256]. The enhanced model incorporates species conservation equations along with an advection term to describe the concentration changes in the porous electrodes. In addition, a complete Nernst equation, which accounts for proton concentrations in the VRFB is also included to improve the cell voltage prediction without using any arbitrary fitting contact voltage. The enhanced 1-D model is validated against experimental data from the literature and the ability of the model to predict the cell performance is investigated. The cell voltage prediction shows significant improvement over Vynnycky's 1-D model and also compares surprisingly well with higher-dimensional models. This enhanced 1-D model is also capable of capturing the cell performance at different electrolyte flow rates, especially evidenced by the polarization curves. Using both the power based and round-trip efficiencies, the optimal electrolyte flow rate for the VRFB can be determined. This enhanced 1-D model is expected to serve as a useful design tool for the development and optimization of VRFB systems

  13. Model-based design and optimization of vanadium redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Sebastian

    2017-07-19

    This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm{sup 2} and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.

  14. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Zhao, G.; An, L.; Zeng, L.

    2016-01-01

    Highlights: • Propose a carbon nanoparticle-decorated graphite felt electrode for VRFBs. • The energy efficiency is up to 84.8% at 100 mA cm"−"2. • The new electrode allows the peak power density to reach 508 mW cm"−"2. - Abstract: Increasing the performance of vanadium redox flow batteries (VRFBs), especially the energy efficiency and power density, is critically important to reduce the system cost to a level for widespread commercialization. Unlike conventional VRFBs with flow-through structure, in this work we create a VRFB featuring a flow-field structure with a carbon nanoparticle-decorated graphite felt electrode for the battery. This novel structure, exhibiting a significantly reduced ohmic loss through reducing electrode thickness, an increased surface area and improved electrocatalytic activity by coating carbon nanoparticles, allows the energy efficiency up to 84.8% at a current density of as high as 100 mA cm"−"2 and the peak power density to reach a value of 508 mW cm"−"2. In addition, it is demonstrated that the battery with this proposed structure exhibits a substantially improved rate capability and capacity retention as opposed to conventional flow-through structured battery with thick graphite felt electrodes.

  15. Model-based design and optimization of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Koenig, Sebastian

    2017-01-01

    This work targets on increasing the efficiency of the Vanadium Redox Flow Battery (VRFB) using a model-based approach. First, a detailed instruction for setting up a VRFB model on a system level is given. Modelling of open-circuit-voltage, ohmic overpotential, concentration overpotential, Vanadium crossover, shunt currents as well as pump power demand is presented. All sub-models are illustrated using numerical examples. Using experimental data from three battery manufacturers, the voltage model validated. The identified deviations reveal deficiencies in the literature model. By correctly deriving the mass transfer coefficients and adapting the effective electrode area, these deficiencies are eliminated. The validated battery model is then deployed in an extensive design study. By varying the electrode area between 1000 and 4000 cm 2 and varying the design of the electrolyte supply channel, twenty-four different cell designs are created using finite element analysis. These designs are subsequently simulated in 40-cell stacks deployed in systems with a single stack and systems with a three-stack string. Using the simulation results, the impact of different design parameters on different loss mechanisms is investigated. While operating the VRFB, the electrolyte flow rate is the most important operational parameter. A novel, model-based optimization strategy is presented and compared to established flow rate control strategies. Further, a voltage controller is introduced which delays the violation of cell voltage limits by controlling the flow rate as long as the pump capacity is not fully exploited.

  16. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    Science.gov (United States)

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  18. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries

    Science.gov (United States)

    Sun, Che-Nan; Delnick, Frank M.; Baggetto, Loïc; Veith, Gabriel M.; Zawodzinski, Thomas A.

    2014-02-01

    This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 μmol min-1 g-1). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB.

  19. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells

    Science.gov (United States)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-09-01

    The vanadium redox flow battery (VRFB) is a promising electrochemical storage system for stationary megawatt-class applications. The currently limited cell area determined by the bipolar plate (BPP) could be enlarged significantly with a novel extruded large-area plate. For the first time a techno-economic assessment of VRFB in a power range of 1 MW-20 MW and energy capacities of up to 160 MWh is presented on the basis of the production cost model of large-area BPP. The economic model is based on the configuration of a 250 kW stack and the overall system including stacks, power electronics, electrolyte and auxiliaries. Final results include a simple function for the calculation of system costs within the above described scope. In addition, the impact of cost reduction potentials for key components (membrane, electrode, BPP, vanadium electrolyte) on stack and system costs is quantified and validated.

  20. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  1. Online Spectroscopic Study on the Positive and the Negative Electrolytes in Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Le Liu

    2013-01-01

    Full Text Available Traditional spectroscopic analysis based on the Beer-Lambert law cannot analyze the analyte with high concentration and interference between different compositions, such as the electrolyte in vanadium redox flow batteries (VRBs. Here we propose a new method for online detection of such analytes. We demonstrate experimentally that, by comparing the transmittance spectrum of the analyte with the spectra in a preprepared database using our intensity-corrected correlation coefficient (ICCC algorithm, parameters such as the state of charge (SOC of both the positive and the negative electrolytes in the VRB can be online monitored. This method could monitor the level of the electrolytes imbalance in the VRB, which is useful for further rebalancing the electrolyte and restoring the capacity loss of the VRB. The method also has the potential to be used in the online detection of other chemical reactions, in which the chemical reagents have high concentration and interferences between different compositions.

  2. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.

    Science.gov (United States)

    Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe

    2017-08-29

    A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  4. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application

    Science.gov (United States)

    Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao

    2017-10-01

    A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.

  5. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Vijayakumar, M; Luo, Qingtao; Lloyd, Ralph; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-21

    The microstructure of perfluorinated sulfonic acid proton-exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox-flow battery (VRB). In this work, Nafion membranes with various equivalent weights ranging from 1000 to 1500 are prepared and the morphology-property-performance relationship is investigated. NMR and small-angle X-ray scattering studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium-ion permeation. Their performances are further characterized as VRB membranes. On the basis of this understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50 mA·cm -2 ) was achieved along with a stable cyclical capacity over prolonged cycling.

  6. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Luo, Qingtao; Lloyd, Ralph B.; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent L.; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-23

    The microstructure of the perfluorinated sulfonic acid proton exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox flow battery (VRB). In this work, Nafion membranes with various equivalent weights (EW) ranging from 1000 to 1500 are prepared and the structure-property-performance relationship is investigated. Nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium ion permeation. Their performances are further characterized as VRB membranes. Based on those understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion® 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50mA∙cm-2) was achieved along with a stable cyclical capacity over prolonged cycling.

  8. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  10. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  11. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  12. Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries

    Science.gov (United States)

    Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.

    2017-10-01

    Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.

  13. Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2018-02-01

    Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.

  14. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  15. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  16. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  17. Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heiberg, Lisa; Jensen, Henning S.

    2012-01-01

    the upward percolation of groundwater with variable O2 content and flow rate, we investigated the hydro-biogeochemical Fe and P dynamics in intact cores of a carbon rich peat and carbon poor sand. Percolation of deionized water with high, low or no O2 supply at 10 °C caused markedly different in situ redox...... rates from 7.6 to 11 mg P m−2 day−1. Organic or particulate P contributed to 40–45% of total P losses from the peat. In contrast, the high O2 supply during high flow rate kept the peat oxic and lowered TP release rates to 6.7 mg P m−2 day−1. The carbon poor sand demonstrated that this soil type...... regimes in the two soils during 21 or 67 days of continuous percolation at either 1 or 4 mm h−1. Anoxic conditions occurred in the peat soil at both low oxygen supply and anoxic infiltration, causing reductive Fe(III) dissolution with high Fe(II) and P effluent concentrations and total P (TP) release...

  18. Factors affecting the performance of the Zn-Ce redox flow battery

    International Nuclear Information System (INIS)

    Nikiforidis, Georgios; Cartwright, Rory; Hodgson, David; Hall, David; Berlouis, Leonard

    2014-01-01

    The Hull Cell was used to investigate the impact of current density j on the morphology and uniformity of zinc electrodeposited from a 2.5 mol dm −3 Zn 2+ solution in 1.5 mol dm −3 methanesulfonic acid at 40 °C onto carbon-composite surfaces. The range of the applied deposition current density used was between 1 mA cm −2 and 100 mA cm −2 . Good, robust deposits were obtained when j ≥ 10 mA cm 2 whereas at j's lower than this, patchy films formed due to the competing hydrogen evolution reaction (HER) on the bare carbon-composite surface. An understanding of these effects and its application in the redox flow battery enabled both the coulombic and cell potential efficiencies to be maintained at relatively high values, 90% and 69% respectively, indicating a successful inhibition of the HER on the fully formed Zn layer. Flow velocity at the low Reynolds number in the cell (Re <200) had little impact on the electrochemical cell performance. Depletion of the cerium species became an issue for long charge times

  19. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    Science.gov (United States)

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes

    Directory of Open Access Journals (Sweden)

    Trevor J. Davies

    2018-01-01

    Full Text Available A key objective in the development of vanadium redox flow batteries (VRFBs is the improvement of cell power density. At present, most commercially available VRFBs use graphite felt electrodes under relatively low compression. This results in a large cell ohmic resistance and limits the maximum power density. To date, the best performing VRFBs have used carbon paper electrodes, with high active area compression pressures, similar to that used in fuel cells. This article investigates the use of felt electrodes at similar compression pressures. Single cells are assembled using compression pressures of 0.2–7.5 bar and tested in a VRFB system. The highest cell compression pressure, combined with a thin Nafion membrane, achieved a peak power density of 669 mW cm−2 at a flow rate of 3.2 mL min−1 per cm2 of active area, more than double the previous best performance from a felt-VRFB. The results suggest that felt electrodes can compete with paper electrodes in terms of performance when under similar compression pressures, which should help guide electrode development and cell optimization in this important energy storage technology.

  1. Effects of operating temperature on the performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Zhang, C.; Zhao, T.S.; Xu, Q.; An, L.; Zhao, G.

    2015-01-01

    Highlights: • The effect of the operating temperature on the VRFB’s performance is studied. • The voltage efficiency and peak power density increases with temperature. • High temperatures aggravate the coulombic efficiency drop and the capacity decay. • The outcomes suggest that thermal management of operating VRFBs is essential. - Abstract: For an operating flow battery system, how the battery’s performance varies with ambient temperatures is of practical interest. To gain an understanding of the general thermal behavior of vanadium redox flow batteries (VRFBs), we devised and tested a laboratory-scale single VRFB by varying the operating temperature. The voltage efficiency of the VRFB is found to increase from 86.5% to 90.5% at 40 mA/cm 2 when the operating temperature is increased from 15 °C to 55 °C. The peak discharge power density is also observed to increase from 259.5 mW/cm 2 to 349.8 mW/cm 2 at the same temperature increment. The temperature increase, however, leads to a slight decrease in the coulombic efficiency from 96.2% to 93.7% at the same temperature increments. In addition, the capacity degradation rate is found to be higher at higher temperatures

  2. AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller

    Directory of Open Access Journals (Sweden)

    Tulasichandra Sekhar Gorripotu

    2015-12-01

    Full Text Available In this paper, Proportional Integral Derivative with Filter (PIDF is proposed for Automatic Generation Control (AGC of a multi-area power system in deregulated environment. Initially, a two area four units thermal system without any physical constraints is considered and the gains of the PIDF controller are optimized employing Differential Evolution (DE algorithm using ITAE criterion. The superiority of proposed DE optimized PIDF controller over Fuzzy Logic controller is demonstrated. Then, to further improve the system performance, an Interline Power Flow Controller (IPFC is placed in the tie-line and Redox Flow Batteries (RFB is considered in the first area and the controller parameters are tuned. Additionally, to get an accurate insight of the AGC problem, important physical constraints such as Time Delay (TD and Generation Rate Constraints (GRC are considered and the controller parameters are retuned. The performance of proposed controller is evaluated under different operating conditions that take place in a deregulated power market. Further, the proposed approach is extended to a two area six units hydro thermal system. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values.

  3. Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

    International Nuclear Information System (INIS)

    Arbabzadeh, Maryam; Johnson, Jeremiah X.; De Kleine, Robert; Keoleian, Gregory A.

    2015-01-01

    Highlights: • We assess energy storage role in reaching emissions targets in an off-grid model. • The energy storage technology is vanadium redox flow battery (VRFB). • We evaluate life cycle GHG emissions and total cost of delivered electricity. • Generation mixes are optimized to meet emissions targets at the minimum cost. • For this model, integrating VRFB is economical to reach very low emissions targets. - Abstract: Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO 2 -eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190 g of CO2-eq/kW h and less for the examined system). This suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the

  4. Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Teng, Xiangguo; Sun, Cui; Dai, Jicui; Liu, Haiping; Su, Jing; Li, Faqiang

    2013-01-01

    Highlights: ► Nafion/polytetrafluoroethylene (PTFE) blend membranes were prepared by solution casting method. ► The blend membranes were tested for vanadium redox flow battery (VRB) application. ► The blend membranes show lower vanadium ion permeability than that of recast Nafion membrane. ► In VRB single cell test, the blend membrane shows superior performances than that of pure recast Nafion. -- Abstract: Solution casting method was adopted using Nafion and polytetrafluoroethylene (PTFE) solution to prepare Nafion/PTFE blend membranes for vanadium redox flow battery application. The physicochemical properties of the membranes were characterized by using water uptake, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis (TA). The electrochemical properties of the membranes were examined by using electrochemical impedance spectroscopy (EIS) and single cell test. Despite the high miscibility of PTFE with Nafion, the addition of hydrophobic PTFE reduces the water uptake, ion exchange capacity (IEC) and conductivity of blend membranes. But PTFE can increase the crystallinity, thermal stability of Nafion/PTFE membranes and reduce the vanadium permeability. The blend membrane with PTFE (30 wt%, N 0.7 P 0.3 ) was chosen and investigated for VRB single cell test. The energy efficiency of this VRB with N 0.7 P 0.3 membrane was 85.1% at current density of 50 mA cm −2 , which was superior to that of recast Nafion (r-Nafion) membrane (80.5%). Self-discharge test shows that the decay of open circuit potential of N 0.7 P 0.3 membrane is much lower than that of r-Nafion membrane. More than 50 cycles charge–discharge test proved that the N 0.7 P 0.3 membrane possesses high stability in long time running. Chemical stabilities of the chosen N 0.7 P 0.3 membrane are further proved by soaking the membrane for 3 weeks in highly oxidative V(V) solution. All results suggest that the addition of PTFE is a simple and effective way to

  5. Performance of a vanadium redox flow battery with a VANADion membrane

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Zeng, Y.K.; Zhu, X.B.

    2016-01-01

    Highlights: • Performance of the VANADion membrane in flow batteries is evaluated. • The battery with present membrane shows good rate capability. • The battery with present membrane offers good capacity retention. • The high performance and low cost make the membrane promising in VRFBs. - Abstract: Conventional vanadium redox flow batteries (VRFBs) using Nafion 115 suffered from issues associated with high ohmic resistance and high capital cost. In this work, we report a commercial membrane (VANADion), consisting of a porous layer and a dense Nafion layer, as a promising alternative to Nafion 115. In the dual-layer structure, the porous layer (∼210 μm) can offer a high ionic conductivity and the dense Nafion layer (∼20 μm) can depress the convective flow of electrolyte through the membrane. By comparing with the conventional Nafion 115 in a VRFB, it is found that the change from the conventional Nafion 115 to the composite one results in an increase in the energy efficiency from 71.3% to 76.2% and an increase in the electrolyte utilization from 54.1% to 68.4% at a current density of as high as 240 mA cm"−"2. In addition, although two batteries show the comparable cycling performance at current densities ranging from 80 mA cm"−"2 to 240 mA cm"−"2, the composite membrane is estimated to be significantly cheaper than the conventional Nafion 115 due to the fact that the porous layer is rather cost-effective and the dense Nafion layer is rather thin. The impressive combination of desirable performance and low cost makes this composite membrane highly promising in the VRFB applications.

  6. Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wu, Xiaoxin; Xu, Hongfeng; Shen, Yang; Xu, Pengcheng; Lu, Lu; Fu, Jie; Zhao, Hong

    2014-01-01

    A novel and highly effective treatment based on modified Hummers method was firstly used to improve the electrochemical activity of graphite felt as the positive electrode in all-vanadium redox flow battery (VRFB). The graphite felt was treated by the modified Hummers method and characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The electrochemical performance of the prepared electrode was evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. Results show that graphite felt treated by modified Hummers method exhibits excellent electrocatalytic activity and reaction rate to vanadium redox couples. In our research, the hydrogen electrode and H 2 replaced the graphite felt and V 2+ /V 3+ couple in the negative side in the VRFB performance test. The coulombic, voltage, and energy efficiencies of the VRFB with the as-prepared electrodes at 50 mA cm −2 are 95.0%, 81.3%, and 77.2%, respectively. These values are much higher than those of the cell-assembled graphite felt electrodes that were conventionally and thermally treated. The graphite felt treated by the modified Hummers method carries more hydrophilic groups, such as–OH, on its defects, which is advantageous in facilitating the redox reaction of vanadium ions, thereby improving the operation efficiency of the vanadium redox flow battery

  7. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    Science.gov (United States)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  9. First-principles study of adsorption-desorption kinetics of aqueous V2+/V3+ redox species on graphite in a vanadium redox flow battery.

    Science.gov (United States)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2017-06-14

    Vanadium redox flow batteries (VRFBs) represent a promising solution to grid-scale energy storage, and understanding the reactivity of electrode materials is crucial for improving the power density of VRFBs. However, atomistic details about the interactions between vanadium ions and electrode surfaces in aqueous electrolytes are still lacking. Here, we examine the reactivity of the basal (0001) and edge (112[combining macron]0) graphite facets with water and aqueous V 2+ /V 3+ redox species at 300 K employing Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics simulations. The results suggest that the edge surface is characterized by the formation of ketonic C[double bond, length as m-dash]O functional groups due to complete water dissociation into the H/O/H configuration with surface O atoms serving as active sites for adsorption of V 2+ /V 3+ species. The formation of V-O bonds at the surface should significantly improve the kinetics of electron transfer at the edge sites, which is not the case for the basal surface, in agreement with the experimentally hypothesized mechanism.

  10. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  11. A comparative study of species migration and diffusion mechanisms in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • Migration effects on crossover phenomena is examined. • Crossover and migration model is newly implemented. • Totally opposite crossover trend is observed with migration during charging. • During discharging, the crossover is enhanced due to migration. - ABSTRACT: According to the Nernst–Planck equation, the transport of charged species in porous electrodes is mainly driven by diffusion and migration. Although a number of all-vanadium redox flow battery (VRFB) models have been developed by several VRFB modeling groups, a comparative study of these two ion transport mechanisms has not been clearly reported in the literature. In this study, we develop a three-dimensional (3-D), transient VRFB model that rigorously accounts for both diffusion and migration mechanisms of charged species, including V 2+ , V 3+ , VO 2+ ,VO 2 + and H + . The VRFB model relies upon five principles of conservation: mass, momentum, species, electric charge, and thermal energy. Due to the general form of the conservation equations, both species migration effects on species transport and species diffusion effects on charge transport are considered in the source terms of the model equations. The model calculates species migration and diffusion fluxes through the membrane and compares their relative magnitudes under various charging and discharging stages. This paper clearly elucidates the role of species migration on vanadium crossover and the subsequent capacity losses, demonstrating that the present VRFB model is a valuable tool for optimizing the component design and operation of VRFBs.

  12. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    Science.gov (United States)

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-07

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Continuous Flow-Resonance Raman Spectroscopy of an Intermediate Redox State of Cytochrome-C

    DEFF Research Database (Denmark)

    Forster, M.; Hester, R. E.; Cartling, B.

    1982-01-01

    An intermediate redox state of cytochrome c at alkaline pH, generated upon rapid reduction by sodium dithionite, has been observed by resonance Raman (RR) spectroscopy in combination with the continuous flow technique. The RR spectrum of the intermediate state is reported for excitation both...... in the (alpha, beta) and the Soret optical absorption band. The spectra of the intermediate state are more like those of the stable reduced form than those of the stable oxidized form. For excitation of 514.5 nm, the most prominent indication of an intermediate state is the wave-number shift of one RR band from...... 1,562 cm-1 in the stable oxidized state through 1,535 cm-1 in the intermediate state to 1,544 cm-1 in the stable reduced state. For excitation at 413.1 nm, a band, present at 1,542 cm-1 in the stable reduced state but not present in the stable oxidized state, is absent in the intermediate state. We...

  14. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment

    Science.gov (United States)

    Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo

    2017-02-01

    Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.

  15. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  16. Numerical and experimental studies of stack shunt current for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Yin, Cong; Guo, Shaoyun; Fang, Honglin; Liu, Jiayi; Li, Yang; Tang, Hao

    2015-01-01

    Highlights: • A coupled three-dimensional model of VRB cell stack is developed. • Shunt current of the stack is studied with the model and experiment. • Increased electrolyte resistance in channel and manifold lowers the shunt current. • Shunt current loss increases with stack cell number nonlinearly. - Abstract: The stack shunt current of VRB (vanadium redox flow battery) was investigated with experiments and 3D (three-dimensional) simulations. In the proposed model, cell voltages and electrolyte conductivities were calculated based on electrochemical reaction distributions and SOC (state of charge) values, respectively, while coulombic loss was estimated according to shunt current and vanadium ionic crossover through membrane. Shunt current distributions and coulombic efficiency are analyzed in terms of electrolyte conductivities and stack cell numbers. The distributions of cell voltages and shunt currents calculated with proposed model are validated with single cell and short stack tests. The model can be used to optimize VRB stack manifold and channel designs to improve VRB system efficiency

  17. Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Hwang, Gan-Jin; Oh, Yong-Hwan; Ryu, Cheol-Hwi; Choi, Ho-Sang

    2014-01-01

    Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of 60 mA/cm 2 . The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was 4.44-5.00 Ω·cm 2 and 3.28-3.75 Ω·cm 2 for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was 4.19-4.42Ω·cm 2 and 4.71-5.49Ω·cm 2 for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively

  18. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  19. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Jong Ho; Park, Jung Jin; Park, O Ok; Yang, Jung Hoon

    2016-11-23

    Capacity decay in vanadium redox flow batteries during charge-discharge cycling has become an important issue because it lowers the practical energy density of the battery. The battery capacity tends to drop rapidly within the first tens of cycles and then drops more gradually over subsequent cycles during long-term operation. This paper analyzes and discusses the reasons for this early capacity decay. The imbalanced crossover rate of vanadium species was found to remain high until the total difference in vanadium concentration between the positive and negative electrolytes reached almost 1 mol dm -3 . To minimize the initial crossover imbalance, we introduced an asymmetric volume ratio between the positive and negative electrolytes during cell operation. Changing this ratio significantly reduced the capacity fading rate of the battery during the early cycles and improved its capacity retention at steady state. As an example, the practical energy density of the battery increased from 15.5 to 25.2 Wh L -1 simply after reduction of the positive volume by 25 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Choi, So-Won; Kim, Tae-Ho; Cha, Sang-Ho

    2017-07-10

    Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Random quaternary ammonium Diels-Alder poly(phenylene) copolymers for improved vanadium redox flow batteries

    Science.gov (United States)

    Largier, Timothy D.; Cornelius, Chris J.

    2017-06-01

    This study analyzes the effect of quaternary ammonium homopolymer (AmPP) and ionic and non-ionic random unit copolymerization (AmPP-PP) of Diels-Alder poly(phenylene)s on electrochemical and transport properties, vanadium redox flow battery performance, and material stability. AmPP-PP materials were synthesized with IEC's up to 2.2 meq/g, displaying a carbonate form ion conductivity of 17.3 mS/cm and water uptake of 57.3%. Vanadium ion permeability studies revealed that the random copolymers possess superior charge carrier selectivity. For materials of comparable ion content, at 10 mA/cm2 the random copolymer displayed a 14% increase in coulombic efficiency (CE) corresponding to a 7% increase in energy efficiency. All quaternary ammonium materials displayed ex situ degradation in a 0.5 M V5+ + 5 M H2SO4 solution, with the rate of degradation appearing to increase with IEC. Preliminary studies reveal that the neutralizing counter-ion has a significant effect on VRB performance, proportional to changes in vanadium ion molecular diffusion.

  2. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  3. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The correlations of electrolyte viscosity and SOC are obtained. • Effect of SOC-dependent electrolyte viscosity is considered in this model. • This model enables a more realistic simulation of variable distributions. • It provides accurate estimations of pumping work and system efficiency. - Abstract: The viscosity of the electrolyte in vanadium redox flow batteries (VRFBs) varies during charge and discharge as the concentrations of acid and vanadium ions in the electrolyte continuously change with the state of charge (SOC). In previous VRFB models, however, the electrolyte has been treated as a constant-viscosity solution. In this work, a mass-transport and electrochemical model taking account of the effect of SOC-dependent electrolyte viscosity is developed. The comparison between the present model and the model with the constant-viscosity simplification indicates that the consideration of the SOC-dependent electrolyte viscosity enables (i) a more realistic simulation of the distributions of overpotential and current density in the electrodes, and (ii) more accurate estimations of pumping work and the system efficiency of VRFBs

  4. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    Science.gov (United States)

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  5. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    Science.gov (United States)

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  6. Porous glass membranes for vanadium redox-flow battery application - Effect of pore size on the performance

    Science.gov (United States)

    Mögelin, H.; Yao, G.; Zhong, H.; dos Santos, A. R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; Turek, T.; Kunz, U.

    2018-02-01

    The improvement of redox-flow batteries requires the development of chemically stable and highly conductive separators. Porous glass membranes can be an attractive alternative to the nowadays most common polymeric membranes. Flat porous glass membranes with a pore size in the range from 2 to 50 nm and a thickness of 300 and 500 μm have been used for that purpose. Maximum values for voltage efficiency of 85.1%, coulombic efficiency of 97.9% and energy efficiency of 76.3% at current densities in the range from 20 to 60 mA cm-2 have been achieved. Furthermore, a maximum power density of 95.2 mW cm-2 at a current density of 140 mA cm-2 was gained. These results can be related to small vanadium crossover, high conductivity and chemical stability, confirming the great potential of porous glass membranes for vanadium redox-flow applications.

  7. Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Mallinson, Sarah L.; Varcoe, John R.; Slade, Robert C.T.

    2014-01-01

    The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery

  8. The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage

    International Nuclear Information System (INIS)

    Xie, Zhipeng; Liu, Qingchao; Chang, Zhiwen; Zhang, Xinbo

    2013-01-01

    Zinc–cerium redox flow batteries (ZCBs) are emerging as a very promising new technology with the potential to store a large amount of energy economically and efficiently, thanking to its highest thermodynamic open-circuit cell voltage among all the currently studied aqueous redox flow batteries. However, there are numerous scientific and technical challenges that must be overcome if this alluring promise is to turn into reality, from designing the battery structure, to optimizing the electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. This review article is the first summary of the most significant developments and challenges of cerium half-cell and the current understanding of their chemistry. We are certain that this review will be of great interest to audience over a broad range, especially in fields of energy storage, electrochemistry, and chemical engineering

  9. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    Science.gov (United States)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  10. Flat flow profiles achieved with microfluidics generated by redox-magnetohydrodynamics.

    Science.gov (United States)

    Sahore, V; Fritsch, I

    2013-12-17

    Horizontal flow profiles having uniform velocities (3-13% RSD) at fixed heights across 0.5, 2.0, and 5.6 mm widths, with magnitudes of ≤124 μm/s, can be sustained along a ∼25.0 mm path using redox-magnetohydrodynamics (MHD) microfluidic pumping in a small volume (14.3 mm wide × 27.0 mm long × 620 μm high) on a chip. Uniform velocity profiles are important in moving volume elements without shape distortion for assays and separations for lab-on-a-chip applications. Fluid movement resulting from the MHD force (FB = j × B) was monitored with video microscopy by tracking 10 μm, polystyrene latex beads mixed into the solution. The ionic current density, j, was generated in 0.095 M K3Fe(CN)6, 0.095 M K4Fe(CN)6, and 0.095 M KCl by applying a constant current across a 0.5, 2.0, or 5.6 mm gap between an anode-cathode pair of electrodes, consisting of one to four shorted parallel, coplanar gold microbands [each 25.0 mm × 98 μm × ∼100 nm (thickness), and separated by 102 μm] fabricated on an insulated silicon substrate. By shorting the increasing numbers of microbands together, increasing currents (118, 180, 246, and 307 μA) could be applied without electrode damage, and the impact of ionic current density gradients on velocity profiles over the anodes and cathodes could also be investigated. The magnetic field, B, was produced with a 0.36 T NdFeB permanent magnet beneath the chip. Data analysis was performed using particle image velocimetry software. A vertical flow profile was also obtained in the middle of the 5.6 mm gap.

  11. Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz

    2017-07-10

    All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    Science.gov (United States)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  13. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  14. A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries

    Science.gov (United States)

    Kim, Hyun-seung; Lee, Keon-Joon; Han, Young-Kyu; Ryu, Ji Heon; Oh, Seung M.

    2017-04-01

    A methyl-substituted p-phenylenediamine (PD), N,N,N‧,N‧-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.

  15. Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries

    International Nuclear Information System (INIS)

    Ashraf Gandomi, Yasser; Aaron, D.S.; Mench, M.M.

    2016-01-01

    Highlights: • Real-time crossover of vanadium species was investigated with a novel system. • Concentration and electrostatic potential gradient-induced crossover was separated. • Interaction coefficients were introduced to account for state of charge dependence. • Electric-field-induced crossover is asymmetric for charge and discharge processes. • Net vanadium crossover is from negative to positive half-cell at open-circuit. - Abstract: One of the major sources of capacity loss in all-vanadium redox flow batteries (VRFBs) is the undesired transport of active vanadium species across the ion-exchange membrane, generically termed crossover. In this work, a novel system has been designed and built to investigate the concentration- and electrostatic potential gradient-driven crossover for all vanadium species through the membrane in real-time. For this study, a perfluorosulphonic acid membrane separator (Nafion ® 117) was used. The test system utilizes ultraviolet/visible (UV/Vis) spectroscopy to differentiate vanadium ion species and separates contributions to crossover stemming from concentration and electrostatic potential gradients. It is shown that the rate of species transport through the ion-exchange membrane is state of charge dependent and, as a result, interaction coefficients have been deduced which can be used to better estimate expected crossover over a range of operating conditions. The electric field was shown to increase the negative-to-positive transport of V(II)/V(III) and suppress the positive-to-negative transport of V(IV)/V(V) during discharge, with an inverse trend during charging conditions. Electric-field-induced transport coefficients were deduced directly from experimental data.

  16. Broad temperature adaptability of vanadium redox flow battery—Part 2: Cell research

    International Nuclear Information System (INIS)

    Xi, Jingyu; Xiao, Shuibo; Yu, Lihong; Wu, Lantao; Liu, Le; Qiu, Xinping

    2016-01-01

    Highlights: • VRFB can operate in a broad temperature range from −20 °C to 50 °C with high efficiency. • High temperatures reduce the ohmic and polarization resistances of VRFB. • The CE and capacity retention drop with temperature rising. • Operating at alternate temperatures gives extra damage to the VRFB. - Abstract: The operating temperature of vanadium redox flow battery (VRFB) will change with seasons and places. Hence, the broad temperature adaptability of VRFB is one of the key issues which affect its large-scale practical application. In our previous work, we have reported the impact of temperature (−35 °C–50 °C) on the static stability, physicochemical and electrochemical properties of five typical vanadium electrolytes (Electrochim. Acta, 2016, 187, 525). As a follow-up study, VRFB single cells are evaluated in this paper at a broad temperature range under current density of 40–200 mA cm −2 . The results show that VRFB can operate from −20 °C to 50 °C with acceptable energy efficiency under appropriate current densities (e.g. 65%–78% at 100 mA cm −2 ). Ohmic and polarization resistances of VRFB decrease with temperature while the voltage efficiency and electrolyte utilization present the opposite tendency. The fast crossover of the vanadium ions at high temperatures aggravates the capacity fading of the cell. Notably, VRFB suffers much more damage during alternate temperatures operation between moderate temperature and high temperature, which should be given special attention.

  17. Effect of inorganic additive sodium pyrophosphate tetrabasic on positive electrolytes for a vanadium redox flow battery

    International Nuclear Information System (INIS)

    Park, Se-Kook; Shim, Joonmok; Yang, Jung Hoon; Jin, Chang-Soo; Lee, Bum Suk; Lee, Young-Seak; Shin, Kyoung-Hee; Jeon, Jae-Deok

    2014-01-01

    Sodium pyrophosphate tetrabasic (SPT) is employed as an inorganic additive in the positive electrolyte of a vanadium redox flow battery (VRFB) to improve its long-term stability and electrochemical performance. The results of precipitation tests show that the long-term stability of positive electrolytes (2 MV(V) solution in 4 M total sulfates with 0.05 M SPT additive) is improved compared to the blank one. UV-vis and cyclic voltammetry (CV) measurements also suggest that the addition of SPT can effectively delay the formation of precipitation in positive electrolytes, and no new substances are formed in V(V) electrolytes with SPT. The calcined precipitates extracted from the electrolytes with and without a SPT additive are identified as V 2 O 5 by X-ray diffraction (XRD) analysis. A VRFB single-unit cell employing positive electrolytes with an additive exhibits the high energy efficiency of 74.6% at a current density of 40 mA cm 2 at the 500 th cycle at 20°C, compared to 71.8% for the cell employing the electrolyte without an additive. Moreover, the cell employing the electrolyte with an additive exhibits less discharge capacity fading during cycling in comparison with the pristine one. The disassembled cell without an additive shows a large number of V 2 O 5 precipitation particles on the felt electrode after 500 cycles. Meanwhile, the felt electrode of the cell with an additive has little precipitation. That precipitation gives rise to an imbalance between the positive and negative half-cell electrolytes, which results in a significant capacity loss. The additive has shown positive results under limited laboratory short-term and small-scale conditions

  18. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  19. Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research

    International Nuclear Information System (INIS)

    Xiao, Shuibo; Yu, Lihong; Wu, Lantao; Liu, Le; Qiu, Xinping; Xi, Jingyu

    2016-01-01

    Highlights: • Impact of temperature (-35 °C-50 °C) on properties of VRFB electrolyte is studied. • V 2+ , V 3+ , V 3.5+ , V 4+ (VO 2+ ) and V 5+ (VO 2 + ) electrolytes are tested respectively. • V 2+ , V 3+ and V 3.5+ precipitates at low temperature can redissolve when temperature increases. • V 5+ precipitates at high temperature cannot redissolve when temperature decreases. • Conductivity and viscosity of the electrolytes are greatly affected by temperature. - Abstract: The broad temperature adaptability of vanadium redox flow battery (VRFB) is one of the key issues which affects the large-scale and safety application of VRFB. Typically, five types of vanadium electrolytes, namely V 2+ , V 3+ , V 3.5+ (V 3+ :VO 2+ = 1:1), V 4+ (VO 2+ ) and V 5+ (VO 2 + ), are the most common electrolytes' status existing in VRFB system. In this work, the physicochemical and electrochemical properties of these vanadium electrolytes are studied in detail at a broad temperature range (-35 °C–50 °C). The results show that all types of vanadium electrolytes are stable between -25 °C–30 °C. The temperature fluctuation will largely influence the conductivity and viscosity of the electrolytes. Besides, the electrochemical properties of the positive (VO 2+ ) and negative (V 3+ ) electrolytes are greatly affected by the temperature; and the charge transfer process fluctuates more greatly with the temperature variation than the charge diffusion process does. These results enable us to better and more comprehensively evaluate the performance of the electrolyte changing with the temperature, which will be beneficial for the rational choice of electrolyte for VRFB operation under various conditions.

  20. A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chou, Yi-Sin; Hsu, Ning-Yih; Jeng, King-Tsai; Chen, Kuan-Hsiang; Yen, Shi-Chern

    2016-01-01

    Highlights: • This is the first to apply ultrasonic sensing technique to monitor SOC of VRB. • Ultrasound velocity is affected by concentration and temperature of a solution. • The ultrasonic sensing is applicable to both positive and negative sides of VRB. • An empirical model equation fits the results of this two-component system well. • The SOC of a VRB can be properly measured using ultrasonic sensing. - Abstract: A novel ultrasonic velocity sensing approach is proposed and investigated to monitor the state of charge (SOC) of a vanadium redox flow battery (VRB, or VRFB). The positive electrode is designated as the energy storage capacity-limiting one so that the molar ratio of the V"5"+ ion in the positive electrolyte solution determines the SOC of a VRB. The tested single-cell VRB is connected to an ultrasonic sensor and charged/discharged almost to its two extremes at a constant current of 2 A under various operating temperatures. It is found that the ultrasound velocity exhibits distinct variations in accordance with changes of vanadium ion compositions in the positive electrolyte solution as the SOC of the VRB varies. The SOC obtained can be depicted in a 3D plot in terms of ultrasound velocity and operating temperature. An empirical model equation is proposed and found to fit the experimental results of both charging and discharging stages quite well. The advantages of this SOC sensing approach are that it is totally independent of VRB operations and can be readily applied to both sides of the electrodes. It is expected to develop into a dependable method for accurate and real-time monitoring of SOC for VRB.

  1. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  2. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  3. Effects of the electric field on ion crossover in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Xiao-Guang; Ye, Qiang; Cheng, Ping; Zhao, Tim S.

    2015-01-01

    Highlights: • Effects of the electric field on ion crossover and capacity decay in VRFB are studied. • The model enables the Donnan-potential jumps to be captured at electrode/membrane interfaces. • Electric field arises and affects ion crossover even at the open-circuit condition. • Enhancing electric-field-driven crossover can mitigate the capacity decay rate. - Abstract: A thorough understanding of the mechanisms of ion crossover through the membranes in vanadium redox flow batteries (VRFBs) is critically important in making improvements to the battery’s efficiency and cycling performance. In this work, we develop a 2-D VRFB model to investigate the mechanisms of ion crossover and the associated impacts it has on the battery’s performance. Unlike previously described models in the literature that simulated a single cell by dividing it into the positive electrode, membrane, and negative electrode regions, the present model incorporates all possible ion crossover mechanisms in the entire cell without a need to specify any interfacial boundary conditions at the membrane/electrode interfaces, and hence accurately captures the Donnan-potential jumps and steep gradient of species concentrations at the membrane/electrode interfaces. With our model, a particular emphasis is given to investigation of the effect of the electric field on vanadium ion crossover. One of the significant findings is that an electric field exists in the membrane even under the open-circuit condition, primarily due to the presence of the H + concentration gradient across the membrane. This finding suggests that vanadium ions can permeate through the membrane from H + -diluted to H + -concentrated sides via migration and convection. More importantly, it is found that the rate of vanadium ion crossover and capacity decay during charge and discharge vary with the magnitude of the electric field, which is influenced by the membrane properties and operating conditions. The simulations

  4. Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Shen, Junxi

    2014-01-01

    Nitrogen-doped graphene nanosheets (NGS), prepared by a simple hydrothermal reaction of graphene oxide (GO) with urea as nitrogen source were studied as positive electrodes in vanadium redox flow battery (VRFB). The synthesized NGS with the nitrogen level as high as 10.12 atom% is proven to be a promising material for VRFB. The structures and electrochemical properties of the materials are investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The results demonstrate that not only the nitrogen doping level but the nitrogen type in the NGS are significant for its catalytic activity towards the [VO] 2+ /[VO 2 ] + redox couple reaction. In more detail, among four types of nitrogen species (pyridinic-N, pyrrolic-N, quaternary-N, oxidic-N) doped into the graphene lattice, quaternary-N play mainly roles for improving the catalytic activity toward the [VO] 2+ /[VO 2 ] + couple reaction

  5. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  6. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  7. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    Science.gov (United States)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  8. Heterogeneous redox reactions in groundwater flow systems - Investigation and application of two different coupled codes

    Energy Technology Data Exchange (ETDEWEB)

    Pfingsten, W.; Carnahan, C.L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-05-01

    Two simulators of reactive chemical transport are applied to a set of problems involving heterogeneous reactions of uranium species. The simulators use similar algorithms to compute the heterogeneous chemical equilibria, but they use different approaches to the computation of solute transport and to the coupling of transport with chemical reactions. One simulator (MCOTAC) sequentially couples calculations of static chemical equilibria to a random-walk simulation of solute advection and dispersion. The other simulator (THCC) directly couples mass action relations for chemical equilibria to finite-difference representations of the solute transport equations. The aim of the comparison was to demonstrate the applicability of the newly developed code MCOTAC to redox problems, and to identify and investigate general differences between the two types of codes within these applications. The chosen heterogeneous redox systems are hypothetically generate systems which provide numerical difficulties within the coupled code calculation. Uranium, an important component of heterogeneous redox systems consisting of uraniferous solids and natural groundwaters, was chosen as a main component in the example redox systems because of practical interest for performance assessment of geological repositories for nuclear wastes. The calculations show reasonable agreement, in general, between the two computational approaches. Specific areas of disagreement arise from numerical difficulties to each approach. Such `benchmarking` can enhance confidence in the overall performance of individual simulators while identifying aspects that may require further investigations and possible modifications. (author) figs., tabs., 7 refs.

  9. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications

    Science.gov (United States)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-02-01

    Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.

  10. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    Science.gov (United States)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  11. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  12. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  13. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  14. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  15. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  16. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  17. Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liang, Xinxing; Peng, Sui; Lei, Ying; Gao, Chao; Wang, Nanfang; Liu, Suqin; Fang, Dong

    2013-01-01

    Highlights: ► Amino acid is used as additive for all-vanadium redox flow battery. ► The additive can significantly improve performance of positive electrolyte. ► Mechanism for the improvement is investigated. -- Abstract: L-Glutamic acid is used as an additive for the positive electrolyte of all-vanadium redox flow battery (VRFB), and its effect on the thermal stability and electrochemical activity is investigated. It is found that the addition of L-glutamic can significantly alleviate the precipitation of V 2 O 5 from positive electrolyte. The conservation rate of V(V) ion can be as high as 58% after 2 M V(V) solution being kept in 40 °C for 89 h. Besides, L-glutamic can also improve the mass transport and electrochemical performance of anolyte. A high coulombic efficiency of over 95% and energy efficiency of 74% are obtained. XPS spectra illustrate that L-glutamic can react with the surface of carbon felt electrode and introduce more oxygen-containing and nitrogen-containing groups, which should be responsible for the improvement of electrochemical performance

  18. Highly Stable Anion Exchange Membranes for High-Voltage Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yushan [Univ. of Delaware, Newark, DE (United States)

    2018-02-26

    membrane in the sulfuric acid system was also achieved due to the high acid doping ability of the polymer structure. The cationic 9MeOTTP+-F6PBI PTFE reinforced membrane shows a cerium (IV) permeability that is 27-fold lower than that of Nafion 212. Excellent voltage and energy efficiencies with a 9MeOTTP+-F6PBI PTFE reinforced membrane were demonstrated in an all-vanadium redox flow battery (VRFB).

  19. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  20. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  1. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment

    International Nuclear Information System (INIS)

    Roellin, S.; Spahiu, K.; Eklund, U.-B.

    2001-01-01

    Dissolution rates of spent UO 2 fuel have been investigated using flow-through experiments under oxidizing, anoxic and reducing conditions. For oxidizing conditions, approximately congruent dissolution rates were obtained in the pH range 3-9.3 for U, Np, Ba, Tc, Cs, Sr and Rb. For these elements, steady-state conditions were obtained in the flow rate range 0.02-0.3 ml min -1 . The dissolution rates were about 3 mg d -1 m -2 for pH>6. For pH 2 (g) saturated solutions dropped by up to four orders of magnitude as compared to oxidizing conditions. Because of the very low concentrations, only U, Pu, Am, Mo, Tc and Cs could be measured. For anoxic conditions, both the redox potential and dissolution rates increased approaching the same values as under oxidizing conditions

  2. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.

    2017-01-01

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5, 8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.

  3. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  4. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Directory of Open Access Journals (Sweden)

    Hyun-seung Kim

    2018-04-01

    Full Text Available Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N′,N′-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  5. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Science.gov (United States)

    Kim, Hyun-seung; Hwang, Seunghae; Kim, Youngjin; Ryu, Ji Heon; Oh, Seung M.; Kim, Ki Jae

    2018-04-01

    Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M) than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N',N'-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  6. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery

    International Nuclear Information System (INIS)

    Qiu Gang; Joshi, Abhijit S.; Dennison, C.R.; Knehr, K.W.; Kumbur, E.C.; Sun Ying

    2012-01-01

    The vanadium redox flow battery (VRFB) has emerged as a viable grid-scale energy storage technology that offers cost-effective energy storage solutions for renewable energy applications. In this paper, a novel methodology is introduced for modeling of the transport mechanisms of electrolyte flow, species and charge in the VRFB at the pore scale of the electrodes; that is, at the level where individual carbon fiber geometry and electrolyte flow are directly resolved. The detailed geometry of the electrode is obtained using X-ray computed tomography (XCT) and calibrated against experimentally determined pore-scale characteristics (e.g., pore and fiber diameter, porosity, and surface area). The processed XCT data is then used as geometry input for modeling of the electrochemical processes in the VRFB. The flow of electrolyte through the pore space is modeled using the lattice Boltzmann method (LBM) while the finite volume method (FVM) is used to solve the coupled species and charge transport and predict the performance of the VRFB under various conditions. An electrochemical model using the Butler–Volmer equations is used to provide species and charge coupling at the surfaces of the carbon fibers. Results are obtained for the cell potential distribution, as well as local concentration, overpotential and current density profiles under galvanostatic discharge conditions. The cell performance is investigated as a function of the electrolyte flow rate and external drawing current. The model developed here provides a useful tool for building the structure–property–performance relationship of VRFB electrodes.

  7. An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery

    International Nuclear Information System (INIS)

    Nikiforidis, Georgios; Berlouis, Léonard; Hall, David; Hodgson, David

    2014-01-01

    Highlights: •Elevated temperatures favoured the Ce 3+/4+ reaction on the Pt, Pt–Ir and carbon substrates. •j o increased with temperature over the range 25 °C to 60 °C for all substrates. •Non-porous carbon substrates showed higher reversibility on the Ce 3+/4+ reaction. •Surface degradation of the carbon electrodes occurred due to the high positive potentials. •The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce RFB. -- Abstract: In this study, the electrochemical behaviour of the Ce 3+/4+ redox couple in methanesulfonic acid medium on various electrode substrates was investigated as a function of temperature. Carbon composite electrodes as well as platinum and platinum iridium coated electrodes were studied for their suitability in carrying out the Ce 3+/4+ redox reaction. Cyclic voltammetry in 0.8 mol dm −3 cerium and 4.5 mol dm −3 methanesulfonic acid solution showed that elevated temperatures favoured the Ce 3+ /Ce 4+ reaction on the various platinum and platinum–iridium coated substrates as well as on carbon composite surfaces. The latter electrodes showed better kinetics than the metal coatings but deteriorated badly under the high positive potentials required for the cerium reaction. The exchange current density (j o ), obtained through Tafel extrapolation, polarisation resistance and electrochemical impedance spectroscopy measurements, increased with temperature over the range 25 °C to 60 °C. The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce redox flow battery

  8. Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce de Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    The characteristics of the Ce(III)/Ce(IV) redox couple in methanesulfonic acid were studied at a platinum disk electrode (0.125 cm 2 ) over a wide range of electrolyte compositions and temperatures: cerium (III) methanesulfonate (0.1-1.2 mol dm -3 ), methanesulfonic acid (0.1-5.0 mol dm -3 ) and electrolyte temperatures (295-333 K). The cyclic voltammetry experiments indicated that the diffusion coefficient of Ce(III) ions was 0.5 x 10 -6 cm 2 s -1 and that the electrochemical kinetics for the oxidation of Ce(III) and the reduction of Ce(IV) was slow. The reversibility of the redox reaction depended on the electrolyte composition and improved at higher electrolyte temperatures. At higher methanesulfonic acid concentrations, the degree of oxygen evolution decreased by up to 50% when the acid concentration increased from 2 to 5 mol dm -3 . The oxidation of Ce(III) and reduction of Ce(IV) were also investigated during a constant current batch electrolysis in a parallel plate zinc-cerium flow cell with a 3-dimensional platinised titanium mesh electrode. The current efficiencies over 4.5 h of the process Ce(III) to Ce(IV) and 3.3 h electrolysis of the reverse reaction Ce(IV) to Ce(III) were 94.0 and 97.6%, respectively. With a 2-dimensional, planar platinised titanium electrode (9 cm 2 area), the redox reaction of the Ce(III)/Ce(IV) system was under mass-transport control, while the reaction on the 3-dimensional mesh electrode was initially under charge-transfer control but became mass-transport controlled after 2.5-3 h of electrolysis. The effect of the side reactions (hydrogen and oxygen evolution) on the current efficiencies and the conversion of Ce(III) and Ce(IV) are discussed.

  9. 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries

    International Nuclear Information System (INIS)

    Herr, T.; Noack, J.; Fischer, P.; Tübke, J.

    2013-01-01

    Highlights: • Four solvents were employed in a non-aqueous redox flow battery system. • Coulombic efficiencies of 85.9–98.5% and energy efficiencies of 26.6–43.6% were achieved. • Discharge power density was enhanced up to 0.080 mW cm −2 . • Solubility of V(acac) 3 was increased to 0.8 M compared to the acetonitrile system. -- Abstract: A non-aqueous vanadium acetylacetonate redox flow battery with different organic solvents and tetrabutylammonium hexafluorophosphate has been investigated. Cyclic voltammograms show three redox couples in 1,3-dioxolane, tetrahydrofuran, acetylacetone and two redox couples in dimethyl sulfoxide. Cell potentials between 2.21 and 2.61 V are measured, depending on the solvent used. Impedance Spectroscopy has been used to determine rate limiting step in the non-aqueous redox flow battery. Experiments in a charge–discharge test cell yielded coulombic and energy efficiencies of 85.9–98.5% and 26.6–43.6%, respectively

  10. Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hammer

    2014-02-01

    Full Text Available In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB. The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2 was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.

  11. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    Science.gov (United States)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  12. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    Science.gov (United States)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  13. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, W.H.; Wang, X.D.

    2007-01-01

    Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H 2 IrCl 6 . ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm -2 , a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt

  14. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  15. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  16. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance

    International Nuclear Information System (INIS)

    Zhou, X.L.; Zhao, T.S.; An, L.; Wei, L.; Zhang, C.

    2015-01-01

    An issue with conventional vanadium redox flow batteries (VRFB) with Nafion membranes is the crossover of vanadium ions, resulting in low coulombic efficiency and rapid decay in capacity. In this work, a VRFB with a polybenzimidazole (PBI) membrane is tested and compared with the Nafion system. Results show that the PBI-based VRFB exhibits a substantially higher coulombic efficiency of up to 99% at current densities ranging from 20 mA cm −2 to 80 mA cm −2 . More importantly, it is demonstrated that the PBI-based VRFB has a capacity decay rate of as low as 0.3% per cycle, which is four times lower than that of the Nafion system (1.3% per cycle). The improved coulombic efficiency and cycling performance are attributed to the low crossover of vanadium ions through the PBI membrane

  17. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    Science.gov (United States)

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-07

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  18. Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries

    Science.gov (United States)

    Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.

    2018-02-01

    A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.

  19. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  20. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications

    International Nuclear Information System (INIS)

    Jia, Chuankun; Cheng, Yuanhang; Ling, Xiao; Wei, Guanjie; Liu, Jianguo; Yan, Chuanwei

    2015-01-01

    A novel sulfonated poly(ether ether ketone) (SPEEK) membrane embedded with the short-carboxylic multi-walled carbon nanotube (we name it as SPEEK/SCCT membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost and high energy efficiency. The mechanical strength, vanadium ions permeability and performance of the membrane in the VRB single cell were characterized. Results showed that the SPEEK/SCCT membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion 212 membrane. The VRB single cell with SPEEK/SCCT membrane showed 7% higher coulombic efficiency (CE), 6% higher energy efficiency (EE) but lower capacity loss in comparison with the one with Nafion 212. The good cell performance, low capacity loss and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications

  1. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications.

    Science.gov (United States)

    Stauber, Julia M; Zhang, Shiyu; Gvozdik, Nataliya; Jiang, Yanfeng; Avena, Laura; Stevenson, Keith J; Cummins, Christopher C

    2018-01-17

    An electrochemical cell consisting of cobalt ([Co II/III (P 3 O 9 ) 2 ] 4-/3- ) and vanadium ([V III/II (P 3 O 9 ) 2 ] 3-/4- ) bistrimetaphosphate complexes as catholyte and anolyte species, respectively, was constructed with a cell voltage of 2.4 V and Coulombic efficiencies >90% for up to 100 total cycles. The [Co(P 3 O 9 ) 2 ] 4- (1) and [V(P 3 O 9 ) 2 ] 3- (2) complexes have favorable properties for flow-battery applications, including reversible redox chemistry, high stability toward electrochemical cycling, and high solubility in MeCN (1.09 ± 0.02 M, [PPN] 4 [1]·2MeCN; 0.77 ± 0.06 M, [PPN] 3 [2]·DME). The [PPN] 4 [1]·2MeCN and [PPN] 3 [2]·DME salts were isolated as crystalline solids in 82 and 68% yields, respectively, and characterized by 31 P NMR, UV/vis, ESI-MS(-), and IR spectroscopy. The [PPN] 4 [1]·2MeCN salt was also structurally characterized, crystallizing in the monoclinic P2 1 /c space group. Treatment of 1 with [(p-BrC 6 H 4 ) 3 N] + allowed for isolation of the one-electron-oxidized spin-crossover (SCO) complex, [Co(P 3 O 9 ) 2 ] 3- (3), which is the active catholyte species generated during cell charging. The success of the 1-2 cell provides a promising entry point to a potential future class of transition-metal metaphosphate-based all-inorganic non-aqueous redox-flow battery electrolytes.

  2. Role of Bismuth in the Electrokinetics of Silicon Photocathodes for Solar Rechargeable Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Flox, Cristina; Murcia-López, Sebastián; Carretero, Nina M; Ros, Carles; Morante, Juan R; Andreu, Teresa

    2018-01-10

    The ability of crystalline silicon to photoassist the V 3+ /V 2+ cathodic reaction under simulated solar irradiation, combined with the effect of bismuth have led to important electrochemical improvements. Besides the photovoltage supplied by the photovoltaics, additional decrease in the onset potentials, high reversibility of the V 3+ /V 2+ redox pair, and improvement in the electrokinetics were attained thanks to the addition of bismuth. In fact, Bi 0 deposition has shown to slightly decrease the photocurrent, but the significant enhancement in the charge transfer, reflected in the overall electrochemical performance clearly justifies its use as additive in a photoassisted system for maximizing the efficiency of solar charge to battery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    He, Zhangxing; Dai, Lei; Liu, Suqin; Wang, Ling; Li, Chuanchang

    2015-01-01

    Highlights: • Mn 3 O 4 /MWCNTs (multi-walled carbon nanotubes) composite fabricated by a simple solvothermal method was developed as electrochemical catalyst of V(IV)/V(V) redox couple for vanadium redox flow batteries for the first time. • The electrocatalytic kinetics of the redox reactions of three electrocatalysts (pure Mn 3 O 4 , pure MWCNTs, Mn 3 O 4 /MWCNTs) were compared, and were in the order of Mn 3 O 4 /MWCNTs > MWCNTs > Mn 3 O 4 . • The cell using Mn 3 O 4 /MWCNTs has lower electrochemical polarization, with larger discharge capacity and energy efficiency. The average energy efficiency of the cell using Mn 3 O 4 /MWCNTs is 84.65%, 3.73% higher than that of the pristine cell. - Abstract: Mn 3 O 4 /MWCNTs (multi-walled carbon nanotubes) composite fabricated by a simple solvothermal method was developed as electrochemical catalyst of V(IV)/V(V) redox couple for vanadium redox flow batteries. The electrochemical activity of V(IV)/V(V) redox couple can be enhanced by the electrochemical catalysts (Mn 3 O 4 , MWCNTs, Mn 3 O 4 /MWCNTs), and the electrocatalytic kinetics of the redox reactions were in the order of Mn 3 O 4 /MWCNTs > MWCNTs > Mn 3 O 4 . The cell using Mn 3 O 4 /MWCNTs composite as electrochemical catalyst was assembled and the charge-discharge performance was evaluated. Compared with the pristine cell, the cell using positive graphite felt modified by Mn 3 O 4 /MWCNTs had lower electrochemical polarization, larger discharge capacity and energy efficiency. The average energy efficiency of the cell using modified positive electrode for 50 cycles was 84.65%, 3.73% higher than that of the pristine cell. The superior electrocatalytic performance of Mn 3 O 4 /MWCNTs composite was mainly due to the effective mixed conducting network, facilitating the electron transport and ion diffusion in the electrode/electrolyte interface

  4. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery

    Science.gov (United States)

    Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou

    2018-06-01

    In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.

  5. A dynamic model-based estimate of the value of a vanadium redox flow battery for frequency regulation in Texas

    International Nuclear Information System (INIS)

    Fares, Robert L.; Meyers, Jeremy P.; Webber, Michael E.

    2014-01-01

    Highlights: • A model is implemented to describe the dynamic voltage of a vanadium flow battery. • The model is used with optimization to maximize the utility of the battery. • A vanadium flow battery’s value for regulation service is approximately $1500/kW. - Abstract: Building on past work seeking to value emerging energy storage technologies in grid-based applications, this paper introduces a dynamic model-based framework to value a vanadium redox flow battery (VRFB) participating in Texas’ organized electricity market. Our model describes the dynamic behavior of a VRFB system’s voltage and state of charge based on the instantaneous charging or discharging power required from the battery. We formulate an optimization problem that incorporates the model to show the potential value of a VRFB used for frequency regulation service in Texas. The optimization is implemented in Matlab using the large-scale, interior-point, nonlinear optimization algorithm, with the objective function gradient, nonlinear constraint gradients, and Hessian matrix specified analytically. Utilizing market prices and other relevant data from the Electric Reliability Council of Texas (ERCOT), we find that a VRFB system used for frequency regulation service could be worth approximately $1500/kW

  6. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    Science.gov (United States)

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  7. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    Science.gov (United States)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  8. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.

    Science.gov (United States)

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D; Martin, Norbert; Schubert, Ulrich S

    2017-04-01

    By combining a viologen unit and a 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical in one single combi-molecule, an artificial bipolar redox-active material, 1-(4-(((1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)oxy)carbonyl)benzyl)-1'-methyl-[4,4'-bipyridine]-1,1'-diium-chloride ( VIOTEMP ), was created that can serve as both the anode (-0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water-based redox-flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox-flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity-inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented.

  9. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  10. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  11. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  12. An FeIII Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications.

    Science.gov (United States)

    Tsitovich, Pavel B; Kosswattaarachchi, Anjula M; Crawley, Matthew R; Tittiris, Timothy Y; Cook, Timothy R; Morrow, Janet R

    2017-11-02

    A reversible Fe 3+ /Fe 2+ redox couple of an azamacrocyclic complex is evaluated as an electrolyte with a pH-tunable potential range for aqueous redox-flow batteries (RFBs). The Fe III complex is formed by 1,4,7-triazacyclononane (TACN) appended with three 2-methyl-imidazole donors, denoted as Fe(Tim). This complex exhibits pH-sensitive redox couples that span E 1/2 (Fe 3+ /Fe 2+ )=317 to -270 mV vs. NHE at pH 3.3 and pH 12.8, respectively. The 590 mV shift in potential and kinetic inertness are driven by ionization of the imidazoles at various pH values. The Fe 3+ /Fe 2+ redox is proton-coupled at alkaline conditions, and bulk electrolysis is non-destructive. The electrolyte demonstrates high charge/discharge capacities at both acidic and alkaline conditions throughout 100 cycles. Given its tunable redox, fast electrochemical kinetics, exceptional stability/cyclability, this complex is promising for the design of aqueous RFB catholytes and anolytes that utilize the earth-abundant element iron. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Science.gov (United States)

    Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.

  14. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    International Nuclear Information System (INIS)

    Jervis, Rhodri; Brown, Leon D; Neville, Tobias P; Millichamp, Jason; Finegan, Donal P; Heenan, Thomas M M; Brett, Dan J L; Shearing, Paul R

    2016-01-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando , in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems. (paper)

  15. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    International Nuclear Information System (INIS)

    Pratt, Harry D.; Pratt, William R.; Fang, Xikui; Hudak, Nicholas S.; Anderson, Travis M.

    2014-01-01

    Graphical abstract: - Highlights: • Testing of a flow battery with polyoxometalates. • Coulombic efficiency of 83% for an iron-based compound. • Both size and charge density influence battery performance. - Abstract: A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− , cycled between (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 11− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− and (SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 17− /(SiFe 3 W 9 (OH) 3 O 34 ) 2 (OH) 3 14− for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V 2 W 4 O 19 4− , showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V 2 W 4 O 19 4− had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V 2 W 4 O 19 4− was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance

  16. Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance

    International Nuclear Information System (INIS)

    Mustafa, Ibrahim; Lopez, Ivan; Younes, Hammad; Susantyoko, Rahmat Agung; Al-Rub, Rashid Abu; Almheiri, Saif

    2017-01-01

    Typically, multiwalled carbon nanotubes (MWCNTs) are drop-casted on the surface of the underlying carbon substrates; the outcome is a randomly distributed MWCNT layers leading to uncontrollable structure and unreproducible results. Additionally, we suspect that the electrochemical response is influenced by the primary carbon-based substrate. Herein, we propose the use of freestanding sheets of MWCNTs (buckypapers, BP electrodes) as electrode materials for vanadium redox flow batteries to directly probe the electrochemical activity of MWCNTs toward VO 2+ /VO 2 + and V 2+ /V 3+ redox couples; henceforth, eliminating the need for an underlying carbon substrate. The amount of surfactant and the sonication time used during the fabrication of BP electrodes affect their morphological characteristics and electrochemical performances. Although the electrical conductivity of BP electrodes decreases with increasing surfactant amount and increasing sonication time, the heterogeneous rate constants for both redox couples increase as these fabrication variables are increased, indicating that the performance-limiting process is not electrical conductivity but the number of active sites available for the electrochemical reaction. The standard heterogeneous rate constant of the BP electrode with the highest amount of surfactant is comparable to those of state-of-the-art electrodes. Our promising results call for more research on the potential use of BP electrodes in redox flow batteries.

  17. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  18. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2012-01-01

    Highlights: ► SWCNT shows excellent electrochemical catalytic activity towards VO 2 + /VO 2+ and V 3+ /V 2+ redox couples. ► The anodic reactions are more sensitive to the surface oxygen atom content change compared with the cathodic reactions. ► The enhanced battery performance clearly demonstrated that the SWCNT is suitable to be used as an electrode catalyst for VRFB. - Abstract: Single-walled carbon nanotube (SWCNT) was used as an electrode catalyst for an all vanadium redox flow battery (VRFB). The electrochemical property of SWCNT towards VO 2 + /VO 2+ and V 3+ /V 2+ was carefully characterized by cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) measurements. The peak current values for these redox pairs were significantly higher on the modified glassy carbon electrode compared with those obtained on the bare electrode, suggesting the excellent electrochemical activity of the SWCNT. Moreover, it was proved that the anodic process was more dependent on the surface oxygen of the SWCNT than the cathodic process through changing its surface oxygen content. Detailed EIS analysis of different modified electrodes revealed that the charge and mass transfer processes were accelerated at the modified electrode–electrolyte interface, which could be ascribed to the large specific surface area, the surface defects and the oxygen functional groups of the SWCNT. The enhanced battery performance effectively demonstrated that the SWCNT was suitable to serve as an electrode catalyst for the VRFB.

  19. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  20. Implementation and Validation of a Self-Consumption Maximization Energy Management Strategy in a Vanadium Redox Flow BIPV Demonstrator

    Directory of Open Access Journals (Sweden)

    Luis Fialho

    2016-06-01

    Full Text Available This paper presents the results of the implementation of a self-consumption maximization strategy tested in a real-scale Vanadium Redox Flow Battery (VRFB (5 kW, 60 kWh and Building Integrated Photovoltaics (BIPV demonstrator (6.74 kWp. The tested energy management strategy aims to maximize the consumption of energy generated by a BIPV system through the usage of a battery. Whenever possible, the residual load is either stored in the battery to be used later or is supplied by the energy stored previously. The strategy was tested over seven days in a real-scale VRF battery to assess the validity of this battery to implement BIPV-focused energy management strategies. The results show that it was possible to obtain a self-consumption ratio of 100.0%, and that 75.6% of the energy consumed was provided by PV power. The VRFB was able to perform the strategy, although it was noticed that the available power (either to charge or discharge varied with the state of charge.

  1. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    Science.gov (United States)

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-02-16

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  2. Modification of Nafion® Membrane via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications

    Directory of Open Access Journals (Sweden)

    Shu-Ling Huang

    2017-01-01

    Full Text Available Nafion 117(N-117/SiO2-SO3H modified membranes were prepared using the 3-Mercaptopropyltrimethoxysilane (MPTMS to react with H2O2 via in situ sol-gel route. Basic properties including water uptake, contact angle, ion exchange capacity (IEC, vanadium ion permeability, impedance, and conductivity were measured to investigate how they affect the charge-discharge characteristics of a cell. Furthermore, we also set a vanadium redox flow energy battery (VRFB single cell by the unmodified/modified N-117 membranes as a separated membrane to test its charge/discharge performance and compare the relations among the impedance and efficiency. The results show that the appropriate amount of SiO2-SO3H led into the N-117 membrane contributive to the improvement of proton conductivity and vanadium ion selectivity. The permeability was effectively decreased from original 3.13 × 10−6 cm2/min for unmodified N-117 to 0.13 × 10−6 cm2/min for modified membrane. The IEC was raised from original 0.99 mmol/g to 1.24 mmol/g. The modified membrane showed a good cell performance in the VRFB charge/discharge experiment, and the maximum coulombic efficiency was up to 94%, and energy efficiency was 82%. In comparison with unmodified N-117, the energy efficiency of modified membrane had increased more than around 10%.

  3. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries.

    Science.gov (United States)

    Luo, Jian; Hu, Bo; Debruler, Camden; Liu, Tianbiao Leo

    2018-01-02

    Extending the conjugation of viologen by a planar thiazolo[5,4-d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water-soluble π-conjugation extended viologen, 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3-(trimethylammonio)propyl)pyridin-1-ium) tetrachloride, [(NPr) 2 TTz]Cl 4  , as a novel two-electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4-trimethylammonium-TEMPO (N Me -TEMPO) as catholyte, [(NPr) 2 TTz]Cl 4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L -1 . A demonstrated [(NPr) 2 TTz]Cl 4 /N Me -TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries - A review

    Science.gov (United States)

    Minke, Christine; Turek, Thomas

    2018-02-01

    The vanadium redox flow battery (VFB) is one of the most promising stationary electrochemical storage systems. The reduction of system costs is a major challenge in the realization of its widespread application. The high complexity of this technology requires a close linking of technologic and economic aspects in system cost assessment. The present review provides an extensive literature analysis with a focus on techno-economic assessment of VFB. Considered materials, system designs and modelling approaches are assessed and compared in order to present and evaluate the current status of system cost assessment in a transparent way. Systems in a range of 2 kW-50 MW providing energy for up to 150 h are covered in literature resulting in an immense range of specific total system costs of 564-12931 € kW-1 or 89-1738 € (kWh)-1. Based on the data from the reviewed studies, guide values of 650 € (kWh)-1 and 550 € (kWh)-1 for installed VFB systems in a power range of 10-1000 kW providing energy for 4 h and 8 h respectively are derived from literature. Moreover, the relevance of precision in the definition of scope and components for meaningful results of techno-economic assessments of VFB systems is pointed out.

  5. Design of a Bidirectional Energy Storage System for a Vanadium Redox Flow Battery in a Microgrid with SOC Estimation

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available This paper used a Vanadium Redox flow Battery (VRB as the storage battery and designed a two-stage topology of a VRB energy storage system in which a phase-shifted full bridge dc-dc converter and three-phase inverter were used, considering the low terminal voltage of the VRB. Following this, a model of the VRB was simplified, according to the operational characteristics of the VRB in this designed topology of a VRB energy storage system (ESS. By using the simplified equivalent model of the VRB, the control parameters of the ESS were designed. For effectively estimating the state of charge (SOC of the VRB, a traditional method for providing the SOC estimation was simplified, and a simple and effective SOC estimation method was proposed in this paper. Finally, to illustrate the proper design of the VRB ESS and the proposed SOC estimation method, a corresponding simulation was designed by Simulink. The test results have demonstrated that this proposed SOC estimation method is feasible and effective for indicating the SOC of a VRB and the proper design of this VRB ESS is very reasonable for VRB applications.

  6. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  7. Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.

    2017-02-01

    A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.

  8. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  9. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries

    International Nuclear Information System (INIS)

    Zeng, Y.K.; Zhao, T.S.; Zhou, X.L.; Zeng, L.; Wei, L.

    2016-01-01

    Highlights: • The effects of design parameters on the ICRFB performance are investigated. • The energy efficiency of the present ICRFB reaches 80.5% at 480 mA cm"−"2. • The power density reaches 1077 and 694 mW cm"−"2 at 65 and 25 °C, respectively. • The dominant loss of ICRFBs operating at 25 and 65 °C is the ohmic loss. - Abstract: The objective of this work is to understand and identify key design parameters that influence the battery performance of iron-chromium redox flow batteries (ICRFBs). The investigated parameters include the membrane thickness, electrode compression ratio, electrode pretreatment and catalyst loading. Results show that: (i) with a thin NR-211 membrane and a high electrode compression ratio of 62.5%, the operating current density of the ICRFB can reach as high as 480 mA cm"−"2 at an energy efficiency of higher than 80%; (ii) the bismuth catalyst loading has insignificant effect on the battery performance in the range of 0.52–10.45 mg cm"−"2; (iii) the moderately oxidative thermal pretreatment of the electrode improves the energy efficiency compared to the as-received electrode while the electrode prepared with a harsh pretreatment deteriorates the battery performance; and (iv) for the present ICRFBs operating at both 25 °C and 65 °C, the dominant loss is identified to be ohmic loss rather than kinetics loss.

  10. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery

    Science.gov (United States)

    Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.

    2017-02-01

    The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).

  11. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Ashraf Gandomi, Yasser; Aaron, Doug S; Mench, Matthew M

    2017-06-06

    One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol -1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol -1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB.

  12. Conjugated dynamic modeling on vanadium redox flow battery with non-constant variance for renewable power plant applications

    Science.gov (United States)

    Siddiquee, Abu Nayem Md. Asraf

    A parametric modeling study has been carried out to assess the impact of change in operating parameters on the performance of Vanadium Redox Flow Battery (VRFB). The objective of this research is to develop a computer program to predict the dynamic behavior of VRFB combining fluid mechanics, reaction kinetics, and electric circuit. The computer program was developed using Maple 2015 and calculations were made at different operating parameters. Modeling results show that the discharging time increases from 2.2 hours to 6.7 hours when the concentration of V2+ in electrolytes increases from 1M to 3M. The operation time during the charging cycle decreases from 6.9 hours to 3.3 hours with the increase of applied current from 1.85A to 3.85A. The modeling results represent that the charging and discharging time were found to increase from 4.5 hours to 8.2 hours with the increase in tank to cell ratio from 5:1 to 10:1.

  13. Semi-fluorinated sulfonated polyimide membranes with enhanced proton selectivity and stability for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2016-01-01

    A series of semi-fluorinated sulfonated polyimides (6F-SPIs) are designed and synthesized via a one-step high-temperature polycondensation reaction. The sulfonation degrees of 6F-SPIs are controlled through changing the ratio of sulfonated diamine to non-sulfonated diamine in the casting solution. The physico-chemical properties and single cell performance of 6F-SPI membranes are thoroughly evaluated and compared to a non-fluorinated SPI membrane (6H-SPI-50) and a Nafion 115 membrane. The results show that the designed 6F-SPI membrane with a 50% sulfonation degree (6F-SPI-50) possesses the highest proton selectivity (1.613 × 10 5 S min cm −3 ) among all tested membranes. Besides, the 6F-SPI-50 membrane exhibits a promising performance for vanadium redox flow batteries (VRFBs), showing higher coulombic efficiencies (96.90–99.20%) and energy efficiencies (88.25–64.80%) than the Nafion 115 membrane (with coulombic efficiencies of 90.60–96.70% and energy efficiencies of 81.04–60.10%) at the current densities ranging from 20 to 100 mA cm −2 . Moreover, the 6F-SPI-50 membrane shows excellent chemical stability in the VRFB system. This work paves the way for the development of a new class of 6F-SPI membranes for the VRFB application.

  14. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wu Xiaojuan; Liu Suqin; Wang Nanfang; Peng Sui; He Zhangxin

    2012-01-01

    Inositol and phytic acid have been employed as organic additives of the positive electrolyte for all-vanadium redox flow battery (VRFB) to improve its stability and electrochemical reversibility. Thermal stability of the V(V) electrolyte could be improved by both inositol and phytic acid additives. The results of cyclic voltammetry (CV), steady polarization curve and electrochemical impedance spectroscopy (EIS) show that the electrochemical activity of the electrolyte with additives is improved compared to the blank one. The diffusion coefficient of V(IV) species with inositol has been increased from 0.71–1.16 × 10 −6 to 3.11–5.15 × 10 −6 cm 2 s −1 and the exchange current density was raised from 2.8 × 10 −3 to 11.7 × 10 −3 A cm −2 . Moreover, electrochemical results suggest that the positive electrolytes with organic additives have better cycling stability. The VRFB employing positive electrolyte with inositol as additive exhibits excellent charge–discharge behavior with an average energy efficiency of 81.5% at a current density of 30 mA cm −2 . The UV–visible spectroscopy confirms that new substances in V(V) electrolyte are not formed with both inositol and phytic acid additives.

  15. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C.

    2013-01-01

    Highlights: • The permeability of vanadium ions through the silica nanocomposite AEM (SNAEM) is ten times lower than that for Nafion 115. • The rates of self-discharge and capacity fading of the VRFB are substantially reduced with the use of the SNAEM. • The Coulombic and energy efficiencies are as high as 92% and 73%, respectively, at 40 mA cm −2 . -- Abstract: Crossover of vanadium ions through the membranes of all-vanadium redox flow batteries (VRFB) is an issue that limits the performance of this type of flow battery. This paper reports on the preparation of a sol–gel derived silica nanocomposite anion exchange membrane (AEM) for VRFBs. The EDS and FT-IR characterizations confirm the presence and the uniformity of the silica nanoparticles formed in the membrane via an in situ sol–gel process. The properties of the obtained membrane, including the ion-exchange capacity, the area resistance, and the water uptake, are evaluated and compared to the pristine AEM and the Nafion cation exchange membrane (CEM). The experimental results show that the permeability of the vanadium ions through the silica nanocomposite AEM is about 20% lower than that of the pristine AEM, and one order of magnitude lower than that of the Nafion CEM. As a result, the rates of self-discharge and the capacity fading of the VRFB are substantially reduced. The Coulombic and energy efficiencies at a current density of 40 mA cm −2 are, respectively, as high as 92% and 73%

  16. Untersuchungen an a-C:H:Me beschichteten Substraten zur Eignung als alternatives Bipolarplattenmaterial für wässrige Vanadium Redox-Flow Batterien

    OpenAIRE

    Richards, Justin

    2015-01-01

    Für den Auf- und Ausbau der erneuerbaren Energien sind zentrale und dezentrale Zwischenspeicherlösungen unabdingbar. Eine potentielle Technologie ist die All-Vanadium Redox-Flow Batterie. Ein essentieller Schritt für den kommerziellen Durchbruch dieser Batterie-Technologie vom Prototypenstatus zur Serienfertigung ist die Entwicklung eines kostengünstigen, elektrisch hochleitfähigen und elektrochemisch stabilen beschichteten metallischen Materials für die inneren Stromableiter (Bipolarplatten)...

  17. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    Science.gov (United States)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  18. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  19. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  20. Research and development of peripheral technology for photovoltaic power systems. Research and development of redox flow battery for photovoltaic power generation; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo redox denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of redox flow battery for photovoltaic power generation in fiscal 1994. (1) On the production method of electrolyte, silica reduction treatment was attempted to use ammonium metavanadate recovered from boiler as electrolyte of redox flow battery. Silica removal rates more than 90% were achieved by crystallizing V as polyvanadate while keeping molten silica. It was ascertained in minicell experiment that trivalent and quadrivalent V electrolytes produced from recovered V are applicable to continuous charge/discharge operation for one week. (2) On development of battery systems, the relation between battery characteristics and physicochemical properties of carbon fiber electrodes was studied to improve carbon fiber electrodes. The efficiency of 80% was achieved at current density of 160mA/cm{sup 2} by use of layered electrodes, resulting in considerable cost reduction. Performance evaluation operation of the 2kW battery prepared in the last fiscal year was also carried out. 4 figs.

  1. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  2. Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Gao, Chao; Wang, NanFang; Peng, Sui; Liu, SuQin; Lei, Ying; Liang, XinXing; Zeng, ShanShan; Zi, HuiFang

    2013-01-01

    Highlights: ► Highly hydroxyl-functionalized graphite felt has been obtained through Fenton's reagent treatment. ► Fenton's reagent treatment involves only one step, works under ambient conditions and will never produce any toxic gas. ► The treated graphite felt exhibits superior electrochemical performance in comparison to the untreated one. -- Abstract: An environmental, economic and highly effective method for carbon fiber hydroxylated-functionalization based on Fenton's reagent treatment is used to improve the electrochemical activity of graphite felt (GF) as the positive electrode in all vanadium redox flow battery (VRFB). The effect of H 2 O 2 content in Fenton's reagent on the structure and electrochemical properties of GF is investigated. The scanning electron microscope (SEM) indicates that the surface of the treated GF is etched increasingly with the content of H 2 O 2 . The Fourier transformation infrared (FTIR) spectroscopy shows that the peak intensity of hydroxyl groups on the treated felt is increased with the H 2 O 2 concentration, which is further verified by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the treated sample exhibits a higher electrochemical activity. A VRFB with the treated GF as electrodes exhibits higher coulombic, voltage and energy efficiency (98.8%, 75.1% and 74.2%) than that with the untreated GF (93.9%, 72.1% and 67.7%) at 60 mA cm −2 , and this method is even superior when compared with the reported methods

  3. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  4. PI2 controller based coordinated control with Redox Flow Battery and Unified Power Flow Controller for improved Restoration Indices in a deregulated power system

    Directory of Open Access Journals (Sweden)

    R. Thirunavukarasu

    2016-12-01

    Full Text Available The nature of power system restoration problem involves status assessment, optimization of generation capability and load pickup. This paper proposes the evaluation of Power System Restoration Indices (PSRI based on the Automatic Generation Control (AGC assessment of interconnected power system in a deregulated environment. The PSRI are useful for system planners to prepare the power system restoration plans and to improve the efficiency of the physical operation of the power system with the increased transmission capacity in the network. The stabilization of frequency and tie-line power oscillations in an interconnected power system becomes challenging when implemented in the future competitive environment. This paper also deals with the concept of AGC in two-area reheat power system having coordinated control action with Redox Flow Battery (RFB and Unified Power Flow Controller (UPFC are capable of controlling the network performance in a very fast manner and improve power transfer limits in order to have a better restoration. In addition to that a new Proportional–Double Integral (PI2 controller is designed and implemented in AGC loop and controller parameters are optimized through Bacterial Foraging Optimization (BFO algorithm. Simulation results reveal that the proposed PI2 controller is that it has good stability during load variations, excellent transient and dynamic responses when compared with the system comprising PI controller. Moreover the AGC loop with RFB coordinated with UPFC has greatly improved the dynamic response and it reduces the control input requirements, to ensure improved PSRI in order to provide the reduced restoration time, thereby improving the system reliability.

  5. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.

    Science.gov (United States)

    Park, Minjoon; Jung, Yang-jae; Kim, Jungyun; Lee, Ho il; Cho, Jeaphil

    2013-10-09

    Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best electrocatalytic properties toward the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples among the samples prepared at 500, 600, 700, and 800 °C. Moreover, this composite electrode in the full cell exhibits substantially improved discharge capacity and energy efficiency by ~64% and by ~25% at 40 mA·cm(-2) and 100 mA·cm(-2), respectively, compared to untreated CF electrode. This outstanding performance is due to the enhanced surface defect sites of exposed edge plane in CNF and a fast electron transfer rate of in-plane side wall of the CNT.

  6. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn_3O_4 nanoparticles for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Di Blasi, A.; Busaccaa, C.; Di Blasia, O.; Briguglioa, N.; Squadritoa, G.; Antonuccia, V.

    2017-01-01

    Highlights: • Mn_3O_4/CNF electrode is investigated for vanadium redox flow battery application. • The high reversibility is ascribed to the several type of redox couples on the spinel structure. • Cell electrochemical parameters confirm the high reversibility for Mn_3O_4/CNF electrodes. - Abstract: Flexible carbon nanofiber (CNF)-based electrodes and CNF with a 20% of manganese oxide incorporated (Mn_3O_4/CNF) are prepared by using the electrospinning method for vanadium redox flow battery (VRFB) application. A blend consisting of manganese acetate (Mn(OAc)_2) and polyacrilonitrile (PAN) is electrospun and successively subjected to different thermal treatments in which the growth of Mn_3O_4 particles and CNFs occurred together guaranteeing an appropriate electron conductivity for electrodes thus synthesized. Cyclic voltammetry (CV) measurements show an interesting electrocatalytic activity toward the [VO]"2"+/[VO_2]"+ as well as the V"2"+/V"3"+ redox reactions for the Mn_3O_4/CNF electrospun sample. Charge-discharge tests, carried out at 80 mA cm"−"2, show a state of charge (SOC) and a depth of discharge (DoD) of 81% and 73%, respectively, for the cells assembled with Mn_3O_4/CNF electrodes. These data are indicative of a high vanadium active species utilization thanks to the better electrocatalytic activity at high current densities. Furthermore, the cell with Mn_3O_4/CNF shows EE values of about 81% (88% of VE and 92% of CE) vs. 70% (75% of VE and 93% of CE) with respect to a commercial carbon felt (CF) electrode used for comparison. These results are attributable to the higher oxygen species content as well as the improved electron conductivity due to the synergetic effect of the more graphitic carbon and to the structural defects within the Mn_3O_4 spinel structure.

  7. Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries

    Science.gov (United States)

    Iyer, Vinay A.; Schuh, Jonathon K.; Montoto, Elena C.; Pavan Nemani, V.; Qian, Shaoyi; Nagarjuna, Gavvalapalli; Rodríguez-López, Joaquín; Ewoldt, Randy H.; Smith, Kyle C.

    2017-09-01

    Redox-active small molecules, used traditionally in redox flow batteries (RFBs), are susceptible to crossover and require expensive ion exchange membranes (IEMs) to achieve long lifetimes. Redox-active polymer (RAP) solutions show promise as candidate electrolytes to mitigate crossover through size-exclusion, enabling the use of porous separators instead of IEMs. Here, poly(vinylbenzyl ethyl viologen) is studied as a surrogate RAP for RFBs. For oxidized RAPs, ionic conductivity varies weakly between 1.6 and 2.1 S m-1 for RAP concentrations of 0.13-1.27 mol kg-1 (monomeric repeat unit per kg solvent) and 0.32 mol kg-1 LiBF4 with a minor increase upon reduction. In contrast, viscosity varies between 1.8 and 184.0 mPa s over the same concentration range with weakly shear-thinning rheology independent of oxidation state. Techno-economic analysis is used to quantify reactor cost as a function of electrolyte transport properties for RAP concentrations of 0.13-1.27 mol kg-1, assuming a hypothetical 3V cell and facile kinetics. Among these concentrations, reactor cost is minimized over a current density range of 600-1000 A m-2 with minimum reactor cost between 11-17 per kWh, and pumping pressures below 10 kPa. The predicted low reactor cost of RAP RFBs is enabled by sustained ionic mobility in spite of the high viscosity of concentrated RAP solutions.

  8. Studies on membrane for redox flow battery. 9. Crosslinking of the membrane by the electron radiation and durability of the membrane

    International Nuclear Information System (INIS)

    Ohya, Haruhiko; Minamihira, Kazunori; Hwang, Gab-Jin; Kawahara, Takashi; Aihara, Masahiko; Negishi, Youichi; Kang, An-Soo.

    1995-01-01

    Chlorosulfonated homogeneous and asymmetric cation exchange membranes were tested as separators for the all-vanadium redox flow battery. The membrane was prepared by chlorosulfonation of the polyethylene film in vapour phase. In the case of the polyethylene film of 20 μm thickness used for the homogeneous membrane, area resistivity of 0.5 Ω · cm 2 in 2M KCl aq. solution was reached at 120 min. chlorosulfonation time. In the case of heat laminated 20 μm thick PE film on a neutral porous polyolefin film of 200 μm thickness used for the asymmetric membrane, a minimum area resistivity of 1 Ω · cm 2 in 2M KCl was achieved at 120 min. chlorosulfonation time. The performance evaluation of the membranes as separators in the all-vanadium redox flow battery was also measured. The area resistivity of the membranes in the measuring-cell using charge-discharge current density 63.7 mA/cm 2 was 1.4 Ω · cm 2 and 2.2 Ω · cm 2 for charge and discharge respectively for the homogeneous membrane, and 3.6 Ω · cm 2 and 4.3 Ω · cm 2 for charge discharge cycles respectively for the asymmetric membrane. The chlorosulfonated homogeneous cation exchange membrane was cross-linked by the electron radiation to improve durability of the membrane. The crosslinked membrane which has the high degree of cross-linking, did not shown the mechanical breakage by swelling or shrinking in the acidic vanadium solution, but its area resistivity in the all-vanadium redox flow battery was increased. (author)

  9. Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification

    Science.gov (United States)

    Armstrong, Craig G.; Toghill, Kathryn E.

    2017-05-01

    A single species redox flow battery employing a new class of cobalt(II) complexes with 'tunable' tridentate azole-pyridine type ligands is reported. Four structures were synthesised and their electrochemical, physical and battery characteristics were investigated as a function of successive substitution of the ligand terminal pyridyl donors. The Co(II/I) and Co(III/II) couples are stable and quasi-reversible on gold and glassy carbon electrodes, however redox potentials are tunable allowing the cobalt potential difference to be preferentially increased from 1.07 to 1.91 V via pyridine substitution with weaker σ-donating/π-accepting 3,5-dimethylpyrazole groups. The charge-discharge properties of the system were evaluated using an H-type glass cell and graphite rod electrodes. The complexes delivered high Coulombic efficiencies of 89.7-99.8% and very good voltaic efficiencies of 70.3-81.0%. Consequently, energy efficiencies are high at 63.1-80.8%, marking an improvement on other similar non-aqueous systems. Modification of the ligands also improved solubility from 0.18 M to 0.50 M via pyridyl substitution with 3,5-dimethylpyrazole, though the low solubility of the complexes limits the overall energy capacity to between 2.58 and 12.80 W h L-1. Preliminary flow cell studies in a prototype flow cell are also demonstrated.

  10. Untersuchung alternativer Elektrolyte und Membranen für die Vanadium-Redox-Flow-Batterie sowie die Kopplung der Batterie mit der photoelektrochemischen Wasserspaltung

    OpenAIRE

    Schley (geb. Baumgarten), Julia

    2017-01-01

    Für die Leistung einer Vanadium-Redox-Flow-Batterie (VRFB) sind die Funktionskomponenten Elektrode, Separator und Elektrolyt von entscheidender Bedeutung. In der konventionellen VRFB wird als Elektrolyt meist ein Vanadiumsulfatsalz, das in Schwefelsäure gelöst ist, verwendet. Da dieses aber nur eine begrenzte Löslichkeit aufweist, ist die Energiedichte der Batterie ebenfalls begrenzt. In der vorliegenden Arbeit wurde deshalb ein HCl-Elektrolytsystem untersucht, das eine erhöhte Löslichkeit fü...

  11. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    Science.gov (United States)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  12. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  13. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  14. Potentiometric chip-based multipumping flow system for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples.

    Science.gov (United States)

    Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor

    2018-08-15

    A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane.

    Science.gov (United States)

    Chang, Zhenjun; Henkensmeier, Dirk; Chen, Ruiyong

    2017-08-24

    By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA + ), we synthesized a cation-grafted TEMPO (g + -TEMPO) and studied its electrochemical performance against a Zn 2+ /Zn anode in a hybrid redox flow battery. To conduct Cl - counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g + - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g + -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  17. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  18. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  19. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Jianlei; Liu, Suqin; He, Zhangxing; Han, Huiguo; Chen, Yong

    2014-01-01

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  20. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    Science.gov (United States)

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  1. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2+/VO2+ Couple for All Vanadium Redox Flow Battery.

    Science.gov (United States)

    Li, Wenyue; Zhang, Zhenyu; Tang, Yongbing; Bian, Haidong; Ng, Tsz-Wai; Zhang, Wenjun; Lee, Chun-Sing

    2016-04-01

    3D graphene-nanowall-decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO 2 + /VO 2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging-discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode.

  2. Graphene‐Nanowall‐Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2 +/VO2+ Couple for All Vanadium Redox Flow Battery

    Science.gov (United States)

    Li, Wenyue; Zhang, Zhenyu; Bian, Haidong; Ng, Tsz‐Wai

    2015-01-01

    3D graphene‐nanowall‐decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2 +/VO2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging–discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode. PMID:27774399

  3. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  4. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  5. Effect of Elevated Temperature Annealing on Nafion/SiO2 Composite Membranes for the All-Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Sixiu Zeng

    2018-04-01

    Full Text Available Conducting Nafion/SiO2 composite membranes were successfully prepared using a simple electrostatic self-assembly method, followed by annealing at elevated temperatures of 240, 270, and 300 °C. Membrane performance was then investigated in vanadium redox flow batteries (VRB. These annealed composite membranes demonstrated lower vanadium permeability and a better selectivity coefficient than pure Nafion membranes. The annealing temperature of 270 °C created the highest proton conductivity in the Nafion/SiO2 composite membranes. The microstructures of these membranes were analyzed using transmission electron microscopy, small-angle X-ray scattering, and positron annihilation lifetime spectroscopy. This study revealed that exposure to high temperatures resulted in an increase in the free volumes of the composite membranes, resulting in improved mechanical and chemical behavior, with the single cell system containing composite membranes performing better than systems containing pure Nafion membranes.

  6. Physically-based impedance modeling of the negative electrode in All-Vanadium Redox Flow Batteries: insight into mass transport issues

    International Nuclear Information System (INIS)

    Zago, M.; Casalegno, A.

    2017-01-01

    Highlights: •Performance losses induced by migration though the porous electrode are negligible. •Convection at carbon fiber results in a linear branch at low frequency in Nyquist plot. •When the reaction is concentrated, diffusion losses though the electrode diminishes. •Diffusion process in the pores becomes more limiting at high current. •Charge transfer resistance decreases with increasing current. -- Abstract: Mass transport of the electrolyte over the porous electrode is one of the most critical issues hindering Vanadium Redox Flow Battery commercialization, leading to increased overpotential at high current and limiting system power density. In this work, a 1D physically based impedance model of Vanadium Redox Flow Battery negative electrode is developed, taking into account electrochemical reactions, convection at carbon fiber, diffusion in the pores and migration and diffusion through electrode thickness. The model is validated with respect to experimental data measured in a symmetric cell hardware, which allows to keep the State of Charge constant during the measurement. The physically based approach permits to elucidate the origin of different impedance features and quantify the corresponding losses. Charge transfer resistance decreases with increasing current and is generally lower compared to the ones related to mass transport phenomena. Migration losses through the porous electrode are negligible, while convection at carbon fiber is relevant and in Nyquist plot results in a linear branch at low frequency. In presence of significant convection losses the reaction tends to concentrate close to the channel: this leads to a reduction of diffusion losses through the electrode, while diffusion process in the pores becomes more limiting.

  7. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  8. Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Lim, Tuti Mariana; Skyllas-Kazacos, Maria; Wai, Nyunt; Tseng, King Jet

    2016-01-01

    Highlights: • Battery model parameters and SOC co-estimation is investigated. • The model parameters and OCV are decoupled and estimated independently. • Multiple timescales are adopted to improve precision and stability. • SOC is online estimated without using the open-circuit cell. • The method is robust to aging levels, flow rates, and battery chemistries. - Abstract: A key function of battery management system (BMS) is to provide accurate information of the state of charge (SOC) in real time, and this depends directly on the precise model parameterization. In this paper, a novel multi-timescale estimator is proposed to estimate the model parameters and SOC for vanadium redox flow battery (VRB) in real time. The model parameters and OCV are decoupled and estimated independently, effectively avoiding the possibility of cross interference between them. The analysis of model sensitivity, stability, and precision suggests the necessity of adopting different timescales for each estimator independently. Experiments are conducted to assess the performance of the proposed method. Results reveal that the model parameters are online adapted accurately thus the periodical calibration on them can be avoided. The online estimated terminal voltage and SOC are both benchmarked with the reference values. The proposed multi-timescale estimator has the merits of fast convergence, high precision, and good robustness against the initialization uncertainty, aging states, flow rates, and also battery chemistries.

  9. Temperature influence on the reaction kinetics of V(IV)/V(V) in methanesulfonic acid for all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, Qiuhong; Daoud, Walid A.

    2016-01-01

    Highlights: • Diffusion coefficients and standard rate constants of V(IV) and V(V) in MSA at different temperatures are studied. • Carbon-based and metal electrodes are investigated under the same experimental condition at high temperature. • The influence of temperature on reaction kinetics is more significant on carbon-based electrode than metal electrode. • Gold electrode shows inefficient performance in MSA solution. - Abstract: In this study, methanesulfonic acid has been investigated as the supporting electrolyte for vanadium solutions due to the improvement of mass transfer rate and reaction kinetics. Here, we applied different temperatures (0–55 °C) for electrochemical experiments of 0.1 M vanadium ions in 1.0 M MSA electrolyte on gold, platinum and glassy carbon electrodes separately to study the temperature-related kinetics. Considering that electron transfer is the control path for the whole reduction potential window, the rotating disc electrode approach was utilized for the oxidation of V(IV) ions, while the reduction of V(V) ions was studied by cyclic voltammetry. The influence of temperature on charge-transfer resistance and mass transport for both V(IV) and V(V) solutions was studied by electrochemical impedance spectroscopy on glassy carbon electrode. The results showed that the diffusion coefficients in both redox reactions on all electrodes increased with temperature, and most were in the order of 10 −6 cm 2 s −1 . The positive influence of temperature was also observed on the standard rate constants for all conditions in this study, most significantly on the glassy carbon electrode. Comparison between glassy carbon electrode and metal electrodes indicates a promising potential of carbon-based material as electrode for redox flow battery.

  10. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    Science.gov (United States)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  11. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  12. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Zhao, Wei; Chen, Xi; Tao, Wen-Quan

    2017-01-01

    Highlights: • A new class of the vanadium redox-flow battery (VRB) is developed. • The new class of VRB is more economic. It is simple process and easy to scale-up. • There are three levels of cell stacks and electrolytes with different qualities. • The economic analysis of the VRB system for renewable energy bases is carried out. • Related polices and suggestions based on the result are provided. - Abstract: Interest in the implement of vanadium redox-flow battery (VRB) for energy storage is growing, which is widely applicable to large-scale renewable energy (e.g. wind energy and solar photo-voltaic), developing distributed generation, lowering the imbalance and increasing the usage of electricity. However, a comprehensive economic analysis of the VRB for energy storage is obscured for various commercial applications, yet it is fundamental for implementation of the VRB in commercial electricity markets. In this study, based on a new class of the VRB that was developed by our team, a comprehensive economic analysis of the VRB for large-scale energy storage is carried out. The results illustrate the economy of the VRB applications for three typical energy systems: (1) The VRB storage system instead of the normal lead-acid battery to be the uninterrupted power supply (UPS) battery for office buildings and hospitals; (2) Application of vanadium battery in household distributed photo-voltaic power generation systems; (3) The wind power and solar power stations equipped with the VRB storage systems. The economic perspectives and cost-benefit analysis of the VRB storage systems may underpin optimisation for maximum profitability. In this case, two findings are concluded. First, with the fixed capacity power or fixed discharging time, the greater profit ratio will be generated from the longer time or the larger capacity power. Second, when the profit ratio, discharging time and capacity power are all variables, it is necessary to find out the best optimisation

  13. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    OpenAIRE

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transiti...

  14. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Shunsuke Miura

    2017-09-01

    Full Text Available Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD 21 infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.

  15. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    Science.gov (United States)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  16. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  17. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  18. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    Science.gov (United States)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  19. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  20. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    Science.gov (United States)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  1. A combined theoretical-experimental study of interactions between vanadium ions and Nafion membrane in all-vanadium redox flow batteries

    Science.gov (United States)

    Intan, Nadia N.; Klyukin, Konstantin; Zimudzi, Tawanda J.; Hickner, Michael A.; Alexandrov, Vitaly

    2018-01-01

    Vanadium redox flow batteries (VRFBs) are a promising solution for large-scale energy storage, but a number of problems still impede the deployment of long-lifetime VRFBs. One important aspect of efficient operation of VRFBs is understanding interactions between vanadium species and the membrane. Herein, we investigate the interactions between all four vanadium cations and Nafion membrane by a combination of infrared (IR) spectroscopy and density-functional-theory (DFT)-based static and molecular dynamics simulations. It is observed that vanadium species primarily lead to changes in the IR spectrum of Nafion in the SO3- spectral region which is attributed to the interaction between vanadium species and the SO3- exchange sites. DFT calculations of vanadium -Nafion complexes in the gas phase show that it is thermodynamically favorable for all vanadium cations to bind to SO3- via a contact pair mechanism. Car-Parrinello molecular dynamics-based metadynamics simulations of cation-Nafion systems in aqueous solution suggest that V2+ and V3+ species coordinate spontaneously to SO3-, which is not the case for VO2+ and VO2+ . The interaction behavior of the uncycled membrane determined in this study is used to explain the experimentally observed changes in the vibrational spectra, and is discussed in light of previous results on device-cycled membranes.

  2. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    Science.gov (United States)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  3. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  4. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    Science.gov (United States)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  5. Computational design of molecules for an all-quinone redox flow battery† †Electronic supplementary information (ESI) available: The list of computationally predicted candidate quinone molecules with interesting redox properties. See DOI: 10.1039/c4sc03030c Click here for additional data file.

    Science.gov (United States)

    Er, Süleyman; Suh, Changwon; Marshak, Michael P.

    2015-01-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173

  6. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  7. Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li + Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Carino, Emily V.; Staszak-Jirkovsky, Jakub; Assary, Rajeev S.; Curtiss, Larry A.; Markovic, Nenad M.; Brushett, Fikile R.

    2016-03-24

    We describe an electrochemically mediated interaction between Li+ and a promising active material for nonaqueous redox flow batteries (RFBs), 1,2,3,4-tetrahydro-6,7-dimethoxy-1,1,4,4-tetramethylnaphthalene (TDT), and the impact of this structural interaction on material stability during voltammetric cycling. TDT could be an advantageous organic positive electrolyte material for nonaqueous RFBs due to its high oxidation potential, 4.21 V vs Li/Li+, and solubility of at least 1.0 M in select electrolytes. Although results from voltammetry suggest TDT displays Nernstian reversibility in many nonaqueous electrolyte solutions, bulk electrolysis reveals significant degradation in all electrolytes studied, the extent of which depends on the electrolyte solution composition. Results of subtractively normalized in situ Fourier transform infrared spectroscopy (SNIFTIRS) confirm that TDT undergoes reversible structural changes during cyclic voltammetry in propylene carbonate and 1,2-dimethoxyethane solutions containing Li+ electrolytes, but irreversible degradation occurs when tetrabutylammonium (TBA+) replaces Li+ as the electrolyte cation in these solutions. By combining the results from SNIFTIRS experiments with calculations from density functional theory, solution-phase active species structure and potential-dependent interactions can be determined. We find that Li+ coordinates to the Lewis basic methoxy groups of neutral TDT and, upon electrochemical oxidation, this complex dissociates into the radical cation TDT•+ and Li+. The improved cycling stability in the presence of Li+ relative to TBA+ suggests that the structural interaction reported herein may be advantageous to the design of energy storage materials based on organic molecules.

  8. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    Science.gov (United States)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  9. An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte

    Science.gov (United States)

    Hagemann, Tino; Winsberg, Jan; Grube, Mandy; Nischang, Ivo; Janoschka, Tobias; Martin, Norbert; Hager, Martin D.; Schubert, Ulrich S.

    2018-02-01

    Herein we present a new redox-flow battery (RFB) that employs a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) containing copolymer (P1) as catholyte and the viologen derivative N,N‧-dimethyl-4,4‧-bipyridinium dichloride (MV) as anolyte in an aqueous sodium chloride solution. This is the first time that a combination of an organic polymer and a low-molar-mass organic redox-active material is presented. The electrochemical behavior of the utilized charge-storage materials were investigated by cyclic voltammetry (CV) and feature reversible redox-reactions at E½ = 0.7 V (TEMPO/TEMPO+) and E½ = -0.6 V vs. AgCl/Ag (MV++/MV+•), which lead to a promising cell voltage of 1.3 V in the subsequent battery application. Studies were performed to determine the most suitable anion-exchange membrane (AEM), the ideal conducting salt concentration and the optimal flow rate. The resulting battery reveals a stable charge/discharge performance over 100 consecutive cycles with coulombic efficiencies of up to 95%, a high energy efficiency of 85% and an overall energy density of the electrolyte system of 3.8 W h L-1.

  10. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  11. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries; Untersuchungen an a-C:H:Me beschichteten Substraten zur Eignung als alternatives Bipolarplattenmaterial fuer waessrige Vanadium Redox-Flow Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Justin Frederick

    2015-07-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  12. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  13. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  14. 1-N-aminoindol derivatives synthesis in no aqueous means from the 1, 4-dihydrocinnoline obtained by electrolysis in continuous flow redox cell; Sintesis de derivados del 1-N-aminoindol en medios no acuosos a partir de la 1, 4-dihidrocinolina obtenida por electrolisis en celda redox de flujo continuo

    Energy Technology Data Exchange (ETDEWEB)

    Frontana-Uribe, Bernardo A. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Moinet, Claude [Laboratoire d' Electrochimie et Organometalliques UMR, Paris (France)

    1999-08-01

    This work describes the synthesis of 1-N-aminoindol derivatives in organic anhydrous media from 1, 4-dihydrocinnoline. 1, 4-dihydrocinnoline 4 is obtained by electrolysis of 2-(orto-notropheny)-ethylamine 1a in a continuous flow redox cell. The cinnoline ring contraction products are obtained in low yield, but they show the possibility to carry out the reaction in organic media without water addition, as it was noted in previous works. [Spanish] En este trabajo se describe la sintesis de derivados del 1-N-aminoindol en medios anhidros a partir de la 1, 4-dihidrocinolina 4. Esta se obtiene mediante la electrolisis de la 2-(orto-notrofenil)-etilamina 1a en celda redox de flujo continuo. Los productos de contraccion del ciclo de la cinolina en 1-N-aminoindol se obtiene en rendimiento bajo, pero demuestran la posibilidad de llevar a cabo esta reaccion en medios totalmente organicos, sin la necesidad de la adicion de agua en el medio de reaccion, como esta descrito en trabajos precedentes.

  15. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  16. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    Science.gov (United States)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  17. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  18. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    Science.gov (United States)

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  19. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  20. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  1. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  2. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  3. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  4. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  5. Studies of Redox Equilibria at Elevated Temperatures 2. An Automatic Divided-Function Autoclave and Cell with Flowing Liquid Junction for Electrochemical Measurements on Aqueous Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, Kerstin; Lewis, Derek; Pourbaix, Marian de

    1970-10-15

    An apparatus is described that has been developed for electrochemical studies of aqueous systems at temperatures above 100 deg C. It consists essentially of an electrically heated experimental cell enclosed by a separate pressure-vessel the walls of which are kept cool. This construction eliminates or reduces the problems of sealing electrical connections and of the corrosion of the pressure vessel, that commonly arise with conventional, externally-heated autoclaves. Pressure is applied to the cell by means of compressed air, diaphragm valves at the electrolyte outlet automatically maintaining the pressure in the cell about 1 atm lower than that in the pressure vessel. Two independent streams of electrolyte can be pumped into the experimental cell a special form of which has been developed in which may be formed a galvanic cell with a continuously regenerated flowing-liquid junction. In this form the apparatus enables experiments with, for example, one molal chloride solutions with pH 1-10, at temperatures up to about 250 deg C and under pressures up to about 40 atm. The apparatus has been tested in experiments in which classical measurements of the conductance of some aqueous electrolytes have been repeated. Good agreement with the earlier results has been obtained

  6. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  7. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  8. Aqueous liquid redox desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Reicher, M.; Niemiec, B.; Katona, T.

    1999-12-01

    The LO-CAT II process is an aqueous liquid redox process which uses ferric and ferrous iron catalysts to oxidise hydrogen sulfide (from sour gas) to elemental sulfur: the relevant chemical equations are given. Chelating agents keep the iron in solution. The system is described under the headings of (i) LO-CAT chemistry, (ii) design parameters, (iii) startup challenges, (iv) present situation and (v) anticipated future conditions. Further improvements to the system are anticipated.

  9. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  10. Redox environment in stem and differentiated cells: A quantitative approach

    Directory of Open Access Journals (Sweden)

    O.G. Lyublinskaya

    2017-08-01

    Full Text Available Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H2DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed. Keywords: Embryonic stem cells, Differentiated cells, ROS, Redox status, H2DCFDA, HyPer, Flow cytometry, Quantitative redox biology

  11. A mathematical model for the iron/chromium redox battery

    Science.gov (United States)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  12. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  13. Geochemistry of Natural Redox Fronts

    International Nuclear Information System (INIS)

    Hofmann, B.A.

    1999-05-01

    Redox fronts are important geochemical boundaries which need to be considered in safety assessment of deep repositories for radioactive waste. In most cases, selected host-rock formations will be reducing due to the presence of ferrous minerals, sulphides, etc. During construction and operation of the repository, air will be introduced into the formation. After repository closure, oxidising conditions may persist locally until all oxygen is consumed. In the case of high-level waste, radiolysis of water may provide an additional source of oxidants. Oxidising conditions within a repository are thus possible and potentially have a strong influence on the mobility of many elements. The rate of movement of redox fronts, the boundary between oxidising and reducing environments, and their influence on migrating radionuclides are thus important factors influencing repository performance. The present report is a review of elemental behaviour at natural redox fronts, based on published information and work of the author. Redox fronts are geochemically and geometrically variable manifestations of a global interface between generally oxidising geochemical milieux in contact with the atmosphere and generally reducing milieux in contact with rocks containing ferrous iron, sulphide and/or organic carbon. A classification of redox fronts based on a subdivision into continental near-surface, marine near-surface, and deep environments is proposed. The global redox interface is often located close to the surface of rocks and sediments and, sometimes, within bodies of water. Temperature conditions are close to ambient. A deeper penetration of the global redox front to depths of several kilometres is found in basins containing oxidised sediments (red beds) and in some hydrothermal circulation systems. Temperatures at such deep redox fronts may reach 200 o C. Both near-surface and deep redox fronts are sites of formation of economic deposits of redox-sensitive elements, particularly of

  14. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  15. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  16. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  17. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  18. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  19. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Mathwig, Klaus; Kang, Shuo; Lemay, Serge Joseph Guy

    2013-01-01

    Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized

  20. Development and testing of a compartmentalized reaction network model for redox zones in contaminated aquifers

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith; Kent, Douglas B.

    1998-01-01

    The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.

  1. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  2. The redox-Mannich reaction.

    Science.gov (United States)

    Chen, Weijie; Seidel, Daniel

    2014-06-06

    A complement to the classic three-component Mannich reaction, the redox-Mannich reaction, utilizes the same starting materials but incorporates an isomerization step that enables the facile preparation of ring-substituted β-amino ketones. Reactions occur under relatively mild conditions and are facilitated by benzoic acid.

  3. Redox environment in stem and differentiated cells: A quantitative approach.

    Science.gov (United States)

    Lyublinskaya, O G; Ivanova, Ju S; Pugovkina, N A; Kozhukharova, I V; Kovaleva, Z V; Shatrova, A N; Aksenov, N D; Zenin, V V; Kaulin, Yu A; Gamaley, I A; Nikolsky, N N

    2017-08-01

    Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa) maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H 2 DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  5. Redox signaling in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Salvador Pérez

    2015-08-01

    Full Text Available Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.

  6. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  7. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  8. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  9. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  11. Redox Pioneer: Professor Vadim N. Gladyshev.

    Science.gov (United States)

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  12. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  13. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  14. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  15. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...... and this contributes to the diversity in flavor, color, texture, and shelf life. The review concludes that these reactions are still only incompletely understood and that they represent an interesting area for fundamental research and also represent a fertile field for product development through a more conscious use...... of the redox properties of strains used to compose food cultures....

  16. Method for producing redox shuttles

    Science.gov (United States)

    Pupek, Krzysztof Z.; Dzwiniel, Trevor L.; Krumdick, Gregory K.

    2015-03-03

    A single step method for producing a redox shuttle having the formula 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate) is provided, the method comprising phosphorylating tert butyl hydroquinone with a phosphate-containing reagent. Also provided is method for producing 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate), the method comprising solubilizing tert-butyl hydroquinone and tetrabutylammonium bromide with methyltetrahydrofuran to create a mixture; heating the mixture while adding base to the mixture in an amount to turn the mixture orange; and adding diethyl chlorophosphate to the orange mixture in an amount to phosphorylate the hydroquinone.

  17. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  18. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  19. Redox properties of small semiconductor particles

    International Nuclear Information System (INIS)

    Liver, N.; Nitzan, A.

    1992-01-01

    The size dependence of electrical and thermodynamic quantities of intermediate-sized semiconductor particles in an electrolyte solution with a given redox pair are studied. The equilibrium constant for this system is then derived based on the relationship of the electrolytic redox components to the size, charges, and concentration of the semiconductor particles. 25 refs., 9 figs., 1 tab

  20. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  1. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  2. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations

    Directory of Open Access Journals (Sweden)

    V. Naudet

    2004-01-01

    Full Text Available Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP and electrical resistivity tomography (ERT have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution and redox conditions ('electro-redox' contribution. Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85 is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91 is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume

  3. Ruthenium nanocatalysis on redox reactions.

    Science.gov (United States)

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  4. Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Yamamoto, Koshi; Yoshida, Hidekazu; Akagawa, Fuminori; Nishimoto, Shoji; Metcalfe, Richard

    2013-01-01

    Highlights: • Deep redox front developed in orogenic granitic rock have been studied. • The process was controlled by the buffering capacity of minerals. • This is an analogue of redox front penetration into HLW repositories in Japan. - Abstract: Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to

  5. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  6. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  7. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    Science.gov (United States)

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  9. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  10. Redox Behavior of Fe2+/Fe3+ Redox Couple by Absorption Spectroscopy and Measurement

    International Nuclear Information System (INIS)

    Oh, J. Y.; Park, S.; Yun, J. I.

    2010-01-01

    Redox behavior has influences on speciation and other geochemical reactions of radionuclides such as sorption, solubility, and colloid formation, etc. It is one of the factors for evaluation of long-term safety assessment under high-level radioactive waste (HLW) disposal conditions. Accordingly, redox potential (Eh) measurement in aquatic system is important to investigate the redox conditions. Eh is usually measured with redox active electrodes (Pt, Au, glassy carbon, etc.). Nevertheless, Eh measurements by general methods using electrodes provide low accuracy and high uncertainty problem. Therefore, Eh calculated from the concentration of redox active elements with a proper complexing reagent by using UV-Vis absorption spectroscopy is progressed. Iron exists mostly as spent nuclear waste container material and in hydro-geologic minerals. In this system, iron controls the redox condition in near-field area and influences chemical behavior and speciation of radionuclides including redox sensitive actinides such as U, Np, and Pu. In the present work, we present the investigation on redox phenomena of iron in aquatic system by a combination of absorption spectroscopy and redox potential measurements

  11. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  12. Symproportionation versus Disproportionation in Bromine Redox Systems

    International Nuclear Information System (INIS)

    Toporek, Marcin; Michałowska-Kaczmarczyk, Anna M.; Michałowski, Tadeusz

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • The disproportionation and symproportionation of bromine in different media is presented. • All the redox systems are elaborated according to the principles of the generalized approach to electrolytic redox systems (GATES/GEB). • All physicochemical knowledge is involved in the algorithm applied for this purpose. • The graphical representation of the systems is the basis of gaining the detailed physicochemical knowledge on the systems in question. -- Abstract: The paper refers to dynamic (titration) redox systems where symproportionation or disproportionation of bromine species occur. The related systems are modeled according to principles assumed in the Generalized Approach to Electrolytic Redox Systems (GATES), with Generalized Electron Balance (GEB) concept involved in the GATES/GEB software. The results obtained from calculations made with use of iterative computer programs prepared according to MATLAB computational software, are presented graphically, as 2D and 3D graphs

  13. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  14. Energy efficiency of neptunium redox battery in comparison with vanadium battery

    International Nuclear Information System (INIS)

    Yamamura, T.; Watanabe, N.; Shiokawa, Y.

    2006-01-01

    A neptunium ion possesses two isostructural and reversible redox couples (Np 3+ /Np 4+ and NpO 2 + /NpO 2 2+ ) and is therefore suitable as an active material for a redox-flow battery. Since the plastic formed carbon (PFC) is known to show the largest k values for Np(IV)/Np(III) and Np(V)/Np(VI) reactions among various carbon electrodes, a cell was constructed by using the PFC, with the circulation induced by bubbling gas through the electrolyte. In discharge experiments with a neptunium and a vanadium battery using the cell, the former showed a lower voltage loss which suggests a smaller reaction overvoltage. Because of the high radioactivity of the neptunium, it was difficult to obtain sufficient circulation required for the redox-flow battery, therefore a model for evaluating the energy efficiency of the redox-flow battery was developed. By using the known k values for neptunium and vanadium electrode reactions at PFC electrodes, the energy efficiency of the neptunium battery was calculated to be 99.1% at 70 mA cm -2 , which exceeds that of the vanadium battery by ca. 16%

  15. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  16. Redox active polymer devices and methods of using and manufacturing the same

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-06-05

    The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.

  17. Chemical synthesis, redox transformation, and identification of sonnerphenolic C, an antioxidant in Acer nikoense.

    Science.gov (United States)

    Iwadate, Takehiro; Nihei, Ken-Ichi

    2017-04-15

    Sonnerphenolic C (3), which was predicted in a redox product of epirhododendrin (1) isolated from Acer nikoense, was synthesized for the first time via the epimeric separation of benzylidene acetal intermediates as a key step. From a similar synthetic route, 1 was obtained concisely. As a result of their antioxidative evaluation, only 3 revealed potent activity. The redox transformation of 1 into 3 was achieved in the presence of tyrosinase and vitamin C. Moreover, 3 was identified in the decoction of A. nikoense by HPLC analysis with the effective use of synthesized 3. Thus, a novel naturally occurring antioxidant 3 was developed through the sequential flow including redox prediction, chemical synthesis, evaluation of the activity, and identification as the natural product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  19. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  20. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    Science.gov (United States)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in

  1. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    Science.gov (United States)

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  2. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  3. Characterization of Redox properties of humic materials

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1995-01-01

    An important aspect of humic materials is the presence of stable free radicals as shown by the width of 1 H-NMR lines of humic acid in solution as well as ESR spectra of solid samples. Presumably, these are due to quinohdrone functional groups in the humic structure. These free radicals are assumed to be a source of the redox effects of humics in metal cations. Phenolic groups have also been proposed as a source of reduction potential in these substances. The reduction potential of humic material is 0.5-0.7 V (vs. the normal hydrogen electrode). In addition to this inherent redox property, humics undergo photolysis by sunlight in surface waters which results in the production of hydrogen peroxide. The latter can also result in redox reactions with metal cations. Such direct and indirect redox capability can have significant effects on the migration of reducible cations. Studies of the reduction of hexavalent actinide cations by humic acid showed the reactions Np O 2 2+ -> Np O 2 + (E 1/2 0 = 1.47 V) and Pu O 2 2+ -> Pu +4 (E 1/2 0 = 1.04 V) while U O 2 2+ was not reduced. The reduction of plutonium in sea water by humics is discussed. Evidence of the effects of redox by humic material on metal cations in natural waters and sediments are also reviewed. (authors). 16 refs., 2 figs., 1 tab

  4. De Novo Construction of Redox Active Proteins.

    Science.gov (United States)

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  5. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    Science.gov (United States)

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    Abstract. Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damko

  6. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Shampa Chatterjee

    2018-06-01

    Full Text Available The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.

  7. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER EX VIVO

    Science.gov (United States)

    XU, HE N.; FENG, MIN; MOON, LILY; DOLLOFF, NATHAN; EL-DEIRY, WAFIK; LI, LIN Z.

    2015-01-01

    The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern

  8. Redox potential dynamics in a grassed swale used for storage and treatment

    Science.gov (United States)

    Vorenhout, Michel; Boogaard, Floris Cornelis

    2016-04-01

    Treatment wetlands are used to remove pollutants from water. Most swales are designed to infiltrate stormwater into the subsurface. A combination of both functions can help to enhance water quality and reduce flooding risks in urban areas. The chemical forms and possible removal of pollutants such as nitrate and heavy metals in wetlands are highly dependent on the redox conditions. The redox conditions are expected to be highly dynamic and dependent on water levels and flow. We studied the correlation between these factors in an urban grassed swale system, and show that more factors play a role in these systems than water levels alone. The study system is located in the World Heritage site "Bryggen" in the city of Bergen, Norway. It consists of a series of SUDS, a socalled treatment train. The system is fed by storm water, which is at first stored in a rain garden then led to grassed swales. Water infiltrates into the subsurface in the swales. The reason for implementation of the system at this site is the protection of the highly organic archaeological layers at the site, which requires reduced conditions. Swales 1 and 2 were equipped with pressure loggers and multi-level redox and temperature probes (-2, -5, -10 and -20cm from surface). Redox and temperature probes were connected to a HYPNOS system. Measurements were taken for more than 1 year at 15 minute interval. A weather station supplemented the dataset with precipitation measurements. The redox potential in the swales show a strong correlation with water level. The regularly flooded swale 2 shows frequent anoxic events (Eh < 200mV) where as swale 1 shows oxic conditions (Eh = 650mV) throughout the same measurement period. Swale 1 has fewer flooding events than Swale 2 and a more coarse soil with less organic matter than swale 2. These redox results are as expected given the local conditions, and show that redox conditions are localised phenomena that depend on local soil conditions. Analysis of the redox

  9. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    Science.gov (United States)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  10. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    Science.gov (United States)

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Electronically Induced Redox Barriers for Treatment of Groundwater

    National Research Council Canada - National Science Library

    Sale, Tom; Gilbert, David

    2006-01-01

    ...) and Colorado State University (CSU). The focus is an innovative electrolytic approach for managing redox-sensitive contaminants in groundwater, referred to as electrically induced redox barrier (e-barriers...

  12. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    Science.gov (United States)

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  13. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    Science.gov (United States)

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  15. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    Science.gov (United States)

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  16. Are bioassays useful tools to assess redox processes and biodegradation?

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Pedersen, Philip Grinder; Ludvigsen, L.

    2002-01-01

    sensitive hydrochemical or geochemical parameters, levels of hydrogen, and redox potential. However, all these approaches have to be evaluated against TEAP-bioassays as the most direct measure. We assessed successfully ongoing microbial-mediated redox processes by TEAP-bioassays in degradation studies...... of aromatic and chlorinated aliphatic compounds in landfill leachate plumes, and of pesticides in aquifers with various redox conditions....

  17. Le reazioni redox: un pasticcio concettuale?

    Directory of Open Access Journals (Sweden)

    Elena Ghibaudi

    2015-10-01

    Full Text Available Le reazioni di ossidoriduzione costituiscono un argomento centrale di qualsiasi corso di base di chimica, sia a livello scolastico che universitario. Il loro apprendimento comporta il superamento di svariati ostacoli concettuali, la cui difficoltà può risultare amplificata da prassi didattiche inadeguate. Gli errori più ricorrenti nel presentare l’argomento sono di due tipi: i fare implicitamente riferimento a modelli esplicativi distinti (es. il numero di ossidazione e il trasferimento elettronico, senza esplicitarli e senza evidenziarne la differente natura e il campo di validità; ii confondere il livello della spiegazione formale con quello della realtà fisica. I fenomeni redox sono normalmente interpretati sulla base di tre distinti modelli empirici, che fanno riferimento al trasferimento di atomi di ossigeno, di atomi di idrogeno, di elettroni; e di un quarto modello, formale, fondato sul cambiamento del numero di ossidazione. La confusione tra questi modelli può generare considerevoli problemi di apprendimento. Il presente lavoro riporta un’analisi critica delle implicazioni concettuali della didattica dei processi redox. L’analisi è articolata in tre sezioni: i disamina della evoluzione storica del concetto di ossidoriduzione; ii analisi dei modelli redox e del loro campo di validità; iii discussione di alcuni aspetti epistemologici inerenti i processi redox che sono rilevanti per la didattica della chimica.

  18. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  19. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  20. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  1. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  2. Redox fluctuations in the Early Ordovician oceans

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Gilleaudeau, Geoffrey Jon; Peralta, Silvio

    2017-01-01

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. Recent co-precipitation experiments have shown that Cr(VI) is incorporated into the calcite lattice, suggesting that carbonates......, accompanied by exceptionally low Cr concentrations (runoff or hydrothermal input into the global...

  3. Redox cycling of potential antitumor aziridinylquinones

    NARCIS (Netherlands)

    Lusthof, Klaas J.; de Mol, Nicolaas J.; Richter, Wilma; Janssen, Lambert H.M.; Butler, John; Hoey, Brigid M.; Verboom, Willem; Reinhoudt, David

    1992-01-01

    The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthetized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase

  4. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  5. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Erik A. Fraunberger

    2016-01-01

    Full Text Available Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders.

  6. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  7. Impact of Sediment-Bound Iron on Redox Buffering in a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Sediments sampled along a central flow line of the leachate pollution plume at the Vejen Landfill, Denmark, were characterized in detail with respect to the forms and pools of Fe(ll) and Fe(lll). After 15 yr of leaching, redox reactions had diminished the pool of iron(ll1) oxides and hydroxides...

  8. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    Science.gov (United States)

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  9. Modelling the redox front movement in a KBS-3 nuclear waste repository

    International Nuclear Information System (INIS)

    Romero, L.; Moreno, L.; Neretnieks, I.

    1993-05-01

    In a KBS-3 repository for spent nuclear fuel, radiolysis can occur if canisters are breached and water comes into contact with the fuel. The oxidants produced by radiolysis may migrate into the clay surrounding the canister and change the redox conditions from reducing to oxidizing. If much oxidants are produced, they can migrate to the water flowing in the fractures in the rock. Some of the oxidants also may oxidize the uranium and other nuclides in the fuel and make them more soluble. The nuclides will then migrate out in a higher oxidation state and may precipitate at the redox front. Calculations were done for a production of 144 moles of oxidants in one million years. A higher and a much lower production were also considered. It was assumed that the canister is either totally or locally corroded. The results show that, for the most probable production rate, a large fraction of oxidants would be consumed in the clay. If the corrosion is local and there is a fracture opposite the damage, the amount of oxidant transported into the fracture would be significant. Here the advance of the redox front in the fracture would be some tens of metres. For the lowest production rate, the oxidants never reach the fractures in the rock. Only with improbably high production rates could the tips of the redox front move very long distances, in isolated channels that are not part of a network

  10. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  11. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Jonathan E.; Curtiss, Larry A.; Assary, Rajeev S.

    2014-09-25

    Application of density functional calculations to compute electrochemical properties such as redox windows, effect of substitution by electron donating and electron withdrawing groups on redox windows, and solvation free energies for ~50 anthraquinone (AQ) derivatives are presented because of their potential as anolytes in all-organic redox flow batteries. Computations suggest that lithium ions can increase (by ~0.4 V) the reduction potential of anthraquinone due to the lithium ion pairing by forming a Lewis base-Lewis acid complex. To design new redox active species, the substitution by electron donating groups are essential to improve the reduction window of AQ with adequate oxidative stability. For instance, a complete methylation of AQ can improve its reduction window by ~0.4 V. The quantum chemical studies of the ~50 AQ derivatives are used to derive a relationship that connects the computed LUMO energy and the reduction potential that can be applied as a descriptor for screening thousands of AQ derivatives. Our computations also suggest that incorporating oxy-methyl dioxolane substituents in the AQ framework can increase its interaction with non-aqueous solvent and improve its solubility. Thermochemical calculations for likely bond breaking decomposition reactions of un-substituted AQ anions suggest that the dianions are relatively stable in the solution. These studies provide ideal platform to perform further combined experimental and theoretical studies to understand the electrochemical reversibility and solubility of new quinone molecules as energy storage materials.

  12. Redox Biology in Neurological Function, Dysfunction, and Aging.

    Science.gov (United States)

    Franco, Rodrigo; Vargas, Marcelo R

    2018-04-23

    Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.

  13. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  15. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation.

    Science.gov (United States)

    Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara

    2016-04-01

    Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  16. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  17. Chronopotentiometric determination of redox states of peptides

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Paleček, Emil

    2007-01-01

    Roč. 19, č. 23 (2007), s. 2405-2412 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) IAA500040513; GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : peptide redox states * constant current chronopotentiometry * catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 2.949, year: 2007

  18. Redox pioneer:Professor Christine Helen Foyer.

    Science.gov (United States)

    Del Río, Luis A

    2011-10-15

    Dr. Christine Foyer (B.Sc. 1974; Ph.D. 1977) is recognized here as a Redox Pioneer because she has published an article on redox biology that has been cited more than 1000 times, 4 other articles that have been cited more than 500 times, and a further 32 articles that have been each cited more than 100 times. During her Ph.D. at the Kings College, University of London, United Kingdom, Dr. Foyer discovered that ascorbate and glutathione and enzymes linking NADPH, glutathione, and ascorbate are localized in isolated chloroplast preparations. These observations pioneered the discovery of the ascorbate-glutathione cycle, now known as Foyer-Halliwell-Asada pathway after the names of the three major contributors, a crucial mechanism for H(2)O(2) metabolism in both animals and plants. Dr. Foyer has made a very significant contribution to our current understanding of the crucial roles of ascorbate and glutathione in redox biology, particularly in relation to photosynthesis, respiration, and chloroplast and mitochondrial redox signaling networks. "My view is that science…is compulsive and you have to keep with it all the time and not get despondent when things do not work well. Being passionate about science is what carries you through the hard times so that it isn't so much work, as a hobby that you do for a living. It is the thrill of achieving a better understanding and finding real pleasure in putting new ideas together, explaining data and passing on knowledge that keeps you going no matter what!" --Prof. Christine Helen Foyer.

  19. Electrochemical determination of thioredoxin redox states

    Czech Academy of Sciences Publication Activity Database

    Dorčák, Vlastimil; Paleček, Emil

    2009-01-01

    Roč. 81, č. 4 (2009), s. 1543-1548 ISSN 0003-2700 R&D Projects: GA AV ČR(CZ) KAN400310651; GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : thioredoxin redox states * constant current chronopotentiometric stripping * carbon and mercury electrodes Subject RIV: BO - Biophysics Impact factor: 5.214, year: 2009

  20. Proteostasis and REDOX state in the heart

    Science.gov (United States)

    Christians, Elisabeth S.

    2012-01-01

    Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans. PMID:22003057