WorldWideScience

Sample records for brome mosaic virus

  1. Evolutionary relationship of alfalfa mosaic virus with cucumber mosaic virus and brome mosaic virus

    OpenAIRE

    Savithri, HS; Murthy, MRN

    1983-01-01

    The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses - cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2...

  2. Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus

    NARCIS (Netherlands)

    Kasteel, D. T.; van der Wel, N. N.; Jansen, K. A.; Goldbach, R. W.; van Lent, J. W.

    1997-01-01

    The structural phenotype of the movement proteins (MPs) of two representatives of the Bromoviridae, alfalfa mosaic virus (AMV) and brome mosaic virus (BMV), was studied in protoplasts. Immunofluorescence microscopy showed that the MPs of these viruses, for which there has been no evidence of a

  3. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  4. Mutual Interference between Genomic RNA Replication and Subgenomic mRNA Transcription in Brome Mosaic Virus

    OpenAIRE

    Grdzelishvili, Valery Z.; Garcia-Ruiz, Hernan; Watanabe, Tokiko; Ahlquist, Paul

    2005-01-01

    Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expres...

  5. The brome mosaic virus 3' untranslated sequence regulates RNA replication, recombination, and virion assembly.

    Science.gov (United States)

    Rao, A L N; Cheng Kao, C

    2015-08-03

    The 3' untranslated region in each of the three genomic RNAs of Brome mosaic virus (BMV) is highly homologous and contains a sequence that folds into a tRNA-like structure (TLS). Experiments performed over the past four decades revealed that the BMV 3' TLS regulates many important steps in BMV infection. This review summarizes in vitro and in vivo studies of the roles of the BMV 3' TLS functioning as a minus-strand promoter, in RNA recombination, and to nucleate virion assembly. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection.

    Science.gov (United States)

    Hoover, Haley S; Wang, Joseph Che-Yen; Middleton, Stefani; Ni, Peng; Zlotnick, Adam; Vaughan, Robert C; Kao, C Cheng

    2016-09-01

    The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically

  7. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-01-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure. PMID:25185801

  8. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  9. An ImprovedBrome mosaic virusSilencing Vector: Greater Insert Stability and More Extensive VIGS.

    Science.gov (United States)

    Ding, Xin Shun; Mannas, Stephen W; Bishop, Bethany A; Rao, Xiaolan; Lecoultre, Mitchell; Kwon, Soonil; Nelson, Richard S

    2018-01-01

    Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 ( HSP70-1 ) inserts in Nicotiana benthamiana and maize ( Zea mays ). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70 , silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors. © 2018 American Society of Plant Biologists. All Rights Reserved.

  10. Brome mosaic virus Infection of Rice Results in Decreased Accumulation of RNA1.

    Science.gov (United States)

    Kitayama, Masahiko; Hoover, Haley; Middleton, Stefani; Kao, C Cheng

    2015-05-01

    Brome mosaic virus (BMV) (the Russian strain) infects monocot plants and has been studied extensively in barley and wheat. Here, we report BMV can systemically infect rice (Oryza sativa var. japonica), including cultivars in which the genomes have been determined. The BMV capsid protein can be found throughout the inoculated plants. However, infection in rice exhibits delayed symptom expression or no symptoms when compared with wheat (Triticum aestivum). The sequences of BMV RNAs isolated from rice did not reveal any nucleotide changes in RNA1 or RNA2, while RNA3 had only one synonymous nucleotide change from the inoculum sequence. Preparations of purified BMV virions contained RNA1 at a significantly reduced level relative to the other two RNAs. Analysis of BMV RNA replication in rice revealed that minus-strand RNA1 was replicated at a reduced rate when compared with RNA2. Thus, rice appears to either inhibit RNA1 replication or lacks a sufficient amount of a factor needed to support efficient RNA1 replication.

  11. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    Science.gov (United States)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  12. Application of ab initio calculations and molecular dynamics to collagen and brome mosaic virus

    Science.gov (United States)

    Eifler, Jay Quinson

    In bio-related research, large proteins are of important interest. We study two such proteins. Collagen is one such protein which forms part of the structural matrix for animals, such as in their bones and teeth. 1JS9 is another protein that is a component of the protein shell of the brome mosaic virus (BMV). And BMV is important for drug delivery and imaging. To better understand the properties of these proteins, quantum mechanically (QM) based results are needed, however computationally feasible methods are also necessary. The Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) method is well-suited for application to such large proteins. However, a new approach to reduce the computational cost is required and this extension to the method we call the Amino-Acid Based Method (AAPM) of OLCAO. The AAPM roughly calculates electronic, self-consistent field (scf) potentials for individual amino-acids with their neighboring amino-acids included as a boundary condition. This allows the costly scf part of the calculation to be skipped out. Additionally, the number of potentials used to describe the how protein i s also minimized. Results for effective charge and bond order are obtained and analyzed for Collagen and preliminary effective charge results are obtained for 1JS9. The effective charge results reproduce those already obtained with other QM based methods but without reduced cost and preserved accuracy that are characteristically different than the formal charges mostly still in use to describe the charge properties of proteins. The bond order results for Collagen nicely reproduce the observed experimentally-derived hydrogen bonding between the individual chains of the collagen triple-helix as well as the observed hydrogen bonding network.

  13. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3.

    OpenAIRE

    French, R; Ahlquist, P

    1987-01-01

    The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted in...

  14. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3.

    Science.gov (United States)

    French, R; Ahlquist, P

    1987-05-01

    The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.

  15. Small angle scattering study of the structure and organization of RNA and protein in Brome Mosaic Virus (BMV)

    Science.gov (United States)

    Das, Narayan C.; Warren, Garfield T.; Cheng, Si; Kao, C. Cheng; Ni, Peng; Dragnea, Bogdan; Sokol, Paul E.

    2012-02-01

    Brome mosaic virus (BMV) is a small icosahedral of the alpha virus-like superfamily of RNA with a segmented positive-strand RNA genome and a mean diameter ˜ 268å that offers high levels of RNA synthesis and virus production in plants. BMV also tightly regulates the packaging of its four RNAs (RNA1 through RNA4) into three separate particles; RNA1 and RNA2 are encapsidated separately while one copy each of RNA3 and RNA4 are normally packaged together. Small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) were applied to study the size, shape and protein-RNA organization of BMV. D2O/H2O mixture was used to enhance contrast in SANS measurement. The radial distribution of BMV from the Fourier transform of scattering spectrum gives a clear indication of RNA packing, and distribution and their structure in the BMV. The result reveals that the virus is about 266 å in diameter and is composed of RNA inside the virion coated with a protein shell.

  16. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous.

    Science.gov (United States)

    Ni, Peng; Vaughan, Robert C; Tragesser, Brady; Hoover, Haley; Kao, C Cheng

    2014-03-06

    Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses. © 2013.

  17. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  18. The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process.

    Science.gov (United States)

    Vaughan, Robert; Tragesser, Brady; Ni, Peng; Ma, Xiang; Dragnea, Bogdan; Kao, C Cheng

    2014-06-01

    The three subsets of virions that comprise the Brome mosaic virus (BMV) were previously thought to be indistinguishable. This work tested the hypothesis that distinct capsid-RNA interactions in the BMV virions allow different rates of viral RNA release. Several results support distinct interactions between the capsid and the BMV genomic RNAs. First, the deletion of the first eight residues of the BMV coat protein (CP) resulted in the RNA1-containing particles having altered morphologies, while those containing RNA2 were unaffected. Second, subsets of the BMV particles separated by density gradients into a pool enriched for RNA1 (B1) and for RNA2 and RNA3/4 (B2.3/4) were found to have different physiochemical properties. Compared to the B2.3/4 particles, the B1 particles were more sensitive to protease digestion and had greater resistivity to nanoindentation by atomic force microscopy and increased susceptibility to nuclease digestion. Mapping studies showed that portions of the arginine-rich N-terminal tail of the CP could interact with RNA1. Mutational analysis in the putative RNA1-contacting residues severely reduced encapsidation of BMV RNA1 without affecting the encapsidation of RNA2. Finally, during infection of plants, the more easily released RNA1 accumulated to higher levels early in the infection. Viruses with genomes packaged in distinct virions could theoretically release the genomes at different times to regulate the timing of gene expression. Using an RNA virus composed of three particles, we demonstrated that the RNA in one of the virions is released more easily than the other two in vitro. The differential RNA release is due to distinct interactions between the viral capsid protein and the RNAs. The ease of RNA release is also correlated with the more rapid accumulation of that RNA in infected plants. Our study identified a novel role for capsid-RNA interactions in the regulation of a viral infection.

  19. Mutations in the capsid protein of Brome mosaic virus affecting encapsidation eliminate vesicle induction in planta: implications for virus cell-to-cell spread.

    Science.gov (United States)

    Bamunusinghe, Devinka; Chaturvedi, Sonali; Seo, Jang-Kyun; Rao, A L N

    2013-08-01

    Positive-strand RNA viruses are known to rearrange the endomembrane network to make it more conducive for replication, maturation, or egress. Our previous transmission electron microscopic (TEM) analysis showed that ectopic expression of wild-type (wt) capsid protein (CP) of Brome mosaic virus (BMV) has an intrinsic property of modifying the endoplasmic reticulum (ER) to induce vesicles similar to those present in wt BMV infection. In this study, we evaluated the functional significance of CP-mediated vesicle induction to the BMV infection cycle in planta. Consequently, the cytopathologic changes induced by wt CP or its mutants defective in virion assembly due to mutations engineered in either N- or C-proximal domains were comparatively analyzed by TEM in two susceptible (Nicotiana benthamiana and Chenopodium quinoa) and one nonhost (N. clevelandii) plant species. The results showed that in susceptible hosts, CP-mediated ER-derived vesicle induction is contingent on the expression of encapsidation-competent CP. In contrast, unlike in N. benthamiana and C. quinoa, transient expression of wt CP in nonhost N. clevelandii plants eliminated vesicle induction. Additionally, comparative source-to-sink analysis of virus spread in leaves of N. benthamiana and N. clevelandii coexpressing wt BMV and Cucumber mosaic virus (CMV) showed that despite trans-encapsidation, CMV failed to complement the defective cell-to-cell movement of BMV. The significance and relation of CP-mediated vesicle induction to virus cell-to-cell movement are discussed.

  20. Xenopus Xp54 and human RCK/p54 helicases functionally replace yeast Dhh1p in brome mosaic virus RNA replication.

    Science.gov (United States)

    Alves-Rodrigues, Isabel; Mas, Antonio; Díez, Juana

    2007-04-01

    By using a Brome mosaic virus (BMV)-Saccharomyces cerevisiae system, we previously showed that the cellular Lsm1p-7p/Pat1p/Dhh1p decapping-activator complex functions in BMV RNA translation and replication. As a first approach in investigating whether the corresponding human homologues play a similar role, we expressed human Lsm1p (hLsm1p) and RCK/p54 in yeast. Expression of RCK/p54 but not hLsm1p restored the defect in BMV RNA translation and replication observed in the dhh1Delta and lsm1Delta strains, respectively. This functional conservation, together with the common replication strategies of positive-stranded RNA viruses, suggests that RCK/p54 may also play a role in the replication of positive-stranded RNA viruses that infect humans.

  1. The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter

    DEFF Research Database (Denmark)

    Skov, J.; Gaudin, M.; Podbevsek, P.

    2012-01-01

    In brome mosaic virus, both the replication of the genomic (+)-RNA strands and the transcription of the subgenomic RNA are carried out by the viral replicase. The production of (-)-RNA strands is dependent on the formation of an AUA triloop in the stem-loop C (SLC) hairpin in the 3'-untranslated...

  2. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging.

    Science.gov (United States)

    Chaturvedi, Sonali; Rao, A L N

    2014-09-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  4. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication.

    Science.gov (United States)

    Jacobs, Alexander; Hoover, Haley; Smith, Edward; Clemmer, David E; Kim, Chul-Hyun; Kao, C Cheng

    2018-01-09

    In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs.

    Science.gov (United States)

    Ni, Peng; Wang, Zhao; Ma, Xiang; Das, Nayaran Chandra; Sokol, Paul; Chiu, Wah; Dragnea, Bogdan; Hagan, Michael; Kao, C Cheng

    2012-06-22

    The coat protein of positive-stranded RNA viruses often contains a positively charged tail that extends toward the center of the capsid and interacts with the viral genome. Electrostatic interaction between the tail and the RNA has been postulated as a major force in virus assembly and stabilization. The goal of this work is to examine the correlation between electrostatic interaction and amount of RNA packaged in the tripartite Brome Mosaic Virus (BMV). Nanoindentation experiment using atomic force microscopy showed that the stiffness of BMV virions with different RNAs varied by a range that is 10-fold higher than that would be predicted by electrostatics. BMV mutants with decreased positive charges encapsidated lower amounts of RNA while mutants with increased positive charges packaged additional RNAs up to ∼900 nt. However, the extra RNAs included truncated BMV RNAs, an additional copy of RNA4, potential cellular RNAs, or a combination of the three, indicating that change in the charge of the capsid could result in several different outcomes in RNA encapsidation. In addition, mutant with specific arginines changed to lysines in the capsid also exhibited defects in the specific encapsidation of BMV RNA4. The experimental results indicate that electrostatics is a major component in RNA encapsidation but was unable to account for all of the observed effects on RNA encapsidation. Thermodynamic modeling incorporating the electrostatics was able to predict the approximate length of the RNA to be encapsidated for the majority of mutant virions, but not for a mutant with extreme clustered positive charges. Cryo-electron microscopy of virions that encapsidated an additional copy of RNA4 revealed that, despite the increase in RNA encapsidated, the capsid structure was minimally changed. These results experimentally demonstrated the impact of electrostatics and additional restraints in the encapsidation of BMV RNAs, which could be applicable to other viruses. Copyright

  6. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  7. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts.

    Science.gov (United States)

    Kolondam, Beivy; Rao, Parth; Sztuba-Solinska, Joanna; Weber, Philipp H; Dzianott, Aleksandra; Johns, Mitrick A; Bujarski, Jozef J

    2015-01-01

    We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley ( Hordeum vulgare) , Chenopodium quinoa , and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.

  8. Identification of virus isolates inducing mosaic of sugarcane in ...

    African Journals Online (AJOL)

    Sugarcane mosaic disease caused by sugarcane mosaic virus (SCMV), Johnsongrass mosaic virus (JGMV), maize dwarf mosaic virus (MDMV) and sorghum mosaic Virus (SrMV) is an economically important viral disease of sugarcane worldwide. Field survey was conducted to assess the presence of the viruses involve in ...

  9. Multiplex Real Time PCR For Detection of Wheat Streak Mosaic Virus and Triticum Mosaic Virus

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TRIMV) are widespread throughout the southwestern Great Plains states. Using conventional diagnostics such as Enzyme-Linked Immunosorbent Assays (ELISA), these two viruses are commonly found together in infected wheat samples. Methods for m...

  10. Incidence du Yam mosaic virus (YMV) et du Cucumber mosaic virus ...

    African Journals Online (AJOL)

    Incidence du Yam mosaic virus (YMV) et du Cucumber mosaic virus (CMV) sur des variétés de Dioscorea spp. cultivées dans les régions de Bouaké et de Toumodi en Côte d'Ivoire. K Seka, AH Diallo, NK Kouassi, S Ake ...

  11. Complete nucleotide sequence analysis of Cymbidium mosaic virus ...

    Indian Academy of Sciences (India)

    Phylogenetic analyses on the basis of RNA-dependent RNA polymerase (RdRp), triple gene block protein and coat protein (CP) amino acid sequences revealed that CymMV is closely related to the Narcissus mosaic virus (NMV), Scallion virus X (SVX), Pepino mosaic virus (PepMV) and Potato aucuba mosaic virus (PAMV).

  12. KARAKTERISASICYMBIDIUM MOSAIC VIRUS (CYMMV PADA TANAMAN ANGGREK

    Directory of Open Access Journals (Sweden)

    KHAMDAN KHALIMI

    2012-11-01

    Full Text Available Characterization ofCymbidium mosaic virus (CymMV on Orchid Plant Orchids are affected by more virus disease problems than most crops, reducing their commercial values considerably. Orchid viruses are widespread in cultivated orchids, withCymbidium mosaic potexvirus (CymMV being the most prevalent. CymMV high incidence in cultivated orchids has been attributed to the stability and ease of transmission of this virus through cultural practices. CymMV induces floral and foliar necrosis. The virus also reduce plant vigor and lower flower quality, which affect their economic value. The objective of the research is to characterize the virus causing mosaic or chlorotic and necrotic on orchids in West Java. A reverse transcription-polymerase chain reaction (RT- PCR assays using oligonucleotide primers specific to CymMV were also successfully amplified the regions of the coat protein (CP gene of the virus. Analysis by using sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE revealed that the virus have a major structural protein with an estimated molecular weight of 28 kDa. Aligments of partial nucleotide sequences of the CP gene displayed 86 to 92% homology to CymMV isolates from other countries.

  13. Identification of cowpea mosaic virus isolates

    NARCIS (Netherlands)

    Agrawal, H.O.

    1964-01-01

    Five isolates of the beetle-transmitted cowpea mosaic virus were studied. The symptoms produced by each on a number of hosts were described. The occurrence of amorphous inclusion bodies in the epidermal cells of infected cowpea and pea plants was reported. A purification procedure was described.

  14. Guanylylation-competent replication proteins of Tomato mosaic virus are disulfide-linked.

    Science.gov (United States)

    Nishikiori, Masaki; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-12-05

    The 130-kDa and 180-kDa replication proteins of Tomato mosaic virus (ToMV) covalently bind guanylate and transfer it to the 5' end of RNA to form a cap. We found that guanylylation-competent ToMV replication proteins are in membrane-bound, disulfide-linked complexes. Guanylylation-competent replication proteins of Brome mosaic virus and Cucumber mosaic virus behaved similarly. To investigate the roles of disulfide bonding in the functioning of ToMV replication proteins, each of the 19 cysteine residues in the 130-kDa protein was replaced by a serine residue. Interestingly, three mutant proteins (C179S, C186S and C581S) failed not only to be guanylylated, but also to bind to the replication template and membranes. These mutants could trans-complement viral RNA replication. Considering that ToMV replication proteins recognize the replication templates, bind membranes, and are guanylylated in the cytoplasm that provides a reducing condition, we discuss the roles of cysteine residues and disulfide bonds in ToMV RNA replication. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    Science.gov (United States)

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  16. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, Amy [Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235 (United States); Williams, Dewight [Department of Molecular Physiology and Biophysics and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232 (United States); Bian, Wen [Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235 (United States); Stewart, Phoebe L. [Department of Molecular Physiology and Biophysics and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232 (United States); Stubbs, Gerald, E-mail: gerald.stubbs@vanderbilt.edu [Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2013-09-01

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn of the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.

  17. A preliminary survey of viruses in pasture grasses in South Africa ...

    African Journals Online (AJOL)

    Serological tests indicate that Avena sativa from Roodeplaat and Bromus unioloides from Potchefstroom, Cedara and Nooitgedacht are positive for maize dwarf mosaic virus (MDMV). Lolium multiflorum from Cedara appears to be infected with two viruses, brome mosaic virus(BMV) and a potyvirus-like agent, possibly ...

  18. Simultaneous detection of Apple mosaic virus in cultivated hazelnuts ...

    African Journals Online (AJOL)

    The most economically damaging ilarvirus affecting hazelnut on a worldwide scale is the related apple mosaic virus (ApMV). Attempts were made to isolate the virus RNA from hazelnut tissues using different extraction methods. The most suitable extraction method that could detect the virus occurring naturally in hazelnut by ...

  19. Occurrence and identification of Okra Mosaic Virus in Urena lobata ...

    African Journals Online (AJOL)

    The virus was serologically related to Okra mosaic virus (OMV). An SDS-PAGE analysis of the coat protein showed that the molecular weight of the sub-unit was 20-22,000 daltons. The properties of the virus isolate in Urena lobata L. suggest that it may belong to the tymovirus group and be related to OMV. Urena lobata L.

  20. Protection of melon plants against Cucumber mosaic virus infection ...

    African Journals Online (AJOL)

    Adhab

    This study was carried out to characterize a virus causing severe mosaic, yellowing, stunting and leaf deformation on melon (Cucumis melo L.), and evaluate the capacity of Pseudomonas fluorescens as biofertilizer to improve plant growth and restrict the accumulation of the virus in the plant. The virus was identified as an ...

  1. Interfering Satellite RNAs of Bamboo mosaic virus

    Directory of Open Access Journals (Sweden)

    Kuan-Yu Lin

    2017-05-01

    Full Text Available Satellite RNAs (satRNAs are sub-viral agents that may interact with their cognate helper virus (HV and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV, the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5′- and 3′-untranslated regions (UTRs of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL in the 5′-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83 in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.

  2. Investigation on seed transmission of cucumber mosaic virus in ...

    African Journals Online (AJOL)

    Cowpea breeding lines were infected with cucumber mosaic virus (CMV) by mechanical inoculation to investigate seed transmission rates for this virus. Transmission rates ranging from 0% to 6% were scored by symptom assessment. However, when cowpeas grown from seeds of infected mother plants were tested by ...

  3. Production of yam mosaic virus monoclonal antibodies in mice ...

    African Journals Online (AJOL)

    Yam mosaic virus (YMV) is one of the most economically important virus infecting yams. Immunoassays are routinely used for laboratory diagnosis of YMV and for certification of planting materials. However, YMV antibodies, the key reagents, needed for these immunoassays are not readily available. We describe in this ...

  4. Characterization of cucumber mosaic virus isolated from yam ...

    African Journals Online (AJOL)

    Millions of people in the West African sub-region depend on yam for food and income. In 2008, cucumber mosaic virus (CMV), one of the most economically important plant viruses was detected in yam fields in Ghana, Benin and Togo, three of the five topmost yam producing countries in the world. Some strains of CMV are ...

  5. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  6. Coat protein sequence shows that Cucumber mosaic virus isolate ...

    Indian Academy of Sciences (India)

    A viral disease was identified on geraniums (Pelargonium spp.) grown in a greenhouse at the Institute of Himalayan Bioresource Technology (IHBT), Palampur, exhibiting mild mottling and stunting. The causal virus (Cucumber mosaic virus, CMV) was identified and characterized on the basis of host range, aphid ...

  7. Recent characterization of cowpea aphid-borne mosaic virus ...

    African Journals Online (AJOL)

    Woodiness disease is the most important disorder of passion fruit worldwide. The causal agent in Brazil is the Cowpea aphid-borne mosaic virus (CABMV), and despite the economic relevance of passion fruit for agriculture there have been recently very few studies about this virus in Brazil and worldwide. This work reveals ...

  8. Protection of melon plants against Cucumber mosaic virus infection ...

    African Journals Online (AJOL)

    The virus was identified as an isolate of Cucumber mosaic virus (CMV) by means of symptoms on indicator plants, serological characteristics using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) and immunochromatography, and molecular weight of coat protein on sodium dodecyl ...

  9. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    National Research Council Canada - National Science Library

    Moura, Monika Fecury; Soman, Marcelo; Mituti, Tatiana; Pavan, Marcelo Agenor; Krause-Sakate, Renate

    2014-01-01

    Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade) is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses...

  10. Analyses of the complete sequence of the genome of wheat Eqlid mosaic virus, a novel species in the genus Tritimovirus.

    Science.gov (United States)

    Rastegar, M; Izadpanah, K; Masumi, M; Siampour, M; Zare, A; Afsharifar, A

    2008-10-01

    The complete nucleotide sequence of the genome of wheat Eqlid mosaic virus (WEqMV) (excluding the poly A tail) comprised 9636 nucleotides including 5' and 3' noncoding regions of 137 and 172 nt, respectively. It contained a single ORF coding for a polyprotein of 3,109 amino acid residues and had a deduced genome organization typical of members of the family Potyviridae and with proteinase cleavage sites very similar to those of the members of the genus Tritimovirus. Pairwise and multiple alignments and phylogenetic analysis showed that WEqMV is a distinct species in the genus Tritimovirus. WEqMV and Wheat streak mosaic virus (WSMV) shared the greatest nucleotide sequence identity in the NIb and HC-Pro cistrons (63.2% and 60.8%, respectively) and the lowest sequence identity in the P1 and CP cistrons (51.2% and 51.1%, respectively). Sequence identity for the complete genome of WEqMV and WSMV was 56.8% at the nucleotide level and 50.7% at the amino acid level. WEqMV had 57.2% nucleotide identity and 50.6% amino acid identity with Oat necrotic mottle virus and 52.5% nucleotide identity and 45.5% amino acid identity with Brome streak mosaic virus. The relationship of WEqMV with other members of the family Potyviridae was more distant. Structural analysis of WEqMV protein showed presence of potential transmembrane helices in 6k1, 6k2, and P3 proteins.

  11. A study of variability of capsid protein genes of Radish mosaic virus

    OpenAIRE

    HOLÁ, Marcela

    2008-01-01

    The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

  12. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials.

    Science.gov (United States)

    Love, Andrew J; Makarov, Valentine; Yaminsky, Igor; Kalinina, Natalia O; Taliansky, Michael E

    2014-01-20

    Due to the nanoscale size and the strictly controlled and consistent morphologies of viruses, there has been a recent interest in utilizing them in nanotechnology. The structure, surface chemistries and physical properties of many viruses have been well elucidated, which have allowed identification of regions of their capsids which can be modified either chemically or genetically for nanotechnological uses. In this review we focus on the use of such modifications for the functionalization and production of viruses and empty viral capsids that can be readily decorated with metals in a highly tuned manner. In particular, we discuss the use of two plant viruses (Cowpea mosaic virus and Tobacco mosaic virus) which have been extensively used for production of novel metal nanoparticles (<100nm), composites and building blocks for 2D and 3D materials, and illustrate their applications. © 2013 Elsevier Inc. All rights reserved.

  13. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2011-01-01

    Full Text Available Abstract Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV movement protein (MP gene and the partial Cucumber mosaic virus (CMV replication protein (Rep gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58 immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32 immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃ did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.

  14. Distribution and molecular detection of apple mosaic virus in apple ...

    African Journals Online (AJOL)

    ... 15 apple ApMV isolates were obtained. All of the amplicons were subjected to enzymatic digestion with restriction endonuclease enzymes and phylogenetic analysis were performed according to the digestion profiles. Keywords: Apple mosaic virus, coat protein gene, hazelnut. African Journal of Biotechnology, Vol 13(31) ...

  15. Identification of Turnip mosaic virus isolated from canola in northeast ...

    African Journals Online (AJOL)

    During March and April of 2011, 436 samples showing viral disease symptoms were collected from canola fields in the Khorasan Razavi province. The samples were tested by double-antibody sandwich (DAS)-enzyme linked immunosorbent assay (ELISA) for the presence of Turnip mosaic virus (TuMV). Among the 436 ...

  16. Controlled transmission of African cassava mosaic virus (ACMV) by ...

    African Journals Online (AJOL)

    Jatropha curcas, a plant with great biodiesel potential is also used to reduce the population of whiteflies, Bemisia tabaci on cassava fields when planted as a hedge. We therefore, investigated the transmission of African cassava mosaic virus (ACMV) by the whitefly vector from cassava to seedlings of 10 accessions of J.

  17. Distribution and molecular detection of apple mosaic virus in apple ...

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... Apple mosaic virus (ApMV) is one of the most important diseases limiting the production of hazelnut and apple in Turkey and the objectives of this research were to determine the convenient and reliable method for RNA isolation and also to determine primer pair for real time polymerase chain reaction (RT-.

  18. Susceptibility of some Lycopersicon species and varieties to cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV).

    Science.gov (United States)

    Takács, A P; Horváth, J; Kazinczi, G; Gáborjányi, R

    2005-01-01

    Susceptibility of 33 Lycopersicon species and varieties to Tobacco mosaic virus (TMV) and Cucumber mosaic virus (CMV) were studied. Plants were mechanically inoculated with the C/U1 strain of TMV and U/246 strain of CMV. Virus infection was checked by symptomatology, DAS ELISA and back inoculation (biotest). All the studied Lycopersicon species and varieties were susceptible to TMV-C/U1. L. esculentum Mill. convar. infiniens Lehm. var. flammatum Lehm., L. esculentum Mill. convar. fruticosum Lehm. var. speciosum Lehm. and L. esculentum Mill. convar. infiniens Lehm. var. validum Bail. showed extreme resistance to CMV-U/246. The other 30 species and varieties were susceptible to CMV-U/246. New compatible and incompatible host-virus relations have been reported. The extreme resistant Lycopersicon varieties could be used as resistance sources in tomato breeding.

  19. Tobacco mosaic virus: a model system for plant biology.

    Science.gov (United States)

    Scholthof, Karen-Beth G

    2004-01-01

    Tobacco mosaic virus (TMV) has had an illustrious history for more than 100 years, dating to Beijerinck's description of the mosaic disease of tobacco as a contagium vivum fluidum and the modern usage of the word "virus." Since then, TMV has been acknowledged as a preferred didactic model and a symbolic model to illuminate the essential features that define a virus. TMV additionally emerged as a prototypic model to investigate the biology of host plants, namely tobacco. TMV also exemplifies how a model system furthers novel, and often unexpected, developments in biology and virology. Today, TMV is used as a tool to study host-pathogen interactions and cellular trafficking, and as a technology to express valuable pharmaceutical proteins in tobacco. The history of TMV illustrates how pragmatic strategies to control an economically important disease of tobacco have had unexpected and transforming effects across platforms that impinge on plant health and public health.

  20. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Science.gov (United States)

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  1. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    Directory of Open Access Journals (Sweden)

    Monika Fecury Moura

    2014-03-01

    Full Text Available Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV and Potato virus Y (PVY and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara, sweet pepper (Capsicum annuum cv. Magda, Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

  2. Occurrence, Distribution and Properties of Alfalfa Mosaic Virus

    Directory of Open Access Journals (Sweden)

    A.D. Zadjaii

    2002-01-01

    Full Text Available Alfalfa Mosaic Virus (AlflMV was recorded on 21 hosts comprising of four field crops, 14 vegetables, one ornamental plant and two new weed species (Heliotropium europaeum and Ammi majus belonging to nine families. The virus was identified and confirmed on the basis of its biological, serological (ELISA and physical properties. The leaves, stem and crown from systemically infected alfalfa plant contained high concentration of the virus. It was nonpersistently transmitted by cotton aphids (Aphis gossypii. The wide host range, including virus reservoirs, seed-borne infection and insect transmission account for high incidence and distribution of AlfMV in the country. The virus isolate had a dilution end point between 1 x 10-3 to l x 10-4, 65-67 °C thermal inactivation point and a few days in-vitro longevity and appears to be similar to the AlfMV-S strain.

  3. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis.

    Science.gov (United States)

    Koh, Shu Hui; Li, Hua; Admiraal, Ryan; Jones, Michael G K; Wylie, Stephen J

    2015-05-04

    A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  5. Sequence analysis reveals mosaic genome of Aichi virus.

    Science.gov (United States)

    Han, Xiaohong; Zhang, Wen; Xue, Yanjun; Shao, Shihe

    2011-08-05

    Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file) shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity.Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood.The genome of Aichi virus contains 8,280 nucleotides and a poly(A) tail. The single large open reading frame (nt 713-8014 according to the strain AB010145) encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD) junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  6. Mechanisms underlying Cowpea mosaic virus systemic infection

    NARCIS (Netherlands)

    Santos Silva, M.

    2004-01-01

    Systemic virus infection of plants involves; intracellularreplication, cell-to-cell movement within the inoculated leaf, and subsequently, long-distance spread to other plant parts via the vasculature (vascular movement).Cell-to-cell movement

  7. First report of Apple necrotic mosaic virus infecting apple trees in Korea

    Science.gov (United States)

    In September 2016, two apple trees (Malus domestica Borkh) cv. Shinano Sweet showing bright cream spot and mosaic patterns on leaves were observed in Pocheon, South Korea. Mosaic symptoms are common on leaves of apple trees infected with Apple mosaic virus (ApMV). Symptomatic leaves were tested by e...

  8. Structural lability of Barley stripe mosaic virus virions.

    Directory of Open Access Journals (Sweden)

    Valentin V Makarov

    Full Text Available Virions of Barley stripe mosaic virus (BSMV were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV, a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.

  9. Complete nucleotide sequence and genome organization of butterbur mosaic virus.

    Science.gov (United States)

    Hashimoto, Masayoshi; Komatsu, Ken; Maejima, Kensaku; Yamaji, Yasuyuki; Okano, Yukari; Shiraishi, Takuya; Takahashi, Shuichiro; Kagiwada, Satoshi; Namba, Shigetou

    2009-01-01

    Butterbur mosaic virus (ButMV), a member of the genus Carlavirus, was isolated from Japanese butterbur. Here we report the complete nucleotide sequence and genome organization of ButMV. The genome of ButMV consists of 8,662 nucleotides in length and is predicted to contain six ORFs. The ButMV replicase and CP genes share 46.4-54.9 and 43.2-62.1% nucleotide and 38.6-46.6 and 31.3-65.0% amino acid sequence identities, respectively, with those of other carlaviruses. Based on phylogenetic analysis, we suggested that ButMV replicase and CP is most closely related to coleus vein necrosis virus and carnation latent virus, respectively. Together, our results demonstrate that ButMV was a distinct species of the genus Carlavirus.

  10. Identifikasi Molekuler Tobacco mosaic virus pada Anggrek di Sleman, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Soesamto Somowiyarjo

    2016-05-01

    Full Text Available Tobamovirus is a group of virus with a wide host range, including orchid plant which considered as an economically important plant. This research aimed to identify Tobamovirus infecting orchids. Virus isolates were collected from orchid nursery in Sleman, Yogyakarta. Plant extract from orchid showing necrotic flex symptom was inoculated to indicator plants Chenopodium amaranticolor. Chlorotic local lesion symptoms occurred within 3 days after inoculation. RNA total from symptomatic C. amaranticolor was extracted by using a commercial kit. cDNA was synthesized using oligo d(T primer. Amplification of cDNA using partial movement protein specific primers TMV-1F and TMV-2R was successfully amplified the amplicon with size ± 422 bp. The nucleotide sequences of this amplicon  showed highest DNA homology (98% with Tobacco mosaic virus Yongren-2 isolat from China.

  11. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar......, suggesting that TMV contains less hydrated alpha-helix. Small differences in other spectral regions reflect differences in some loop, turn and side-chain compositions and conformations among the three viruses. A pattern recognition program based on principal component analysis of ROA spectra indicates...

  12. Characterization of Cucumber Mosaic Virus Originating from Cucurbits in Serbia

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2011-01-01

    Full Text Available Cucumber mosaic virus (CMV is considered one of the most economically importantplant viruses and has a worldwide distribution and a very wide host range including plantsfrom family Cucurbitaceae. In Serbia, on cucurbits CMV was detected in single and mixedinfections with Zucchini yellow mosaic virus (ZYMV and Watermelon mosaic virus (WMV. Viruses,including CMV, are constantly present in cucurbit crops, but their frequency changesby year and locality. Surveys and sample collections were conducted in cucurbit crops inthe period from 2008 to 2009 at 15 localities in Vojvodina province, and sample testing wascarried out using the DAS-ELISA method and commercially available antisera for six economicallymost important cucurbit viruses. In 2008, a total of 51 samples were collected from13 cucurbit crops of oilseed pumpkin Olinka variety, squash, and bottle gourd and CMV wasdetected in a total of 55% of tested samples with symptoms of viral infection. The most commoninfectious type was mixed infection with ZYMV and WMV (35.3%, and then mixedinfection with ZYMV (17.7% and WMV (2%. A total of 599 symptomatic samples of oilseedpumpkin Olinka variety, zucchini squash varieties Beogradska and Tosca, squash, and wintersquash were collected in 15 cucurbits crops in 2009. CMV was present in 4.4% of totalcollected samples, in single infections in 1.3%, and in mixed with WMV or ZYMV in 1.3%, and1.8%. Five CMV isolates were obtained by mechanical inoculations of N. glutinosa and oneof them was selected for further biological characterization. Test plants which were describedto be hosts of CMV expressed symptoms characteristic for those caused by CMV afterinoculations by isolate 115-08. CMV specific primers Au1u/Au2d were used to amplify an850 bp fragment using RT-PCR method. Amplified fragment encodes the entire viral coatprotein (CP gene and partial 5’ and 3’ UTRs of two selected CMV isolates. Amplified fragmentswere sequenced and deposited in the NCBI, where

  13. Genetic variability in coat protein gene of sugarcane mosaic virus in ...

    African Journals Online (AJOL)

    Sugarcane mosaic virus (SCMV) is one of the three causative viruses of mosaic in sugarcane, a sugar crop widely grown under tropical and subtropical conditions worldwide. Although molecular characterization of SCMV strains was reported from many countries, strain occurring in Pakistan, a major sugarcane producer ...

  14. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  15. The physics of tobacco mosaic virus and virus-based devices in biotechnology.

    Science.gov (United States)

    Alonso, J M; Górzny, M Ł; Bittner, A M

    2013-09-01

    Tobacco mosaic virus (TMV) is the best-characterized virus. Compared to most other viruses, its structure and physical and chemical properties are well known. TMV exclusively infects plants and is completely harmless for mammals. This virus is resilient against environmental changes, and it can easily be modified with functional materials. Our review gives a summary about the known physical properties of TMV (structure, thermodynamics, and electromagnetism). We believe that the current progress in nanobiotechnology makes the fabrication of functional TMV-based biotechnology devices simpler than ever. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pepino mosaic virus, a first report of a virus infecting tomato in Syria

    Directory of Open Access Journals (Sweden)

    Ahmad Fakhro

    2010-05-01

    Full Text Available This is the first report of Pepino mosaic virus (PepMV occurring in tomato plants grown in plastic greenhouses in a Mediterranean city in Syria. One tomato fruit from sixty samples tested positive for this virus by DAS-ELISA. Biotest assay, RT-PCR, and sequencing confirmed the presence of PepMV. The highest sequence identity of the Syrian isolate was with the EU-tomato strains of PepMV.

  17. Presence and Distribution of Oilseed Pumpkin Viruses and Molecular Detection of Zucchini Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Ana Vučurović

    2009-01-01

    Full Text Available Over the past decade, intensive spread of virus infections of oilseed pumpkin has resulted in significant economic losses in pumpkin crop production, which is currently expanding in our country. In 2007 and 2008, a survey for the presence and distribution of oilseed pumpkin viruses was carried out in order to identify viruses responsible for epidemics and incidences of very destructive symptoms on cucurbit leaves and fruits. Monitoring andcollecting samples of oil pumpkin, as well as other species such as winter and butternut squash and buffalo and bottle gourd with viral infection symptoms, was conducted in several localities of Vojvodina Province. The collected plant samples were tested by DAS-ELISA using polyclonal antisera specific for the detection of six most economically harmful pumpkin viruses: Cucumber mosaic virus (CMV, Zucchini yellow mosaic virus (ZYMV, Watermelon mosaic virus (WMW, Squash mosaic virus (SqMV, Papaya ringspot virus (PRSV and Tobaccoringspot virus (TRSV that are included in A1 quarantine list of harmful organisms in Serbia.Identification of viruses in the collected samples indicated the presence of three viruses, ZYMV, WMV and CMV, in individual and mixed infections. Frequency of the identified viruses varied depending on locality and year of investigations. In 2007, WMV was the most frequent virus (94.2%, while ZYMV was prevalent (98.04% in 2008. High frequency of ZYMV determined in both years of investigation indicated the need for its rapid and reliable molecular detection. During this investigation, a protocol for ZYMVdetection was developed and optimized using specific primers CPfwd/Cprev and commercial kits for total RNA extraction, as well as for RT-PCR. In RT-PCR reaction using these primers, a DNA fragment of approximately 1100 bp, which included coat protein gene, was amplified in the samples of infected pumkin leaves. Although serological methods are still useful for large-scale testing of a great number of

  18. Lettuce mosaic virus: from pathogen diversity to host interactors.

    Science.gov (United States)

    German-Retana, Sylvie; Walter, Jocelyne; Le Gall, Olivier

    2008-03-01

    Lettuce mosaic virus (LMV) belongs to the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. The virion is filamentous, flexuous with a length of 750 nm and a width of 15 nm. The particles are made of a genomic RNA of 10 080 nucleotides, covalently linked to a viral-encoded protein (the VPg) at the 5' end and with a 3' poly A tail, and encapsidated in a single type of capsid protein. The molecular weight of the capsid protein subunit has been estimated electrophoretically to be 34 kDa and estimated from the amino acid sequence to be 31 kDa. The genome is expressed as a polyprotein of 3255 amino-acid residues, processed by three virus-specific proteinases into ten mature proteins. LMV has a worldwide distribution and a relatively broad host range among several families. Weeds and ornamentals can act as local reservoirs for lettuce crops. In particular, many species within the family Asteraceae are susceptible to LMV, including cultivated and ornamental species such as common (Lactuca sativa), prickly (L. serriola) or wild (L. virosa) lettuce, endive/escarole (Cichorium endiva), safflower (Carthamus tinctorius), starthistle (Centaurea solstitialis), Cape daisy (Osteospermum spp.) and gazania (Gazania rigens). In addition, several species within the families Brassicaceae, Cucurbitaceae, Fabaceae, Solanaceae and Chenopodiaceae are natural or experimental hosts of LMV. Genetic control of resistance to LMV: The only resistance genes currently used to protect lettuce crops worldwide are the recessive genes mo1(1) and mo1(2) corresponding to mutant alleles of the gene encoding the translation initiation factor eIF4E in lettuce. It is believed that at least one intact copy of eIF4E must be present to ensure virus accumulation. LMV is transmitted in a non-persistent manner by a high number of aphid species. Myzus persicae and Macrosiphum euphorbiae are particularly active in disseminating this virus in the fields. LMV is also seedborne in lettuce. The

  19. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  20. Kisaran Inang dan Keragaman Gejala Infeksi Turnip Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Eliza Suryati Rusli

    2007-07-01

    Full Text Available The incidence of mosaic disease on vegetable crops in Indonesia has been reported recently. The disease is caused by TuMV which is considered as a new and important virus on caisin and turnip in Indonesia. Field survey has been conducted to determine disease incidence in vegetable growing areas. Symptom variability and host range of TuMV was further studied through mechanical inoculation to cruciferae and solanaceae plants. Observation during field survey has proved that TuMV has infected caisin and turnip in Java and Bali. The highest intensity of mosaic disease i.e. 63,3% occurs in Tumpangan-Malang, followed by Denpasar Selatan and Bandungan-Semarang with the intensity of 30,5% and 19,0% respectively. TuMV infection causes different types of symptoms, such as: wrinkled leaf, blistered leaf, vein banding, vein clearing, leaf distortion and proliferation. The host range of TuMV involves those plants belong to cruciferae (cabbage, broccoli, caisin, turnip, cauliflower, chinese cabbage, pak coy; solanaceae (N. tabacum, N. benthamiana, N. glutinosa; and chenopodiaceae (C. amaranticolor. Furthermore, N. glutinosa can be used as differential host for TuMV isolates.

  1. Characteristics of Watermelon Mosaic Virus Transmission Occurring in Korean Ginseng

    Directory of Open Access Journals (Sweden)

    Seung-Kook Choi

    2014-09-01

    Full Text Available Korean ginseng (Panax ginseng is the most popular herb for medical purpose in Korea. Recently, viral diseases from Korean ginseng showing various degrees of severe mottling, variegation and mosaic symptoms have caused quantity losses of Korean ginseng in a large number of farms. Watermelon mosaic virus (named WMVgin was identified as a causal agent for the disease of Korean ginseng. Interestingly, WMV-gin failed to infect both Korean ginseng plant and susceptible host species including cucurbitaceous plants by mechanical inoculation. However, WMV-gin could successfully infect Korean ginseng by transmission of two aphid species (Myzus persicae and Aphis gossypii. It is likely that transmission of WMV-gin was done by both the aphid species during feeding behavior of the two aphid species on Korean ginseng, though the aphids dislike feeding in Korea ginseng. Similarly, a strain of WMV (WMV-wm isolated from watermelon was transmitted successfully to Korean ginseng plant by the two aphid species, but not by mechanical inoculations. Transmission assays using M. persicae and A. gossypii clearly showed both WMV-gin and WMV-wm were not transmitted from infected Korean ginseng plant to cucurbit species that are good host species for WMV. These results suggest WMV disease occurring in Korean ginseng plant can be controlled by ecological approaches.

  2. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles

    OpenAIRE

    Ambily Abraham; Usha Natraj; Anjali A. Karande; Ashutosh Gulati; Murthy, Mathur R. N.; Sathyabalan Murugesan; Pavithra Mukunda; Handanahal S. Savithri

    2016-01-01

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the beta H-beta I loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 4...

  3. Association of a cucumber mosaic virus strain with mosaic disease of banana, Musa paradisiaca--an evidence using immuno/nucleic acid probe.

    Science.gov (United States)

    Srivastava, A; Raj, S K; Haq, Q M; Srivastava, K M; Singh, B P; Sane, P V

    1995-12-01

    Virus causing severe chlorosis/mosaic disease of banana was identified as a strain of cucumber mosaic virus (CMV). Association of CMV with the disease was established by Western immunoblot using polyclonal antibodies to CMV-T and slot blot hybridization with nucleic acid probe of CMV-P genome.

  4. A Model for the Structure of Satellite Tobacco Mosaic Virus

    Science.gov (United States)

    Zeng, Yingying; Larson, Steven B.; Heitsch, Christine E.; McPherson, Alexander; Harvey, Stephen C.

    2012-01-01

    Satellite tobacco mosaic virus (STMV) is an icosahedral T=1 single-stranded RNA virus with a genome containing 1058 nucleotides. X-ray crystallography revealed a structure containing 30 double-helical RNA segments, with each helix having nine base pairs and an unpaired nucleotide at the 3’ end of each strand. Based on this structure, Larson and McPherson proposed a model of 30 hairpin-loop elements occupying the edges of the icosahedron and connected by single-stranded regions. More recently, Schroeder et al. have combined the results of chemical probing with a novel helix searching algorithm to propose a specific secondary structure for the STMV genome, compatible with the Larson-McPherson model. Here we report an all-atom model of STMV, using the complete protein and RNA sequences and the Schroeder RNA secondary structure. As far as we know, this is the first all-atom model for the complete structure of any virus (100% of the atoms) using the natural genomic sequence. PMID:22750417

  5. The spreading of Alfalfa mosaic virus in lavandin in Croatia

    Directory of Open Access Journals (Sweden)

    Ivana Stanković

    2014-06-01

    Full Text Available survey was conducted in 2012 and 2013 to detect the presence and distribution of Alfalfa mosaic virus (AMV in lavandin crops growing in continental parts of Croatia. A total of 73 lavandin samples from six crops in different localities were collected and analyzed for the presence of AMV and Cucumber mosaic virus (CMV using commercial double-antibody sandwich (DAS-ELISA kits. AMV was detected serologically in 62 samples collected at three different localities, and none of the samples tested positive for CMV. For further analyses, six selected samples of naturally infected lavandin plants originating from different localities were mechanically transmitted to test plants: Chenopodium quinoa, C. amaranticolor, Nicotiana benthamiana and Ocimum basilicum, confirming the infectious nature of the disease. Molecular detection was performed by amplification of a 751 bp fragment in all tested samples, using the specific primers CP AMV1/CP AMV2 that amplify the part of the coat protein (CP gene and 3’-UTR. The RT-PCR products derived from the isolates 371-13 and 373-13 were sequenced (KJ504107 and KJ504108, respectively and compared with the AMV sequences available in GenBank. CP sequence analysis, conducted using the MEGA5 software, revealed that the isolate 371-13 had the highest nucleotide identity of 99.5% (100% amino acid identity with an isolate from Argentina originating from Medicago sativa (KC881010, while the sequence of isolate 373-13 had the highest identity with an Italian AMV isolate from Lavandula stoechas (FN667967 of 98.6% (99% amino acid identity. Phylogenetic analysis revealed the clustering of selected isolates into four molecular groups and the lavandin AMV isolates from Croatia grouped into two distinct groups, implying a significant variability within the AMV lavandin population.

  6. Infeksi Cucumber mosaic virus dan Chilli veinal mottle virus pada Cabai di Kabupaten Rejang Lebong, Bengkulu

    Directory of Open Access Journals (Sweden)

    Mimi Sutrawati

    2013-04-01

    Full Text Available Mosaic disease caused by Cucumber mosaic virus (CMV and Chilli veinal mottle Virus (ChiVMV has been distributed widely in chilli in Indonesia and considered as important disease. A research was conducted to investigate the spread and incidence of CMV and ChiVMV in Rejang Lebong, Bengkulu and to identify its insect vector. Symptomatic and asymptomatic leaf samples were collected systematically from several chillipepper fields for further detection by DAS-ELISA (Double antibody sandwich-enzyme linked immunosorbant assay using specific antibody for CMV and ChiVMV. The result showed that infection of both CMV and ChiVMV was found with disease incidence reached 20-50%, whereas infection only by ChiVMV or CMV were 50-80% and 20-50%, respectively. One species of aphid, i.e. Aphis gossypii was found from the fields.Key words: Aphis gossypii, CMV, ChiVMV, disease incidence

  7. Endothelial targeting of cowpea mosaic virus (CPMV via surface vimentin.

    Directory of Open Access Journals (Sweden)

    Kristopher J Koudelka

    2009-05-01

    Full Text Available Cowpea mosaic virus (CPMV is a plant comovirus in the picornavirus superfamily, and is used for a wide variety of biomedical and material science applications. Although its replication is restricted to plants, CPMV binds to and enters mammalian cells, including endothelial cells and particularly tumor neovascular endothelium in vivo. This natural capacity has lead to the use of CPMV as a sensor for intravital imaging of vascular development. Binding of CPMV to endothelial cells occurs via interaction with a 54 kD cell-surface protein, but this protein has not previously been identified. Here we identify the CPMV binding protein as a cell-surface form of the intermediate filament vimentin. The CPMV-vimentin interaction was established using proteomic screens and confirmed by direct interaction of CPMV with purified vimentin, as well as inhibition in a vimentin-knockout cell line. Vimentin and CPMV were also co-localized in vascular endothelium of mouse and rat in vivo. Together these studies indicate that surface vimentin mediates binding and may lead to internalization of CPMV in vivo, establishing surface vimentin as an important vascular endothelial ligand for nanoparticle targeting to tumors. These results also establish vimentin as a ligand for picornaviruses in both the plant and animal kingdoms of life. Since bacterial pathogens and several other classes of viruses also bind to surface vimentin, these studies suggest a common role for surface vimentin in pathogen transmission.

  8. Cofolding Organizes Alfalfa Mosaic Virus RNA and Coat Protein for Replication

    OpenAIRE

    Guogas, Laura M.; Filman, David J.; Hogle, James M.; Gehrke, Lee

    2004-01-01

    Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3´ termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines...

  9. WATERMELON MOSAIC VIRUS OF PUMPKIN (Cucurbita maxima FROM SULAWESI: IDENTIFICATION, TRANSMISSION, AND HOST RANGE

    Directory of Open Access Journals (Sweden)

    Wasmo Wakmana

    2016-10-01

    Full Text Available A mosaic disease of pumpkin (Cucurbita maxima was spread widely in Sulawesi. Since the virus had not yet been identified, a study was conducted to identify the disease through mechanical inoculation, aphid vector transmission, host range, and electron microscopic test. Crude sap of infected pumpkin leaf samples was rubbed on the cotyledons of healthy pumpkin seedlings for mechanical inoculation. For insect transmission, five infective aphids were infected per seedling. Seedlings of eleven different species were inoculated mechanically for host range test. Clarified sap was examined under the electron microscope. Seeds of two pumpkin fruits from two different infected plants were planted and observed for disease transmission up to one-month old seedlings. The mosaic disease was transmitted mechanically from crude sap of different leaf samples to healthy pumpkin seedlings showing mosaic symptoms. The virus also infected eight cucurbits, i.e., cucumber (Cucumis sativus, green melon (Cucumis melo, orange/rock melon (C. melo, zucchini (Cucurbita pepo, pumpkin (Cucurbita maxima, water melon (Citrulus vulgaris, Bennicosa hispida, and blewah (Cucurbita sp.. Aphids  transmitted the disease from one to other pumpkin seedlings. The virus was not transmitted by seed. The mosaic disease of pumpkin at Maros, South Sulawesi, was associated with flexious particles of approximately 750 nm length, possibly a potyvirus, such as water melon mosaic virus rather than papaya ringspot virus or zucchini yellow mosaic virus.

  10. Cauliflower Mosaic Virus: A 420 Subunit (T = 7), Multilayer Structure

    Science.gov (United States)

    Cheng, R. H.; Olson, N. H.

    2014-01-01

    The structures of the Cabb-B and CM 1841 strains of cauliflower mosaic virus (CaMV) have been solved to about 3 nm resolution from unstained, frozen-hydrated samples that were examined with low-irradiation cryo-electron microscopy and three-dimensional image reconstruction procedures. CaMV is highly susceptible to distortions. Spherical particles, with a maximum diameter of 53.8 nm, are composed of three concentric layers (I–III) of solvent-excluded density that surround a large, solvent-filled cavity (∼27 nm dia.). The outermost layer (I) contains 72 capsomeric morphological units, with 12 pentavalent pentamers and 60 hexavalent hexamers for a total of 420 subunits (37–42 kDa each) arranged with T = 7 icosahedral symmetry. CaMV is the first example of a T = 7 virus that obeys the rules of stoichiometry proposed for isometric viruses by Caspar and Klug (1962, Cold Spring Harb. Symp. Quant. Biol. 27, 1–24), although the hexameric capsomers exhibit marked departure from the regular sixfold symmetry expected for a structure in which the capsid protein subunits are quasi-equivalently related. The double-stranded DNA genome is distributed in layers II and III along with a portion of the viral protein. The CaMV reconstructions are consistent with the model based on neutron diffraction studies (Kruse et al., 1987, Virology 159, 166–168) and, together, these structural models are discussed in relation to a replication-assembly model (Hull et al., 1987, J. Cell Sci. (Suppl.) 7, 213–229). Remarkable agreement between the reconstructions of CaMV Cabb-B and CM1841 suggests that other strains of CaMV adopt the Same basic Structure. PMID:1733107

  11. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  12. Quantification of African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV-UG) in single and mixed infected Cassava (Manihot esculenta Crantz) using quantitative PCR.

    Science.gov (United States)

    Naseem, Saadia; Winter, Stephan

    2016-01-01

    The quantity of genomic DNA-A and DNA-B of African cassava mosaic virus (ACMV) and East African cassava mosaic virus Uganda (Uganda variant, EACMV-UG) was analysed using quantitative PCR to assess virus concentrations in plants from susceptible and tolerant cultivars. The concentrations of genome components in absolute and relative quantification experiments in single and mixed viral infections were determined. Virus concentration was much higher in symptomatic leaf tissues compared to non-symptomatic leaves and corresponded with the severity of disease symptoms. In general, higher titres were recorded for EACMV-UG Ca055 compared to ACMV DRC6. The quantitative assessment also showed that the distribution of both viruses in the moderately resistant cassava cv. TMS 30572 was not different from the highly susceptible cv. TME 117. Natural mixed infections with both viruses gave severe disease symptoms. Relative quantification of virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to ACMV DNA-A, but a marked reduction of EACMV-UG DNA-B. The higher concentrations of EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections were consistent. Since DNA-B is implicated in virus cell-to-cell spread and systemic movement, the abundance of the EACMV-UG DNA-B may be an important factor driving cassava mosaic disease epidemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characteristics of Cucumber mosaic virus-GTN and Resistance Evaluation of Chilli Pepper Cultivars to Two Cucumber mosaic virus Isolates

    Directory of Open Access Journals (Sweden)

    Gug-Seoun Choi

    2015-06-01

    Full Text Available Cucumber mosaic virus (CMV is one of the most destructive viruses in chilli pepper. An isolate of CMV was obtained from the chilli pepper cv. Chungyang showing top necrosis symptom in 2013 and designated as CMV-GTN. CMV-GTN was compared with the well-characterized isolate, CMV-Ca-P1, by investigating their amino acid sequences of the coat protein (CP and biological reactions in several host plants. The CP of CMV-Ca-P1 composed of 217 amino acids but that of CMV-GTN composed of 218 amino acids by including additional valine in the 57th amino acid position. Amino acid sequence similarity of the CP gene among CMV-GTN and other CMV isolates recorded in the GeneBank database ranged from 96% to 99%. CMV-GTN was selected as a representative isolate to screen the resistance pepper cultivars to CMV because it was highly pathogenic to tomatoes and peppers upon biological assays. The virulence of CMV-GTN was tested on 135 pepper cultivars which has been bred in Korea and compared with that of CMV-Ca-P1. Only the cv. Premium was resistant and three cvs. Hot star, Kaiser, and Good choice were moderately resistant to CMV-GTN, whereas two cvs. Baerotta and Kaiser were resistant to CMV-Ca-P1.

  14. Contact Mechanics of a Small Icosahedral Virus

    Science.gov (United States)

    Zeng, Cheng; Hernando-Pérez, Mercedes; Dragnea, Bogdan; Ma, Xiang; van der Schoot, Paul; Zandi, Roya

    2017-07-01

    A virus binding to a surface causes stress of the virus cage near the contact area. Here, we investigate the potential role of substrate-induced structural perturbation in the mechanical response of virus particles to adsorption. This is particularly relevant to the broad category of viruses stabilized by weak noncovalent interactions. We utilize atomic force microscopy to measure height distributions of the brome mosaic virus upon adsorption from solution on atomically flat substrates and present a continuum model that captures our observations and provides estimates of elastic properties and of the interfacial energy of the virus, without recourse to indentation.

  15. Algerian watermelon mosaic virus (AWMV): a new potyvirus species in the PRSV cluster.

    Science.gov (United States)

    Yakoubi, Soumaya; Lecoq, Hervé; Desbiez, Cécile

    2008-08-01

    A potyvirus was isolated from a naturally infected squash plant in Algeria in 1986. Biological and serological data have revealed that the virus, initially described as H4, is related to other cucurbit-infecting potyviruses, particularly Moroccan watermelon mosaic virus (MWMV) and Papaya ringspot virus (PRSV). To establish unequivocally the taxonomic status of H4, its full-length genome sequence was established. H4 shared identities of 70% and 65% at the amino acid level with MWMV and PRSV, respectively, indicating that H4 is a distinct species of the PRSV cluster. The name Algerian watermelon mosaic virus (AWMV) is proposed for this new potyvirus species.

  16. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern.

    Directory of Open Access Journals (Sweden)

    Clément Bouton

    Full Text Available The plant pararetrovirus Cauliflower mosaic virus (CaMV uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.

  17. Antiviral activity of plant extract from Tanacetum vulgare against Cucumber Mosaic Virus and Potato Virus Y

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-09-01

    Full Text Available Cucumber mosaic virus (CMV and Potato virus Y (PVY have been described among the top five important viruses infecting vegetable species worldwide. They cause severe damages in fruits and cultivated plants. There is currently no available effective pesticide to control these viral diseases. Higher plants contain a wide spectrum of secondary metabolites such as phenolics, flavonoids, quinones, tannins, essential oils, alkaloids, saponins, sterols and others. Extracts prepared from different plants have been reported to have a variety of properties including antifungal, antiviral and antibacterial properties against pathogens. Tanacetum vulgare (Tansy is native to Europe, Asia, and North Africa. It has many horticultural and pharmacological qualities. T. vulgare is principally used in traditional Asian and North African medicine as an antihelminthic, antispasmodic, stimulant to abdominal viscera, tonic, antidiabetic and diuretic, and it is antihypertensive. In our research we established antiviral effect of methanol extract from T. vulgare against CMV and PVY in tomato plants.

  18. Virus-Induced Gene Silencing in Maize with a Foxtail mosaic virus Vector.

    Science.gov (United States)

    Mei, Yu; Whitham, Steven A

    2018-01-01

    Virus-induced gene silencing (VIGS) is a powerful technology for rapidly and transiently knocking down the expression of plant genes to study their functions. A VIGS vector for maize derived from Foxtail mosaic virus (FoMV), a positive-sense single-stranded RNA virus, was recently developed. A cloning site created near the 3' end of the FoMV genome enables insertion of 200-400 nucleotide fragments of maize genes targeted for silencing. The recombinant FoMV clones are inoculated into leaves of maize seedlings by biolistic particle delivery, and silencing is typically observed within 2 weeks after inoculation. This chapter provides a protocol for constructing FoMV VIGS clones and inoculating them into maize seedlings.

  19. Radial density distribution and symmetry of a Potexvirus, narcissus mosaic virus.

    Science.gov (United States)

    Kendall, Amy; Bian, Wen; Junn, Justin; McCullough, Ian; Gore, David; Stubbs, Gerald

    2007-01-20

    Narcissus mosaic virus is a Potexvirus, a member of the Flexiviridae family of filamentous plant viruses. Fiber diffraction patterns from oriented sols of narcissus mosaic virus have been used to determine the symmetry and structural parameters of the viral helix. The virions have a radius of 55+/-5 A. The viral helix has a pitch of 34.45+/-0.5 A, with 7.8 subunits per turn of the helix. We conclude that all members of the Potexvirus genus have close to 8 subunits per helical turn.

  20. Structure, morphogenesis and function of tubular structures induced by cowpea mosaic virus

    NARCIS (Netherlands)

    Kasteel, D.T.J.

    1999-01-01

    During systemic plant infection, viruses move from the initially infected cells through plasmodesmata to neighbouring cells. Different mechanisms have been proposed for this cell-to-cell movement. Cowpea mosaic virus (CPMV) employs one of the major movement mechanisms, i.e. tubule-guided

  1. Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of zucchini yellow mosaic virus

    Science.gov (United States)

    H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...

  2. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    Science.gov (United States)

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  3. Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco

    Directory of Open Access Journals (Sweden)

    Teppei Sugawara

    2016-11-01

    Full Text Available Abstract Background The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus. Results Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV, whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene. Conclusion We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.

  4. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    Science.gov (United States)

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  5. Red clover necrotic mosaic virus: Biophysics and Biotechnology

    Science.gov (United States)

    Lockney, Dustin M.

    Red clover necrotic mosaic virus (RCNMV) is a highly robust (Tm=60 °C), 36 nm icosahedral plant virus. The capsid of RCNMV is assembled from 180 chemically equivalent coat proteins (CPs). The CPs arrange in a T=3 symmetry, in 1 of 3 conformations forming the asymmetric subunit (ASU). There are two Ca(II) binding sites per CP; the removal of divalent cations causes the CP subunits of the ASU to rotate away from each other forming a ˜13 A channel. These channels lead to the highly organized bipartite genome of RCNMV and can be closed by adding back Ca(II). Titrimetric analysis and tryptophan fluorescence was used to determine the affinity of RCNMV for Ca(II) to be ˜Kd < 300 nM. It has been shown that doxorubicin (Dox) can be infused into the capsid at a mole ratio of ˜1000:1, Dox-to-virus, and unlike other nanoparticles, there is no detectable leakage. The high loading of Dox is most likely due to intercalation into the genome and significant intercalation or exposure to denaturants was observed to cause loss of capsid stability. To better understand the limitations of cargo loading, Dox and other intercalating molecules (rhodamine 800, ethidium bromide, and propidium iodide) were assayed to determine optimum infusion conditions. Dox was observed to have a propensity to aggregate. In order to manage the Dox aggregation, the infusion buffer was changed from 50 mM Tris-HCl/50 mM NaOAc/50 mM EDTA or 200 mM EDTA at pH 8.0 to 5 mM HEPES/5 mM Na4EDTA/10 mM NaCl pH 7.8. The Dox:RCNMV infusion mole ratio was also lowered from 5000:1 to 500:1 and the incubation temperature was changed from 4 °C to 22 °C for <12 hours, opposed to 24 hours. To impart targeting functionality to RCNMV, biomimetic peptides were conjugated to either the surface capsid lysines or cysteines using standard bioconjugation methods. For all of the biomimetic peptides screened, sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) was used to orthogonally attach the

  6. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  7. Characterization of an Indian isolate of cucumber mosaic virus infecting Egyptian henbane (Hyoscyamus muticus L.).

    Science.gov (United States)

    Samad, A; Raj, S K; Srivastava, A; Chandra, G; Ajayakumar, P V; Zaim, M; Singh, B P

    2000-01-01

    A cucumber mosaic virus isolate was found to be associated with mottle crinkle and severe mosaic disease of Egyptian henbane (Hyoscyamus muticus L.). The virus has been characterized as an Indian isolate of cucumber mosaic virus (CMV) based on non-persistent transmission by aphid, presence of 28-nm isometric particles, capsid protein of 26 K and single-stranded tripartite RNA genome with a subgenomic RNA (RNA 4). There was no evidence of satellite RNA genome. The isolate showed a strong serological relationship with S and A strains of CMV (CMV-S and CMV-A) in double diffusion test. A band of the 26 K capsid protein was also detected by Western blot analysis using antibodies specific to CMV-S.

  8. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chen

    2017-05-01

    Full Text Available Japanese encephalitis virus (JEV is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP strategy based on bamboo mosaic virus (BaMV for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.

  9. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector.

    Science.gov (United States)

    Chen, Tsung-Hsien; Hu, Chung-Chi; Liao, Jia-Teh; Lee, Yi-Ling; Huang, Ying-Wen; Lin, Na-Sheng; Lin, Yi-Ling; Hsu, Yau-Heiu

    2017-01-01

    Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.

  10. Sympton development, X-body formation and 126-kDa-protein in plants infected with tobacco mosaic virus

    NARCIS (Netherlands)

    Wijdeveld, M.M.G.

    1990-01-01

    Upon infection with tobacco mosaic virus (TMV) sensitive tobacco varieties develop systemic mosaic symptoms in the developing leaves. These symptoms are the visible result of the interaction of the virus with its host and the nature and the severity of the symptoms are determined

  11. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  12. Interactions between the Structural Domains of the RNA Replication Proteins of Plant-Infecting RNA Viruses

    OpenAIRE

    O’Reilly, Erin K.; Wang, Zhaohui; French, Roy; Kao, C. Cheng

    1998-01-01

    Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays ...

  13. Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with Cucumber mosaic virus.

    Science.gov (United States)

    Mochizuki, Tomofumi; Ogata, Yoshiyuki; Hirata, Yuki; Ohki, Satoshi T

    2014-04-01

    Cucumber mosaic virus (CMV) causes mosaic disease in inoculated tobacco plants. Coat protein (CP) is one of the major virulence determinants of CMV, and an amino acid substitution at residue 129 in CP alters the severity of chlorosis, such as pale green chlorosis and white chlorosis, in symptomatic tissues of mosaic leaves of infected tobacco. In this study, we compared the transcriptomes of chlorotic tissues infected with the wild-type pepo strain of CMV and two strains carrying CP mutants with diverse chlorosis severity. Differential gene expression analysis showed that CMV inoculation appeared to have similar effects on the transcriptional expression profiles of the symptomatic chlorotic tissues, and only the magnitude of expression differed among the different CMVs. Gene ontology analysis with biological process and cellular component terms revealed that many nuclear genes related to abiotic stress responses, including responses to cadmium, heat, cold and salt, were up-regulated, whereas chloroplast- and photosynthesis-related genes (CPRGs) were down-regulated, in the chlorotic tissues. Interestingly, the level of CPRG down-regulation was correlated with the severity of chlorosis. These results indicate that CP mutation governs the repression level and mRNA accumulation of CPRGs, which are closely associated with the induction of chlorosis. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  14. Deinbollia mosaic virus: a novel begomovirus infecting the sapindaceous weed Deinbollia borbonica in Kenya and Tanzania.

    Science.gov (United States)

    Kyallo, Martina; Sseruwagi, Peter; Skilton, Robert A; Ochwo-Ssemakula, Mildred; Wasswa, Peter; Ndunguru, Joseph

    2017-05-01

    Four isolates of a bipartite begomovirus from naturally infected Deinbollia borbonica plants exhibiting yellow mosaic symptoms in Kenya and Tanzania were molecularly characterised. The DNA-A was most closely related to that of tomato leaf curl Mayotte virus (AM701764; 82%), while the DNA-B shared the highest nucleotide sequence identity with that of East African cassava mosaic virus (AJ704953) at 65%. Based on the current ICTV species demarcation criterion for the genus Begomovirus (≥91% sequence identity for the complete DNA-A), we report the full-length genome sequence of this novel bipartite begomovirus. The results reveal additional diversity and reservoir hosts of begomoviruses in East Africa.

  15. Reaction of Lycopersicon species and varieties to Potato virus Y (PVY(NTN)) and Tomato mosaic virus (ToMV).

    Science.gov (United States)

    Takács, A P; Kazinczi, G; Horváth, J; Gáborjányi, R

    2003-01-01

    Virus susceptibility of 33 Lycopersicon species and varieties to NTN strain of Potato virus Y (PVY(NTN)) and Tomato mosaic virus (ToMV) were studied. Inoculated plants were tested for infection symptomatologically, serologically and by back inoculation as well. New incompatible and compatible host-virus relations have been determined. All tested plants were susceptible to ToMV. However, Lycopersicon esculentum Mill. convar. parviboccatum Lehm. var. cerasiforme (Dun.) Alef. s.l., L. peruvianum (L.) Mill. and L. hirsutum Humb. et Bonpl. were extreme resistant (immune) to PVY(NTN). Other species were susceptible. Resistant lycopersicon genotypes could be used as sources for virus resistance.

  16. East African cassava mosaic Zanzibar virus - a recombinant begomovirus species with a mild phenotype.

    Science.gov (United States)

    Maruthi, M N; Seal, S; Colvin, J; Briddon, R W; Bull, S E

    2004-12-01

    Cassava plants exhibiting mild symptoms of cassava mosaic disease (CMD) were collected from Unguja island, Zanzibar. Cuttings grown from these plants in the glasshouse produced similar symptoms, which were milder than those caused by other known cassava mosaic geminiviruses (CMGs). The whitefly vector, Bemisia tabaci (Gennadius), transmitted the putative virus to 27.7% (n = 18) of target plants. Total DNA extracted from diseased leaves did not yield diagnostic PCR-bands using virus-specific primers to known CMGs. Degenerate primers, however, produced a diagnostic band indicating the presence of a begomovirus. Full-length DNA-A (2785 nucleotides) and DNA-B (2763 nucleotides) components were subsequently PCR-amplified, cloned and sequenced. Phylogenetic analyses of DNA-A and -B sequences showed that they were most similar to strains of East African cassava mosaic virus from Tanzania and Uganda at 83% and 86% nucleotide identities, respectively. The number and arrangement of open reading frames were similar to those of bipartite begomoviruses from the Old World. DNA-A was predicted to have recombined in the intergenic region (IR), AC1 and AC4 genes, and DNA-B in the IR. A maximum nucleotide identity of 83% in the DNA-A component with other sequenced begomoviruses, together with different biological properties allows this virus to be recognised as belonging to a new species named East African cassava mosaic Zanzibar virus (EACMZV).

  17. Association of tomato leaf curl New Delhi virus DNA-B with bhendi yellow vein mosaic virus in okra showing yellow vein mosaic disease symptoms.

    Science.gov (United States)

    Venkataravanappa, V; Lakshminarayana Reddy, C N; Jalali, S; Krishna Reddy, M

    2015-06-01

    Okra samples showing yellow vein mosaic, vein twisting and bushy appearance were collected from different locations of India during the surveys conducted between years 2005-2009. The dot blot and PCR detection revealed that 75.14% of the samples were associated with monopartite begomovirus and remaining samples with bipartite virus. Whitefly transmission was established for three samples representing widely separated geographical locations which are negative to betasatellites and associated with DNA-B. Genome components of these three representative isolates were cloned and sequenced. The analysis of DNA-A-like sequence revealed that three begomovirus isolates shared more than 93% nucleotide sequence identity with bhendi yellow vein mosaic virus from India (BYVMV), a monopartite begomovirus species that was reported previously as causative agent of bhendi yellow mosaic disease in association of bhendi yellow vein mosaic betasatellite. Further, the DNA-B-like sequences associated with the three virus isolates shared no more than 90% sequence identity with tomato leaf curl New Delhi virus (ToLCNDV). Analyses of putative iteron-binding sequence required for trans-replication suggests that begomovirus sequences shared compatible rep-binding iterons with DNA-B of ToLCNDV. Our data suggest that the monopartite begomovirus associated with okra yellow vein disease has captured DNA-B of ToLCNDV to infect okra. Widespread distribution of the complex shows the increasing trend of the capturing of DNA-B of ToLCNDV by monopartite begomoviruses in the Indian subcontinent. The recombination analysis showed that the DNA-A might have been derived from the inter-specific recombination of begomoviruses, while DNA-B was derived from the ToLCNDV infecting different hosts.

  18. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2014-06-01

    Full Text Available A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. ‘Sorok’, ‘Sodam’ and ‘Somyeong’. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1–100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea.

  19. Contact transmission of Tobacco mosaic virus: a quantitative analysis of parameters relevant for virus evolution.

    Science.gov (United States)

    Sacristán, Soledad; Díaz, Maira; Fraile, Aurora; García-Arenal, Fernando

    2011-05-01

    Transmission between hosts is required for the maintenance of parasites in the host population and determines their ultimate evolutionary success. The transmission ability of parasites conditions their evolution in two ways: on one side, it affects the genetic structure of founded populations in new hosts. On the other side, parasite traits that increase transmission efficiency will be selected for. Therefore, knowledge of the factors and parameters that determine transmission efficiency is critical to predict the evolution of parasites. For plant viruses, little is known about the parameters of contact transmission, a major way of transmission of important virus genera and species. Here, we analyze the factors determining the efficiency of contact transmission of Tobacco mosaic virus (TMV) that may affect virus evolution. As it has been reported for other modes of transmission, the rate of TMV transmission by contact depended on the contact opportunities between an infected and a noninfected host. However, TMV contact transmission differed from other modes of transmission, in that a positive correlation between the virus titer in the source leaf and the rate of transmission was not found within the range of our experimental conditions. Other factors associated with the nature of the source leaf, such as leaf age and the way in which it was infected, had an effect on the rate of transmission. Importantly, contact transmission resulted in severe bottlenecks, which did not depend on the host susceptibility to infection. Interestingly, the effective number of founders initiating the infection of a new host was highly similar to that reported for aphid-transmitted plant viruses, suggesting that this trait has evolved to an optimum value.

  20. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Science.gov (United States)

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  1. Protocol for cost effective detection of cassava mosaic virus ...

    African Journals Online (AJOL)

    Early detection of cassava mosaic disease (CMD) is an extremely important step in containing the spread of the disease in Africa. Many nucleic acid based detection tools have been developed for CMD diagnosis but although these methods are specific and sensitive for their target DNA, they are not fast, cost effective, can't ...

  2. Identification of viruses infecting cucurbits and determination of genetic diversity of Cucumber mosaic virus in Lorestan province, Iran

    Directory of Open Access Journals (Sweden)

    Hasanvand Vahid

    2017-06-01

    Full Text Available Various viral pathogens infect Cucurbitaceae and cause economic losses. The aim of the present study was to detect plant viral pathogens including Cucumber mosaic virus (CMV, Cucumber green mottle mosaic virus (CGMMV, Zucchini yellow mosaic virus (ZYMV, Cucurbit yellow stunting disorder virus (CYSDV and Cucurbit chlorotic yellows virus (CCYV in Lorestan province, in western Iran, and also to determine CMV genetic diversity in Iranian populations. A total of 569 symptomatic leaf samples were collected in 2013 and 2014 from cucurbits growing regions in Lorestan province. The collected samples were assessed for viral diseases by ELISA. The results showed virus incidences in most regions. Then, the infection of 40 samples to CMV was confirmed by RT-PCR. Moreover, to distinguish between the two groups (I and II of CMV, PCR products were digested by two restriction enzymes XhoI and EcoRI. Results of the digestion showed that the isolates of Lorestan belonged to group I. The CMV-coat protein gene of eight isolates from different regions and hosts was sequenced and phylogenetic analysis was performed. Subsequent analyses showed even more genetic variation among Lorestan isolates. The phylogenetic tree revealed that Lorestan province isolates belonged to two IA and IB subgroups and could be classified together with East Azerbaijan province isolates. The results of the present study indicate a wide distribution of CMV, ZYMV, CGMMV, CYSDV and CCYV viruses in cucurbits fields of Lorestan province and for the first time subgroup IB of CMV was reported on melon from Iran.

  3. Intracellular localization and movement phenotypes of alfalfa mosaic virus movement protein mutants

    NARCIS (Netherlands)

    Huang, M.; Jongejan, L.; Zheng, H.; Zhang, L.; Bol, J. F.

    2001-01-01

    Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In

  4. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  5. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Deletions were made in an infectious cDNA clone of alfalfa mosaic virus (AIMV) RNA3 and the replication of RNA transcripts of these cDNAs was studied in tobacco plants transformed with AIMV replicase genes (P12 plants). Previously, we found that deletions in the P3 gene did not affect accumulation

  6. Understanding the mechanism of resistance breaking on tomato by Tomato mottle mosaic virus

    Science.gov (United States)

    Tomato mottle mosaic virus (ToMMV) has broadened it’s distribution around the world. In our previous work, we observed a partial resistance breaking by ToMMV on tomato. To understand the mechanism of this resistance breaking, we carried out comparative analysis through Sanger sequencing, genotyping ...

  7. Molecular characterization of genetic variation to pea enation mosaic virus resistance in lentil (Lenz culinaris Medik.)

    Science.gov (United States)

    Identification of genetically diverse lentil germplasm with resistance to pea enation mosaic virus (PEMV) through combined of molecular marker analysis and phenotyping could prove useful in breeding programs. A total of 44 lentil (Lens culinaris Medik.) accessions, were screened for resistance to PE...

  8. Epidemiology of ryegrass mosaic virus in South Africa. | S.N. ...

    African Journals Online (AJOL)

    The distribution and seasonal occurrence of ryegrass mosaic virus in South Africa was determined. Italian ryegrass plants were collected from eight different research stations twice during the growing season in 1990 and 1991. Samples were tested for the presence of RMV by means of symptomology, electron microscopy, ...

  9. Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus

    NARCIS (Netherlands)

    Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin Ichi

    2017-01-01

    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and

  10. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. Here, we report the transcriptional respo...

  11. Two viral proteins involved in the proteolytic processing of the cowpea mosaic virus polyproteins.

    NARCIS (Netherlands)

    Vos, P.; Verver, J.; Jaegle, M.; Wellink, J.; Kammen, van A.; Goldbach, R.

    1988-01-01

    A series of specific deletion mutants derived from a full-length cDNA clone of cowpea mosaic virus (CPMV) B RNA was constructed with the aim to study the role of viral proteins in the proteolytic processing of the primary translation products. For the same purpose cDNA clones were constructed having

  12. USVL-380, A zucchini yellow mosaic virus resistant watermelon breeding line

    Science.gov (United States)

    We report the development of a novel watermelon line ‘USVL-380’ [Citrullus lanatus (Thunb.) Matsum. & Nakai] resistant to the zucchini yellow mosaic virus-Florida strain (ZYMV-FL). This breeding line is homozygous for the recessive eukaryotic elongation factor eIF4E allele associated with ZYMV-resis...

  13. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped.

  14. Johnsongrass mosaic virus contributes to maize lethal necrosis in East Africa

    Science.gov (United States)

    Maize lethal necrosis (MLN), a severe virus disease of maize, has emerged in East Africa in recent years with devastating effects on production and food security where maize is a staple subsistence crop. In extensive surveys of MLN-symptomatic plants in East Africa, sequences of Johnsongrass mosaic ...

  15. Triticum Mosaic Virus: A Distinct Member of the Family Potyviridae with an Unusually Long Leader Sequence

    Science.gov (United States)

    The complete genome sequence of Triticum mosaic virus (TriMV), a member in the family Potyviridae, has been determined to be 10,266 nucleotides excluding the 3’-polyadenylated tail. The genome encodes a large polyprotein of 3,112 amino acids with the ‘hall-mark proteins’ of potyviruses including a s...

  16. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication

    NARCIS (Netherlands)

    Peters, S A; Verver, J; Nollen, E A; van Lent, J W; Wellink, J; van Kammen, A

    1994-01-01

    We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions

  17. High similarity between isolates of pepino mosaic virus suggests a common origin

    NARCIS (Netherlands)

    Verhoeven, J.Th.J.; Vlugt, van der R.A.A.; Roenhorst, J.W.

    2003-01-01

    The almost simultaneous outbreaks of Pepino mosaic virus in tomato crops in different European and non-European countries, was reason to have a closer look at the relationship between these isolates and the original isolate from pepino. Fifteen isolates from tomato from different locations and the

  18. Occurence of Cucumber Mosaic Virus in Ornamental Plants and Perspectives of Transgenic Control

    NARCIS (Netherlands)

    Chen, Y.K.

    2003-01-01

    This thesis described the characterization of a range of ornamental-infecting Cucumber mosaic virus strains and the development of novel transgene constructs to improve the efficiency of obtaining resistant transformants which is essential for most ornamental plants that are

  19. Studies on poplar mosaic virus and its relation to the host

    NARCIS (Netherlands)

    Berg, T.M.

    1964-01-01

    An extended survey of poplar species and cultivars yielded data on susceptibility to poplar mosaic virus (PMV). Three symptom types were distinguished: two different leaf variegations and a necrosis on veins and leaf-stalks. This venal and petiolar necrosis and a diffuse leaf spotting caused

  20. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.

    Previously, an RNA-dependent RNA polymerase produced upon infection of

  1. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes

    NARCIS (Netherlands)

    Taschner, P. E.; van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    RNAs 1 and 2 of alfalfa mosaic virus (AIMV) encode proteins P1 and P2, respectively, both of which have a putative role in viral RNA replication. Tobacco plants were transformed with DNA copies of RNA1 (P1-plants), RNA2 (P2-plants) or a combination of these two cDNAs (P12-plants). All transgenic

  2. Chromatin Structure of Wheat Breeding Lines Resistant to Wheat Streak Mosaic Virus.

    Science.gov (United States)

    Wheat Streak Mosaic Virus (WSMV) is an important disease limiting wheat production, however no WSMV resistance effective above 18°C is present within the primary genetic pool of wheat (Triticum aestivum L.). In contrast, the wild relative Thinopyrum intermedium (2n=6x=42) shows good resistance to WS...

  3. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a

  4. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles.

    Science.gov (United States)

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A; Gulati, Ashutosh; Murthy, Mathur R N; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S

    2016-02-24

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.

  5. First report of Potato virus V and Peru tomato mosaic virus on tamarillo (Solanum betaceum) orchards of Ecuador

    Science.gov (United States)

    In Ecuador, tamarillo (Solanum betaceum) represents an important cash crop for hundreds of small farmers. In 2013, leaves from tamarillo plants showing severe virus-like symptoms (mosaic, mottling and leaf deformation) were collected from old orchards in Pichincha and Tungurahua. Double-stranded RN...

  6. A bench-scale, cost effective and simple method to elicit Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus attack using ozone-mediated inactivated Cucumber mosaic virus inoculum.

    Science.gov (United States)

    Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K

    2007-12-01

    Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.

  7. Complete genome sequence of keunjorong mosaic virus, a potyvirus from Cynanchum wilfordii.

    Science.gov (United States)

    Nam, Moon; Lee, Joo-Hee; Choi, Hong Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon

    2013-08-01

    We have determined the complete genome sequence of keunjorong mosaic virus (KjMV). The KjMV genome is composed of 9,611 nucleotides, excluding the 3'-terminal poly(A) tail. It contains two open reading frames (ORFs), with the large one encoding a polyprotein of 3,070 amino acids and the small overlapping ORF encoding a PIPO protein of 81 amino acids. The KjMV genome shared the highest nucleotide sequence identity (57.5  %) with pepper mottle virus and freesia mosaic virus, two members of the genus Potyvirus. Based on the phylogenetic relatedness to known potyviruses, KjMV appears to be a member of a new species in the genus Potyvirus.

  8. Immunocapture RT-PCR detection of Bean common mosaic virus and strain blackeye cowpea mosaic in common bean and black gram in India

    DEFF Research Database (Denmark)

    Udayashankar, A.C.; Nayaka, S. Chandra; Niranjana, S.R.

    2012-01-01

    The strains of Bean common mosaic virus (BCMV) and blackeye cowpea mosaic (BICM), genus Potyvirus, were detected from 25 common bean and 14 black gram seeds among 142 seed samples collected from different legume-growing regions of India. The samples were subjected to a growing-on test, an indicator...... plant test, an electron microscopic observations, an enzyme linked immunosorbent assay and an immunocapture RT-PCR. The incidence of the two tested viruses in common bean and black gram seed samples was 1–6% and 0.5–3.5%, respectively in growing-on test evaluations. Electron microscopic observations...

  9. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  10. IDENTIFIKASI MOLEKULER BROAD BEAN WILT VIRUS 2 (BBWV2 DAN CYMBIDIUM MOSAIC VIRUS (CYMMV ASAL TANAMAN NILAM (POGOSTEMON CABLIN BENTH.

    Directory of Open Access Journals (Sweden)

    Miftakhurohmah .

    2016-03-01

    Full Text Available Molecular identification Broad Bean Wilt Virus 2 (BBWV2 and Cymbidium Mosaic Virus (CymMV from patchouli plant (Pogostemon cablin Benth.. Several viruses have been reported to be associated with mosaic disease on patchouli plant in Indonesia. This study aims to identify the two viruses in patchouli cultivation in West Java by studying the molecular characterization. Mosaic symptomatic leaf samples taken from patchouli cultivation in Manoko (Bandung Barat District, West Java Province. RNA extraction was performed using Xprep Plant RNA mini kit. RNA amplification with RT-PCR technique using primers for the cp gene region of BBWV2 and CymMV. The PCR product was sent to PT. Science Genetics Indonesia to do sequencing, then analyzed nucleotide sequences. Results of RT-PCR were performed successfully obtained DNA bands with size accordance with the predictions of the primer design for BBWV2 and CymMV cp region. Further, based on nucleotide and amino acid sequence analyses, the two virus isolates were confirmed as BBWV2 and CymMV respectively. Phylogenetic analyses revealed that BBWV2 Manoko clustered with BBWV2 from Singapore (original host of Brazilian red-cloak, China (pepper and South Korea (chili. Whereas, CymMV Manoko become one cluster with CymMV from India (Phaius sp., Indonesia (Dendrobium, China (vanilla, Thailand (Oncidium, Hawai (Dendrobium and South Korea Cymbidium.

  11. In planta cloning of geminiviral DNA: the true Sida micrantha mosaic virus.

    Science.gov (United States)

    Jeske, Holger; Gotthardt, Diether; Kober, Sigrid

    2010-02-01

    The circular single-stranded DNAs of geminiviruses are multiplied efficiently and preferentially by rolling circle amplification (RCA), and can be diagnosed readily by restriction fragment length polymorphism (RFLP) and direct sequencing of the RCA product. Two strategies are described for cloning geminiviruses from plants harboring mixed infections by using RCA and RFLP with plant-derived nucleic acids without the need for bacterial amplification. By combining both these approaches, the true Sida micrantha mosaic virus was identified. The advantages of maintaining the quasispecies nature of a virus during in planta cloning is discussed with respect to reliable virus identification and resistance breeding. 2009 Elsevier B.V. All rights reserved.

  12. Caracterização de um isolado de Bidens mosaic virus proveniente de alface Characterization of an isolate of Bidens mosaic virus (BiMV from lettuce

    Directory of Open Access Journals (Sweden)

    Gerson Shinia Suzuki

    2009-09-01

    Full Text Available Em 2004, plantas de alface com sintomas de mosaico coletadas em São Manuel - SP foram analisadas por microscopia eletrônica, constatando-se presença de partículas típicas de potyvirus com 730 nm de comprimento. Após purificação biológica por monolesionais em Chenopodium quinoa, o extrato vegetal foi inoculado em uma série de plantas diferenciadoras, verificando-se que o isolado testado foi capaz de infectar C. quinoa e C. amaranticolor induzindo lesões locais seguidas de mosaico sistêmico. Ervilha (Pisum sativum mostrou-se assintomática, e em diferentes cultivares de alface como Trocadero, White Boston, Regina, Verônica, Lucy Brown, Rafaela, Tainá, Vera e Laurel foi observado o mosaico. A cultivar Gizele foi tolerante ao vírus. O sequenciamento da região codificadora da proteína capsidial revelou maior identidade de aminoácidos (97% deste isolado com o Bidens mosaic virus - BiMV (nº de acesso AY960151. Diferentemente dos isolados de BiMV já descritos, este proveniente de alface não foi capaz de infectar Bidens pilosa, Helianthus annuus, Nicotiana tabacum TNN e N. glutinosa. A ocorrência natural do BiMV em alface, causando sintomas semelhantes aos do LMV e a suscetibilidade de várias das cultivares hoje plantadas, servem como um alerta para a correta diagnose do vírus a campo.In 2004 lettuce plants showing mosaic symptoms collected in São Manuel, SP were analyzed by electron microscopy, and particles with 730 nm typically from potyvirus were observed. After biological purification by monolesionals on Chenopodium quinoa, this isolate was sap inoculated on a host range assay. The virus infected C. quinoa and C. amaranticolor, causing local lesions and systemic mosaic. The virus did not induce symptoms on pea (Pisum sativum, but induced mosaic on the leaves of some lettuce cultivars such as Trocadero, White Boston, Regina, Verônica, Lucy Brown, Rafaela, Tainá, Vera and Laurel. The lettuce cultivar Gizele was tolerant to

  13. Novel Pathogenic Strain of Watermelon mosaic virus Occurred on Insam (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Won-Kwon Jung

    2013-12-01

    Full Text Available A disease, supposedly caused by a virus, was observed from Insam (Panax ginseng fields of Punggi in year 2006. It has long believed to be a physiological disorder. However, the incidence of the disease has increased every year. When several samples were observed under electron microscope, filamentous virus-like particles were observed. The nucleotide sequences of the virus were analyzed by RT-PCR with specific primer sets derived from the results of DNA chip. The results indicated that the disease was caused by Watermelon mosaic virus (WMV. It revealed that the result of the biological assay by the virus was different from that of WMV previously found in other crops. Therefore, this is the first report that WMV causes the disease in P. ginseng and the virus is named to be WMV-Insam.

  14. Expression and silencing of cowpea mosaic virus transgenes

    NARCIS (Netherlands)

    Sijen, T.

    1997-01-01

    Plant viruses are interesting pathogens because they can not exist without their hosts and exploit the plant machinery for their multiplication. Fundamental knowledge on viral processes is of great importance to understand, prevent and control virus infections which can cause drastic losses

  15. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Rottier, P.

    1980-01-01

    In contrast to the situation concerning bacterial and, to a lesser extent, animal RNA viruses, little is known about the biochemical processes occurring in plant cells due to plant RNA virus infection. Such processes are difficult to study using intact plants or leaves. Great effort has

  16. A cDNA clone of tomato mosaic virus is infectious in plants.

    Science.gov (United States)

    Weber, H; Haeckel, P; Pfitzner, A J

    1992-01-01

    A cDNA clone of tomato mosaic virus (ToMV) genomic RNA was fused to the cauliflower mosaic virus 35S RNA promoter and the nopaline synthase gene polyadenylation signal. The transcriptional initiation site of the 35S RNA promoter was altered by in vitro mutagenesis so that the resulting transcripts start at the first nucleotide of the ToMV sequence. In addition, 12 nucleotides were inserted in the 5' untranslated region of the ToMV genome. This plasmid, pSLN, was used to inoculate several host plants of ToMV. Among five plant species tested, only Chenopodium quinoa accumulated large amounts of viral particles. The infectivities and systemic movements of the resulting viruses were the same as those of virus preparations obtained from a ToMV infection of C. quinoa. Primer extension analyses revealed that the 5' end of the viral genomic RNA was identical to those of RNAs isolated from virus progeny of an infection with T7 transcripts analogous to pSLN. Moreover, the insertion in the 5' untranslated region of the viral genome was stably maintained through several systemic passages of the virus. Thus, inoculation of plants with a plasmid containing a cDNA clone of an RNA virus under the control of a eukaryotic promoter seems to be a convenient alternative to the generation of in vitro transcripts and should facilitate the analysis of viral mutants generated at the DNA level. Images PMID:1583735

  17. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.

    Science.gov (United States)

    Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong

    2016-04-22

    Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.

  18. Involvement of ethylene in lesion development and systemic acquired resistance in tobacco during the hypersensitive reaction to tobacco mosaic virus

    NARCIS (Netherlands)

    Knoester, M.; Linthorst, H.J.M.; Bol, J.F.; Loon, L.C. van

    2001-01-01

    Different approaches were taken to investigate the significance of ethylene in lesion development and systemic acquired resistance (SAR) in tobacco (Nicotiana tabacum) reacting hypersensitively to tobacco mosaic virus (TMV). Gaseous ethylene, the ethylene precursor 1-aminocyclopropane-1-carboxylic

  19. Evidence for a Complex Mosaic Genome Pattern in a Full-length Hepatitis C Virus Sequence

    Directory of Open Access Journals (Sweden)

    R.S. Ross

    2008-01-01

    Full Text Available The genome of the hepatitis C virus (HCV exhibits a high genetic variability. This remarkable heterogeneity is mainly attributed to the gradual accumulation of mutational changes, whereas the contribution of recombination events to the evolution of HCV remains controversial so far. While performing phylogenetic analyses including a large number of sequences deposited in the GenBank, we encountered a full-length HCV sequence (AY651061 that showed evidence for inter-subtype recombination and was, therefore, subjected to a detailed analysis of its molecular structure. The obtained results indicated that AY651061 does not represent a “simple” HCV 1c isolate, but a complex 1a/1c mosaic genome, showing five putative breakpoints in the core to NS3 regions. To our knowledge, this is the first report on a mosaic HCV full- length sequence with multiple breakpoints. The molecular structure of AY651061 is reminiscent of complex homologous recombinant variants occurring among other members of the flaviviridae family, e.g. GB virus C, dengue virus, and Japanese encephalitis virus. Our finding of a mosaic HCV sequence may have important implications for many fields of current HCV research which merit careful consideration.

  20. Resistance Evaluation of Radish (Raphanus sativus L. Inbred Lines against Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Yoon

    2017-03-01

    Full Text Available Leaves of twenties radish (Raphanus sativus L. inbred lines were mechanically inoculated with Turnip mosaic virus (TuMV strain HY to evaluate TuMV resistance of the radish inbred lines. The inoculated radish plants were incubated at 22°C±3°C and resistance assessment was examined using symptom development for 4 weeks. Based on the reactions of differential radish inbred lines, 16 radish lines were produced mild mosaic, mottling, mosaic and severe mosaic symptoms by TuMV infection. These results were confirmed by RT-PCR analysis of TuMV coat protein gene, suggesting that TuMV is responsible for the disease symptoms. Four resistant radish lines did not induce systemic mosaic symptoms on upper leaves and chlorosis in stem tissues for 4 weeks, showing they were symptomless by 8 weeks. Further examination of TuMV infection in the 4 radish lines showed no TuMV infection in all systemic leaves. These results suggest that the 4 radish lines are highly resistant to TuMV.

  1. The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds.

    Science.gov (United States)

    Wyant, Patrícia Soares; Gotthardt, Diether; Schäfer, Benjamin; Krenz, Björn; Jeske, Holger

    2011-02-01

    Begomovirus is the largest genus within the family Geminiviridae and includes economically important plant DNA viruses infecting a broad range of plant species and causing devastating crop diseases, mainly in subtropical and tropical countries. Besides cultivated plants, many weeds act as virus reservoirs. Eight begomovirus isolates from Bolivian weeds were examined using rolling-circle amplification (RCA) and restriction fragment length polymorphism (RFLP). An efficient, novel cloning strategy using limited Sau3A digestion to obtain tandem-repeat inserts allowed the sequencing of the complete genomes. The viruses were classified by phylogenetic analysis as typical bipartite New World begomoviruses. Four of them represented distinct new virus species, for which the names Solanum mosaic Bolivia virus, Sida mosaic Bolivia virus 1, Sida mosaic Bolivia virus 2, and Abutilon mosaic Bolivia virus are proposed. Three were variants of a new strain of Sida micrantha mosaic virus (SimMV), SimMV-rho[BoVi07], SimMV-rho[Bo:CF1:07] and SimMV-rho[Bo:CF2:07], and one was a new variant of a previously described SimMV, SimMV-MGS2:07-Bo.

  2. Further characterization of tulip severe mosaic virus supports classification as a member of genus Ampellovirus in the family Closteroviridae

    NARCIS (Netherlands)

    Pham, K.T.K.; Blom-Barnhoorn, G.J.; Bijman, V.P.; Lemmers, M.E.C.; Derks, A.F.L.M.

    2011-01-01

    Tulip bulb and flower production greatly contribute to the economy in The Netherlands. However, severe loss in this industry is caused by different viruses. In recent years, diagnostic tools were developed for most of these viruses with Tulip severe mosaic virus (TSMV) as one of the few exceptions.

  3. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Jennifer Jungfleisch

    2016-12-01

    Full Text Available Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.

  4. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene.

    Science.gov (United States)

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K; Goldberg, Tony L; Osorio, Jorge E

    2014-11-01

    A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Characteristics of rose mosaic diseases

    Directory of Open Access Journals (Sweden)

    Marek S. Szyndel

    2013-12-01

    Full Text Available Presented review of rose diseases, associated with the mosaic symptoms, includes common and yellow rose mosaic, rose ring pattern, rose X disease, rose line pattern, yellow vein mosaic and rose mottle mosaic disease. Based on symptomatology and graft transmissibility of causing agent many of those rose disorders are called "virus-like diseases" since the pathogen has never been identified. However, several viruses were detected and identified in roses expressing mosaic symptoms. Currently the most prevalent rose viruses are Prunus necrotic ringspot virus - PNRSV, Apple mosaic virus - ApMV (syn. Rose mosaic virus and Arabis mosaic virus - ArMV Symptoms and damages caused by these viruses are described. Tomato ringspot virus, Tobacco ringspot virus and Rose mottle mosaic virus are also mentioned as rose pa thogcns. Methods of control of rose mosaic diseases are discussed.

  6. Heterogeneity in pepper isolates of cucumber mosaic virus

    Science.gov (United States)

    Rodriguez-Alvarado, G.; Kurath, G.; Dodds, J.A.

    1995-01-01

    Twenty-four cucumber mosaic cucumovirus (CMV) field isolates from pepper crops in Cali-fornia were characterized and compared by nucleic acid hybridization subgrouping, virion electrophoresis, and biological effects in several hosts. Isolates, belonging to subgroup I or subgroup II, were found that induced severe symptoms in mechanically inoculated bell pep-pers. Only two isolates, both from subgroup II, were mild. A group of 19 isolates collected from a single field were all in subgroup II and appeared identical by virion electrophoresis, but they exhibited varying degrees of symptom severity in peppers. As a more detailed indicator of heterogeneity, these 19 isolates were examined by RNase protection assays to delect sequence variation in the coat protein gene region of their genomes. The patterns of bands observed were complex and a high degree of genomic heterogeneity was detected between isolates, with no apparent correlation to symptomatology in bell pepper.

  7. Infectivity of Deinbollia mosaic virus, a novel weed-infecting begomovirus in East Africa.

    Science.gov (United States)

    Kyallo, Martina; Ateka, Elijah Miinda; Sseruwagi, Peter; Ascencio-Ibáñez, José Trinidad; Ssemakula, Mildred-Ochwo; Skilton, Robert; Ndunguru, Joseph

    2017-11-01

    Weed-infecting begomoviruses play an important role in the epidemiology of crop diseases because they can potentially infect crops and contribute to the genetic diversity of crop-infecting begomoviruses. Despite the important epidemiological role that weed-infecting begomoviruses play, they remain insufficiently studied in Africa. Recently, we identified Deinbollia mosaic virus (DMV), a distinct begomovirus found naturally infecting the weed host Deinbollia borbonica (Sapindaceae) in Kenya and Tanzania. In this study, we investigated the capacity of DMV to infect a restricted host range of Solanaceae and Euphorbiaceae species. Biolistic inoculation of Nicotiana benthamiana with concatemeric DNAs resulted in systemic infection associated with yellow mosaic symptoms, while DNA partial dimers caused asymptomatic systemic infection. DMV was not infectious to cassava (Manihot esculenta Crantz), suggesting host resistance to the virus. Here, we demonstrate the first experimental infectivity analysis of DMV in N. benthamiana and cassava.

  8. Cofolding Organizes Alfalfa Mosaic Virus RNA and Coat Protein for Replication

    Science.gov (United States)

    Guogas, Laura M.; Filman, David J.; Hogle, James M.; Gehrke, Lee

    2006-01-01

    Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3´ termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3´ conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication. PMID:15604410

  9. Expression, purification and molecular modeling of the NIa protease of Cardamom mosaic virus.

    Science.gov (United States)

    Jebasingh, T; Pandaranayaka, Eswari P J; Mahalakshmi, A; Kasin Yadunandam, A; Krishnaswamy, S; Usha, R

    2013-01-01

    The NIa protease of Potyviridae is the major viral protease that processes potyviral polyproteins. The NIa protease coding region of Cardamom mosaic virus (CdMV) is amplified from the viral cDNA, cloned and expressed in Escherichia coli. NIa protease forms inclusion bodies in E.coli. The inclusion bodies are solubilized with 8 M urea, refolded and purified by Nickel-Nitrilotriacetic acid affinity chromatography. Three-dimensional modeling of the CdMV NIa protease is achieved by threading approach using the homologous X-ray crystallographic structure of Tobacco etch mosaic virus NIa protease. The model gave an insight in to the substrate specificities of the NIa proteases and predicted the complementation of nearby residues in the catalytic triad (H42, D74 and C141) mutants in the cis protease activity of CdMV NIa protease.

  10. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    Science.gov (United States)

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  11. Viruses affecting lentil (Lens culinaris Medik. in Greece; incidence and genetic variability of Bean leafroll virus and Pea enation mosaic virus

    Directory of Open Access Journals (Sweden)

    Elisavet K. CHATZIVASSILIOU

    2016-07-01

    Full Text Available In Greece, lentil (Lens culinaris Medik. crops are mainly established with non-certified seeds of local landraces, implying high risks for seed transmitted diseases. During April and May of the 2007–2012 growing seasons, surveys were conducted in eight regions of Greece (Attiki, Evros, Fthiotida, Korinthos, Kozani, Larissa, Lefkada and Viotia to monitor virus incidence in lentil fields. A total of 1216 lentil samples, from plants exhibiting symptoms suggestive of virus infection, were analyzed from 2007 to 2009, using tissue-blot immunoassays (TBIA. Pea seed-borne mosaic virus (PSbMV overall incidence was 4.9%, followed by Alfalfa mosaic virus (AMV (2.4% and Bean yellow mosaic virus (BYMV (1.0%. When 274 of the samples were tested for the presence of luteoviruses, 38.8% were infected with Bean leafroll virus (BLRV. Since BLRV was not identified in the majority of the samples collected from 2007 to 2009, representative symptomatic plants (360 samples were collected in further surveys performed from 2010 to 2012 and tested by ELISA. Two viruses prevailed in those samples: BLRV (36.1% was associated with stunting, yellowing, and reddening symptoms and Pea enation mosaic virus-1 (PEMV-1 (35.0% was associated with mosaic and mottling symptoms. PSbMV (2.2%, AMV (2.2%, BYMV (3.9% and CMV (2.8% were also detected. When the molecular variability was analyzed for representative isolates, collected from the main Greek lentil production areas, five BLRV isolates showed 95% identity for the coat protein (CP gene and 99% for the 3’ end region. Three Greek PEMV isolates co-clustered with an isolate from Germany when their CP sequence was compared with isolates with no mutation in the aphid transmission gene. Overall, limited genetic variability was detected among Greek isolates of BLRV and PEMV.

  12. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  13. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped. 180 F2 individuals ...

  14. The kinetics of swelling of southern bean mosaic virus: a study using photon correlation spectroscopy.

    Science.gov (United States)

    Brisco, M; Haniff, C; Hull, R; Wilson, T M; Sattelle, D B

    1986-01-15

    Southern bean mosaic virus swells upon removal of Ca2+ at pH 8.25. Virions do not seem to aggregate significantly; the z-average hydrodynamic diameter increases from 29.9 nm to 44.0 nm. Swelling is virtually complete within 3 min, and swollen virions have a z-average hydrodynamic diameter similar to that of virions swollen by dialysis overnight.

  15. Simplified Assays for Evaluation of Resistance to Alternaria brassicicola and Turnip Mosaic Virus.

    Science.gov (United States)

    Trusov, Yuri; Dietzgen, Ralf G; Maruta, Natsumi; Botella, Jose R

    2016-01-01

    Studying the natural defense mechanisms developed by model plants such as Arabidopsis is an important approach towards the improvement of crop species. The availability of mutants as well as the relative easiness to silence any gene in Arabidopsis provides an invaluable source of genotypes that can be used to discover new elements involved in the defense response. Here we describe simple and reliable methods to evaluate susceptibility/resistance to the pathogenic fungus Alternaria brassicicola and the viral pathogen Turnip mosaic virus.

  16. Effect of mosaic virus diseases on dry matter content and starch ...

    African Journals Online (AJOL)

    The effect of mosaic virus diseases on dry matter content and starch yield of five local accessions of cassava, “Ankrah”, “AW/17, “Tomfa”, “Dagarti” and “Tuaka” was evaluated. Tomfa showed the highest (95%) incidence of the disease, index of severity of symptoms for all plants (ISSAP) of 3.70, as well as, for diseased plants ...

  17. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  18. Detection of a Variant of Henbane Mosaic Virus in Physalis alkekengi L.

    OpenAIRE

    Mamula, Đorđe; Štefanac, Zlata; Thaler, Irmtraud; Gailhofer, Manfred

    1988-01-01

    In the symptom bearing specimens of Physalis alkekengi L. growing spontaneously in the vicinity of Zagreb (Yugoslavia), a variant of henbane mosaic virus (HMV-HZ) was detected. In parallel experiments by analysing the reaction of test plants, HMV-HZ differed significantly both from the Rothamsted type strain (HMV-R) of the virus, and the ’alkekengi’ strain described from P. alkekengi (HMV-A) in Italy. In slide microprecipitin tests HMV-HZ reacted to the homologous titre (1:16000) of two sera ...

  19. Visualization of resistance responses in Phaseolus vulgaris using reporter tagged clones of Bean common mosaic virus

    DEFF Research Database (Denmark)

    Naderpour, Masoud; Johansen, Ida Elisabeth

    2011-01-01

    Reporter tagged virus clones can provide detailed information on virus–host interactions. In Phaseolus vulgaris (bean), four recessive and one dominant gene are known to control infection by strains of the potyvirus species Bean common mosaic virus (BCMV). To study the interactions between BCMV...... breaking strains for further studies, BCMV RU1 was tagged with the sequence encoding green fluorescent protein (GFP), which was visualized directly without destruction of the tissue. In this paper we present details of the construction of the infectious clone and discuss its application in studies of BCMV...

  20. Asystasia mosaic Madagascar virus: a novel bipartite begomovirus infecting the weed Asystasia gangetica in Madagascar.

    Science.gov (United States)

    De Bruyn, Alexandre; Harimalala, Mireille; Hoareau, Murielle; Ranomenjanahary, Sahondramalala; Reynaud, Bernard; Lefeuvre, Pierre; Lett, Jean-Michel

    2015-06-01

    Here, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.9 % (DNA-B) with a recently described bipartite begomovirus infecting Asystasia sp. in West Africa. Phylogenetic analysis demonstrated that this novel virus from Madagascar belongs to a new lineage of Old World bipartite begomoviruses.

  1. Nanomanufacturing of Tobacco Mosaic Virus-Based Spherical Biomaterials Using a Continuous Flow Method.

    Science.gov (United States)

    Bruckman, Michael A; VanMeter, Allen; Steinmetz, Nicole F

    2015-01-12

    Nanomanufacturing of nanoparticles is critical for potential translation and commercialization. Continuous flow devices can alleviate this need through unceasing production of nanoparticles. Here we demonstrate the scaled-up production of spherical nanoparticles functionalized with biomedical cargos from the rod-shaped plant virus tobacco mosaic virus (TMV) using a mesofluidic, continued flow method. Production yields were increased 30-fold comparing the mesofluidic device versus batch methods. Finally, we produced MRI contrast agents of select sizes, with per particle relaxivity reaching 979,218 mM(-1) s(-1) at 60 MHz. These TMV-based spherical nanoparticle MRI contrast agents are in the top echelon of relaxivity per nanoparticle.

  2. Recent characterization of cowpea aphid-borne mosaic virus (CABMV)

    African Journals Online (AJOL)

    Romário

    2015-03-04

    Mar 4, 2015 ... Plant Dis. 90(8):1026-1030. Webster CG, Coutts BA, Jones RAC, Jones MGK, Wylie SJ (2007). Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: studies on three legume-infecting potyviruses in the. Southwest Australian floristic region. Plant Pathology 56:729-742. Wylie SJ ...

  3. Occurrence of Cucumber mosaic virus on vanilla (Vanilla planifolia ...

    Indian Academy of Sciences (India)

    ... of vanilla (Vanilla planifolia Andrews) in India was characterized on the basis of biological and coat protein (CP) nucleotide sequence properties. In mechanical inoculation tests, the virus was found to infect members of Chenopodiaceae, Cucurbitaceae, Fabaceae and Solanaceae. Nicotiana benthamiana was found to be ...

  4. Pepino mosaic virus: an endemic pathogen of tomato crops

    NARCIS (Netherlands)

    Hanssen, I.M.

    2010-01-01

    Owing to their large population size and short generation time, viruses generally have a huge potential to evolve and adapt under natural selection pressure. Despite tremendous efforts in human, animal and plant health management, viral diseases remain difficult to control and eradicate. Moreover,

  5. Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus.

    Science.gov (United States)

    Bau, H-J; Kung, Y-J; Raja, J A J; Chan, S-J; Chen, K-C; Chen, Y-K; Wu, H-W; Yeh, S-D

    2008-07-01

    A virus identified as a new pathotype of Papaya leaf distortion mosaic virus (PLDMV, P-TW-WF) was isolated from diseased papaya in an isolated test-field in central Taiwan, where transgenic papaya lines resistant to Papaya ringspot virus (PRSV) were evaluated. The infected plants displayed severe mosaic, distortion and shoe-stringing on leaves; stunting in apex; and water-soaking on petioles and stems. This virus, which did not react in enzyme-linked immunosorbent assay with the antiserum to the PRSV coat protein, infected only papaya, but not the other 18 plant species tested. Virions studied under electron microscope exhibited morphology and dimensions of potyvirus particles. Reverse transcription-polymerase chain reaction conducted using potyvirus-specific primers generated a 1,927-nucleotide product corresponding to the 3' region of a potyvirus, showing high sequence identity to the CP gene and 3' noncoding region of PLDMV. Search for similar isolates with the antiserum against CP of P-TW-WF revealed scattered occurrence of PLDMV in Taiwan. Phylogenetic analysis of PLDMV isolates of Taiwan and Japan indicated that the Taiwan isolates belong to a separate genetic cluster. Since all the Taiwan isolates infected only papaya, unlike the cucurbit-infecting Japanese P type isolates, the Taiwan isolates are considered a new pathotype of PLDMV. Susceptibility of all our PRSV-resistant transgenic papaya lines to PLDMV indicates that the virus is an emerging threat for the application of PRSV-resistant transgenic papaya in Taiwan and elsewhere.

  6. Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Yeong-Hoon Lee

    2015-12-01

    Full Text Available Soybean mosaic virus (SMV is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at 58°C for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

  7. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  8. Lima Ekstrak Tumbuhan untuk Menekan Infeksi Bean common mosaic virus pada Tanaman Kacang Panjang

    Directory of Open Access Journals (Sweden)

    Lulu Kurnianingsih

    2013-08-01

    Full Text Available Bean common mosaic virus (BCMV is one of major virus infecting legumes and is difficult to manage. Utilization of plant extracts as systemic resistance inducer against virus is needed to study. The aim of the research is to evaluate the potency of five leaf extracts, i.e. from pagoda flower, spiny amaranth, four o’clock flower, Chenopodium amaranticolor, and herba andrographitis against BCMV. The effectiveness of leaf extracts were tested by spraying yard long bean leaves. Plants treated by spine spinach shown varied symptoms, while other treatments showed mild mosaic up to symptomless. The highest to lowest of disease incidence was showed by crude leaf extract of spine spinach (70%, four o’clock (10%, herba andrographitis (10%, while C. amaranticolor and pagoda are still uninfected. These results had positive correlation to disease severity and virus inhibition. Four of five tested leaf extracts, except spine spinach, showed their potency as systemic resistance inducer against BCMV.  Key words: BCMV, plant extract, yard long bean

  9. Standardization of a molecular diagnostic method for Cucumber mosaic virus (cmv in Ecuadorian bananas

    Directory of Open Access Journals (Sweden)

    Johanna Liseth Buitrón-Bustamante

    2017-01-01

    Full Text Available Several pests and diseases affect banana crop in Ecuador and Cucumber mosaic virus (cmv is one of the most important pathogens. The aim of this research was to standardize a new molecular approach to achieve a sensitive and highly specific detection of cmv in Ecuadorian bananas. Specific primers were designed from the sequence encodingResumoA cultura da banana no Equador vê-se afetada por uma série de doenças, das quais o cucumber mosaic vírus(cmv é um dos fitopatógenos mais impor-tantes. Com este estudo procurou-se padronizar uma técnica molecular para a detecção sensível e altamente específica deste agente viral na banana equatoriana. Para este fim, realizou-se o desenho de primers específicos, a partir da sequência que se codifica para a proteína da cápside do vírus. for the virus capsid protein. PC-F1, PC-R D1 and K-F primers, obtained from cDNA replicated from R NA of infected banana, allowed accurate virus detection by Reverse transcription and Hemi-nested PCR. Virus detection was possible even in asymptomatic plants, providing a tech-nology with potential use for the Ecuadorian banana producers.

  10. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2017-11-16

    Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.

  11. Characterization and Field Studies of a Cucumber Mosaic Virus Isolate from Spinach in the Winter Garden Area of Texas

    Science.gov (United States)

    A. Dan Wilson; R.S. Halliwell

    1985-01-01

    An isolate of cucumber mosaic virus (CMV) was identified from spinach in the Winter Garden area of Texas. The isolate was very closely related serologically to strain S of CMVand is designated the Texas spinach isolate of CMV-S. The virus infected 39 species of crop plants and wild hosts in 12 of 13 families tested. The green peach aphid efficiently transmitted the...

  12. Interactions with the actin cytoskeleton are required for cell wall localization of barley stripe mosaic virus TGB proteins

    Science.gov (United States)

    The host cytoskeleton and membrane system are the main routes by which plant viruses move within or between cells. Barley stripe mosaic virus (BSMV) -induced actin filament thickening was visualized in the cytoskeleton of agroinfiltrated Nicotiana benthamiana epidermal cells expressing DsRed:Talin. ...

  13. Accumulation of the 126 kDa protein of tobacco mosaic virus during systemic infection analysed by immunocytochemistry and ELISA.

    NARCIS (Netherlands)

    Wijdeveld, M.M.G.; Goldbach, R.W.; Meurs, C.; Loon, van L.C.

    1992-01-01

    Systemic infection of tobacco with tobacco mosaic virus (TMV) strain WU1, is accompanied by massive accumulation of the virus-coded non-structural 126 kDa protein in X-bodies. The development of X-bodies and the time course of the increase in 126 kDa protein in systemically infected leaves were

  14. Sugarcane mild mosaic virus: towards the full characterization of this sugarcane Ampelovirus re-discovered using metagenomics-based approaches

    Science.gov (United States)

    Sugarcane mild mosaic virus (SCMMV) is a closterovirus-like virus that was discovered by Lockhart et al. (1992). SCMMV is provisionally assigned to the genus Ampelovirus, family Closteroviridae (Martelli et al 2002). Since the initial serological and microscopical studies, no new information about S...

  15. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and

  16. Sequencing and computational analysis of complete genome sequences of Citrus yellow mosaic badna virus from acid lime and pummelo.

    Science.gov (United States)

    Borah, Basanta K; Johnson, A M Anthony; Sai Gopal, D V R; Dasgupta, Indranil

    2009-08-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus, is the causative agent of Citrus mosaic disease in India. Although the virus has been detected in several citrus species, only two full-length genomes, one each from Sweet orange and Rangpur lime, are available in publicly accessible databases. In order to obtain a better understanding of the genetic variability of the virus in other citrus mosaic-affected citrus species, we performed the cloning and sequence analysis of complete genomes of CMBV from two additional citrus species, Acid lime and Pummelo. We show that CMBV genomes from the two hosts share high homology with previously reported CMBV sequences and hence conclude that the new isolates represent variants of the virus present in these species. Based on in silico sequence analysis, we predict the possible function of the protein encoded by one of the five ORFs.

  17. Evaluation of Resistance in Pepper Germplasm to Cucumber mosaic virus by High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Na Young Ro

    2012-12-01

    Full Text Available In this study, total number of 1941 Capsicum accessions conserved at RDA Genebank was evaluated for theirresponse to Cucumber mosaic virus (CMV. These accessions were composed with 9 species originated from89 countries, included 839 Capsicum annuum, 277 C. baccatum, 395 C. chinense, 343 C. frutescens, 49 C.pubescens, and other 38 wild pepper species (C. chacoense, C. galapagoense, etc.. Resistant to CMV wasscreened with the 240H02SP6 SNP marker related to the Cmr1 (Cucumber mosaic resistance 1. Eighty nineaccessions of pepper germplasm were resistant to CMV based on the marker. One hundred sixty twoaccessions showed heterozygosity. One thousand two hundred seventy accessions were susceptible to CMV.Four hundred twenty accessions did not show distinction by 240H02SP6 marker. These 89 resistant peppergermplasm can be used in a pepper breeding program against CMV.

  18. Bunias orientalis L. as a natural overwintering host OF Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Tadeusz Kobyłko

    2012-12-01

    Full Text Available A virus was isolated, using mechanical inoculation, from hill mustard (Bunias orientalis L. plants exhibiting yellow mottling and blistering on leaves, which were frequently accompanied by asymmetric leaf narrowing. It systemically infected certain plants from the family Brassicaceae (Brassica rapa, Bunias orientalis, Hesperis matronalis, Sinapis alba as well as Cleome spinosa and Nicotiana clevelandii, and locally Atriplex hortensis, Chenopodium quinoa, Ch. amaranticolor, N. tabacum. In the sap, it maintained infectivity for 3-4 days and lost it after heating for 10 min. at a temperature of 55 - 60oC or when diluted with water at 10-3. Virus particles were thread- like with a length of 675 - 710 nm. Based on an analysis of biological properties of the pathogen, serological response, particle morphology and data from field observations, it was identified as an isolate of Turnip mosaic virus (TuMV, and hill mustard was recognised as a natural overwintering host for this pathogen.

  19. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana

    Science.gov (United States)

    Deng, Xing-Guang; Zhu, Tong; Peng, Xing-Ji; Xi, De-Hui; Guo, Hongqing; Yin, Yanhai; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Plant steroid hormones, brassinosteroids (BRs), play essential roles in plant growth, development and stress responses. However, mechanisms by which BRs interfere with plant resistance to virus remain largely unclear. In this study, we used pharmacological and genetic approaches in combination with infection experiments to investigate the role of BRs in plant defense against Tobacco Mosaic Virus (TMV) in Nicotiana benthamiana. Exogenous applied BRs enhanced plant resistance to virus infection, while application of Bikinin (inhibitor of glycogen synthase kinase-3), which activated BR signaling, increased virus susceptibility. Silencing of NbBRI1 and NbBSK1 blocked BR-induced TMV resistance, and silencing of NbBES1/BZR1 blocked Bikinin-reduced TMV resistance. Silencing of NbMEK2, NbSIPK and NbRBOHB all compromised BR-induced virus resistance and defense-associated genes expression. Furthermore, we found MEK2-SIPK cascade activated while BES1/BZR1 inhibited RBOHB-dependent ROS production, defense gene expression and virus resistance induced by BRs. Thus, our results revealed BR signaling had two opposite effects on viral defense response. On the one hand, BRs enhanced virus resistance through MEK2-SIPK cascade and RBOHB-dependent ROS burst. On the other hand, BES1/BZR1 inhibited RBOHB-dependent ROS production and acted as an important mediator of the trade-off between growth and immunity in BR signaling. PMID:26838475

  20. [Observation of cells tolerant of tobacco mosaic virus in virus-induced local lesions in Datura stramonium L. leaves].

    Science.gov (United States)

    Reunov, A V; Lega, S N; Nagorskaia, V P; Lapshina, L A

    2011-01-01

    Ultrastructural examination of tobacco mosaic virus-induced local lesions developing in leaves of Datura stramonium plants demonstrated that, in the central area of the lesions, the cell response to viral invasion was not uniform. Most cells exhibited an acute hypersensitive reaction and underwent rapid and complete necrosis. However, some cells, despite considerable virus accumulation and immediate contact with completely collapsed cells, maintained a certain degree of structural integrity. Analysis performed showed that the proportion of collapsed and uncollapsed cells in the lesion centre 3 to 5 days after infection did not change essentially. These data suggest that the absence of hypersensitive response in some cells in the lesion centre is not due to an early stage of infection but is likely caused by cell tolerance of the virus.

  1. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  2. Large bottleneck size in Cauliflower Mosaic Virus populations during host plant colonization.

    Directory of Open Access Journals (Sweden)

    Baptiste Monsion

    2008-10-01

    Full Text Available The effective size of populations (Ne determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses.

  3. Large bottleneck size in Cauliflower Mosaic Virus populations during host plant colonization.

    Science.gov (United States)

    Monsion, Baptiste; Froissart, Rémy; Michalakis, Yannis; Blanc, Stéphane

    2008-10-01

    The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s) imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses.

  4. Host range of symptomatology of Pepino mosaic virus strains occurring in Europe

    DEFF Research Database (Denmark)

    Blystad, Dag-Ragnar; van der Vlugt, René; Alfaro-Fernández, Ana

    2015-01-01

    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring...... for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana...

  5. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  6. Molecular characterization of a Bean yellow mosaic virus isolate from Syria

    Directory of Open Access Journals (Sweden)

    M.A. Al-Khalaf

    2009-01-01

    Full Text Available Bean yellow mosaic virus (BYMV, genus Potyvirus, family Potyviridae was studied by comparing sequences from the coat protein (CP gene of a Syrian isolate with sequences of six other isolates from the NCBI database. A homology tree of the CP sequences was developed using DNAMAN Software. BYMV isolates were grouped into two clusters of which the first comprised the Syrian isolate together with the Indian, Australian and Japanese isolates, and the second the BYMV isolates from China, the Netherlands and the USA. Moreover, the homology tree showed that the Syrian isolate was very close to the Indian one, with 99% homology.

  7. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor.

    Directory of Open Access Journals (Sweden)

    Andrew John Love

    2015-11-01

    Full Text Available We genetically modified tobacco mosaic virus (TMV to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV, and demonstrate that unlike wild type (WT TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

  8. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region

    Directory of Open Access Journals (Sweden)

    Mohammed A. AL-Saleh

    2013-12-01

    Full Text Available In 2011–2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia.

  9. Responses of wild Vigna species/sub-species to yellow mosaic disease viruses, detected by a PCR-based method

    Directory of Open Access Journals (Sweden)

    Narinder Kumar GAUTAM

    2015-01-01

    Full Text Available Forty-eight accessions of wild Vigna species/sub-species were grown to verify their reactions to yellow mosaic disease (YMD, under field conditions in New Delhi (India during 2012 and 2013. Symptoms of YMD that developed on wild Vigna were similar to those observed on cultivated species. Symptomatic plants produced few flowers and pods with reduced seed size. The infection coefficient was in the range of 0–71%. The causal virus was identified by PCR using species-specific primers to detect all the four viruses responsible for YMD in pulse crops. All the YMD-affected wild Vigna species/sub-species accessions were infected by Mungbean yellow mosaic India virus (MYMIV, with positive amplification of the targeted DNA fragment, except one accession of V. hainiana (IC331450 which was infected with Mungbean yellow mosaic virus. This indicated that MYMIV is the predominant virus causing yellow mosaic in wild species/sub-species of Vigna at New Delhi. Eight accessions belonging to V. synthetic allotetraploid, V. umbellata, V. mungo var. mungo, V. trilobata, V. trinervia var. bourneae, V. radiata var. sublobata and V. dalzelliana were completely free from YMD and gave negative PCR results with primers specific to all the four viruses. This confirms resistance to YMD in these wild Vigna species.

  10. Barley yellow mosaic virus is overcoming RYM4 resistance in Belgium.

    Science.gov (United States)

    Vaïanopoulos, C; Legreve, A; Moreau, V; Steyer, S; Maraite, H; Bragard, C

    2007-01-01

    Barley yellow mosaic virus (BaYMV) is the causal agent of a soil-borne systemic mosaic disease on barley. It has been reported in Belgium since the 1980s. The control of this disease is managed almost exclusively through the use of resistant varieties. The resistance of most commercial barley cultivars grown in Europe is conferred mainly by a single recessive gene, rym4. This monogenic resistance provides immunity against BaYMV pathotype 1 and has been mapped on barley chromosome 3HL and shown to be caused by mutations in the translation initiation factor eIF4E. Another pathotype, BaYMV pathotype 2, which appeared in the late 1980s (in Belgium, in the early 1990s), is able to overcome the rym4-controlled resistance. Until recently, this pathotype remained confined to specific locations. During a systematic survey in 2003, mosaic symptoms were observed only on susceptible barley cultivars collected in Belgian fields. BaYMV was detected by ELISA and RT-PCR on the susceptible cultivars and only by RT-PCR on the resistant cultivars. In 2004, mosaic symptoms were observed on susceptible and resistant cultivars. BaYMV was detected by ELISA and RT-PCR on both cultivars. In addition to developing RT-PCR methods for detecting and identifying BaYMV and Barley mild mosaic virus (BaMMV), an RT-PCR targeting the VPg/NIa viral protein part of the genome, known to discriminate the two BaYMV pathotypes, was set up to accurately identify the pathotype(s) now present in Belgium. The sequences from the generated amplicons revealed the single nucleotide substitution resulting in an amino acid change from lysine to asparagine specific to BaYMV pathotype 2. The possible reasons for the change in the BaYMV pathotype situation in Belgium, such as climatic change or a progressive build-up of soil inoculum potential, will be discussed, as well as the use of eIF4E-based resistance.

  11. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading.

    Science.gov (United States)

    Collum, Tamara D; Padmanabhan, Meenu S; Hsieh, Yi-Cheng; Culver, James N

    2016-05-10

    Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.

  12. Transmission Biology of Rice Stripe Mosaic Virus by an Efficient Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-12-01

    Full Text Available Rice stripe mosaic virus (RSMV is a newly discovered species of cytorhabdovirus infecting rice plants that is transmitted by the leafhopper Recilia dorsalis. In this study, the transmission characteristics of RSMV by R. dorsalis were investigated. Under suitable growth conditions for R. dorsalis, the RSMV acquisition rate reached 71.9% in the second-generation population raised on RSMV-infected rice plants. The minimum acquisition and inoculation access periods of R. dorsalis were 3 and 30 min, respectively. The minimum and maximum latent transmission periods of RSMV in R. dorsalis were 6 and 18 d, respectively, and some R. dorsalis intermittently transmitted RSMV at 2–6 d intervals. Our findings revealed that the virus can replicate in the leafhopper body, but is likely not transovarially transmitted to offspring. These transmission characteristics will help guide the formulation of RSMV prevention and control strategies.

  13. Stability of Barley stripe mosaic virus-induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... photobleaching in infected barley plants was used as a reporter for silencing. In addition, downregulation of PDS mRNA was measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Using fragments of PDS ranging from 128 to 584 nucleotides in BSMV, we observed that insert length...

  14. Adoption of the 2A Ribosomal Skip Principle to Tobacco Mosaic Virus for Peptide Display

    Directory of Open Access Journals (Sweden)

    Juliane Röder

    2017-06-01

    Full Text Available Plant viruses are suitable as building blocks for nanomaterials and nanoparticles because they are easy to modify and can be expressed and purified using plants or heterologous expression systems. Plant virus nanoparticles have been utilized for epitope presentation in vaccines, for drug delivery, as nanospheres and nanowires, and for biomedical imaging applications. Fluorescent protein fusions have been instrumental for the tagging of plant virus particles. The monomeric non-oxygen-dependent fluorescent protein iLOV can be used as an alternative to green fluorescent protein. In this study, the iLOV sequence was genetically fused either directly or via a glycine-serine linker to the C-terminus of the Tobacco mosaic virus (TMV coat protein (CP and also carried an N-terminal Foot-and-mouth disease virus (FMDV 2A sequence. Nicotiana benthamiana plants were inoculated with recombinant viral vectors and a systemic infection was achieved. The presence of iLOV fusion proteins and hybrid particles was confirmed by western blot analysis and transmission electron microscopy. Our data suggest that TMV-based vectors are suitable for the production of proteins at least as large as iLOV when combined with the FMDV 2A sequence. This approach allowed the simultaneous production of foreign proteins fused to the CP as well as free CP subunits.

  15. Genomic reassortment of barley mild mosaic virus: evidence for the involvement of RNA1 in pathogenicity.

    Science.gov (United States)

    Kashiwazaki, S; Hibino, H

    1996-04-01

    A reverse transcription-polymerase chain reaction (RT-PCR) was developed for specific detection of RNA1 and RNA2 of two barely mild mosaic virus strains (BaMMV-Ka1 and BaMMV-Na1) and a barley yellow mosaic virus strain (BaYMV-II-1). Mechanical inoculation of barley cultivars with a mixture of BaMMV-Ka1 and BaMMV-Na1, followed by RT-PCR to detect RNA components in infected plants, revealed that the RNAs of the two strains were exchangeable in vivo to generate all nine possible combinations containing at least one RNA1 and one RNA2. Infected plants with mixed or reassorted RNAs were selected and used as inocula for further analysis of cultivar reactions. The results demonstrate that the pathogenicity and symptomatology are determined solely by RNA1. In contrast, following inoculation with mixtures of BaYMV-II-1 and either BaMMV-Ka1 or BaMMV-Na1, no heterologous combinations of their RNAs were observed.

  16. Obtenção de plantas de feijão-caupi resistentes ao Cowpea severe mosaic virus e ao Cowpea aphid-borne mosaic virus

    Directory of Open Access Journals (Sweden)

    Gislanne Brito Barros

    2013-06-01

    Full Text Available Dentre os vírus que infectam o feijão-caupi (Vigna unguiculata L. Walp. destacam-se, respectivamente, pela severidade e ampla ocorrência o Cowpea severe mosaic virus (CPSMV e o Cowpea aphid-borne mosaic virus (CABMV. Portanto, objetivaram-se, no presente trabalho, obter e avaliar plantas de feijão-caupi com resistência ao CPSMV e ao CABMV, visando ao desenvolvimento de cultivares essencialmente derivadas e novas cultivares. Realizaram-se oito cruzamentos seguidos de retrocruzamentos, utilizando a linhagem TE 97-309G-9 e a cultivar Patativa como genitores resistentes, e as cultivares BR3-Tracuateua, BRS-Urubuquara, BRS-Novaera, BRS-Guariba e Pretinho como genitores suscetíveis. As gerações F2 e F2RC1 foram desafiadas quanto à resistência por meio de inoculação mecânica com isolados do CPSMV e do CABMV. Nas gerações F2RC1, além da resistência foram avaliados os caracteres: número de dias para o início da floração, comprimento das vagens, número de grãos. vagem-1, peso de cem grãos e produção de grãos.planta-1. Todos os indivíduos F2 e F2RC1 foram analisados pelo teste χ² e se ajustaram à frequência esperada de 15 plantas suscetíveis 1 planta resistente a ambos os vírus. As médias das plantas F2RC1 resistentes, de cada retrocruzamento, foram comparadas com a média do seu respectivo genitor recorrente pelo teste 't' e as médias dos retrocruzamentos foram comparadas pelo teste de Scott-Knott. Foi detectada variabilidade genética entre os retrocruzamentos para todos os caracteres. Todos os retrocruzamentos foram considerados promissores para produção de cultivares essencialmente derivadas resistentes ao CPSMV e ao CABMV e as plantas selecionadas possuem características que possibilitam a seleção de linhagens com grãos de bom padrão comercial e altamente produtivas.

  17. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  18. Zucchini tigré mosaic virus is a distinct potyvirus in the papaya ringspot virus cluster: molecular and biological insights.

    Science.gov (United States)

    Romay, G; Lecoq, H; Desbiez, C

    2014-02-01

    In recent years, three new potyviruses have been described in the papaya ringspot virus (PRSV) cluster. In addition, two types of PRSV are recognized, type W, infecting cucurbit plants, and type P, infecting papaya and also cucurbits. A third type, PRSV-T, was also partially described in Guadeloupe. Complete genome sequencing of four PRSV-T isolates showed that this virus is a related virus that is distinct from PRSV, and the name zucchini tigré mosaic virus (ZTMV) is proposed, in reference to the typical symptoms observed in zucchini squash. Eleven other viral isolates from different geographic origins were confirmed as ZTMV isolates using the complete sequence of the cylindrical inclusion (CI) coding region, whereas pairwise sequence similarities in the coat protein (CP) coding region did not unambiguously distinguish ZTMV isolates from PRSV isolates. The use of the CI coding region for species demarcation appears more suitable than the CP coding region for closely related viruses. Principal coordinates analysis based on the biological behavior of the viral isolates studied clustered PRSV-P, PRSV-W and ZTMV isolates into three different groups. Therefore, ZTMV is different from PRSV in its molecular and biological properties.

  19. Colour break in reverse bicolour daffodils is associated with the presence of Narcissus mosaic virus.

    Science.gov (United States)

    Hunter, Donald A; Fletcher, John D; Davies, Kevin M; Zhang, Huaibi

    2011-08-21

    Daffodils (Narcissus pseudonarcissus) are one of the world's most popular ornamentals. They also provide a scientific model for studying the carotenoid pigments responsible for their yellow and orange flower colours. In reverse bicolour daffodils, the yellow flower trumpet fades to white with age. The flowers of this type of daffodil are particularly prone to colour break whereby, upon opening, the yellow colour of the perianth is observed to be 'broken' into patches of white. This colour break symptom is characteristic of potyviral infections in other ornamentals such as tulips whose colour break is due to alterations in the presence of anthocyanins. However, reverse bicolour flowers displaying colour break show no other virus-like symptoms such as leaf mottling or plant stunting, leading some to argue that the carotenoid-based colour breaking in reverse bicolour flowers may not be caused by virus infection. Although potyviruses have been reported to cause colour break in other flower species, enzyme-linked-immunoassays with an antibody specific to the potyviral family showed that potyviruses were not responsible for the occurrence of colour break in reverse bicolour daffodils. Colour break in this type of daffodil was clearly associated with the presence of large quantities of rod-shaped viral particles of lengths 502-580 nm in tepals. Sap from flowers displaying colour break caused red necrotic lesions on Gomphrena globosa, suggesting the presence of potexvirus. Red necrotic lesions were not observed in this indicator plant when sap from reverse bicolour flowers not showing colour break was used. The reverse transcriptase polymerase reactions using degenerate primers to carla-, potex- and poty-viruses linked viral RNA with colour break and sequencing of the amplified products indicated that the potexvirus Narcissisus mosaic virus was the predominant virus associated with the occurrence of the colour break. High viral counts were associated with the reverse

  20. Colour break in reverse bicolour daffodils is associated with the presence of Narcissus mosaic virus

    Directory of Open Access Journals (Sweden)

    Davies Kevin M

    2011-08-01

    Full Text Available Abstract Background Daffodils (Narcissus pseudonarcissus are one of the world's most popular ornamentals. They also provide a scientific model for studying the carotenoid pigments responsible for their yellow and orange flower colours. In reverse bicolour daffodils, the yellow flower trumpet fades to white with age. The flowers of this type of daffodil are particularly prone to colour break whereby, upon opening, the yellow colour of the perianth is observed to be 'broken' into patches of white. This colour break symptom is characteristic of potyviral infections in other ornamentals such as tulips whose colour break is due to alterations in the presence of anthocyanins. However, reverse bicolour flowers displaying colour break show no other virus-like symptoms such as leaf mottling or plant stunting, leading some to argue that the carotenoid-based colour breaking in reverse bicolour flowers may not be caused by virus infection. Results Although potyviruses have been reported to cause colour break in other flower species, enzyme-linked-immunoassays with an antibody specific to the potyviral family showed that potyviruses were not responsible for the occurrence of colour break in reverse bicolour daffodils. Colour break in this type of daffodil was clearly associated with the presence of large quantities of rod-shaped viral particles of lengths 502-580 nm in tepals. Sap from flowers displaying colour break caused red necrotic lesions on Gomphrena globosa, suggesting the presence of potexvirus. Red necrotic lesions were not observed in this indicator plant when sap from reverse bicolour flowers not showing colour break was used. The reverse transcriptase polymerase reactions using degenerate primers to carla-, potex- and poty-viruses linked viral RNA with colour break and sequencing of the amplified products indicated that the potexvirus Narcissisus mosaic virus was the predominant virus associated with the occurrence of the colour break

  1. A Kinetic Zipper Model and the Assembly of Tobacco Mosaic Virus

    Science.gov (United States)

    Kraft, Daniela J.; Kegel, Willem K.; van der Schoot, Paul

    2012-01-01

    We put forward a modified Zipper model inspired by the statics and dynamics of the spontaneous reconstitution of rodlike tobacco mosaic virus particles in solutions containing the coat protein and the single-stranded RNA of the virus. An important ingredient of our model is an allosteric switch associated with the binding of the first protein unit to the origin-of-assembly domain of the viral RNA. The subsequent addition and conformational switching of coat proteins to the growing capsid we believe is catalyzed by the presence of the helical arrangement of bound proteins to the RNA. The model explains why the formation of complete viruses is favored over incomplete ones, even though the process is quasi-one-dimensional in character. We numerically solve the relevant kinetic equations and show that time evolution is different for the assembly and disassembly of the virus, the former exhibiting a time lag even if all forward rate constants are equal. We find the late-stage assembly kinetics in the presence of excess protein to be governed by a single-exponential relaxation, which agrees with available experimental data on TMV reconstruction. PMID:22735535

  2. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus

    Directory of Open Access Journals (Sweden)

    James E. Schoelz

    2017-10-01

    Full Text Available Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs, viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV. CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors and P6 (required for viral intra-and inter-cellular infection, respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.

  3. Biological characterization and complete nucleotide sequence of a Tunisian isolate of Moroccan watermelon mosaic virus.

    Science.gov (United States)

    Yakoubi, S; Desbiez, C; Fakhfakh, H; Wipf-Scheibel, C; Marrakchi, M; Lecoq, H

    2008-01-01

    During a survey conducted in October 2005, cucurbit leaf samples showing virus-like symptoms were collected from the major cucurbit-growing areas in Tunisia. DAS-ELISA showed the presence of Moroccan watermelon mosaic virus (MWMV, Potyvirus), detected for the first time in Tunisia, in samples from the region of Cap Bon (Northern Tunisia). MWMV isolate TN05-76 (MWMV-Tn) was characterized biologically and its full-length genome sequence was established. MWMV-Tn was found to have biological properties similar to those reported for the MWMV type strain from Morocco. Phylogenetic analysis including the comparison of complete amino-acid sequences of 42 potyviruses confirmed that MWMV-Tn is related (65% amino-acid sequence identity) to Papaya ringspot virus (PRSV) isolates but is a member of a distinct virus species. Sequence analysis on parts of the CP gene of MWMV isolates from different geographical origins revealed some geographic structure of MWMV variability, with three different clusters: one cluster including isolates from the Mediterranean region, a second including isolates from western and central Africa, and a third one including isolates from the southern part of Africa. A significant correlation was observed between geographic and genetic distances between isolates. Isolates from countries in the Mediterranean region where MWMV has recently emerged (France, Spain, Portugal) have highly conserved sequences, suggesting that they may have a common and recent origin. MWMV from Sudan, a highly divergent variant, may be considered an evolutionary intermediate between MWMV and PRSV.

  4. After the double helix: Rosalind Franklin's research on Tobacco mosaic virus.

    Science.gov (United States)

    Creager, Angela N H; Morgan, Gregory J

    2008-06-01

    Rosalind Franklin is best known for her informative X-ray diffraction patterns of DNA that provided vital clues for James Watson and Francis Crick's double-stranded helical model. Her scientific career did not end when she left the DNA work at King's College, however. In 1953 Franklin moved to J. D. Bernal's crystallography laboratory at Birkbeck College, where she shifted her focus to the three-dimensional structure of viruses, obtaining diffraction patterns of Tobacco mosaic virus (TMV) of unprecedented detail and clarity. During the next five years, while making significant headway on the structural determination of TMV, Franklin maintained an active correspondence with both Watson and Crick, who were also studying aspects of virus structure. Developments in TMV research during the 1950s illustrate the connections in the emerging field of molecular biology between structural studies of nucleic acids and of proteins and viruses. They also reveal how the protagonists of the "race for the double helix" continued to interact personally and professionally during the years when Watson and Crick's model for the double-helical structure of DNA was debated and confirmed.

  5. High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors

    Directory of Open Access Journals (Sweden)

    Lindbo John A

    2007-08-01

    Full Text Available Abstract Background Plants are increasingly being examined as alternative recombinant protein expression systems. Recombinant protein expression levels in plants from Tobacco mosaic virus (TMV-based vectors are much higher than those possible from plant promoters. However the common TMV expression vectors are costly, and at times technically challenging, to work with. Therefore it was a goal to develop TMV expression vectors that express high levels of recombinant protein and are easier, more reliable, and more cost-effective to use. Results We have constructed a Cauliflower mosaic virus (CaMV 35S promoter-driven TMV expression vector that can be delivered as a T-DNA to plant cells by Agrobacterium tumefaciens. Co-introduction (by agroinfiltration of this T-DNA along with a 35S promoter driven gene for the RNA silencing suppressor P19, from Tomato bushy stunt virus (TBSV resulted in essentially complete infection of the infiltrated plant tissue with the TMV vector by 4 days post infiltration (DPI. The TMV vector produced between 600 and 1200 micrograms of recombinant protein per gram of infiltrated tissue by 6 DPI. Similar levels of recombinant protein were detected in systemically infected plant tissue 10–14 DPI. These expression levels were 10 to 25 times higher than the most efficient 35S promoter driven transient expression systems described to date. Conclusion These modifications to the TMV-based expression vector system have made TMV vectors an easier, more reliable and more cost-effective way to produce recombinant proteins in plants. These improvements should facilitate the production of recombinant proteins in plants for both research and product development purposes. The vector should be especially useful in high-throughput experiments.

  6. Deletion analysis of cis- and trans-acting elements involved in replication of alfalfa mosaic virus RNA 3 in vivo

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    DNA copies of alfalfa mosaic virus (AIMV) RNA 3 were transcribed in vitro into RNA molecules with deletions in coding and noncoding sequences. The replication of these transcripts was studied in protoplasts from transgenic tobacco plants expressing DNA copies of AIMV RNAs 1 and 2. Deletions in the

  7. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  8. Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato

    Science.gov (United States)

    Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...

  9. Molecular characterization of genetic variation related to pea enation mosaic virus resistance in lentil (Lens culinaris Medik)

    Science.gov (United States)

    Identification of genetically diverse lentil germplasm with resistance to pea enation mosaic virus (PEMV) through combined approach of molecular marker analysis and phenotyping could prove useful in breeding programs. A total of 44 lentil (Lens culinaris Medik.) accessions, were screened for resista...

  10. Molecular cloning and expression of full-length DNA copies of the genomic RNAs of cowpea mosaic virus

    NARCIS (Netherlands)

    Vos, P.

    1987-01-01

    The experiments described in this thesis were designed to unravel various aspects of the mechanism of gene expression of cowpea mosaic virus (CPMV). For this purpose full-length DNA copies of both genomic RNAs of CPMV were constructed. Using powerful invitro

  11. Different haplotypes encode the same protein for independent sources of zucchini yellow mosaic virus resistance in cucumber

    Science.gov (United States)

    Cucumber (Cucumis sativus) production is negatively affected by zucchini yellow mosaic virus (ZYMV). Three sources of ZYMV resistance have been commercially deployed and all three resistances are conditioned by a single recessive gene. A vacuolar protein sorting-associated protein 4-like (VPS4-like)...

  12. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum

    NARCIS (Netherlands)

    Lanfermeijer, FC; Dijkhuis, J; Sturre, MJG; de Haan, P; Hille, J

    In tomato, infections by tomato mosaic virus are controlled by durable Tm-2(2) resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-2(2) resistance gene and the susceptible allele, tm-2. The Tm-2(2) gene was isolated

  13. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    NARCIS (Netherlands)

    Lim, H.S.; Lee, M.Y.; Moon, J.S.; Moon, J.K.; Yu, Y.M.; Cho, I.S.; Bae, H.; Boer, de S.M.; Ju, H.; Hammond, J.; Jackson, A.O.

    2013-01-01

    Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells

  14. The location of coat protein and viral RNAs of alfalfa mosaic virus in infected tobacco leaves and protoplasts

    NARCIS (Netherlands)

    Pelt-Heerschap, H. van; Verbeek, H.; Slot, J.W.; Vloten-Doting, L. van

    The location of coat protein of alfalfa mosaic virus (AIMV) strain 425 was determined in protoplasts isolated from infected tobacco leaves and in in vitro inoculated tobacco protoplasts, using immunocytochemistry on ultrathin frozen sections labeled with colloidal gold. In infected tobacco leaves 5

  15. Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes

    NARCIS (Netherlands)

    Carette, J.E.; Lent, van J.; MacFarlance, S.A.; Wellink, J.E.; Kammen, van A.

    2002-01-01

    Cowpea mosaic virus (CPMV) replicates in close association with small membranous vesicles that are formed by rearrangements of intracellular membranes. To determine which of the viral proteins are responsible for the rearrangements of membranes and the attachment of the replication complex, we have

  16. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    Science.gov (United States)

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  17. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  18. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  19. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus.

    Science.gov (United States)

    Vargas-Asencio, José; Wojciechowska, Klaudia; Baskerville, Maia; Gomez, Annika L; Perry, Keith L; Thompson, Jeremy R

    2017-01-02

    In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Movement Protein of Cucumber Mosaic Virus Associates with Apoplastic Ascorbate Oxidase

    Science.gov (United States)

    Kumari, Reenu; Kumar, Surender; Singh, Lakhmir; Hallan, Vipin

    2016-01-01

    Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection. PMID:27668429

  1. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  2. Imunogenicidade de proteínas do capsídeo do Cowpea severe mosaic virus (CPSMV Capsid protein immunogenicity of Cowpea severe mosaic virus (CPSMV

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2009-02-01

    Full Text Available A análise SDS-PAGE do Cowpea severe mosaic virus (CPSMV purificado revelou a migração de três frações protéicas estimadas em 43, 23 e 21 kDa, correspondentes às proteínas do capsídeo: denominadas proteína maior (43 kDa e menor (23 kDa; intacta e 21 kDa; clivada. As proteínas do capsídeo, na sua forma nativa, foram utilizadas na imunização de camundongos pelas vias oral e nasal, durante 10 dias consecutivos. As frações protéicas de 43 e 23 kDa, em sua forma desnaturada, foram utilizadas para imunização subcutânea. A resposta imunológica da mucosa foi avaliada pela proliferação celular das placas de Peyer de camundongos imunizados pela via oral com o CPSMV purificado. Ficou demonstrado que o CPSMV induz resposta imunológica, evidenciada pela síntese de anticorpos séricos, quando administrado na sua forma nativa pelas vias oral e nasal ou através de suas proteínas do capsídeo desnaturadas, pela via subcutânea. Não foi necessário o uso de adjuvantes, quer por via oral quer por via nasal. As frações protéicas de 43 e 23 kDa mostraram-se responsáveis pela imunogenicidade do vírus, como foi evidenciado pela síntese de anticorpos específicos detectados por ELISA. A análise da proliferação celular da placas de Peyer revelou um aumento (r=0,88 do número de leucócitos ao longo de 42 dias após a imunização. Esses resultados reforçam a possibilidade do uso do CPSMV como vetor seguro de antígenos de doenças humanas/animais pouco imunogênicos para produção de vacinas.SDS-PAGE analysis of purified Cowpea severe mosaic virus (CPSMV revealed the migration of three protein fractions of 43, 23 and 21 kDa, corresponding to the capsid protein called large protein (43 kDa and small protein (23 kDa; intact and 21 kDa; cleaved. The capsid proteins, in their native form, were used to immunize mice through oral and nasal routes for ten consecutive days. The denatured form of the 43 and 23 kDa protein fractions were

  3. Tritium planigraphy comparative structural study of tobacco mosaic virus and its mutant with altered host specificity.

    Science.gov (United States)

    Dobrov, Eugenie N; Badun, Gennadii A; Lukashina, Elena V; Fedorova, Nataliya V; Ksenofontov, Alexander L; Fedoseev, Vladimir M; Baratova, Ludmila A

    2003-08-01

    Spatial organization of wild-type (strain U1) tobacco mosaic virus (TMV) and of the temperature-sensitive TMV ts21-66 mutant was compared by tritium planigraphy. The ts21-66 mutant contains two substitutions in the coat protein (Ile21-->Thr and Asp66-->Gly) and, in contrast with U1, induces a hypersensitive response (formation of necroses) on the leaves of plants bearing a host resistance gene N' (for example Nicotiana sylvestris); TMV U1 induces systemic infection (mosaic) on the leaves of such plants. Tritium distribution along the coat protein (CP) polypeptide chain was determined after labelling of both isolated CP preparations and intact virions. In the case of the isolated low-order (3-4S) CP aggregates no reliable differences in tritium distribution between U1 and ts21-66 were found. But in labelling of the intact virions a significant difference between the wild-type and mutant CPs was observed: the N-terminal region of ts21-66 CP incorporated half the amount of tritium than the corresponding region of U1 CP. This means that in U1 virions the CP N-terminal segment is more exposed on the virion surface than in ts21-66 virions. The possibility of direct participation of the N-terminal tail of U1 CP subunits in the process of the N' hypersensitive response suppression is discussed.

  4. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  5. Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics

    Science.gov (United States)

    Zang, Faheng; Chu, Sangwook; Gerasopoulos, Konstantinos; Culver, James N.; Ghodssi, Reza

    2017-06-01

    This paper reports the implementation of temporal capillary microfluidic patterns and biological nanoscaffolds in autonomous microfabrication of nanostructured symmetric electrochemical supercapacitors. A photoresist layer was first patterned on the substrate, forming a capillary microfluidics layer with two separated interdigitated microchannels. Tobacco mosaic virus (TMV) macromolecules suspended in solution are autonomously delivered into the microfluidics, and form a dense bio-nanoscaffolds layer within an hour. This TMV layer is utilized in the electroless plating and thermal oxidation for creating nanostructured NiO supercapacitor. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures. The rapid creation of nanostructure-textured microdevices with only simple photolithography and bionanostructure self-assembly can completely eliminate the needs for sophisticated synthesis or deposition processes. This method will contribute to rapid prototyping of wide range of nano-/micro-devices with enhanced performance.

  6. Characterisation of several heterogeneous species of defective RNAs derived from RNA 3 of cucumber mosaic virus.

    Science.gov (United States)

    López, C; Aramburu, J; Galipienso, L; Nuez, F

    2007-01-01

    Preparations of double-stranded RNAs (dsRNAs) extracted from Nicotiana tabacum cv Xanthi plants infected with a subgroup IB isolate of Cucumber mosaic virus (CMV) were found to contain a heterogeneous population of defective RNAs (D-RNAs) derived from RNA 3. Characterised D-RNAs ranged in size from 1.5 to 1.9 kb and were derived either by a single in-frame deletion within the 3a or 3b genes or by means of double in-frame deletions within both genes. Also, northern blot hybridisation showed two other types of RNA derived from RNA 3: (a) RNA species of ca. 0.7 kb containing the 3'-terminus but lacking the 5'-terminus, which could be 3'-coterminal subgenomic of D-RNAs derived from the 3b gene and (b) RNA species of unknown origin of ca. 0.8 kb containing the 5'-terminus but lacking the 3'-terminus.

  7. Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene

    Directory of Open Access Journals (Sweden)

    Seong-Han Sohn

    2015-09-01

    Full Text Available Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS. To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG comparing with wild-type. Eight lines of transgenic plants (T0 were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

  8. RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods

    Science.gov (United States)

    Eber, Fabian J.; Eiben, Sabine; Jeske, Holger; Wege, Christina

    2014-11-01

    The in vitro assembly of artificial nanotubular nucleoprotein shapes based on tobacco mosaic virus-(TMV-)-derived building blocks yielded different spatial organizations of viral coat protein subunits on genetically engineered RNA molecules, containing two or multiple TMV origins of assembly (OAs). The growth of kinked nanoboomerangs as well as of branched multipods was determined by the encapsidated RNAs. A largely simultaneous initiation at two origins and subsequent bidirectional tube elongation could be visualized by transmission electron microscopy of intermediates and final products. Collision of the nascent tubes' ends produced angular particles with well-defined arm lengths. RNAs with three to five OAs generated branched multipods with a maximum of four arms. The potential of such an RNA-directed self-assembly of uncommon nanotubular architectures for the fabrication of complex multivalent nanotemplates used in functional hybrid materials is discussed.

  9. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  10. Mechanistic study of the hydrothermal reduction of palladium on the Tobacco mosaic virus.

    Science.gov (United States)

    Adigun, Oluwamayowa O; Freer, Alexander S; Miller, Jeffrey T; Loesch-Fries, L Sue; Kim, Bong Suk; Harris, Michael T

    2015-07-15

    The fundamental mechanisms governing reduction and growth of palladium on the genetically engineered Tobacco mosaic virus in the absence of an external reducer have been elucidated via in situ X-ray absorption spectroscopy. In recent years, many virus-inorganic materials have been synthesized as a means to produce high quality nanomaterials. However, the underlying mechanisms involved in virus coating have not been sufficiently studied to allow for directed synthesis. We combined XAS, via XANES and EXAFS analysis, with TEM to confirm an autocatalytic reduction mechanism mediated by the TMV1Cys surface. This reduction interestingly proceeds via two first order regimes which result in two linear growth regimes as spherical palladium nanoparticles are formed. By combining this result with particle growth data, it was discovered that the first regime describes growth of palladium nanoparticles on the virion while the second regime describes a second layer of larger particles which grew sporadically on the first palladium nanoparticle layer. Subsequent aggregation of free solution based spherical particles and metallized nanorods characterize a third and final regime. At the end of the second reduction regime, the average particle diameter of particles tethered to the TMV1Cys surface are approximately 4.5 nm. The use of XAS to simultaneously monitor the kinetics of biotemplated reactions along with growth of metal nanoparticles will provide insight into the pertinent reduction and growth mechanisms so that nanorod properties can be controlled through their populating nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The presence of cucumber mosaic virus in pot marigold (Calendula officinalis L. in Serbia

    Directory of Open Access Journals (Sweden)

    Milošević Dragana

    2015-01-01

    Full Text Available During 2014 a total of 67 pot marigold samples from five different localities in the Province in Vojvodina were collected and analysed for the presence of Cucumber mosaic virus (CMV and Impatiens necrotic spot virus (INSV using commercial double-antibody sandwich (DAS-ELISA kits. CMV was detected serologically in all inspected localities in 67.16% collected samples. None of the analysed samples was positive for INSV. The virus was successfully mechanically transmitted to test plants including Chenopodium amaranticolor, C. quinoa, Datura stramonium, Nicotiana tabacum 'Samsun' and N. glutinosa, as well as pot marigold seedlings, confirming the infectious nature of the disease. The presence of CMV in pot marigold plants was further verified by RT-PCR and sequencing, using the specific primers CMV CPfwd/CMVCPrev that amplify coat protein (CP gene. Phylogenetic analysis based on the CP gene sequences showed clustering of the selected isolates into three subgroups, IA, IB and II, and Serbian CMV isolates from pot marigold belong to subgroup II.

  12. Role of satellite RNAs in cucumber mosaic virus-host plant interactions. A review

    Directory of Open Access Journals (Sweden)

    Kouadio, KT.

    2013-01-01

    Full Text Available Subviral non-coding RNA molecules, known as satellite RNAs (satRNAs, are often associated with cucumber mosaic virus (CMV. These satRNAs require a helper virus (CMV in this case for their replication, encapsidation and transmission. They modify CMV pathogenicity by either attenuating disease symptoms or by exacerbating them. This effect could be due either to competition between a helper virus and satRNAs for replication, or to specific satRNA sequences or secondary structures. The type of host plant and the CMV strain also affect the behavior of satRNAs. Recent studies have shown that satRNA replication is associated with the production of satRNA-derived small RNAs of 21-25 nucleotides in length, which play a key role in RNA silencing and could explain differences in CMV symptom severity. This review highlights the current understanding and recent advances in relation to satRNA-mediated disease symptoms in CMV-infected plants.

  13. Transgene translatability increases effectiveness of replicase-mediated resistance to cucumber mosaic virus.

    Science.gov (United States)

    Wintermantel, W M; Zaitlin, M

    2000-03-01

    Transgenic tobacco plants expressing an altered form of the 2a replicase gene from the Fny strain of Cucumber mosaic virus (CMV) exhibit suppressed virus replication and restricted virus movement when inoculated mechanically or by aphid vectors. Additional transformants have been generated which contain replicase gene constructs designed to determine the role(s) of transgene mRNA and/or protein in resistance. Resistance to systemic disease caused by CMV, as well as delayed infection, was observed in several lines of transgenic plants which were capable of expressing either full-length or truncated replicase proteins. In contrast, among plants which contained nontranslatable transgene constructs, only one of 61 lines examined exhibited delays or resistance. Once infected, plants never recovered, regardless of transgene translatability. Transgenic plants exhibiting a range of resistance levels were examined for transgene copy number, mRNA and protein levels. Although ribonuclease protection assays demonstrated that transgene mRNA levels were very low, resistant lines had consistently more steady-state transgene mRNA than susceptible lines. Furthermore, chlorotic or necrotic local lesions developed on the inoculated leaves of transgenic lines containing translatable transgenes, but not on inoculated leaves of lines containing nontranslatable transgenes. These results demonstrate that translatability of the transgene and possibly expression of the transgene protein itself facilitates replicase-mediated resistance to CMV in tobacco.

  14. Paenibacillus lentimorbus Inoculation Enhances Tobacco Growth and Extenuates the Virulence of Cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Susheel Kumar

    Full Text Available Previous studies with Paenibacillus lentimorbus B-30488" (hereafter referred as B-30488, a plant growth promoting rhizobacteria (PGPR isolated from cow's milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV, in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPR-host-CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91% in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue's health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down of these genes in favor of

  15. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  16. Inclusion bodies induced by bean rugose mosaic virus seen under light microscopy

    Directory of Open Access Journals (Sweden)

    Carmen Rivera

    2000-12-01

    Full Text Available Two types of inclusion bodies were consistently observed under light microscopy in bean (Phaseolus vulgaris leaf tissue infected with bean rugose mosaic virus (BRMV, a species of the genus Comovirus, family Comoviridae. One type consisted of vacuolated inclusions found mainly in the cytoplasm of epidermal cells. The other type consisted of abundant crystalloid inclusions of different sizes and shapes found consistently in glandular hairs, guard cells, phloem tissue, xylem elements and occasionally in epidermal and mesophyll tissues. The two types of inclusion bodies stained with Azure A and Luxol Brilliant Green Bl-Calcomine Orange 2RS (O-G, and were similar to those seen to be caused by other species of comoviruses.Se observaron dos tipos de inclusiones virales, mediante microscopia de luz, en hojas de plantas de frijol (Phaseolus vulgaris previamente infectadas con el virus del mosaico rugoso del frijol ("bean rugose mosaic comovirus", BRMV, especie del género Comovirus, familia Comoviridae. Se hallaron inclusiones vesiculadas, principalmente en el citoplasma de células de la epidermis, y abundantes inclusiones cristalinas de diferentes formas y tamaños siempre en células guarda, tricomas glandulares, floema, elementos del xilema y ocasionalmente en células epidérmicas y del mesófilo. Ambos tipos de inclusiones tiñeron con Azure A y con la tinción, verde naranja (Luxol Brilliant Green BL-Calcomine Orange 2 RS conocida como OG, y son similares a las inclusiones inducidas por otras especies del género Comovirus.

  17. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance.

    Science.gov (United States)

    Padgett, H S; Beachy, R N

    1993-05-01

    The genome of Ob, a tobamovirus that overcomes the N gene-mediated hypersensitive response (HR), was cloned as a cDNA, and its nucleotide sequence was determined. The genomic organization of Ob is similar to that of other tobamoviruses, consisting of 6506 nucleotides and containing at least four open reading frames. These open reading frames encode a 126-kD polypeptide with a 183-kD readthrough product, a 30.6-kD movement protein, and an 18-kD coat protein. A bacteriophage T7 promoter sequence was fused to the full-length cDNA clone to obtain infectious RNA transcripts. These transcripts, when inoculated onto tobacco plants, induced disease symptoms indistinguishable from plants inoculated with Ob viral RNA. To determine which viral factor is responsible for the resistance-breaking character of Ob, a recombinant virus was constructed in which the movement protein gene of tobacco mosaic virus was replaced with that of Ob. Cultivar Xanthi NN tobacco plants infected with this virus responded with an HR, indicating that the Ob movement protein alone does not act to overcome the N gene-mediated response. Following mutagenesis of the infectious Ob cDNA clone with hydroxylamine, populations of transcripts from the mutagenized DNA were inoculated onto Xanthi NN tobacco, and a variant that induced the HR was identified. The mutant was analyzed and found to contain a single nucleotide change in the 126-kD gene. Recreating the mutation in the Ob cDNA clone by site-directed mutagenesis resulted in a virus that caused symptoms identical to the chemically induced mutant.

  18. Treating downy brome with herbicide and seeding with native shrubs

    Science.gov (United States)

    Suzanne Owen; Carolyn Sieg

    2011-01-01

    Downy brome or cheatgrass (Bromus tectorum L.) is one of the most invasive and widespread exotic plants in North America. Downy brome can reduce soil nutrient availability, alter native plant community composition, and increase fire frequencies. The effectiveness of Plateau® imazapic herbicide in reducing downy brome cover has been variable, and there is uncertainty...

  19. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Directory of Open Access Journals (Sweden)

    Claudia Koch

    2016-04-01

    Full Text Available The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus–host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied

  20. Detection and characterization of a Cucumber mosaic virus isolate infecting peperina, a species native to Argentina

    Directory of Open Access Journals (Sweden)

    P Rodríguez Pardina

    2013-12-01

    Full Text Available Minthostachys mollis (Kunth. Griseb., "peperina", un miembro de la familia Lamiaceae, es una especie aromática que se emplea en la farmacología moderna y en medicina. Está ampliamente distribuida en los Andes, desde Venezuela y Colombia hasta Argentina. En el último país, la principal área de explotación de peperina incluye el área serrana de la provincia de Córdoba, donde la especie es arrancada indiscriminadamente, lo que conlleva una pérdida irreversible de germoplasma. A los fines de preservar este recurso nativo y fuente regional de ingresos, la especie está siendo domesticada. Durante este proceso, se observó la aparición de síntomas de un conspicuo mosaico amarillo, típico de infección viral. Análisis biológicos, serológicos y moleculares (RT-PCR, RFLP, clonado y secuenciación pusieron de manifiesto la presencia del subgrupo IA de Cucumber mosaic virus en las plantas domesticadas de peperina. El aislamiento viral estudiado está íntimamente relacionado con la raza Y previamente informada en Japón. Éste es el primer informe de un virus que infecta a la peperina.

  1. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer

    Science.gov (United States)

    Bruckman, Michael A.; Czapar, Anna E.; VanMeter, Allen; Randolph, Lauren N.; Steinmetz, Nicole F.

    2016-01-01

    Drug delivery systems are required for drug targeting to avoid adverse effects associated with chemotherapy treatment regimes. Our approach is focused on the study and development of plant virus-based materials as drug delivery systems; specifically, this work focuses on the tobacco mosaic virus (TMV). Native TMV forms a hollow, high aspect-ratio nanotube measuring 300 × 18 nm with a 4 nm-wide central channel. Heat-transformation can be applied to TMV yielding spherical nanoparticles (SNPs) measuring ~50 nm in size. While bioconjugate chemistries have been established to modify the TMV rod, such methods have not yet been described for the SNP platform. In this work, we probed the reactivity of SNPs toward bioconjugate reactions targeting lysine, glutamine/aspartic acid, and cysteine residues. We demonstrate functionalization of SNPs using these chemistries yielding efficient payload conjugation. In addition to covalent labeling techniques, we developed encapsulation techniques, where the cargo is loaded into the SNP during heat-transition from rod-to-sphere. Finally, we developed TMV and SNP formulations loaded with the chemotherapeutic doxorubicin, and we demonstrate the application of TMV rods and spheres for chemotherapy delivery targeting breast cancer. PMID:26941034

  2. A fitness cost for Turnip mosaic virus to overcome host resistance.

    Science.gov (United States)

    Jenner, Carol E; Wang, Xiaowu; Ponz, Fernando; Walsh, John A

    2002-06-01

    The relative fitness of the Turnip mosaic virus (TuMV) isolate UK 1 was compared with that of two other wildtype isolates CZE 1 and CDN 1. The isolates CZE 1 and CDN 1 are able to overcome the effect of the resistance gene TuRB01 and at least three other resistance sources that are effective against UK 1. Comparisons were also made between the fitness of UK 1 and a recombinant virus with a single nucleotide change (v35Tunos +5570 A>G) conferring the ability to overcome TuRB01 resistance. Co-inoculation experiments were carried out where pairs of isolates were serially passaged over 5 months in a plant line possessing no known resistance genes in order to examine the relative fitness of the isolates. In each case, UK 1 dominated the mixture in the susceptible host background. It out-competed CZE 1 and v35Tunos +5570 A>G within four passages, and CDN 1 after one passage. The greater fitness of UK 1 suggests that there may be a fitness cost to TuMV overcoming resistance genes of brassica crops. This may shed some light on the frequency of naturally occurring isolates, in that pathotype 1 isolates are found much more frequently than isolates of other pathotypes. Implications for the deployment of TuRB01 are discussed.

  3. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer

    Science.gov (United States)

    Lizotte, P. H.; Wen, A. M.; Sheen, M. R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N. F.; Fiering, S.

    2016-03-01

    Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The ‘in situ vaccination’ immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.

  4. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-03-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.

  5. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2016-10-01

    Full Text Available Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22 to control Cucumber mosaic virus (CMV in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species (ROS scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV.

  6. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco.

    Science.gov (United States)

    Oka, Kumiko; Kobayashi, Michie; Mitsuhara, Ichiro; Seo, Shigemi

    2013-12-01

    Nicotiana tabacum (tobacco) cultivars possessing the N resistance gene to Tobacco mosaic virus (TMV) induce a hypersensitive response, which is accompanied by the production of phytohormones such as salicylic acid (SA) and jasmonic acid (JA), to enclose the invaded virus at the initial site of infection, which inhibits viral multiplication and spread. SA functions as a positive regulator of TMV resistance. However, the role of JA in TMV resistance has not been fully elucidated. Exogenously applied methyl jasmonate, a methyl ester of JA, reduced local resistance to TMV and permitted systemic viral movement. Furthermore, in contrast to a previous finding, we demonstrated that silencing of CORONATINE-INSENSITIVE 1 (COI1), a JA receptor, reduced viral accumulation in a tobacco cultivar possessing the N gene, as did that of allene oxide synthase, a JA biosynthetic enzyme. The reduction in viral accumulation in COI1-silenced tobacco plants was correlated with an increase in SA, and lowering SA levels by introducing an SA hydroxylase gene attenuated this reduction. Viral susceptibility did not change in a COI1-silenced tobacco cultivar lacking the N gene. These results suggest that JA signaling is not directly responsible for susceptibility to TMV, but is indirectly responsible for viral resistance through the partial inhibition of SA-mediated resistance conferred by the N gene, and that a balance between endogenous JA and SA levels is important for determining the degree of resistance.

  7. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus.

    Science.gov (United States)

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses.

  8. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus.

    Directory of Open Access Journals (Sweden)

    Giuseppe Andolfo

    Full Text Available Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol and Tomato Mosaic Virus (ToMV. Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses.

  9. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    Directory of Open Access Journals (Sweden)

    Athar Alishiri

    2013-09-01

    Full Text Available The incidence and distribution of Tobacco mosaic virus (TMV and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100% among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  10. Natural Hosts and Disease Cycle of Soybean yellow mottle mosaic virus

    Directory of Open Access Journals (Sweden)

    Su-Heon Lee

    2013-12-01

    Full Text Available In surveys of weed occurrence undertaken from 2006 to 2007, near to the Daegu experimental fields of the National Institute of Crop Science, plants belonging to 31 families, 74 genera and 96 species were found. For the investigation of the natural or alternative hosts of Soybean yellow mottle mosaic virus (SYMMV, 495 plant samples belonging to 26 families 84 species were subjected to RT-PCR. SYMMV was detected only from legume plants such as Glycine soja, Vigna angularis var. nipponensis, Trifolium repens, and Lespedeza cuneata. Among legume plants tested, more than a third of G. soja (wild soybean contained SYMMV, indicating that the wild soybean played an important role as a reservoir of SYMMV. Wild soybeans may be infected with SYMMV as early as mid-July. Considering the results of early infection and the high infection rate of seed and seed transmission of SYMMV in G. soja, wild soybeans may have played an important role in the completion of disease cycle of the virus.

  11. In vitro transcripts of wild-type and fluorescent protein-tagged triticum mosaic virus (family potyviridae) are biologically active in wheat

    Science.gov (United States)

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat, and the progeny virus was efficiently transmitted by wheat curl m...

  12. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    Science.gov (United States)

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  13. Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ruth M. Castro

    2013-09-01

    Full Text Available Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1 was obtained from a chayote (S. edule leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV and Pepper golden mosaic virus (PepGMV were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV infecting chayote in the Western Hemisphere.

  14. Pigeonpea sterility mosaic virus: a legume-infecting Emaravirus from South Asia.

    Science.gov (United States)

    Patil, Basavaprabhu L; Kumar, P Lava

    2015-10-01

    Pigeonpea sterility mosaic virus (PPSMV), a species of the genus Emaravirus, is the causal agent of sterility mosaic disease (SMD) of pigeonpea [Cajanus cajan (L.) Millsp]. This disease, dubbed the 'green plague', as the infected plants remain in the vegetative state without flower production, has been reported from India and a few other South-East Asian countries. SMD is estimated to result in an annual yield loss of over US$300 million in India alone. The aetiology of SMD, which remained a mystery for over 70 years, was resolved with the discovery of PPSMV in 2000 and its complete genome sequence in 2014. SMD is characterized by stunted and bushy plants, leaves of reduced size with chlorotic rings or mosaic symptoms, and partial or complete cessation of flower production (i.e. sterility). The causal agent of the disease is PPSMV, a virus with a segmented, negative-sense, single-stranded RNA genome, transmitted in a semi-persistent manner by an eriophyid mite Aceria cajani Channabassavanna (Acari: Arthropoda). Both the virus and vector are highly specific to pigeonpea and a few of its wild relatives, such as C. scarabaeoides and C. cajanifolius. Under experimental conditions, PPSMV was transmitted to Nicotiana benthamiana by sap inoculation using fresh extract of SMD-infected leaves (but not to pigeonpea); however, purified nucleoprotein preparations are not infectious. The virus was also transmitted to French bean (Phaseolus vulgaris L.) using viruliferous eriophyid mites. PPSMV is not seed transmitted in pigeonpea or other hosts known to be infected by this virus. On the basis of the differential host reactions in different geographical locations, the occurrence of diverse PPSMV strains was suspected. PPSMV can infect several genotypes of cultivated and wild relatives of pigeonpea. Experimental hosts include N. benthamiana, N. clevelandii, P. vulgaris and Chrozophora rottleri. However, pigeonpea alone and a few wild species of Cajanus were found to

  15. The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus.

    Directory of Open Access Journals (Sweden)

    Ryosuke Yasaka

    Full Text Available Cauliflower mosaic virus (CaMV is a plant pararetrovirus with a double-stranded DNA genome. It is the type member of the genus Caulimovirus in the family Caulimoviridae. CaMV is transmitted by sap inoculation and in nature by aphids in a semi-persistent manner. To investigate the patterns and timescale of CaMV migration and evolution, we sequenced and analyzed the genomes of 67 isolates of CaMV collected mostly in Greece, Iran, Turkey, and Japan together with nine published sequences. We identified the open-reading frames (ORFs in the genomes and inferred their phylogeny. After removing recombinant sequences, we estimated the substitution rates, divergence times, and phylogeographic patterns of the virus populations. We found that recombination has been a common feature of CaMV evolution, and that ORFs I-V have a different evolutionary history from ORF VI. The ORFs have evolved at rates between 1.71 and 5.81×10(-4 substitutions/site/year, similar to those of viruses with RNA or ssDNA genomes. We found four geographically confined lineages. CaMV probably spread from a single population to other parts of the world around 400-500 years ago, and is now widely distributed among Eurasian countries. Our results revealed evidence of frequent gene flow between populations in Turkey and those of its neighboring countries, with similar patterns observed for Japan and the USA. Our study represents the first report on the spatial and temporal spread of a plant pararetrovirus.

  16. RNA-seq analysis of Brachypodium distachyon responses to Barley stripe mosaic virus infection

    Directory of Open Access Journals (Sweden)

    Guoxin Wang

    2017-02-01

    Full Text Available Barley stripe mosaic virus (BSMV is the type member of the genus Hordeivirus. Brachypodium distachyon line Bd3-1 shows resistance to the BSMV ND18 strain, but is susceptible to an ND18 double mutant (β NDTGB1R390K, T392K in which lysine is substituted for an arginine at position 390 and for threonine at position 392 of the triple gene block 1 (TGB1 protein. In order to understand differences in gene expression following infection with ND18 and double mutant ND18, Bd3-1 seedlings were subjected to RNA-seq analyses at 1, 6, and 14 days post inoculation (dpi. The results revealed that basal immunity genes involved in cellulose synthesis and pathogenesis-related protein biosynthesis were enhanced in incompatible interactions between Bd3-1 and ND18. Most of the differentially expressed transcripts are related to trehalose biosynthesis, ethylene, jasmonic acid metabolism, protein phosphorylation, protein ubiquitination, transcriptional regulation, and transport process, as well as pathogenesis-related protein biosynthesis. In compatible interactions between Bd3-1 and ND18 mutant, Bd3-1 developed weak basal resistance responses to the virus. Many genes involved in cellulose biosynthesis, protein amino acid phosphorylation, protein biosynthesis, protein glycosylation, glycolysis and cellular macromolecular complex assembly that may be related to virus replication, assembly and movement were up-regulated. Some genes involved in oxidative stress responses were also up-regulated at 14 dpi. BSMV ND18 mutant infection suppressed expression of genes functioning in regulation of transcription, protein kinase, cellular nitrogen compound biosynthetic process and photosynthesis. Differential expression patterns between compatible and incompatible interactions in Bd3-1 to the two BSMV strains provide important clues for understanding mechanism of resistance to BMSV in the model plant Brachypodium.

  17. Host Reaction of Watermelon mosaic virus Isolates Infecting Melon from Different Geographical Origins in Xinjiang of China

    Directory of Open Access Journals (Sweden)

    Dong WANG

    2017-01-01

    Full Text Available Watermelon mosaic virus (WMV is one of the major viruses infecting cucurbit crops worldwide. Although WMV is very common worldwide, little is known about the biological traits of WMV isolates from China. Hence, this study aimed to characterize 11 WMV isolates infecting melon from different geographical origins in Xinjiang based on experimental hosts. Sap inoculation of the 11 WMV isolates onto a range of 13 plant species revealed some differences compared to the WMV isolates collected from other countries. Our results showed that, overall, there were no obvious correlations of host responses to inoculation with WMV isolates from different geographical origins. However, isolate JS-1 caused mild mosaic on Cucurbita moschata, whereas the remaining 10 isolates were asymptomatic on this plant species. Moreover, in Datura stramonium, isolate TYG-1 induced mosaic, whereas the remaining 10 isolates did not infect this species. All isolates infected systemically Cucurbita pepo and Cucumis melo plants, causing severe symptoms. All isolates did not induce any symptoms on Cucumis sativus, but the virus could be detected using RT-PCR. Additionally, all isolates infected systemically Nicotiana tabacum plants, causing mild mosaics. Chenopodium amaranticolor and Chenopodium quinoa reacted to all isolates by chlorotic local lesions in the inoculated leaves, and the virus was detected in the inoculated leaves using RT-PCR. In addition, the attempts to transmit the isolates to Luffa cylindrica, Vicia faba, Phaseolus vulgaris, Vigna unguiculata or Pisum sativum failed as confirmed by negative RT-PCR. Our results would be useful for understanding the biological variability of WMV.

  18. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ishibashi

    Full Text Available During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV, and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on

  19. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Yu Cui

    Full Text Available The ND18 strain of Barley stripe mosaic virus (BSMV infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7 recombinant inbred line (RIL population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1. We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

  20. [Differences in the spatial structure of an envelope protein from tobacco mosaic virus and its mutant, detected by tritium planigraphy].

    Science.gov (United States)

    Lukashina, E V; Badun, G A; Fedoseev, V M; Fedorova, N V; Ksenofontov, A L; Baratova, L A; Dobrov, E N

    2001-01-01

    Mutant ts21-66 of the tobacco mosaic virus (TMV) differs from the wild-type TMV-U1 by two mutations (Ile-21-->Thr and Asp-66-->Gly) in the coat protein (CP) gene and in symptoms produced in infected N' plants. The CP structure in TMV-U1 and ts21-66 virions was probed by tritium planigraphy. Compared with the wild-type CP, labeling of the N-terminal region of mutant CP was half as high and suggested its greater shielding. A role of this CP region in virus interactions with the N' resistance system is discussed.

  1. Pewarisan Ketahanan Melon (Cucumis melo L. Kultivar Melodi Gama 3 terhadap Kyuri green mottle mosaic virus

    Directory of Open Access Journals (Sweden)

    Budi Setiadi Daryono

    2016-12-01

    Full Text Available Melon (Cucumis melo L. belongs to Cucurbitaceae. Melon has high potential to be developed as main horticultural product in Indonesia. Melon is one of important foreign exchange and is the fifth biggest horticulture commodity in Indonesia. One of the problems in melon farming is mosaic disease caused by Kyuri green mottle mosaic virus (KGMMV. KGMMV infection reduces the quality and the amount of melon production. Melon farmers suffered a significant financial loss. Melodi Gama 3 (MG3 is a high yielding melon cultivar from the Genetics Laboratory, Faculty of Biology, Universitas Gadjah Mada. The use of genetically resistant melon cultivar has beneficial outcome for agriculture sector. The aim of this research was to study the resistance’s inherintance to KGMMV in MG3 melon cultivar. Two cultivars of MG3, MG3|5and MG3|8, were cultivated in the greenhouse. MAI, Glamour, Ladika, and Action melon cultivars were used as references. Resistance of KGMMV was analyzed by symptom observation and serological detection using Double Antibody Sandwich Enzyme Linked Immunosorbent Assay (DAS-ELISA. DAS-ELISA result analyzed further to establish resistance category. Description to melon cultivar phenotype variation was done. The result of this research indicates that MG3 melon cultivar is tolerant to KGMMV. The decrease of MG3 optical density was directly related with the lowering of KGMMV symptoms. The character of tolerance to KGMMV was inherited from Melodi Gama 1 (MG1 cultivar.   INTISARI   Melon (Cucumis melo L. merupakan tanaman buah yang tergolong dalam familia Cucurbitaceae. Tanaman melon berpotensi untuk dikembangkan sebagai produk unggulan hortikultura di Indonesia. Tanaman melon juga merupakan salah satu penghasil devisa penting Indonesia dan menempati urutan ke-5 dari kelompok hortikultura. Salah satu kendala yang sering dihadapi oleh petani melon adalah penyakit mosaik yang disebabkan oleh Kyuri green mottle mosaic virus (KGMMV. Infeksi KGMMV pada

  2. The Cuticle Protein Gene MPCP4 of Myzus persicae (Homoptera: Aphididae) Plays a Critical Role in Cucumber Mosaic Virus Acquisition.

    Science.gov (United States)

    Liang, Yan; Gao, Xi-Wu

    2017-06-01

    Myzus persicae (Sulzer) (Homoptera: Aphididae) is one of the most important agricultural pests worldwide. In addition to sucking phloem sap, M. persicae also transmits Cucumber mosaic virus (CMV) as a vector in a nonpersistent manner. At present, the infection mechanism remains unclear, especially the process of aphid virus acquisition. In this study, we isolated four M. persicae cuticle protein genes (MPCP1, MPCP2, MPCP4, and MPCP5) from M. persicae. The relative amount of the gene encoding Cucumber mosaic virus capsid protein (CMV CP) and the transcript levels of these four cuticle protein genes were investigated in aphid virus acquisition by feeding the tobacco preinfested by CMV. The relative expression of MPCP1, MPCP2, and MPCP4 were significantly higher than MPCP5 at 24 h after aphids feeding on virus-infested tobacco. Yeast two-hybrid assays demonstrated that the protein encoded by MPCP4 gene was closely associated with the CMV CP through the direct interaction. Moreover, the ability of M. persicae to acquire CMV was suppressed by RNA interference of MPCP4. All these lines of evidence indicate that MPCP4, as a viral putative receptor in the stylet of aphid, plays an important role in aphid acquisition of CMV. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Evaluation of the tepary bean (Phaseolus acutifolius) diversity panel for response to the NL 3 strain of Bean Common Mosaic Necrosis Virus (BCMNV) and for biological nitrogen fixation with Bradyrhizobium strains

    Science.gov (United States)

    Aphid-transmitted Bean Common Mosaic Necrosis Virus (BCMNV) and Bean Common Mosaic Virus (BCMV) are potyviruses that are seed transmitted in tepary bean. Developing resistance to these viruses will be critical for expanding production in areas where they are endemic. Biological nitrogen fixation (BN...

  4. The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication.

    Science.gov (United States)

    Suyal, Geetika; Mukherjee, Sunil K; Choudhury, Nirupam R

    2013-09-01

    Geminiviruses replicate their single-stranded genomes with the help of only a few viral factors and various host cellular proteins primarily by rolling-circle replication (RCR) and/or recombination-dependent replication. AtRAD51 has been identified, using the phage display technique, as a host factor that potentially interacts with the Rep protein of mungbean yellow mosaic India virus (MYMIV), a member of the genus Begomovirus. In this study, we demonstrate the interaction between MYMIV Rep and a host factor, AtRAD51, using yeast two-hybrid and β-galactosidase assays, and this interaction was confirmed using a co-immunoprecipitation assay. The AtRAD51 protein complemented the rad51∆ mutation of Saccharomyces cerevisiae in an ex vivo yeast-based geminivirus DNA replication restoration assay. The semiquantitative RT-PCR and northern hybridization data revealed a higher level of expression of the Rad51 transcript in MYMIV-infected mungbean than in uninfected, healthy plants. Our findings provide evidence for a possible cross-talk between RAD51 and MYMIV Rep, which essentially controls viral DNA replication in plants, presumably in conjunction with other host factors. The present study demonstrates for the first time the involvement of a eukaryotic RAD51 protein in MYMIV replication, and this is expected to shed light on the machinery involved in begomovirus DNA replication.

  5. Coagulation of tobacco mosaic virus in alcohol-water-LiCl solutions.

    Science.gov (United States)

    Lee, Sang-Yup; Lim, Jung Sun; Culver, James N; Harris, Michael T

    2008-08-01

    The coagulation and colloidal stability of tobacco mosaic virus (TMV) in alcohol-water-LiCl solutions were studied. Without the addition of LiCl salt, the coagulation was promoted by the increase of hydrophobicity of the alcohols that is proportional to their alkyl chain length and concentration. Addition of the LiCl salt reduced the electrostatic repulsion between TMV particles resulting in coagulation in methanol-water and ethanol-water solutions. In water-alcohol-LiCl mixture, the coagulation of TMV was driven by both the hydrophobic interaction of the solution and the screening effect of the salt simultaneously. To understand the particle-particle interaction during the coagulation, the interaction energy was calculated using DLVO theory. Considering the electrostatic repulsive energy, van der Waals attractive energy, and hydrophobic interaction energy, the total energy profiles were obtained. The experiment and model calculation results indicated that the increase of alcohol concentration would increase hydrophobic attraction energy so that the coagulation is promoted. These results provide the fundamental understanding on the coagulation of biomolecular macromolecules.

  6. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance.

    Science.gov (United States)

    Moulin, M M; Rodrigues, R; Ribeiro, S F F; Gonçalves, L S A; Bento, C S; Sudré, C P; Vasconcelos, I M; Gomes, V M

    2014-11-07

    Several plant organs contain proteinase inhibitors, which are produced during normal plant development or are induced upon pathogen attack to suppress the enzymatic activity of phytopathogenic microorganisms. In this study, we examined the presence of proteinase inhibitors, specifically trypsin inhibitors, in the leaf extract of Capsicum baccatum var. pendulum inoculated with PepYMV (Pepper yellow mosaic virus). Leaf extract from plants with the accession number UENF 1624, which is resistant to PepYMV, was collected at 7 different times (0, 24, 48, 72, 96, 120, and 144 h). Seedlings inoculated with PepYMV and control seedlings were grown in a growth chamber. Protein extract from leaf samples was partially purified by reversed-phase chromatography using a C2/C18 column. Residual trypsin activity was assayed to detect inhibitors followed by Tricine-SDS-PAGE analysis to determine the N-terminal peptide sequence. Based on trypsin inhibitor assays, trypsin inhibitors are likely constitutively synthesized in C. baccatum var. pendulum leaf tissue. These inhibitors are likely a defense mechanism for the C. baccatum var. pendulum- PepYMV pathosystem.

  7. The complete genome sequence of freesia mosaic virus and its relationship to other potyviruses.

    Science.gov (United States)

    Choi, H I; Lim, H R; Song, Y S; Kim, M J; Choi, S H; Song, Y S; Bae, S C; Ryu, K H

    2010-07-01

    We have completed the genomic sequence of a potyvirus, freesia mosaic virus (FreMV), and compared it to those of other known potyviruses. The full-length genome sequence of FreMV consists of 9,489 nucleotides. The large protein contains 3,077 amino acids, with an AUG start codon and UAA stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of FreMV-Kr gives rise to eleven proteins (P1, HC-pro, P3, PIPO, 6K1, CI, 6K2, VPg, NIa, NIb and CP), and putative cleavage sites of each protein were identified by sequence comparison to those of other known potyviruses. Phylogenetic analysis of the polyprotein revealed that FreMV-Kr was most closely related to PeMoV and was related to BtMV, BaRMV and PeLMV, which belong to the BCMV subgroup. This is the first information on the complete genome structure of FreMV, and the sequence information clearly supports the status of FreMV as a member of a distinct species in the genus Potyvirus.

  8. Cowpea mosaic virus-based systems for the expression of antigens and antibodies in plants.

    Science.gov (United States)

    Sainsbury, Frank; Liu, Li; Lomonossoff, George P

    2009-01-01

    This chapter describes the use of Cowpea mosaic virus-based vectors for the production of foreign proteins such as antigens and antibodies in plants. The systems include vectors based on both full-length and deleted versions of RNA-2. In both cases, the modified RNA-2 is replicated by coinoculation with RNA-1. The constructs based on full-length RNA-2 retain the ability to spread systemically throughout an inoculated plant and the infection can be passaged. The vector based on a deleted version of RNA-2 can stably incorporate larger inserts but lacks the ability to move systemically. However, it has the added advantage of biocontainment. In both cases, vector constructs modified to contain a foreign gene of interest can be delivered by agroinfiltration to obtain transient expression of the foreign protein. If required, the same constructs can also be used for stable nuclear transformation. Both types of vector have proved effective for the production in plants of a diverse range of proteins including antigens and antibodies.

  9. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    Science.gov (United States)

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  10. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  11. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus

    Directory of Open Access Journals (Sweden)

    Qian Yajuan

    2011-05-01

    Full Text Available Abstract Background Cucumber green mottle mosaic virus (CGMMV, a member of the genus Tobamovirus, can be transmitted by seeds and infects many cucurbit species, causing serious yield losses in cucumber and watermelon plants. In this paper, five serological methods including antigen-coated plate enzyme-linked immunosorbent assay (ACP-ELISA, triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA, Dot-immunobinding assay (DBIA, direct tissue blot immunoassay (DTBIA and immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR were described for detection and diagnosis of CGMMV. Results Using the purified CGMMV particles as immunogens, six murine monoclonal antibodies (MAbs were produced. Five serological methods were established using the MAb 4H1 and detection sensitivity was compared using purified preparations and infected-plant tissue extracts. The detection sensitivity of ACP-ELISA was 0.16 ng of purified CGMMV, whereas TAS-ELISA was more sensitive than ACP-ELISA with a minimum detection of 0.04 ng of purified CGMMV. The sensitivities of TAS-ELISA and DBIA were similar for detecting CGMMV in infected-plant tissue extracts, and were four times higher than ACP-ELISA. The IC-RT-PCR was the most sensitive method, which could detect as little as 0.1 pg of purified virus. The detection sensitivity of IC-RT-PCR for CGMMV-infected plant tissues was about 400 times higher than that of TAS-ELISA and DBIA. Conclusions The established ACP-ELISA, TAS-ELISA, DBIA and DTBIA are suitable for routine CGMMV detection of large-scale samples in the field survey, while IC-RT-PCR is more sensitive and suitable for acquiring information about the viral genome.

  12. Seleção de linhagens de melancia resistentes ao Watermelon mosaic virus e ao Papaya ringspot virus Selection of resistant watermelon lines to Watermelon mosaic virus and Papaya ringspot virus

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2007-10-01

    Full Text Available Foram avaliadas 20 linhagens de melancia, provenientes do cruzamento da cultivar comercial suscetível Crimson Sweet e da introdução PI 595201 resistente ao Watermelon mosaic virus (WMV e Papaya ringspot virus (PRSV-W. As linhagens, e os parentais foram inoculados com o WMV ou com o PRSV-W em casa-de-vegetação distintas. Aos 35 e 49 dias após a primeira inoculação (DAI, as plantas foram avaliadas por meio de uma escala de notas, em que 1 (ausência de sintomas a 5 (intenso mosaico e deformações foliares. Pelos resultados infere-se que, aos 35 DAI, as linhagens 1, 2 e 20 apresentaram resistência tanto para o WMV como para o PRSV-W, com médias de 1,95, 1,80 e 2,25 para o WMV, e de 2,50, 2,30 e 2,50 para o PRSV-W, respectivamente. As linhagens 5, 7 e 13 foram resistentes somente ao WMV e as plantas das linhagens 3, 10 e 18 para o PRSV-W. A reação das linhagens permaneceu em geral pouco alterada aos 49 DAI. A existência de linhagens resistentes somente ao WMV e somente ao PRSV-W, ao lado de linhagens resistentes a ambos os vírus, é indicativo de que as resistências ao WMV e ao PRSV-W não são controladas pelos mesmos genes.Twenty advanced watermelon breeding lines, derived from the cross between cv. Crimson Sweet (susceptible and PI 595201 (resistant to WMV and PRSV-W, were screened for resistance to both potyviruses. The twenty lines, among with Crimson Sweet and PI 595201, were inoculated with either WMV or PRSV-W, in two different greenhouse trials. Plants were evaluated for symptoms 35 and 49 days after the first inoculation (DAI, using a scale from 1 (no symptoms to 5 (severe mosaic and foliar distortion. Evaluations at 35 DAI indicated that lines 1, 2 and 20 had good levels of resistance to both WMV and PRSV-W, with ratings of 1,95, 1,80 and 2,25 for WMV, and of 2,50, 2,30 and 2,50 for PRSV-W, respectively. Lines 5, 7 and 13 were resistant to WMV only, whereas lines 3, 10 and 18 were resistant to PRSV-W only. The reaction of

  13. Downy Brome: evidence for soil engineering

    Science.gov (United States)

    Bromus tectorum L. (downy brome, cheatgrass) is an invasive Eurasian grass largely responsible for landscape level conversion of sagebrush/bunchgrass communities to annual grass dominance. We tested the hypothesis that B. tectorum alters or “engineers” the soil to favor its growth. The hypothesis wa...

  14. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  15. Implicaciones de los abejorros (Bombus spp.) en la dispersión del virus del mosaico del pepino dulce (Pepino Mosaic Virus) en cultivos de tomate

    OpenAIRE

    Lacasa Plasencia, Alfredo; Guerrero Díaz, María del Mar; Hita, I.; Martínez Francés, María A.; Jordá Gutiérrez, María Concepción; Bielza Lino, Pablo; Contreras Gallego, Joséfa; Alcázar, A.; Cano, A.

    2002-01-01

    [ESP] Desde 1999 el virus del mosaico del pepino dulce (Pepino Mosaic Virus, PepMV) afecta el cultivo del tomate en varios países europeos. Produce abullonado, mosaicos y filiformismo en las hojas jóvenes y jaspeado y pardeamiento en los frutos. Se transmite fácilmente por contacto entre plantas y mecánicamente por las manipulaciones de las labores culturales (desbrotado, entutorado, etc.). Se han realizado ensayos para conocer las posibles implicaciones de los abejorros pol...

  16. Complete Genome Sequence of the Pokeweed Mosaic Virus (PkMV)-New Jersey Isolate and Its Comparison to PkMV-MD and PkMV-PA

    OpenAIRE

    Di, Rong

    2016-01-01

    Pokeweed mosaic virus (PkMV) causes systemically mosaic symptoms on pokeweed (Phytolacca americana L.) plants. The genome of the PkMV-NJ (New Jersey) isolate was cloned by PCR and sequenced by the Sanger sequencing method. The sequence comparison indicates that PkMV-NJ is more divergent from the other two sequenced isolates, PkMV-MD and PkMV-PA.

  17. Characteristics of a Lettuce mosaic virus Isolate Infecting Lettuce in Korea

    Directory of Open Access Journals (Sweden)

    Seungmo Lim

    2014-06-01

    Full Text Available Lettuce mosaic virus (LMV causes disease of plants in the family Asteraceae, especially lettuce crops. LMV isolates have previously been clustered in three main groups, LMV-Yar, LMV-Greek and LMVRoW. The first two groups, LMV-Yar and LMV-Greek, have similar characteristics such as no seed-borne transmission and non-resistance-breaking. The latter one, LMV-RoW, comprising a large percentage of the LMV isolates contains two large subgroups, LMV-Common and LMV-Most. To date, however, no Korean LMV isolate has been classified and characterized. In this study, LMV-Muju, the Korean LMV isolate, was isolated from lettuce showing pale green and mottle symptoms, and its complete genome sequence was determined. Classification method of LMV isolates based on nucleotide sequence divergence of the NIb-CP junction showed that LMV-Muju was categorized as LMV-Common. LMV-Muju was more similar to LMV-O (LMV-Common subgroup than to LMV-E (LMV-RoW group but not LMV-Common subgroup even in the amino acid domains of HC-Pro associated with pathogenicity, and in the CI and VPg regions related to ability to overcome resistance. Taken together, LMV-Muju belongs to the LMV-Common subgroup, and is expected to be a seed-borne, non-resistance-breaking isolate. According to our analysis, all other LMV isolates not previously assigned to a subgroup were also included in the LMV-RoW group.

  18. Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

    Directory of Open Access Journals (Sweden)

    Klara Altintoprak

    2015-06-01

    Full Text Available The coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures. Nanotubular tobacco mosaic virus (TMV templates have proved particularly suitable towards this goal: Their multivalent protein coating can be modified by high-surface-density conjugation of peptides, inducing and governing silica deposition from precursor solutions in vitro. In this study, TMV has been equipped with mineralization-directing peptides designed to yield silica coatings in a reliable and predictable manner via precipitation from tetraethoxysilane (TEOS precursors. Three peptide groups were compared regarding their influence on silica polymerization: (i two peptide variants with alternating basic and acidic residues, i.e. lysine–aspartic acid (KDx motifs expected to act as charge-relay systems promoting TEOS hydrolysis and silica polymerization; (ii a tetrahistidine-exposing polypeptide (CA4H4 known to induce silicification due to the positive charge of its clustered imidazole side chains; and (iii two peptides with high ZnO binding affinity. Differential effects on the mineralization of the TMV surface were demonstrated, where a (KDx charge-relay peptide (designed in this study led to the most reproducible and selective silica deposition. A homogenous coating of the biotemplate and tight control of shell thickness were achieved.

  19. Transmission of Bamboo mosaic virus in Bamboos Mediated by Insects in the Order Diptera

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chang

    2017-05-01

    Full Text Available Bamboo mosaic virus (BaMV, a member of the genus Potexvirus, is the major threat to bamboo cultivation. Similar to most potexviruses, the transmission of BaMV by insect vectors has not been documented previously. However, field observations of BaMV disease incidences suggested that insect vectors might be involved. In this study, we aimed to investigate the possibility of insect-mediated transmission of BaMV among bamboo clumps, in order to provide further insights into the infection cycles of BaMV for the development of effective disease management measures. From the major insects collected from infected bamboo plantations, BaMV genomic RNAs were detected inside the bodies of two dipteran insects, Gastrozona fasciventris and Atherigona orientalis, but not in thrips (Scirtothrips dorsalis. Artificial feeding assays using green fluorescent protein-tagged BaMV virions revealed that BaMV could enter the digestive systems and survive in the regurgitant and excretion of the dipterans. BaMV RNA could be retained in the dipterans for up to 4 weeks. Insect-mediated transmission assays indicated that both dipterans could transmit BaMV to bamboo seedlings through artificially created wounds with low infection efficiency (14 – 41%, suggesting that the dipterans may mediate the transmission in a mechanical-like manner. These results demonstrated that dipterans with sponge-like mouthparts may also serve as vectors for at least one potexvirus, BaMV, among bamboo plants. The finding suggested that dipteran insect control should be integrated into the disease management measures against BaMV infections.

  20. Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus

    Science.gov (United States)

    Hodge, Simon; Powell, Glen

    2010-01-01

    Plant pathogens can induce symptoms that affect the performance of insect herbivores utilizing the same host plant. Previous studies examining the effects of infection of tic bean, Vicia faba L. (Fabales: Fabaceae), by pea enation mosaic virus (PEMV), an important disease of legume crops, indicated there were no changes in the growth and reproductive rate of its primary vector the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Here, we report the results of laboratory experiments investigating how A. pisum responded to PEMV infection of a different host plant, Pisum sativum L., at different stages of symptom development. Aphid growth rate was negatively related to the age of the host plant, but when they were introduced onto older plants with well-developed PEMV symptoms they exhibited a higher growth rate compared to those developing on uninfected plants of the same age. In choice tests using leaf discs A. pisum showed a strong preference for discs from PEMV-infected peas, probably in response to visual cues from the yellowed and mottled infected leaves. When adults were crowded onto leaves using clip-cages they produced more winged progeny on PEMV-infected plants. The results indicate that PEMV produces symptoms in the host plant that can enhance the performance of A. pisum as a vector, modify the production of winged progeny and affect their spatial distribution. The findings provide further evidence that some insect vector/plant pathogen interactions could be regarded as mutualistic rather than commensal when certain conditions regarding the age, stage of infection and species of host plant are met. PMID:21067425

  1. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  2. Phylogenetic analysis of Tomato mosaic virus from Hemerocallis sp. and Impatiens hawkeri Análise filogenética de Tomato mosaic virus isolado de Hemerocallis sp. e Impatiens hawkeri

    Directory of Open Access Journals (Sweden)

    Lígia Maria Lembo Duarte

    2007-12-01

    Full Text Available The culture and commercialization of ornamental plants have considerably increased in the last years. To supply the commercial demand, several Hemerocallis and Impatiens varieties have been bred for appreciated qualities such as flowers with a diversity of shapes and colors. With the aim of characterizing the tobamovirus isolated from Hemerocallis sp. (tobamo-H and Impatiens hawkeri (tobamo-I from the USA and São Paulo, respectively, as well as to establish phylogenetic relationships between them and other Tobamovirus species, the viruses were submitted to RNA extraction, RT-PCR amplification, coat-protein gene sequencing and phylogenetic analyses. Comparison of tobamovirus homologous sequences yielded values superior to 98.5% of identity with Tomato mosaic virus (ToMV isolates at the nucleotide level. In relation to tobamo-H, 100% of identity with ToMV from tomatoes from Australia and Peru was found. Based on maximum likelihood (ML analysis it was suggested that tobamo-H and tobamo-I share a common ancestor with ToMV, Tobacco mosaic virus, Odontoglossum ringspot virus and Pepper mild mottle virus. The tree topology reconstructed under ML methodology shows a monophyletic group, supported by 100% of bootstrap, consisting of various ToMV isolates from different hosts, including some ornamentals, from different geographical locations. The results indicate that Hemerocallis sp. and I. hawkeri are infected by ToMV. This is the first report of the occurrence of this virus in ornamental species in Brazil.O cultivo e comercialização de plantas ornamentais têm aumentado consideravelmente nos últimos anos. Para suprir a demanda comercial, diversas variedades de Hemerocallis sp. e Impatiens hawkeri têm sido desenvolvidas pelas qualidades apreciáveis como flores com diversidade de formas e cores. Com o objetivo de caracterizar o tobamovirus isolado de Hemerocallis sp. (tobamo-H e Impatiens hawkeri (tobamo-I provenientes dos EUA e São Paulo

  3. Aktivitas Antivirus Beberapa Ekstrak Tanaman terhadap Bean Common Mosaic Virus strain Black Eye Cowpea (BCMV-BIC pada Kacang Panjang

    Directory of Open Access Journals (Sweden)

    Tri Asmira Damayanti

    2014-03-01

    Full Text Available ABSTRACT Antivirus actitivity of several plant extracts against Bean common mosaic virus strain Black eye cowpea (BCMV-BlC on Yard long bean.  Bean common mosaic virus (BCMV is an important virus on yard long bean and it is difficult to control. One of control effort way by utilizing antiviral substances of plant origin. The research was done to select and test the effectiveness of plant extracts in suppressing BCMV infection on yard long bean. Twenty two plant extracts were selected by (1 spraying the crude extract to Chenopodium amaranticolor leaves, then plant inoculated by BCMV 1 hour after spraying, and (2 mixturing the crude extract with sap containing BCMV, then inoculated mechanically to C. amaranticolor.  Local necrotic lesion  number and inhibition percentage are measured. All plant extract treatments were able to reduce Necrotic lokal lesion  formation significantly  compared to untreatment control. Further, fifteen plant extracts were selected to test their effectiveness in controlling BCMV on yard long bean in green house trial. The results showed that except geranium and red ginger treatment, other extract treatments were able to reduce significantly the disease incidence and severity, symptoms, and  BCMV titer, respectively. Among tested extracts, Bougainvillea spectabilis, Mirabilis jalapa, and Celosia cristata are the most effective crude extracts in suppressing BCMV infection.

  4. Mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette T [Los Alamos, NM; Fischer, William [Los Alamos, NM; Liao, Hua-Xin [Durham, NC; Haynes, Barton F [Durham, NC; Letvin, Norman [Boston, MA; Hahn,; Beatrice, H [Birmingham, AL

    2011-05-31

    The present invention relates to mosaic clade M HIV-1 Env polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  5. Human Immunodeficiency Virus type 1 group M consensus and mosaic envelope glycoproteins

    Science.gov (United States)

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn, Beatrice H.

    2017-11-21

    The disclosure relates to nucleic acids mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids are suitable for use in inducing an immune response to HIV-1 in a human.

  6. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    Science.gov (United States)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  7. Complete genome sequence of Jacquemontia yellow mosaic virus, a novel begomovirus from Venezuela related to other New World bipartite begomoviruses infecting Convolvulaceae.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Moriones, Enrique; Navas-Castillo, Jesús

    2014-07-01

    The complete genome of a bipartite begomovirus (genus Begomovirus, family Geminiviridae) infecting Jacquemontia sp. (Convolvulaceae) in Venezuela has been cloned and sequenced. Sequence comparison and phylogenetic analysis have shown that it represents an isolate of a novel species with closest relatives being two New World bipartite begomoviruses that infect Convolvulaceae, Jacquemontia mosaic Yucatan virus and Merremia mosaic virus. The DNA-As of these begomoviruses, however, share only 77.0-78.4 % nucleotide sequence identity with the DNA-A of the isolate described here, for which a recombinant origin is suggested. Based on the symptoms observed in the field, the name Jacquemontia yellow mosaic virus (JacYMV) is proposed for this novel bipartite begomovirus.

  8. Comparative Study of Non-Enveloped Icosahedral Viruses Size.

    Directory of Open Access Journals (Sweden)

    Nikolai Nikitin

    Full Text Available Now, as before, transmission electron microscopy (TEM is a widely used technique for the determination of virions size. In some studies, dynamic light scattering (DLS has also been applied for this purpose. Data obtained by different authors and using different methods could vary significantly. The process of TEM sample preparation involves drying on the substrate, which can cause virions to undergo morphology changes. Therefore, other techniques should be used for measurements of virions size in liquid, (i.e. under conditions closer to native. DLS and nanoparticle tracking analysis (NTA provide supplementary data about the virions hydrodynamic diameter and aggregation state in liquid. In contrast to DLS, NTA data have a higher resolution and also are less sensitive to minor admixtures. In the present work, the size of non-enveloped icosahedral viruses of different nature was analyzed by TEM, DLS and NTA: the viruses used were the encephalomyocarditis virus (animal virus, and cauliflower mosaic virus, brome mosaic virus and bean mild mosaic virus (plant viruses. The same, freshly purified, samples of each virus were used for analysis using the different techniques. The results were compared with earlier published data and description databases. DLS data about the hydrodynamic diameter of bean mild mosaic virus, and NTA data for all examined viruses, were obtained for the first time. For all virus samples, the values of size obtained by TEM were less than virions sizes determined by DLS and NTA. The contribution of the electrical double layer (EDL in virions hydrodynamic diameter was evaluated. DLS and NTA data adjusted for EDL thickness were in better agreement with TEM results.

  9. Plant virus-resembling optical nano-materials conjugated with anti-EGFR for targeted cancer imaging

    Science.gov (United States)

    Gupta, Sharad; Wilder, Hailey; Rao, A. L. N.; Vullev, V. I.; Anvari, Bahman

    2012-03-01

    We recently reported the construction of a new type of optically active nano-particles composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with indocyanine green (ICG), an FDA-approved chromophore . We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. Herein, we covalently conjugated the surface of OVGs with anti-epidermal growth factor receptors (anti-EGFR) to target cancerous human bronchial epithelial cells (C-HBECs) in-vitro. Our preliminary results demonstrate the utility of conjugated OVGs for targeted imaging of cancer cells.

  10. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  11. Herança da resistência a Watermelon mosaic virus em melancia

    Directory of Open Access Journals (Sweden)

    Lindomar Maria da Silveira

    2014-08-01

    Full Text Available Entre as doenças que ocorrem na cultura da melancia (Citrullus lanatus, a virose ocasionada por Watermelon mosaic virus (WMV se destaca entre as principais, sendo a resistência genética a forma mais indicada de controle. Dessa forma, é importante o conhecimento do controle genético da resistência que se pretende trabalhar. Objetivando estudar a herança da resistência ao WMV em melancia, foram realizados cruzamentos entre o cultivar Crimson Sweet (CS suscetível e a linha L26 resistente. Populações segregantes e não segregantes obtidas dos cruzamentos foram inoculadas com um isolado de WMV e avaliadas quanto ao aparecimento de sintomas e à presença do vírus por testes de ELISA indireto contra antissoro específico para WMV. A hipótese de herança monogênica foi avaliada em diferentes graus médios de dominância e pelo método da máxima verossimilhança. Foram obtidas variâncias genética (σ²G, ambiental (σ²E, fenotípica (σ²F2, aditiva (σ²A e de dominância (σ²D, herdabilidades nos sentidos amplo (h²a e restrito (h²r. A herança monogênica foi rejeitada. O grau médio de dominância indicou efeito de dominância completa. As herdabilidades no sentido amplo foram baixas; portanto, constatou-se que o controle da resistência a WMV nas populações de melancia estudadas é do tipo oligogênica, com presença de efeitos aditivos e não aditivos e presença de genes maiores e poligenes.

  12. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  13. Desenvolupament d’un vector d’expressió en plantes derivat del virus del mosaic de la tomaca

    OpenAIRE

    MARTÍNEZ LLIDÓ, GLÒRIA

    2016-01-01

    [CAT] El virus del mosaic de la tomaca (ToMV; gènere Tobamovirus, família Virgaviridae) consisteix en un ARN genòmic d’aproximadament 6400 nucleòtids que s’encapsida en virions en forma de vareta formats per subunitats de la proteïna de coberta (CP). Les partícules d’aquest virus són molt estables i es transmeten molt eficientment a plantes de tomaca i altres espècies hortícoles d’interès agronòmic provocant importants pèrdues en els cultius. Existeixen gens de resistència cont...

  14. SAXS characterization of genetically engineered tobacco mosaic virus nanorods coated with palladium in the absence of external reducing agents.

    Science.gov (United States)

    Freer, Alexander S; Guarnaccio, Lucas; Wafford, Kristin; Smith, Johanna; Steilberg, Jayne; Culver, James N; Harris, Michael T

    2013-02-15

    Genetic modifications of the tobacco mosaic virus (TMV) coat proteins allow for an increase in the selective deposition and controlled growth of different metals onto the surface of the virus, making it an ideal biotemplate for metal nanowire formation. In the current process, TMV2Cys is coated sequentially with multiple uniform layers of palladium metal in aqueous solution under very mild conditions. Palladium nanowires of 300 nm in length and 30-40 nm in diameter have been created with this process. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) are used to characterize the thickness and uniformity of the metal surface. The TEM and SAXS results confirm that the final thickness of the palladium nanowires is controllable by varying the number of coating layers or the initial palladium concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Complete nucleotide sequences of seven soybean mosaic viruses (SMV), isolated from wild soybeans (Glycine soja) in China.

    Science.gov (United States)

    Chen, Yun-Xia; Wu, Mian; Ma, Fang-Fang; Chen, Jian-Qun; Wang, Bin

    2017-03-01

    Soybean mosaic virus (SMV) is a devastating plant virus classified in the family Potyviridae, and known to infect cultivated soybeans (Glycine max). In this study, seven new SMVs were isolated from wild soybean samples and analyzed by whole-genome sequencing. An updated SMV phylogeny was built with the seven new and 83 known SMV genomic sequences. Results showed that three northeastern SMV isolates were distributed in clade III and IV, while four southern SMVs were grouped together in clade II and all contained a recombinant BCMV fragment (~900 bp) in the upstream part of the genome. This work revealed that wild soybeans in China also act as important SMV hosts and play a role in the transmission and diversity of SMVs.

  16. In Vitro Transcripts of Wild-Type and Fluorescent Protein-Tagged Triticum mosaic virus (Family Potyviridae) are Biologically Active in Wheat.

    Science.gov (United States)

    Tatineni, Satyanarayana; McMechan, Anthony J; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A

    2015-11-01

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.

  17. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis

    Science.gov (United States)

    Song, Geun Cheol; Choi, Hye Kyung; Ryu, Choong-Min

    2013-01-01

    Background and Aims The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathogen in tobacco has been reported previously. Methods In the present study, para-aminobenzoic acid (PABA, also referred to as vitamin Bx) was selected owing to its effect on the induction of SAR against Xanthomonas axonopodis pv. vesicatoria in pepper plants through greenhouse screening. Key Results Dipping of pepper seedlings in a 1 mm PABA solution in field trials induced SAR against artificially infiltrated X. axonopodis pv. vesicatoria and naturally occurring cucumber mosaic virus. Expression of the Capsicum annuum pathogenesis-related 4 gene was primed in response to pathogen infection as assessed by quantitative real-time PCR. The accumulation of cucumber mosaic virus RNA was reduced in PABA-treated pepper plants at 40 and 105 d post-treatment. Unexpectedly, fruit yield was increased in PABA-treated plants, indicating that PABA-mediated SAR successfully protected pepper plants from infection by bacterial and viral pathogens without significant fitness allocation costs. Conclusions The present study is the first to demonstrate the effective elicitation of SAR by a folate precursor under field conditions. PMID:23471007

  18. Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens.

    Directory of Open Access Journals (Sweden)

    Shehnaz Lokhandwala

    Full Text Available Bovine viral diarrhea virus (BVDV plays a key role in bovine respiratory disease complex, which can lead to pneumonia, diarrhea and death of calves. Current vaccines are not very effective due, in part, to immunosuppressive traits and failure to induce broad protection. There are diverse BVDV strains and thus, current vaccines contain representative genotype 1 and 2 viruses (BVDV-1 & 2 to broaden coverage. BVDV modified live virus (MLV vaccines are superior to killed virus vaccines, but they are susceptible to neutralization and complement-mediated destruction triggered by passively acquired antibodies, thus limiting their efficacy. We generated three novel mosaic polypeptide chimeras, designated NproE2123; NS231; and NS232, which incorporate protective determinants that are highly conserved among BVDV-1a, 1b, and BVDV-2 genotypes. In addition, strain-specific protective antigens from disparate BVDV strains were included to broaden coverage. We confirmed that adenovirus constructs expressing these antigens were strongly recognized by monoclonal antibodies, polyclonal sera, and IFN-γ-secreting T cells generated against diverse BVDV strains. In a proof-of-concept efficacy study, the multi-antigen proto-type vaccine induced higher, but not significantly different, IFN-γ spot forming cells and T-cell proliferation compared to a commercial MLV vaccine. In regards to the humoral response, the prototype vaccine induced higher BVDV-1 specific neutralizing antibody titers, whereas the MLV vaccine induced higher BVDV-2 specific neutralizing antibody titers. Following BVDV type 2a (1373 challenge, calves immunized with the proto-type or the MLV vaccine had lower clinical scores compared to naïve controls. These results support the hypothesis that a broadly protective subunit vaccine can be generated using mosaic polypeptides that incorporate rationally selected and validated protective determinants from diverse BVDV strains. Furthermore, regarding

  19. The nucleocapsid protein of an enveloped plant virus, Tomato spotted wilt virus, facilitates long-distance movement of Tobacco mosaic virus hybrids.

    Science.gov (United States)

    Zhang, Yongqiang; Zhang, Chao; Li, Weimin

    2012-01-01

    To investigate the potential role(s) of the nucleocapsid (N) protein of Tomato spotted wilt virus (TSWV), the open reading frame for the N protein was expressed from a Tobacco mosaic virus (TMV)-based vector encoding only the TMV replicase proteins. In the absence of other TSWV-encoded proteins, the transiently expressed N protein facilitated long-distance movement of the TMV-based hybrids in transgenic Nicotiana benthamiana [NB-MP(+)] expressing movement protein of TMV, thus providing the functional demonstration of the N protein in long-distance RNA movement. Removal of the N-terminal 39 amino acids (N-NΔ39), the C-terminal 26 amino acids (N-CΔ26) or both of them (N-NΔ39CΔ26) abolished the long-distance movement function, indicating the essential role of both N- and C-terminus. In contrast, alanine substitution of the phenylalanines at positions 242 and 246 (N242/262A), two crucial amino acids for homotypic interaction of the N protein, had little effect, suggesting that the N protein could function in long-distance movement in the form of monomers. In addition, both the wild type N and the alanine mutant N242/262A hardly induced local symptoms in NB-MP(+) plants and TMV-MP transgenic N. tabacum cv. Xanthi. The deletion mutants N-NΔ39, N-CΔ26 and N-NΔ39CΔ26, however, induced apparent symptoms of necrotic ringspots, necrosis or chlorotic spots in all inoculated leaves. On the basis of these findings, the potential role of N during the TSWV infection was discussed. To our knowledge, this is the first report that the N protein of an enveloped plant virus functioned in long-distance movement. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: Formation of dense fluorescent aggregates for sensitive virus tracking

    Science.gov (United States)

    A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...

  1. El virus del mosaico del pepino dulce (Pepino mosaic virus) afectando al cultivo del tomate (Solanum lycopersicum): Caracterización y Epidemiología

    OpenAIRE

    Córdoba Sellés, Carmen

    2010-01-01

    El Pepino mosaic virus (PepMV) fue descrito por primera vez en 1980 por Jones y colaboradores, infectando a cultivos de Solanum muricatum de la zona costera de Perú. Esta nueva entidad viral, aunque infectaba al tomate, sólo le producía infecciones asintomáticas. Al inicio de 1999, el PepMV apareció en Holanda, infectando a tomate protegido (Van der Vlugt et al., 2000) y mostrando una variada sintomatología: mosaicos dorados o verde claro-verde oscuro, filiformismo y abullonado de las hojas, ...

  2. Integrated management of downy brome in winter wheat

    Science.gov (United States)

    Downy brome (Bromus tectorum L.), also known as cheatgrass, was introduced into North America from the Mediterranean area of Europe. It was first identified in the eastern United States in 1861, and by 1914 this invasive weed had spread throughout the continent. Downy brome is adapted to climates wi...

  3. Phenology of exotic invasive weeds associated with downy brome

    Science.gov (United States)

    The exotic and highly invasive annual grass downy brome (Bromus tectorum) has invaded millions of hectares of rangelands throughout the Intermountain West. Downy brome increases the chance, rate, season and spread of wildfires, resulting in the destruction of native plant communities and the wildli...

  4. Population level response of downy brome to soil growing medium

    Science.gov (United States)

    Downy brome (Bromus tectorum) is the most ubiquitous exotic invasive weed in the Intermountain West. A major issue for management is the extreme generalist plastic nature of downy brome. We hypothesized that soil growing medium would effect all measured response variables representing some degree of...

  5. Downy brome seed ecology: From flower to emergence

    Science.gov (United States)

    Downy brome (Bromus tectorum) seed is very common in seed banks throughout Great Basin rangelands. Previously, using a soil bioassay method, we tested 100 separate sites within the Great Basin (1000 samples) to measure downy brome seed bank densities. The locations differed greatly by precipitation,...

  6. Wheat streak mosaic virus Coat Protein Deletion Mutants Elicit More Severe Symptoms Than Wild-Type Virus in Multiple Cereal Hosts.

    Science.gov (United States)

    Tatineni, Satyanarayana; Elowsky, Christian; Graybosch, Robert A

    2017-12-01

    Previously, we reported that coat protein (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. In this study, we demonstrated that WSMV mutants with deletion of CP amino acids 58 to 84 but not of 36 to 57 induced severe chlorotic streaks and spots, followed by acute chlorosis in wheat, maize, barley, and rye compared with mild to moderate chlorotic streaks and mosaic symptoms by wild-type virus. Deletion of CP amino acids 58 to 84 from the WSMV genome accelerated cell-to-cell movement, with increased accumulation of genomic RNAs and CP, compared with the wild-type virus. Microscopic examination of wheat tissues infected by green fluorescent protein-tagged mutants revealed that infection by mutants lacking CP amino acids 58 to 84 caused degradation of chloroplasts, resulting in acute macroscopic chlorosis. The profile of CP-specific proteins was altered in wheat infected by mutants causing acute chlorosis, compared with mutants eliciting wild-type symptoms. All deletion mutants accumulated CP-specific major protein similarly to that in wild-type virus; however, mutants that elicit acute chlorosis failed to accumulate a 31-kDa minor protein compared with wild-type virus or mutants lacking amino acids 36 to 57. Taken together, these data suggest that deletion of CP amino acids 58 to 84 from the WSMV genome enhanced accumulation of CP and genomic RNA, altered CP-specific protein profiles, and caused severe symptom phenotypes in multiple cereal hosts.

  7. Pepper yellow mosaic virus, a new potyvirus in sweet-pepper. Archives of Virology

    NARCIS (Netherlands)

    Inoue-Nagata, A.K.; Fonseca, M.E.N.; Resende, de R.O.; Boiteux, L.S.; Monte, D.C.; Dusi, A.N.; Ávila, de A.C.; Vlugt, van der R.A.A.

    2002-01-01

    A potyvirus was found causing yellow mosaic and veinal banding in sweetpepper in Central and Southeast Brazil. The sequence analysis of the 3' terminal region of the viral RNA revealed a coat protein of 278 amino acids, followed by 275 nucleotides in the 3'-untranslated region preceding a

  8. First report of Catharanthus mosaic virus in Mandevilla in the United States

    Science.gov (United States)

    Mandevilla (Apocynaceae) is an ornamental tropical vine popular for its bright and attractive flowers. During 2012-2013 twelve Mandevilla sp. samples from Minnesota and Florida nurseries were submitted for analysis at the University of Minnesota Plant Disease Clinic. Plants showed mosaic symptoms, ...

  9. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    Science.gov (United States)

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  10. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani.

    Science.gov (United States)

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2015-06-04

    Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids--documented in previous studies--compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission.

  11. Introduction of East African cassava mosaic Zanzibar virus to Oman harks back to "Zanzibar, the capital of Oman".

    Science.gov (United States)

    Khan, Akhtar J; Akhtar, Sohail; Al-Matrushi, Abdulrahman M; Fauquet, Claude M; Briddon, Rob W

    2013-02-01

    Cassava mosaic disease (CMD) is the most devastating disease of the subsistence crop cassava (Manihot esculenta) across Africa and the Indian subcontinent. The disease is caused by viruses of the genus Begomovirus (family Geminiviridae)-seven species have been identified so far. The Sultanate of Oman is unusual among countries in Arabia in growing cassava on a small scale for local consumption. During a recent survey in A'Seeb wilayat of Muscat governorate, Oman, cassava plants were identified with symptoms typical of CMD. A begomovirus, East African cassava mosaic Zanzibar virus (EACMZV), was isolated from symptomatic plants. This virus was previously only known to occur in Zanzibar and Kenya. During the 19th Century, Zanzibar was governed by Oman and was so important that the Sultan of Oman moved his capital there from Muscat. After a period of colonial rule, the governing Arab elite was overthrown, following independence in the 1960s, and many expatriate Omanis returned to their homeland. Having gained a liking for the local Zanzibar cuisine, it appears that returning Omanis did not wish to do without dishes made from one particular favorite, cassava. Consequently, they carried planting material back to Oman for cultivation in their kitchen gardens. The evidence suggests that this material harbored EACMZV. Recently, Oman has been shown to be a nexus for geminiviruses and their associated satellites from diverse geographic origins. With their propensity to recombine, a major mechanism for evolution of geminiviruses, and the fact that Oman (and several other Arabian countries) is a major hub for trade and travel by air and sea, the possibility of onward spread is worrying.

  12. Nuclear-Encoded Plastidal Carbonic Anhydrase Is Involved in Replication of Bamboo mosaic virus RNA in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    I.-Hsuan Chen

    2017-10-01

    Full Text Available On inoculation of Nicotiana benthamiana with Bamboo mosaic virus (BaMV, a gene with downregulated expression was found involved in the infection cycle of BaMV. To uncover how this downregulated gene affects the accumulation of BaMV in plants, we used loss- and gain-of-function experiments. Knockdown of this gene decreased the accumulation of BaMV coat protein to approximately 60% in both plants and protoplasts of N. benthamiana but had no effect on Potato virus X and Cucumber mosaic virus infection. The full-length gene was cloned and revealed as an N. benthamiana nuclear-encoded chloroplast carbonic anhydrase (CA and so designated NbCA. As compared with the accumulation of BaMV RNAs in NbCA-knockdown protoplasts, both plus- and minus-strand RNAs were reduced. We further fused NbCA with Orange fluorescent protein to confirm its localization in chloroplasts on confocal microscopy. However, transiently expressed NbCA in chloroplasts did not considerably increase BaMV accumulation. The addition of exogenous CA may not have any additive effect on BaMV accumulation because of the natural abundance of CA in chloroplasts. In an in vitro replication assay, the addition of Escherichia coli-expressed NbCA enhanced exogenous template level (re-initiation and elongation but not endogenous template level (only elongation. These results suggest that NbCA is possibly involved in re-initiation step of BaMV RNA replication. Further analysis indicated that proton concentration could influence the endogenous and exogenous template activities. Hence, our results implied that NbCA could be playing a role in harnessing proton concentration and favoring the replicase with the re-initiation template.

  13. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV)

    Czech Academy of Sciences Publication Activity Database

    Černá, H.; Černý, M.; Habanová, H.; Šafářová, D.; Abushamsiya, K.; Navrátil, M.; Brzobohatý, Břetislav

    2017-01-01

    Roč. 153, FEB2017 (2017), s. 78-88 ISSN 1874-3919 Institutional support: RVO:68081707 Keywords : Proteome * Pea seed-borne mosaic virus PSbMV * Potyvirus Subject RIV: CE - Biochemistry Impact factor: 3.914, year: 2016

  14. Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus

    Science.gov (United States)

    In 2014, we performed a nationwide survey in Korean radish fields to investigate the distribution of Turnip mosaic virus (TuMV). Brassica chinensis sap-inoculated with TuMV-infected radish tissue showed different symptom severity with three isolates. In order to investigate variation among Korean Tu...

  15. Sequence variability in HC-Pro genes of Korean Soybean mosaic virus isolates is associated with differences in gene silencing suppression

    Science.gov (United States)

    Soybean mosaic virus (SMV), a member of the family Potyviridae, is an important viral pathogen affecting soybean production in Korea. The variability in helper component proteinase (HC-Pro) sequence and pathogenicity of SMV isolates from seven provinces of Korea was investigated and compared with th...

  16. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles.

    Science.gov (United States)

    Wan, Juan; Basu, Kaustuv; Mui, Jeannie; Vali, Hojatollah; Zheng, Huanquan; Laliberté, Jean-François

    2015-12-01

    Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The

  17. Detection of Helenium virus S and two distinct isolates of Butterbur mosaic virus in a single plant of Veronica

    Science.gov (United States)

    A Veronica plant showing mosaic symptoms was examined by electron microscopy, which revealed particles typical of carlaviruses. RNA extracted from virions partially purified by high speed centrifugation through a 30% sucrose cushion was used as template for random PCR to produce a viral cDNA librar...

  18. Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage).

    Science.gov (United States)

    Lydiate, Derek J; Pilcher, Rachel L Rusholme; Higgins, Erin E; Walsh, John A

    2014-08-01

    Turnip mosaic virus (TuMV) is the major virus infecting crops of the genus Brassica worldwide. A dominant resistance gene, TuRB01b, that confers immunity to the virus isolate UK 1 (a representative pathotype 1 isolate of TuMV) on Brassica rapa was identified in the Chinese cabbage cultivar Tropical Delight. The TuRB01b locus was mapped to a 2.9-cM interval on B. rapa chromosome 6 (A6) that was flanked by RFLP markers pN101e1 and pW137e1. This mapping used a first backcross (B(1)) population segregating for the resistance gene at TuRB01b and sets of RFLP markers employed in previous mapping experiments in Brassica. Virus-plant interaction phenotypes were assayed in inbred progeny derived from B(1) individuals to allow different virus isolates to be tested. Comparative mapping confirmed that A6 of B. rapa was equivalent to chromosome 6 of Brassica napus (A6) and that the map position of TuRB01b in B. rapa could be identical to that of TuRB01 in B. napus. Detailed evaluation of plant-virus interactions showed that TuRB01 and TuRB01b had indistinguishable specificities to a range of TuMV isolates. The possibility that TuRB01 and TuRB01b represent similar or identical alleles at the same A genome resistance locus suggests that B. napus acquired TuRB01 from the B. rapa gene pool.

  19. Differential Characteristics of Viral siRNAs between Leaves and Roots of Wheat Plants Naturally Infected with Wheat Yellow Mosaic Virus, a Soil-Borne Virus.

    Science.gov (United States)

    Li, Linying; Andika, Ida Bagus; Xu, Yu; Zhang, Yan; Xin, Xiangqi; Hu, Lifeng; Sun, Zongtao; Hong, Gaojie; Chen, Yang; Yan, Fei; Yang, Jian; Li, Junmin; Chen, Jianping

    2017-01-01

    RNA silencing is an important innate antiviral defense in plants. Soil-borne plant viruses naturally infect roots via soil-inhabiting vectors, but it is unclear how antiviral RNA silencing responds to virus infection in this particular tissue. In this study, viral small interfering RNA (siRNA) profiles from leaves and roots of wheat plants naturally infected with a soil-borne virus, wheat yellow mosaic virus (WYMV, genus Bymovirus ), were analyzed by deep sequencing. WYMV siRNAs were much more abundant in roots than leaves, which was positively correlated with the accumulation of viral RNA. WYMV siRNAs in leaves and roots were predominantly 21- and 22-nt long and equally derived from the positive- and negative-strands of the viral genome. WYMV siRNAs from leaves and roots differed in distribution pattern along the viral genome. Interestingly, compared to siRNAs from leaves (and most other reports), those from roots obviously had a lower A/U bias at the 5'-terminal nucleotide. Moreover, the expression of Dicer-like genes upon WYMV infection were differently regulated between leaves and roots. Our data suggest that RNA silencing in roots may operate differently than in leaves against soil-borne virus invasion.

  20. Narcissus yellow stripe virus and Narcissus mosaic virus detection in Narcissus via multiplex TaqMan-based reverse transcription-PCR assay.

    Science.gov (United States)

    Jin, J; Shen, J G; Cai, W; Xie, G H; Liao, F R; Gao, F L; Ma, J F; Chen, X H; Wu, Z J

    2017-05-01

    Development of a multiplex TaqMan RT-qPCR assay to simultaneously detect Narcissus yellow stripe virus (NYSV) and Narcissus mosaic virus (NMV), frequently causing mixed narcissus infection. Feasibility verification was confirmed in natural samples. Primers and probes were designed based on the conserved CP gene regions of NYSV or NMV and their suitability for singleplex and multiplex TaqMan RT-qPCR assays as well as for conventional RT-PCR. Conventional RT-PCR, singleplex and multiplex TaqMan RT-qPCR assays proved to be NYSV and NMV specific. P-values and coefficients of variation of TaqMan RT-qPCR assays indicated high reproducibility. Significantly increased sensitivity was achieved compared to conventional RT-PCR. The detection limit of both viruses was 103 copies with superior correlation coefficients and linear standard curve responses between plasmid concentrations and Ct values. NYSV and NMV infection of narcissus leaves, petals and bulbs could successfully be detected via our multiplex RT-qPCR method at 1·25 mg. Our multiplex TaqMan RT-qPCR assay provides rapid, specific, sensitive and reliable testing to simultaneously detect NYSV and NMV, supplying useful routine monitoring for different narcissus samples. Efficient identification and discrimination of the narcissus viruses provides reliable information for scientists and conventional growers. Furthermore, it enriches the information of NYSV, NMV and other narcissus viruses. © 2017 The Society for Applied Microbiology.

  1. Assessment of three cuban sites for testing resistance to sugarcane mosaic virus

    Directory of Open Access Journals (Sweden)

    Yaquelin Puchades

    2015-03-01

    Full Text Available Sugarcane mosaic disease is amongst the world’s most important diseases affecting sugarcane worldwide. The objective was to assess the environmental conditions of the sites where the test for SCMV resistance is done. Multi-environment trial Data were analyzed using a Principal Components Analysis Eighteen sugarcane genotypes s were evaluated from the main testing sites in Cuba (Jovellanos, Florida, Mayarí . The information of the climatic conditions was recorded at local weather stations. The assessment of the sites was done by analyzing the main components. Results showed that the testing sites were different from one another, and proved that the environment strongly influences on the mosaic symptom manifestation. PCA was an excellent procedure to assess the testing sites .for SCMV resistance.

  2. Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India

    Directory of Open Access Journals (Sweden)

    Mukherjee Sunil K

    2011-06-01

    Full Text Available Abstract Background Begomoviruses have emerged as serious problem for vegetable and fiber crops in the recent past, frequently in tropical and subtropical region of the world. The association of begomovirus with eggplant yellow mosaic disease is hitherto unknown apart from one report from Thailand. A survey in Nagpur, Central India, in 2009-2010 showed severe incidence of eggplant yellow mosaic disease. Here, we have identified and characterized a begomovirus responsible for the newly emerging yellow mosaic disease of eggplant in India. Results The complete DNA-A and DNA-B genomic components of the causative virus were cloned and sequenced. Nucleotide sequence analysis of DNA-A showed that it shared highest 97.6% identity with Tomato leaf curl New Delhi virus-India[India:Udaipur:Okra:2007] and lowest 87.9% identity with Tomato leaf curl New Delhi virus-India[India:NewDelhi:Papaya:2005], while DNA-B showed highest 94.1% identity with ToLCNDV-IN[IN:UD:Ok:07] and lowest 76.2% identity with ToLCNDV-India[India:Lucknow]. Thus, it appears that this begomovirus is a variant of ubiquitous ToLCNDV and hence, we suggest the name ToLCNDV-India[India:Nagpur:Eggplant:2009] for this variant. The pathogenicity of ToLCNDV-IN[IN:Nag:Egg:09] isolate was confirmed by agroinfiltraion and dimeric clones of DNA-A and DNA-B induced characteristic yellow mosaic symptoms in eggplants and leaf curling in tomato plants. Conclusion This is the first report of a ToLCNDV variant moving to a new agriculturally important host, eggplant and causing yellow mosaic disease. This is also a first experimental demonstration of Koch's postulate for a begomovirus associated with eggplant yellow mosaic disease.

  3. Virus Nilam: Identifikasi, Karakter Biologi dan Fisik, Serta Upaya Pengendaliannya

    OpenAIRE

    Miftakhurohmah, Miftakhurohmah; Noveriza, Rita

    2015-01-01

    Infeksi virus pada tanaman nilam dapat menyebabkan penurunan produksi dan kualitas minyak. Sembilan jenis virus diidentifikasi menginfeksi tanaman nilam, yaitu Patchouli mosaic virus (PatMoV), Patchouli mild mosaic virus (PatMMV), Telosma mosaic virus (TeMV), Peanut stripe virus (PStV), Patchouli yellow mosaic virus (PatYMV), Tobacco necrosis virus (TNV), Broad bean wilt virus 2 (BBWV2), Cucumber mosaic virus (CMV), dan Cymbidium mosaic virus (CymMV). Kesembilan virus tersebut memiliki genom ...

  4. Expression of Cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sadia Hamera

    2016-11-01

    Full Text Available The Cucumber mosaic virus (CMV suppressor 2b co-localizes with AGO4 in cytoplasmic and nuclear fractions of Arabidopsis thaliana. Biochemical fractionation of A. thaliana cellular extracts revealed that 2b and AGO4 coexist in multiple size exclusions. 2b transgenic A. thaliana exhibited an enhanced accumulation of 24nt siRNAs from flowering wageningen (FWA and other heterochromatic loci. These plants also exhibited hypo-methylation of an endogenous- as well as transgene-FWA promoter at non-CG sites. In corroboration, both transgenic 2b and CMV infection affected the regulation of transposons which mimics the ago4 phenotype. In conclusion, 2b perturbs plant defense by interfering with AGO4-regulated transcriptional gene silencing.

  5. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    Science.gov (United States)

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  6. Development of plants resistant to Papaya leaf distortion mosaic virus by intergeneric hybridization between Carica papaya and Vasconcellea cundinamarcensis

    Science.gov (United States)

    Tarora, Kazuhiko; Shudo, Ayano; Kawano, Shinji; Yasuda, Keiji; Ueno, Hiroki; Matsumura, Hideo; Urasaki, Naoya

    2016-01-01

    In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya. From the cross between C. papaya and V. cundinamarcensis, we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis. Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding. PMID:28163589

  7. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-04-01

    Full Text Available RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+ RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.

  8. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Kazusato, E-mail: ohshimak@cc.saga-u.ac.jp [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Matsumoto, Kosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Yasaka, Ryosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Nishiyama, Mai; Soejima, Kenta [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Korkmaz, Savas [Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale (Turkey); Ho, Simon Y.W. [School of Biological Sciences, University of Sydney, Sydney, New South Wales (Australia); Gibbs, Adrian J. [Emeritus Faculty, Australian National University, Canberra (Australia); Takeshita, Minoru [Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki (Japan)

    2016-01-15

    Cucumber mosaic virus (CMV) is a damaging pathogen of over 200 mono- and dicotyledonous crop species worldwide. It has the broadest known host range of any virus, but the timescale of its evolution is unknown. To investigate the evolutionary history of this virus, we obtained the genomic sequences of 40 CMV isolates from brassicas sampled in Iran, Turkey and Japan, and combined them with published sequences. Our synonymous ('silent') site analyses revealed that the present CMV population is the progeny of a single ancestor existing 1550–2600 years ago, but that the population mostly radiated 295–545 years ago. We found that the major CMV lineages are not phylogeographically confined, but that recombination and reassortment is restricted to local populations and that no reassortant lineage is more than 251 years old. Our results highlight the different evolutionary patterns seen among viral pathogens of brassica crops across the world. - Highlights: • Present-day CMV lineages had a most recent common ancestor 1550–2600 years ago. • The CMV population mostly radiated less than 295–545 years ago. • No reassortant found in the present populations is more than 251 years old. • The open-reading frames evolve at around 2.3–4.7×10{sup −4} substitutions/site/year. • Synonymous codons of CMV seem to have a more precise temporal signal than all codons.

  9. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash Eficiência dos afídeos Aphis gossypii e Myzus persicae na transmissão do Cucumber mosaic virus em infecção simples e mista com dois Potyvirus para abobrinha de moita

    Directory of Open Access Journals (Sweden)

    Zayame Vegette Pinto

    2008-06-01

    Full Text Available The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV, to zucchini squash plants (Cucurbita pepo. The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.O objetivo desse trabalho foi estudar a eficiência de Aphis gossypii e Myzus persicae na transmissão do vírus do mosaico do pepino (Cucumber mosaic virus, CMV, isoladamente e em mistura com duas espécies de potyvirus (Vírus do mosaico do mamoeiro = Papaya ringspot virus - type W, PRSV-W e Vírus do mosaico amarelo da abobrinha = Zucchini yellow mosaic virus, ZYMV, para planta-testes de abobrinha de moita (Cucurbita pepo. Os dois potyvirus em geral foram transmitidos com mais eficiência pelas duas espécies de afídeos do que o CMV. A transmissão do PRSV-W, ZYMV e CMV, separadamente, foi mais eficiente do que em mistura.

  10. Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection.

    Science.gov (United States)

    Chávez-Calvillo, Gabriela; Contreras-Paredes, Carlos A; Mora-Macias, Javier; Noa-Carrazana, Juan C; Serrano-Rubio, Angélica A; Dinkova, Tzvetanka D; Carrillo-Tripp, Mauricio; Silva-Rosales, Laura

    2016-02-01

    Antagonism between unrelated plant viruses has not been thoroughly described. Our studies show that two unrelated viruses, papaya ringspot virus (PRSV) and papaya mosaic virus (PapMV) produce different symptomatic outcomes during mixed infection depending on the inoculation order. Synergism occurs in plants infected first with PRSV or in plants infected simultaneously with PRSV and PapMV, and antagonism occurs in plants infected first with PapMV and later inoculated with PRSV. During antagonism, elevated pathogenesis-related (PR-1) gene expression and increased reactive oxygen species production indicated the establishment of a host defense resulting in the reduction in PRSV titers. Polyribosomal fractioning showed that PRSV affects translation of cellular eEF1α, PR-1, β-tubulin, and PapMV RNAs in planta, suggesting that its infection could be related to an imbalance in the translation machinery. Our data suggest that primary PapMV infection activates a defense response against PRSV and establishes a protective relationship with the papaya host. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper.

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    Full Text Available The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0. Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny, whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1 to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(. To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993 substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.

  12. A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease.

    Science.gov (United States)

    Beyene, Getu; Chauhan, Raj Deepika; Taylor, Nigel J

    2017-03-07

    Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12-18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. Following inoculation, visual assessment for CMD symptom development and recovery requires 12-22 weeks. Here we report a rapid screening system for determining resistance and susceptibility to CMD based on virus-induced gene silencing (VIGS) of an endogenous cassava gene. A VIGS vector was developed based on an infectious clone of the virulent strain of East African cassava mosaic virus (EACMV-K201). A sequence from the cassava (Manihot esculenta) ortholog of Arabidopsis SPINDLY (SPY) was cloned into the CP position of the DNA-A genomic component and used to inoculate cassava plants by Helios® Gene Gun microparticle bombardment. Silencing of Manihot esculenta SPY (MeSPY) using MeSPY1-VIGS resulted in shoot-tip necrosis followed by death of the whole plant in CMD susceptible cassava plants within 2-4 weeks. CMD resistant cultivars were not affected and remained healthy after challenge with MeSPY1-VIGS. Significantly higher virus titers were detected in CMD-susceptible cassava lines compared to resistant controls and were correlated with a concomitant reduction in MeSPY expression in susceptible plants. A rapid VIGS-based screening system was developed for assessing resistance and susceptibility to CMD. The method is space and resource efficient, reducing the time required to perform CMD screening to as little as 2-4 weeks. It can be employed as a high throughput rapid screening system to assess new cassava cultivars and for

  13. Influence of the Host Cultivar on Disease and Viral Accumulation Dynamics in Tomato under Mixed Infection with Potato virus X and Tomato mosaic virus

    Directory of Open Access Journals (Sweden)

    O.S. Balogun

    2005-04-01

    Full Text Available The primary leaves of seedlings of tomato (Lycopersicon esculentum Mill. cultivar Fukuju No. 2 (a common Japanese cultivar that is susceptible to Tobacco mosaic virus (TMV, genus Tobamovirus were inoculated at the five-true leaf stage with the O strain of Potato virus X (PVX, genus Potexvirus and with a mixture of that strain plus Tomato mosaic virus (ToMV, genus Tobamovirus. Inoculation resulted in varying degrees of disease manifestation. During the acute stage of the resulting severe disease (between 5 and 12 days postinoculation, PVX and ToMV levels rose considerably in both the inoculated and the systematically infected leaves. Furthermore, levels of PVX in the systemically infected upper leaves (positions 5 to 7 of plants with a mixed infection were three to six times as high as in plants given the single infection, as determined by direct double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA. In tomato cv. GCR 236 (+/+, symptom manifestation and the accumulation of both PVX and ToMV closely followed the pattern recorded for cv. Fukuju No. 2. In cv. GCR 237 (Tm-1 plants, however, only PVX accumulated while ToMV whether inoculated singly or mixed with PVX was detected neither in the inoculated nor in the systemically infected leaves even 14 days after inoculation. In contrast to other cultivars, SDS-PAGE, Western blot and Northern blot hybridization did not reveal any enhancement of the coat protein and genomic RNA of PVX in such systemically infected leaves. Consequently, the characteristic severe symptoms normally associated with mixed infection in TMV-susceptible cultivars were absent.

  14. Biological stability of a strain of Cowpea severe mosaic virus over 20 years Estabilidade biológica de uma estirpe do Cowpea severe mosaic virus ao longo de 20 anos

    Directory of Open Access Journals (Sweden)

    José Albersio Araujo Lima

    2012-03-01

    Full Text Available Cowpea (Vigna unguiculata is an important crop of the traditional agriculture system in the Northeast of Brazil. It can be infected by more than 20 virus species and Cowpea severe mosaic virus (CPSMV is one of the most important pathogens that naturally infect cowpea in Brazil. Several CPSMV isolates were obtained and characterized in the Plant Virus Laboratory at the Federal University of Ceará: CPSMV-CE - the first characterized isolate of the virus obtained from cowpea in the State of Ceará; CPSMV-AL - isolated from cowpea in Alagoas; CPSMV-PE - isolated from cowpea in Pernambuco; CPSMV-PR - obtained from soybean (Glycine max in Paraná and CPSMV-CROT - isolated from Crotalaria paulinea, in Maranhão. An isolate of CPSMV with the property to infect the cv. Macaibo, a cowpea cultivar immune to most of CPSMV isolates was also biologically and serologically characterized as a new strain of the virus (CPSMV-MC. The CPSMV-MC was isolated in January 1990 and has been evaluated over 20 years by host range studies and maintenance in vivo by periodical mechanical inoculations in cowpea. The results of this periodical evaluation revealed that the biological integrity and the serological properties of CPSMV-MC were preserved over 20 years, indicating that the genetic preservation of a virus strain could occur over the years. Molecular studies involving part of the coat protein (CP gene of CPSMV-MC and five other Brazilian CPSMV isolates indicated a high degree of conservation, with 92-100% nucleotide sequence identity among the isolates.O feijão-caupi (Vigna unguiculata é uma cultura do sistema tradicional do Nordeste do Brasil, que pode ser infetada por mais de 20 espécies de vírus, sendo o vírus do mosaico severo do caupi (Cowpea severe mosaic virus, CPSMV um dos mais importantes patógenos que infeta naturalmente essa leguminosa no Brasil. Vários isolados do CPSMV foram obtidos e caracterizados no Laboratório de Virologia Vegetal da UFC

  15. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  16. Different virus-derived siRNAs profiles between leaves and fruits in Cucumber green mottle mosaic virus-infected Lagenaria siceraria

    Directory of Open Access Journals (Sweden)

    Junmin Li

    2016-11-01

    Full Text Available RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs playing roles in host antiviral defence are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of virus-derived small interfering RNAs (vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2,058 or 22-nt (3,996 were identified but only six (21-nt and one (22-nt positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5’-terminal and 3’-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.

  17. Short distance movement of genomic negative strands in a host and nonhost for Sugarcane mosaic virus (SCMV

    Directory of Open Access Journals (Sweden)

    Hernández-Vela Juan

    2011-01-01

    Full Text Available Abstract Background In order to obtain an initial and preliminary understanding of host and nonhost resistance in the initial step of potyvirus replication, both positive and negative Sugarcane mosaic virus (SCMV strands where traced in inoculated and systemic leaves in host and nonhost resistant maize and sugarcane for one Mexican potyviral isolate (SCMV-VER1. Intermediary replication forms, such as the negative viral strand, seem to only move a short distance as surveyed by RT-PCR analysis and ELISA in different leaves. Virus purification was also done in leaves and stems. Results Susceptible maize plants allowed for viral SCMV replication, cell-to-cell, and long distance movement, as indicated by the presence of the coat protein along the plant. In the host resistant maize plants for the SCMV-VER1 isolate, the virus was able to establish the disease though the initial steps of virus replication, as detected by the presence of negative strands, in the basal area of the inoculated leaves at six and twelve days post inoculation. The nonhost sugarcane for SCMV-VER1 and the host sugarcane for SCMV-CAM6 also allowed the initial steps of viral replication for the VER1 isolate in the local inoculated leaf. SCMV-VER1 virions could be extracted from stems of susceptible maize with higher titers than leaves. Conclusion Nonhost and host resistance allow the initial steps of potyvirus SCMV replication, as shown by the negative strands' presence. Furthermore, both hosts allow the negative viral strands' local movement, but not their systemic spread through the stem. The presence of larger amounts of extractable virions from the stem (as compared to the leaves in susceptible maize lines suggests their long distance movement as assembled particles. This will be the first report suggesting the long distance movement of a monocot potyvirus as a virion.

  18. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  19. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response

    Science.gov (United States)

    Király, Lóránt; Künstler, András; Höller, Kerstin; Fattinger, Maria; Juhász, Csilla; Müller, Maria; Gullner, Gábor; Zechmann, Bernd

    2012-01-01

    Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (−S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and −S plants revealed that +S plants contained 55–132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than −S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in −S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation. PMID:22122784

  20. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Science.gov (United States)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  1. William L Finley - False Brome Eradication in Mill Hill Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — False Brome is quickly becoming a major threat to the southern end of the refuge with new populations found along hiking trails, spreading into wooded areas via wild...

  2. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco

    Science.gov (United States)

    Ziebell, Heiko; Murphy, Alex M.; Groen, Simon C.; Tungadi, Trisna; Westwood, Jack H.; Lewsey, Mathew G.; Moulin, Michael; Kleczkowski, Adam; Smith, Alison G.; Stevens, Mark; Powell, Glen; Carr, John P.

    2011-01-01

    The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against insects. This suggested that it might affect interactions between infected plants and aphids, insects that transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVΔ2b) induced strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical penetration graph methodology we found that higher proportions of aphids showed sustained phloem ingestion on CMV-infected plants than on CMVΔ2b-infected or mock-inoculated plants although this did not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus transmission. PMID:22355702

  3. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection.

    Science.gov (United States)

    Liu, Xiao-Yu; Li, Huan; Zhang, Wei

    2014-05-04

    It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro, and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo, purified rBanLec-1 exhibited more significant effects on TMV infection in vitro. Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.

  4. PENGARUH INFEKSI TMV (TOBACCO MOSAIC VIRUS TERHADAP PERTUMBUHAN VEGETATIF DAN GENERATIF BEBERAPA VARIETAS CABAI MERAH (CAPSICUM ANNUUM L.

    Directory of Open Access Journals (Sweden)

    Hasriadi Mat Akin dan Muhammad Nurdin .

    2012-02-01

    Full Text Available Influence of  tobacco mosaic virus infection to vegetative and generative growth of various hot pepper varieties  (Capsicum annuum L.. This experiment was conducted to investigate the effect of TMV infection on vegetative and generative growth of various hot pepper varieties. Treatments were arranged in completely randomized design in split plot experiment with four replications. Mainplots were virus-inoculated and uninoculated plants; subplots were three hot pepper varieties: Cimerti, HP-Typhoon, and HP-Tornado. The results of the experiment showed that TMV infection caused decrease vegetative and generative growth.  The decrease of vegetative and generative growth  indicated by the reduction of leaf width, plant height, and yield.  HP-Tornado and Cimerti varieties showed susceptible reaction proved by significant reduction of the growth and yield;  HP-Typhoon was tolerance reaction to TMV infection indicated by significant reduction of the growth and lowest reduction of the yield.

  5. Avaliação da reação de genótipos de alface (Lactuca sativa L. ao Lettuce mosaic virus (LMV Reaction of Lactuca sativa L. lines to Lettuce mosaic virus (LMV

    Directory of Open Access Journals (Sweden)

    Rosa Maria Chung

    2007-01-01

    Full Text Available O trabalho teve como meta avaliar a reação de 18 linhagens superiores do programa de melhoramento de alface (Lactuca sativa L. do IAC e de seis cultivares comerciais, ao Lettuce mosaic virus (LMV. Em condições de campo, na região de Atibaia (SP, foram observados sintomas de mosaico, nanismo e necrose em plantas das cultivares Rider, 'Karla H25' e Hortência. O vírus presente nos isolados foi identificado por meio de inoculação mecânica em plantas indicadoras e diferenciadoras e de testes sorológicos de Plate Trapped Antigen-Enzyme linked-immunosorbent assay (PTA-ELISA. Nas amostras avaliadas, identificou-se a espécie LMV pelo PTA-ELISA e do patotipo IV pela reação nas hospedeiras diferenciais. Para a avaliação do comportamento dos genótipos de alface, foi empregado o LMV isolado 'Karla H25'. Foram submetidos à inoculação 24 genótipos de alface empregando-se, como controle positivo, a alface 'White Boston' por sua suscetibilidade ao LMV. O delineamento experimental foi inteiramente ao acaso e analisado pelo teste do qui-quadrado. Detectaram-se genótipos com comportamento de suscetibilidade e de tolerância. Nos genótipos 3 e 4, foram observadas plantas com comportamento de tolerância ao LMV isolado 'Karla H25', enquanto nos demais genótipos, constataram-se plantas com comportamento suscetível. O plantio de cultivares tolerantes pode ser uma alternativa aos prejuízos causados pela infecção pelo LMV com conseqüente diminuição do uso de produtos químicos para o controle dos afídeos vetores.Reactions to one isolate from diseased lettuce plants collected in 2003 in Atibaia, SP, were studied in six varieties and 18 selected lettuce (Lactuca sativa L. lines. Underdeveloped, malformed leaves with mosaic symptoms and also necrotic leaves were found under field conditions in Raider, 'Karla H25' and Hortência lettuce cultivars. These symptomatic plants were sampled and the virus etiology studied by PTA-ELISA and by means of

  6. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Potato virus X and Tobacco mosaic virus-based vectors compatible with the Gateway-TM cloning system

    NARCIS (Netherlands)

    Lacorte, C.C.; Ribeiro, S.G.; Lohuis, H.; Goldbach, R.W.; Prins, M.W.

    2010-01-01

    Virus-based expression vectors are important tools for high-level production of foreign proteins and for gene function analysis through virus induced gene silencing. To exploit further their advantages as fast, high yield replicons, a set of vectors was produced by converting and adapting Potato

  8. Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by Tobacco mosaic virus-based vectors.

    Science.gov (United States)

    Petukhova, Natalia V; Gasanova, Tatiana V; Stepanova, Liudmila A; Rusova, Oxana A; Potapchuk, Marina V; Korotkov, Alexandr V; Skurat, Eugene V; Tsybalova, Liudmila M; Kiselev, Oleg I; Ivanov, Peter A; Atabekov, Joseph G

    2013-01-01

    A new approach for super-expression of the influenza virus epitope M2e in plants has been developed on the basis of a recombinant Tobacco mosaic virus (TMV, strain U1) genome designed for Agrobacterium-mediated delivery into the plant cell nucleus. The TMV coat protein (CP) served as a carrier and three versions of the M2e sequence were inserted into the surface loop between amino acid residues 155 and 156. Cysteine residues in the heterologous peptide were thought likely to impede efficient assembly of chimeric particles. Therefore, viral vectors TMV-M2e-ala and TMV-M2e-ser were constructed in which cysteine codons 17 and 19 of the M2e epitope were substituted by codons for serine or alanine. Agroinfiltration experiments proved that the chimeric viruses were capable of systemically infecting Nicotiana benthamiana plants. Antisera raised against TMV-M2e-ala virions appear to contain far more antibodies specific to influenza virus M2e than those specific to TMV carrier particle (ratio 5:1). Immunogold electron microscopy showed that the 2-epitopes were uniformly distributed and tightly packed on the surface of the chimeric TMV virions. Apparently, the majority of the TMV CP-specific epitopes in the chimeric TMV-M2e particles are hidden from the immune system by the M2e epitopes exposed on the particle surface. The profile of IgG subclasses after immunization of mice with TMV-M2e-ser and TMV-M2e-ala was evaluated. Immunization with TMV-M2e-ala induced a significant difference between the levels of IgG1 and IgG2a (IgG1/IgG2a=3.2). Mice immunized with the chimeric viruses were resistant to five lethal doses (LD50) of the homologous influenza virus strain, A/PR/8/34 (H1N1) and TMV-M2e-ala also gave partial protection (5LD50, 70% of survival rate) against a heterologous strain influenza A/California/04/2009 (H1N1) (4 amino acid changes in M2e). These results indicate that a new generation candidate universal nanovaccine against influenza based on a recombinant TMV

  9. Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in Genetically Engineered Cassava cv. KU50 through RNA Silencing

    KAUST Repository

    Ntui, Valentine Otang

    2015-04-22

    Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV). The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi) in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  10. Analysis of viral (zucchini yellow mosaic virus) genetic diversity during systemic movement through a Cucurbita pepo vine.

    Science.gov (United States)

    Dunham, J P; Simmons, H E; Holmes, E C; Stephenson, A G

    2014-10-13

    Determining the extent and structure of intra-host genetic diversity and the magnitude and impact of population bottlenecks is central to understanding the mechanisms of viral evolution. To determine the nature of viral evolution following systemic movement through a plant, we performed deep sequencing of 23 leaves that grew sequentially along a single Cucurbita pepo vine that was infected with zucchini yellow mosaic virus (ZYMV), and on a leaf that grew in on a side branch. Strikingly, of 112 genetic (i.e. sub-consensus) variants observed in the data set as a whole, only 22 were found in multiple leaves. Similarly, only three of the 13 variants present in the inoculating population were found in the subsequent leaves on the vine. Hence, it appears that systemic movement is characterized by sequential population bottlenecks, although not sufficient to reduce the population to a single virion as multiple variants were consistently transmitted between leaves. In addition, the number of variants within a leaf increases as a function of distance from the inoculated (source) leaf, suggesting that the circulating sap may serve as a continual source of virus. Notably, multiple mutational variants were observed in the cylindrical inclusion (CI) protein (known to be involved in both cell-to-cell and systemic movement of the virus) that were present in multiple (19/24) leaf samples. These mutations resulted in a conformational change, suggesting that they might confer a selective advantage in systemic movement within the vine. Overall, these data reveal that bottlenecks occur during systemic movement, that variants circulate in the phloem sap throughout the infection process, and that important conformational changes in CI protein may arise during individual infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of bean necrotic mosaic virus: a member of a novel evolutionary lineage within the Genus Tospovirus.

    Science.gov (United States)

    de Oliveira, Athos Silva; Melo, Fernando Lucas; Inoue-Nagata, Alice Kazuko; Nagata, Tatsuya; Kitajima, Elliot Watanabe; Resende, Renato Oliveira

    2012-01-01

    Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e.g., the determination of the viral protein sequences for enlightenment of their evolutionary history. Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. CONCLUSION/SIGNIFICANCES: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.

  12. Characterization of bean necrotic mosaic virus: a member of a novel evolutionary lineage within the Genus Tospovirus.

    Directory of Open Access Journals (Sweden)

    Athos Silva de Oliveira

    Full Text Available BACKGROUND: Tospoviruses (Genus Tospovirus, Family Bunyaviridae are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small, M (Medium and L (Large RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e.g., the determination of the viral protein sequences for enlightenment of their evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: Biological (host range and symptomatology, serological, and molecular (S and M RNA sequencing and evolutionary studies experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV, which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV, they represent members of a new evolutionary lineage within the genus Tospovirus. CONCLUSION/SIGNIFICANCES: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages, new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively, indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported, but throughout the world.

  13. The Roles of Alpha-Momorcharin and Jasmonic Acid in Modulating the Response of Momordica charantia to Cucumber Mosaic Virus.

    Science.gov (United States)

    Yang, Ting; Meng, Yao; Chen, Li-Juan; Lin, Hong-Hui; Xi, De-Hui

    2016-01-01

    Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein with a molecular weight of 29 kDa that is found in Momordica charantia, and has been shown to be effective against a broad range of human viruses as well as having anti-tumor activities. However, the role of endogenous α-MMC under viral infection and the mechanism of the anti-viral activities of α-MMC in plants are still unknown. To study the effect of α-MMC on plant viral defense and how α-MMC increases plant resistance to virus, the M. charantia-cucumber mosaic virus (CMV) interaction system was investigated. The results showed that the α-MMC level was positively correlated with the resistance of M. charantia to CMV. α-MMC treatment could alleviate photosystem damage and enhance the ratio of glutathione/glutathione disulfide in M. charantia under CMV infection. The relationship of α-MMC and defense related phytohormones, and their roles in plant defense were further investigated. α-MMC treatment led to a significant increase of jasmonic acid (JA) and vice versa, while there was no obvious relevance between salicylic acid and α-MMC. In addition, reactive oxygen species (ROS) were induced in α-MMC-pretreated plants, in a similar way to the ROS burst in JA-pretreated plants. The production of ROS in both ibuprofen (JA inhibitor) and (α-MMC+ibuprofen)-pretreated plants was reduced markedly, leading to a greater susceptibility of M. charantia to CMV. Our results indicate that the anti-viral activities of α-MMC in M. charantia may be accomplished through the JA related signaling pathway.

  14. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing.

    Science.gov (United States)

    Feng, Junli; Liu, Shasha; Wang, Mengna; Lang, Qiulei; Jin, Chunzhi

    2014-12-01

    MicroRNAs (miRNAs) play important regulatory roles in plant development and stress responses. Tomato is an economically important vegetable crop in the world with publicly available genomic information database, but only a limited number of tomato miRNAs have been identified. In this study, two independent small RNA libraries from mock and Cucumber mosaic virus (CMV)-infected tomatoes were constructed, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 plant miRNAs and 273 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 plant miRNAs and 82 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed that 79 miRNAs (including 15 new tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries, and the expression patterns of some new tomato miRNAs and PC-miRNAs were further validated by qRT-PCR. Moreover, potential targets for some of the known and new tomato miRNAs were identified by the recently developed degradome sequencing approach, and target annotation indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that defense response- and photosynthesis-related genes were most affected in CMV-Fny-infected tomatoes. Because tomato is not only an important crop but also is a genetic model for basic biology research, our study contributes to the understanding of miRNAs in response to virus infection.

  15. Resistance to Sri Lankan cassava mosaic virus (SLCMV in genetically engineered cassava cv. KU50 through RNA silencing.

    Directory of Open Access Journals (Sweden)

    Valentine Otang Ntui

    Full Text Available Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV. The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  16. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  17. GFP is Efficiently Expressed by Wheat Streak Mosaic Virus Using a Range of Tritimovirus NIa Cleavage Sites and Forms Dense Aggregates in Cereal Hosts

    Science.gov (United States)

    Wheat streak mosaic virus (WSMV)-based transient expression vector was developed to express GFP as a marker protein. The GFP cistron was engineered between the P1 and HC-Pro cistrons in an infectious cDNA clone of WSMV. The cleavage sites, P3/6KI, 6KI/CI, NIa/NIb, or NIb/CP, from WSMV were fused to ...

  18. Complete nucleotide sequence of Sida golden mosaic Florida virus and phylogenetic relationships with other begomoviruses infecting malvaceous weeds in the Caribbean.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Martínez-Zubiaur, Yamila; Moriones, Enrique; Navas-Castillo, Jesús

    2010-09-01

    The complete genome sequence of two isolates of the bipartite begomovirus (genus Begomovirus, family Geminiviridae) Sida golden mosaic Florida virus (SiGMFV) is presented. We propose that both isolates, found infecting Malvastrum coromandelianum (family Malvaceae) in Cuba, belong to a new strain of SiGMFV. Phylogenetic analysis showed that SiGMFV DNA-A is located in a monophyletic cluster that includes begomoviruses infecting malvaceous weeds from the Caribbean.

  19. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years: Characterization of an emergent plant virus population.

    Science.gov (United States)

    Thompson, Jeremy R; Langenhan, Jamie L; Fuchs, Marc; Perry, Keith L

    2015-12-02

    In the early 2000s an epidemic of cucumber mosaic virus (CMV) spread within the Midwestern and Eastern US affecting snap and dry bean (Phaseolus vulgaris L.) cultivation. Fifty one CMV isolates from this period were partially characterized from varied hosts by sequencing a section from each of the three genomic RNAs. Aside from one subgroup II strain from pepper, all isolates, including those from snap bean, fell within the IA subgroup. The nucleotide sequence diversity of virus populations sampled at multiple sites and at different years was significantly higher than that of a population from single site in a single year, although in general the number of polymorphisms was low (pepper infecting isolates. Infection by Bn57 in snap bean had a significant effect on pod number and mass with a 55 and 41 percent reduction in greenhouse assays, respectively. To our knowledge Bn57 is the first CMV strain isolated from P. vulgaris to be fully sequenced and cloned, providing a useful tool for analyses of CMV-host interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Coat protein of Turnip mosaic virus in oilseed rape (Brassica napus)

    African Journals Online (AJOL)

    mohammad

    Three host species, Chenopodium quinoa, Chenopodium amaranticolor and Brassica rapa were used in the inoculations, the first two hosts for biological purification and the last one for virus preservation. One of the infected sample from Govareshk of. Mashhad (IRN GSK) was ground in 100 mM potassium phosphate buffer ...

  1. Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley rym5 resistance gene.

    Science.gov (United States)

    Kanyuka, K; McGrann, G; Alhudaib, K; Hariri, D; Adams, M J

    2004-08-01

    A Barley mild mosaic virus (BaMMV) isolate from France (BaMMV-Sil) capable of overcoming rym5-controlled resistance was inoculated to barley genotypes carrying various genes for resistance to the barley mosaic viruses. BaMMV-Sil was unable to infect genotypes carrying rym1, rym4, rym8, rym9, or rym11 but genotypes carrying rym3, rym5, rym6 or no known bymovirus resistance gene were susceptible. Plants carrying rym7 or rym10 showed partial resistance with delayed virus accumulation. The two genomic RNAs of BaMMV-Sil were sequenced and compared to published sequences and those of a further common strain isolate from the UK. Four amino acid differences were observed between BaMMV-Sil and European common strain isolates in the polypeptide encoded by RNA1, the RNA species which determines pathogenicity on the rym5 genotypes. Only two of these differences are likely to be functionally important (His rather than Gln at position1217 in the VPg cistron; His rather than Asp at position 1776 in the NIb cistron). Comparisons with related viruses in the genera Bymovirus and Potyvirus suggest that the change in the VPg, which occurs within a motif conserved amongst all viruses within the family Potyviridae, is the more likely cause of rym5 resistance-breaking.

  2. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication.

    Science.gov (United States)

    Suyal, Geetika; Mukherjee, Sunil K; Srivastava, Prem S; Choudhury, Nirupam R

    2013-05-01

    Geminiviruses are plant pathogens with single-stranded (ss) DNA genomes of about 2.7 kb in size. They replicate primarily via rolling-circle replication (RCR) with the help of a few virally encoded factors and various host-cell machineries. The virally encoded replication initiator protein (Rep) is essential for geminivirus replication. In this study, by interaction screening of an Arabidopsis thaliana cDNA library, we have identified a host factor, MCM2, that interacts with the Rep protein of the geminivirus mungbean yellow mosaic India virus (MYMIV). Using yeast two-hybrid, β-galactosidase and co-immunoprecipitation assays, we demonstrated an interaction between MYMIV-Rep and the host factor AtMCM2. We investigated the possible role of AtMCM2 in geminiviral replication using a yeast-based geminivirus DNA replication restoration assay and observed that the AtMCM2 protein complemented the mcm2∆ mutation of S. cerevisiae. Our data suggest the involvement of AtMCM2 in the replication of MYMIV ex vivo. The role of MCM2 in replication was confirmed in planta by a transient replication assay in both wild-type and mutant Arabidopsis plants through agroinoculation. Our data provide evidence for the involvement of AtMCM2 in geminiviral DNA replication, presumably in conjunction with other host factors, and suggest its importance in MYMIV DNA replication.

  3. The nuclear inclusion a (NIa) protease of turnip mosaic virus (TuMV) cleaves amyloid-β.

    Science.gov (United States)

    Han, Hye-Eun; Sellamuthu, Saravanan; Shin, Bae Hyun; Lee, Yong Jae; Song, Sungmin; Seo, Ji-Seon; Baek, In-Sun; Bae, Jeomil; Kim, Hannah; Yoo, Yung Joon; Jung, Yong-Keun; Song, Woo Keun; Han, Pyung-Lim; Park, Woo Jin

    2010-12-20

    The nuclear inclusion a (NIa) protease of turnip mosaic virus (TuMV) is responsible for the processing of the viral polyprotein into functional proteins. NIa was previously shown to possess a relatively strict substrate specificity with a preference for Val-Xaa-His-Gln↓, with the scissile bond located after Gln. The presence of the same consensus sequence, Val(12)-His-His-Gln(15), near the presumptive α-secretase cleavage site of the amyloid-β (Aβ) peptide led us to hypothesize that NIa could possess activity against Aβ. Western blotting results showed that oligomeric as well as monomeric forms of Aβ can be degraded by NIa in vitro. The specific cleavage of Aβ was further confirmed by mass spectrometry analysis. NIa was shown to exist predominantly in the cytoplasm as observed by immunofluorescence microscopy. The overexpression of NIa in B103 neuroblastoma cells resulted in a significant reduction in cell death caused by both intracellularly generated and exogenously added Aβ. Moreover, lentiviral-mediated expression of NIa in APP(sw)/PS1 transgenic mice significantly reduced the levels of Aβ and plaques in the brain. These results indicate that the degradation of Aβ in the cytoplasm could be a novel strategy to control the levels of Aβ, plaque formation, and the associated cell death.

  4. Strand-specific viral DNA synthesis in purified viroplasms isolated from turnip leaves infected with cauliflower mosaic virus.

    Science.gov (United States)

    Mazzolini, L; Bonneville, J M; Volovitch, M; Magazin, M; Yot, P

    1985-09-01

    There is some evidence that two steps are involved in the DNA replication of cauliflower mosaic virus (CaMV): the first one may occur in the nucleus and the second one in the cytoplasm of infected cells. The latter would correspond to the reverse transcription step recently proposed in the model of the viral life cycle, and could occur in the viroplasms which are CaMV-induced cytoplasmic inclusion bodies. In order to test whether viroplasms are capable of DNA synthesis and to characterize the associated enzymatic activities, we developed an extensive purification method for these organelles. Such isolated viroplasms are indeed able to incorporate radioactive precursors into exclusively viral-specific sequences without added template primer. Hybridization of sequences labeled in viroplasms to cloned CaMV DNA shows that the DNA synthesis occurs throughout the whole viral genome and has marked strand specificity; neosynthesized molecules are of minus polarity, i.e., complementary to the large viral transcript (35 S RNA). Moreover, during the purification of viroplasms, the poly(rC)-directed DNA synthesis activity, which is specific to infected plants, is preferentially retained.

  5. A Strobilurin Fungicide Enhances the Resistance of Tobacco against Tobacco Mosaic Virus and Pseudomonas syringae pv tabaci1

    Science.gov (United States)

    Herms, Stefan; Seehaus, Kai; Koehle, Harald; Conrath, Uwe

    2002-01-01

    The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc) against infection by either tobacco mosaic virus (TMV) or the wildfire pathogen Pseudomonas syringae pv tabaci. F 500 was also active at enhancing TMV resistance in NahG transgenic tobacco plants unable to accumulate significant amounts of the endogenous inducer of enhanced disease resistance, salicylic acid (SA). This finding suggests that F 500 enhances TMV resistance in tobacco either by acting downstream of SA in the SA signaling mechanism or by functioning independently of SA. The latter assumption is the more likely because in infiltrated leaves, F 500 did not cause the accumulation of SA-inducible pathogenesis-related (PR)-1 proteins that often are used as conventional molecular markers for SA-induced disease resistance. However, accumulation of PR-1 proteins and the associated activation of the PR-1 genes were elicited upon TMV infection of tobacco leaves and both these responses were induced more rapidly in F 500-pretreated plants than in the water-pretreated controls. Taken together, our results suggest that F 500, in addition to exerting direct antifungal activity, may also protect plants by priming them for potentiated activation of subsequently pathogen-induced cellular defense responses. PMID:12226492

  6. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci.

    Science.gov (United States)

    Herms, Stefan; Seehaus, Kai; Koehle, Harald; Conrath, Uwe

    2002-09-01

    The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc) against infection by either tobacco mosaic virus (TMV) or the wildfire pathogen Pseudomonas syringae pv tabaci. F 500 was also active at enhancing TMV resistance in NahG transgenic tobacco plants unable to accumulate significant amounts of the endogenous inducer of enhanced disease resistance, salicylic acid (SA). This finding suggests that F 500 enhances TMV resistance in tobacco either by acting downstream of SA in the SA signaling mechanism or by functioning independently of SA. The latter assumption is the more likely because in infiltrated leaves, F 500 did not cause the accumulation of SA-inducible pathogenesis-related (PR)-1 proteins that often are used as conventional molecular markers for SA-induced disease resistance. However, accumulation of PR-1 proteins and the associated activation of the PR-1 genes were elicited upon TMV infection of tobacco leaves and both these responses were induced more rapidly in F 500-pretreated plants than in the water-pretreated controls. Taken together, our results suggest that F 500, in addition to exerting direct antifungal activity, may also protect plants by priming them for potentiated activation of subsequently pathogen-induced cellular defense responses.

  7. The nuclear inclusion a (NIa protease of turnip mosaic virus (TuMV cleaves amyloid-β.

    Directory of Open Access Journals (Sweden)

    Hye-Eun Han

    Full Text Available BACKGROUND: The nuclear inclusion a (NIa protease of turnip mosaic virus (TuMV is responsible for the processing of the viral polyprotein into functional proteins. NIa was previously shown to possess a relatively strict substrate specificity with a preference for Val-Xaa-His-Gln↓, with the scissile bond located after Gln. The presence of the same consensus sequence, Val(12-His-His-Gln(15, near the presumptive α-secretase cleavage site of the amyloid-β (Aβ peptide led us to hypothesize that NIa could possess activity against Aβ. METHODOLOGY/PRINCIPAL FINDINGS: Western blotting results showed that oligomeric as well as monomeric forms of Aβ can be degraded by NIa in vitro. The specific cleavage of Aβ was further confirmed by mass spectrometry analysis. NIa was shown to exist predominantly in the cytoplasm as observed by immunofluorescence microscopy. The overexpression of NIa in B103 neuroblastoma cells resulted in a significant reduction in cell death caused by both intracellularly generated and exogenously added Aβ. Moreover, lentiviral-mediated expression of NIa in APP(sw/PS1 transgenic mice significantly reduced the levels of Aβ and plaques in the brain. CONCLUSIONS/SIGNIFICANCE: These results indicate that the degradation of Aβ in the cytoplasm could be a novel strategy to control the levels of Aβ, plaque formation, and the associated cell death.

  8. Infection of some cayenne pepper varieties (Capsicum frustescens L.) by Tobacco mosaic virus at different growth stages

    Science.gov (United States)

    Damiri, N.; Sofita, I. S.; Effend, T. A.; Rahim, S. E.

    2017-09-01

    This research aimed to study the infection of three varieties of cayenne pepper (Capsicum frustescens L.) by Tobacco Mosaic Virus when they were inoculated at 2, 4, 6, 8 and 10 weeks old after planting. This experiment was conducted in a green house, at the Plant pests and diseases department, Agriculture Faculty, Sriwijaya University, Indralaya, South Sumatra Indonesia from March to October 2014. The study was arranged in factorial completely randomized design with three replicates. First factor was varieties of cayenne pepper namely green, white and small. Second factor was growth stage. Results of the study showed that TMV inoculated at different growth stages of three cayenne pepper varieties affected the incubation period of TMV symptom, time for flowering and productions. The infection of TMV on various ages affected the disease severity on cayenne pepper variety. The highest disease severity was taking place on small cayenne pepper variety that was inoculated at the early stages of age namely 2 weeks after planting. Inoculation of TMV at younger stages of all Cayenne peppers varieties caused a significant reduction in the number of fruits and its weights. TMV has caused a reduction of more than 50% in weight of cayenne pepper fruits regardless of the variety.

  9. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    Directory of Open Access Journals (Sweden)

    Hyoun-Sub Lim

    2013-03-01

    Full Text Available Barley stripe mosaic virus (BSMV induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW. BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

  10. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg.

    Science.gov (United States)

    Svanella-Dumas, Laurence; Verdin, Eric; Faure, Chantal; German-Retana, Sylvie; Gognalons, Patrick; Danet, Jean Luc; Marais, Armelle; Candresse, Thierry

    2014-05-01

    An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus.

  11. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    Science.gov (United States)

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus

    Science.gov (United States)

    Hily, Jean Michel; García, Adrián; Moreno, Arancha; Plaza, María; Wilkinson, Mark D.; Fereres, Alberto; Fraile, Aurora; García-Arenal, Fernando

    2014-01-01

    Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV). Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of the dynamics of

  13. DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus

    Directory of Open Access Journals (Sweden)

    Wang Xiao

    2012-08-01

    Full Text Available Abstract Background Control of the host transcriptome represents a key battleground in the interaction of plants and pathogens. Specifically, plants have evolved complex defense systems that induce profound transcriptional changes in response to pathogen attack while pathogens have evolved mechanisms to subvert or disable these defenses. Several NAC transcription factors such as ATAF2 have been linked to plant defense responses, including those targeting viruses. The replication protein of Tobacco mosaic virus (TMV has been shown to interact with and target the degradation of ATAF2. These findings suggest that the transcriptional targets of ATAF2 are involved in defense against TMV. Results To detect potential ATAF2 transcriptional targets, a genomic pull-down assay was utilized to identify ATAF2 promoter binding sequences. Subsequent mobility shift and DNA footprinting assays identified a 30-bp ATAF2 binding sequence. An in vivo GUS reporter system confirmed the function of the identified 30-bp binding sequence as an ATAF2 specific transcriptional activator in planta. Gel filtration studies of purified ATAF2 protein and mutagenesis studies of the 30-bp binding sequence indicate ATAF2 functions as a dimer. Computational analysis of interacting promoter sequences identified a corresponding 25-bp A/T-rich consensus sequence with repeating [GC]AAA motifs. Upon ATAF2 induction real-time qRT-PCR studies confirmed the accumulation of select gene transcripts whose promoters contain this consensus sequence. Conclusion We report the identification of a cis-regulatory binding sequence for ATAF2. Different from other known NAC protein binding sequences, the A/T-rich ATAF2 binding motif represents a novel binding sequence for NAC family proteins. Combined this information represents a unique tool for the identification of ATAF2 target genes.

  14. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Jean Michel Hily

    2014-11-01

    Full Text Available Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV. Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of

  15. Effects of Temperature on Systemic Infection and Symptom Expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris

    Directory of Open Access Journals (Sweden)

    Bong Nam Chung

    2015-12-01

    Full Text Available Using the Chinese cabbage (Brassica campestris cultivar ‘Chun-goang’ as a host and turnip mosaic virus (TuMV as a pathogen, we studied the effects of ambient temperature (13°C, 18°C, 23°C, 28°C and 33°C on disease intensity and the speed of systemic infection. The optimal temperature for symptom expression of TuMV was 18–28°C. However, symptoms of viral infection were initiated at 23–28°C and 6 days post infection (dpi. Plants maintained at 33°C were systemically infected as early as 6 dpi and remained symptomless until 12 or 22 dpi, depending on growth stage at the time of inoculation. It took 45 days for infection of plants grown at 13°C. Quantitative real-time polymerase chain reaction (q-PCR results showed that the accumulation of virus coat protein was greater in plants grown at 23–28°C. The speed of systemic infection increased linearly with rising ambient temperature, up to 23°C. The zero-infection temperature was 10.1°C. To study the effects of abruptly elevated temperatures on systemic infection, plants inoculated with TuMV were maintained at 10°C for 20 d; transferred to a growth chamber at temperatures of 13°C, 18°C, 23°C, 28°C, or 33°C for 1, 2, or 3 d; and then moved back to 10°C. The numbers of plants infected increased as duration of exposure to higher temperatures and dpi increased.

  16. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants.

    Science.gov (United States)

    Fahim, Muhammad; Ayala-Navarrete, Ligia; Millar, Anthony A; Larkin, Philip J

    2010-09-01

    Wheat streak mosaic virus (WSMV), vectored by Wheat curl mite, has been of great economic importance in the Great Plains of the United States and Canada. Recently, the virus has been identified in Australia, where it has spread quickly to all major wheat growing areas. The difficulties in finding adequate natural resistance in wheat prompted us to develop transgenic resistance based on RNA interference (RNAi). An RNAi construct was designed to target the nuclear inclusion protein 'a' (NIa) gene of WSMV. Wheat was stably cotransformed with two plasmids: pStargate-NIa expressing hairpin RNA (hpRNA) including WSMV sequence and pCMneoSTLS2 with the nptII selectable marker. When T(1) progeny were assayed against WSMV, ten of sixteen families showed complete resistance in transgenic segregants. The resistance was classified as immunity by four criteria: no disease symptoms were produced; ELISA readings were as in uninoculated plants; viral sequences could not be detected by RT-PCR from leaf extracts; and leaf extracts failed to give infections in susceptible plants when used in test-inoculation experiments. Southern blot hybridization analysis indicated hpRNA transgene integrated into the wheat genome. Moreover, accumulation of small RNAs derived from the hpRNA transgene sequence positively correlated with immunity. We also showed that the selectable marker gene nptII segregated independently of the hpRNA transgene in some transgenics, and therefore demonstrated that it is possible using these techniques, to produce marker-free WSMV immune transgenic plants. This is the first report of immunity in wheat to WSMV using a spliceable intron hpRNA strategy.

  17. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Science.gov (United States)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  18. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication.

    Science.gov (United States)

    Patel, Anju; Dey, Nrisingha; Chaudhuri, Shubho; Pal, Amita

    2017-09-01

    Yellow Mosaic Disease caused by the begomovirus Mungbean Yellow Mosaic India Virus (MYMIV) severely affects many economically important legumes. Recent investigations in Vigna mungo - MYMIV incompatible interaction identified a MAPK homolog in the defense signaling pathway. An important branch of immunity involves phosphorylation by evolutionary conserved Mitogen-activated protein kinases (MAPK) that transduce signals of pathogen invasion to downstream molecules leading to diverse immune responses. However, most of the knowledge of MAPKs is derived from model crops, and functions of these versatile kinases are little explored in legumes. Here we report characterization of a MAP kinase (VmMAPK1), which was induced upon MYMIV-inoculation in resistant V. mungo. Phylogenetic analysis revealed that VmMAPK1 is closely related to other plant-stress-responsive MAPKs. Both mRNA and protein of VmMAPK1 were accumulated upon MYMIV infection. The VmMAPK1 protein localized in the nucleus as well as cytoplasm and possessed phosphorylation activity in vitro. A detailed biochemical characterization of purified recombinant VmMAPK1 demonstrated an intramolecular mechanism of autophosphorylation and self-catalyzed phosphate incorporation on both threonine and tyrosine residues. The V max and K m values of recombinant VmMAPK1 for ATP were 6.292nmol/mg/min and 0.7978μM, respectively. Furthermore, the ability of VmMAPK1 to restrict MYMIV multiplication was validated by its ectopic expression in transgenic tobacco. Importantly, overexpression of VmMAPK1 resulted in the considerable upregulation of defense-responsive marker PR genes. Thus, the present data suggests the critical role of VmMAPK1 in suppressing MYMIV multiplication presumably through SA-mediated signaling pathway and inducing PR genes establishing the significant implications in understanding MAP kinase gene function during Vigna-MYMIV interaction; and hence paves the way for introgression of resistance in leguminous crops

  19. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  20. Mosaic Horses

    Science.gov (United States)

    Rudecki, Maryanna

    2009-01-01

    This article describes a lesson inspired by Sicilian mosaics. The author first presented a PowerPoint presentation of mosaics from the Villa Romana del Casale and reviewed complementary and analogous colors. Students then created mosaics using a variety of art materials. They presented their work to their peers and discussed the thought and…

  1. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus

    Directory of Open Access Journals (Sweden)

    De Bruyn Alexandre

    2012-11-01

    Full Text Available Abstract Background Cassava (Manihot esculenta is a major food source for over 200 million sub-Saharan Africans. Unfortunately, its cultivation is severely hampered by cassava mosaic disease (CMD. Caused by a complex of bipartite cassava mosaic geminiviruses (CMG species (Family: Geminivirideae; Genus: Begomovirus CMD has been widely described throughout Africa and it is apparent that CMG's are expanding their geographical distribution. Determining where and when CMG movements have occurred could help curtail its spread and reveal the ecological and anthropic factors associated with similar viral invasions. We applied Bayesian phylogeographic inference and recombination analyses to available and newly described CMG sequences to reconstruct a plausible history of CMG diversification and migration between Africa and South West Indian Ocean (SWIO islands. Results The isolation and analysis of 114 DNA-A and 41 DNA-B sequences demonstrated the presence of three CMG species circulating in the Comoros and Seychelles archipelagos (East African cassava mosaic virus, EACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV. Phylogeographic analyses suggest that CMG’s presence on these SWIO islands is probably the result of at least four independent introduction events from mainland Africa occurring between 1988 and 2009. Amongst the islands of the Comoros archipelago, two major migration pathways were inferred: One from Grande Comore to Mohéli and the second from Mayotte to Anjouan. While only two recombination events characteristic of SWIO islands isolates were identified, numerous re-assortments events were detected between EACMV and EACMKV, which seem to almost freely interchange their genome components. Conclusions Rapid and extensive virus spread within the SWIO islands was demonstrated for three CMG complex species. Strong evolutionary or ecological interaction between CMG species may explain

  2. Effect of dicer-like proteins2 and 4 and RNA-dependent RNA polymerase1 as RNA silencing components on cyclic mosaic symptom development in tobacco infected with the Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Anurag Sunpapao

    2014-02-01

    Full Text Available The Nicotiana tabacum genome contains four Dicer-like proteins (DCLs and six RNA-dependent RNA polymerase (RDR homologues involved in the RNA silencing mechanism employed against viral infection. DCL1 synthesizes 18-21 nt-long microRNA, whereas DCL2, DCL3 and DCL4 produce 22 nt, 24 nt and 21 nt-long siRNA, respectively, in the RNA silencing process. This study aimed to clarify which components among these are involved in changes in the amount of virus and the development of symptoms in Cucumber mosaic virus (CMV-infected tobacco. Infected transgenic tobacco lines with a single down-regulation of DCL2, DCL4, RDR1 or a double down-regulation of both DCL2 and 4 were analyzed. The amounts of viral RNA in young developing leaves in transgenic tobacco lines were examined by Northern blot analysis. Most transgenic plants inoculated with CMV Pepo, a virulent strain, exhibited cyclic mosaic symptoms. The amount of viral RNA in single down-regulated lines varied based on leaf position in a similar manner to that noted in non-transgenic tobacco, while that of the double down-regulated line did not. Furthermore, the expression of RNA-silencing-related genes during high and low CMV infection did not differ among the transgenic plants. These results suggested that (i changes in the amounts of the virus in the developing leaves of all the single down-regulated lines were associated with cyclic symptom expression in fully expanded leaves, and (ii the lower expression of DCL2, DCL4 and RDR1 may be sufficient to establish cyclic symptom development.

  3. Effect of Agaricus brasiliensis and Lentinula edodes mushrooms on the infection of passionflower with Cowpea aphid-borne mosaic virus

    Directory of Open Access Journals (Sweden)

    Robson Marcelo Di Piero

    2010-04-01

    Full Text Available The objective of the present study was to evaluate the protection of passion fruit plants against CABMV by using preparations from Agaricus brasiliensis and Lentinula edodes mushrooms. In experiments carried out in the greenhouse, the fruiting body extracts from some of the isolates of both mushrooms significantly reduced CABMV incidence in passion fruit plants. This protective effect occurred when the plant leaves, pre-treated with extracts, were later inoculated mechanically with the virus. However, the extracts did not protect the plants in experiments involving CABMV transmission by aphid vectors. An inhibitory effect of mushroom extracts on the virus particles was also demonstrated on Chenopodium quinoa, a CABMV local lesion host, by inoculating the plants with a mixture of extracts and virus suspension. Still in C. quinoa, the mushroom extracts from some isolates induced systemic resistance against the virus. These results showed that aqueous extracts from A. brasiliensis and L. edodes fruiting bodies had CABMV infectivity inhibitors, but that was not enough to control the viral disease on passion fruit plants at all, considering they were infected through a vector.O endurecimento dos frutos do maracujazeiro, causado pelo Cowpea aphid-borne mosaic virus (CABMV, é um dos problemas mais sérios que atingem a cultura. Tentativas de se obter plantas resistentes ao vírus ou estirpes fracas premunizantes não apresentaram sucesso até o momento. O objetivo do presente estudo foi o de avaliar a proteção das plantas de maracujá contra o CABMV, utilizando preparações dos cogumelos Lentinula edodes e Agaricus blazei, através da indução de resistência. Em experimentos conduzidos no interior de casa de vegetação, os extratos de basidiocarpos de ambos os cogumelos reduziram significativamente a incidência da virose em plantas de maracujá que tiveram as folhas pré-tratadas com esses extratos e que foram posteriormente inoculadas

  4. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

    Directory of Open Access Journals (Sweden)

    Alexander Harder

    2013-09-01

    Full Text Available Both fluorescence imaging and atomic force microscopy (AFM are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.

  5. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus.

    Science.gov (United States)

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W; Moe, Roar; Blystad, Dag-Ragnar

    2008-06-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.

  6. Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa.

    Directory of Open Access Journals (Sweden)

    Hervé Vanderschuren

    Full Text Available Cassava brown streak disease (CBSD and cassava mosaic disease (CMD are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV and Ugandan cassava brown streak virus (UCBSV. A sequence of the CBSV coat protein (CP highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444. Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo. An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV, a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa.

  7. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  8. Yield of varieties of Cucurbita pepo preimmunized with mild strains of Papaya ringspot virus - type W and Zucchini yellow mosaic virus Produção de variedades de Cucurbita pepo premunizadas com estirpes fracas do Papaya ringspot virus - type W e do Zucchini yellow mosaic virus

    Directory of Open Access Journals (Sweden)

    Estela Bonilha

    2009-06-01

    Full Text Available Papaya ringspot virus - type W (PRSV-W and Zucchini yellow mosaic virus (ZYMV are the most prevalent viruses in cucurbit crops in Brazil and responsible for frequent yield losses. Diseases caused by these viruses are difficult to control. The objective of this work was to evaluate the effects of mild strains PRSV-W-1 and ZYMV-M on the yield of Cucurbita pepo L. cvs. Samira, Novita Plus, AF 2847, and Yasmin, under plastic greenhouse and field conditions. Plants infected with ZYMV-M and grown in a plastic greenhouse did not exhibit typical leaf symptoms or significant alterations in quantitative and qualitative fruit yield. However, when infected with PRSV-W-1, or PRSV-W-1 + ZYMV-M, the plants exhibited severe leaf mosaic symptoms and reduced fruit quality, although there were no changes in the number and mean fruit weight harvested from these plants. When these plants were infected with PRSV-W-1 and studied simultaneously in the field and plastic greenhouse, intensification of symptoms in the fruits and leaves was more pronounced under the greenhouse conditions. Quantitative yield did not change. Environmental factors seem to influence symptoms induced by PRSV-W-1.O Papaya ringspot virus - type W (PRSV-W e o Zucchini yellow mosaic virus (ZYMV são os vírus predominantes em culturas de cucurbitáceas no Brasil, onde geralmente causam danos significativos na produção. As doenças causadas por ambos os vírus são de difícil controle. O objetivo desse trabalho foi avaliar o efeito das estirpes fracas PRSV-W-1 e ZYMV-M na produção de abobrinha de moita (Cucurbita pepo L. cvs. Samira, Novita Plus, AF 2847, and Yasmin em condições de estufa plástica e de campo. Plantas infectadas com a estirpe ZYMV-M sob condições de estufa plástica não exibiram sintomas foliares típicos da doença e alterações na quantidade e qualidade dos frutos produzidos. No entanto, quando infectadas com a estirpe PRSV-W-1, ou PRSV-W-1 + ZYMV-M, as plantas

  9. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Yumei Du

    Full Text Available Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV and Tobacco mosaic virus (TMV by recognizing the viral movement protein (MP. Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.

  10. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    Science.gov (United States)

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bricault, Christine A. [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States); Perry, Keith L., E-mail: KLP3@cornell.edu [Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Cornell University, Ithaca, NY 14850 (United States)

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majority of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.

  12. Epidemiología y variabilidad patogénica del virus del mosaico del pepino dulce (Pepino mosaic virus). Nuevas enfermedades asociadas a su presencia (torrao o cribado)

    OpenAIRE

    Alfaro Fernández, Ana Olvido

    2010-01-01

    El Pepino mosaic virus (PepMV) es un Potexvirus que fue descrito por primera vez en pepino dulce (Solanum muricatum Ait.) en Perú (Jones et. Al., 1980). En 1999 se detectó en Holanda, infectando a tomate (Van der Vlugt et al., 2000) mostrando una variada sintomatología. Desde entonces, el PepMV se ha expandido rápidamente por las principales áreas productoras de tomate del Mundo. Este virus se ha convertido en uno de los principales problemas en la producción de tomate en Europa donde produc...

  13. Caracterização de variantes de Grapevine Fanleaf Virus (GFLV), Arabis Mosaic Virus (ARMV) e respectivos RNAS satélites presentes em castas portuguesas de Vitis Vinifera

    OpenAIRE

    Reis, Rita Alexandra Feliciano dos

    2015-01-01

    Dissertação de mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015 Grapevine fanleaf virus, vírus do urticado ou nó-curto da videira e Arabis mosaic virus são dois Nepovirus, da família Secoviridae e ambos possuem um genoma bipartido de cadeia simples e sentido positivo. Além destes, foram detetados em alguns isolados de ArMV e GFLV, RNAs satélite de grande tamanho, satRNA do tipo B. Estes vírus encontram-se entre os principais agent...

  14. Hydrothermal emergence model for ripgut brome (Bromus diandrus)

    Science.gov (United States)

    A model that describes the emergence of ripgut brome (Bromus diandrus) was developed using a two-season data set from a no-tilled field in northeastern Spain. The relationship between cumulative emergence and hydrothermal time (HTT) was described by a sigmoid growth function (Chapman equation). HTT ...

  15. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  16. MONOCLONAL ANTIBODIES TO IDENTIFY TOMATO MOSAIC TOBAMOVIRUS (TOMV

    Directory of Open Access Journals (Sweden)

    Duarte Keila M.R.

    2001-01-01

    Full Text Available Monoclonal antibodies were obtained against Tomato mosaic tobamovirus (ToMV isolated in Brazil. One antibody (8G7G2 isotyped as IgG2b (kappa light chain showed strong specificity and very low cross reaction with the Tobacco mosaic virus (TMV. It can be used in identification of tomato mosaic virus (ToMV.

  17. Molecular Confirmation of Intraspecific Tomato (Solanum lycopersicum) Hybrids and Their Evaluation Against Late Blight and Cucumber Mosaic Virus.

    Science.gov (United States)

    Hameed, Amjad; Saleem, Muhammad Yussouf; Akhtar, Khalid Pervaiz; Shoaib, Muhammad; Iqbal, Qumer; Asghar, Muhammad

    2017-06-01

    Tomato is one of the most consumed vegetables in the world. Diseases are the number one concern in the development of high-yield and disease-resistant tomato hybrids which is the foremost priority of breeders. Present study was conducted (1) to develop DNA-based markers for genetic confirmation of tomato F1 hybrids, (2) to utilize sequenced characterized amplified region (SCAR) marker linked to the Ph-3 gene for Phytophthora infestans resistance in tomato and (3) to evaluate male and female parental genotypes and their F1 hybrids against late blight (LB) and cucumber mosaic virus (CMV). For molecular studies, 58 previously reported markers including RAPDs (10), SCAR (01), EST-SSR (01) and SSR (46) were applied. The SCAR marker clearly differentiated the LB3 and LB4 from Roma and T-1359 and provided evidence for Ph-3 gene. The SCAR marker was able to confirm the Ph-3 gene in the hybrids Roma × LB4, Roma × LB3, Riogrande × LB2, Riogrande × LB3 and Roma × LB7. Out of several tested primers, SSR-22 proved useful for genetic confirmation of F1 hybrid TMS1 × Money Maker (MM). For LB, tested hybrids/genotypes were ranked as susceptible to highly susceptible with different infection percentage (IP). However, the pace of symptom development was slower in hybrid Rio × LB2, 45% IP after 10 days of inoculation compared with 85% disease in one of the parent genotypes (Riogrande). None of the tested genotypes was found resistant; however, TMS1 responded as tolerant against CMV using mechanical inoculation. Under natural field conditions, TMS1 was found resistant while hybrids TMS1 × Naqeeb and TMS1 × MM were tolerant where as others were found to be susceptible. In conclusion, all tomato hybrids were genetically confirmed using DNA-based markers. SCAR marker was useful for marker-assisted confirmation of the Ph-3 gene in parental lines and hybrids; however, this gene was unable to provide protection against the local population of P. infestans.

  18. A single amino acid change in HC-Pro of soybean mosaic virus alters symptom expression in a soybean cultivar carrying Rsv1 and Rsv3.

    Science.gov (United States)

    Seo, Jang-Kyun; Sohn, Seong-Han; Kim, Kook-Hyung

    2011-01-01

    It is generally believed that infidelity of RNA virus replication combined with R-gene-driven selection is one of the major evolutionary forces in overcoming host resistance. In this study, we utilized an avirulent soybean mosaic virus (SMV) mutant to examine the possibility of emergence of mutant viruses capable of overcoming R-gene-mediated resistance during serial passages. Interestingly, we found that the emerged progeny virus induced severe rugosity and local necrotic lesions in Jinpumkong-2 (Rsv1 + Rsv3) plants, while SMV-G7H provoked a lethal systemic hypersensitive response. Genome sequence analysis of the emerged progeny virus revealed that the mutation in CI that had caused SMV-G7H to lose its virulence was restored to the original sequence, and a single amino acid was newly introduced into HC-Pro, which means that the symptom alteration was due to this single amino acid mutation in HC-Pro. Our results suggest that SMV HC-Pro functions as a symptom determinant in the SMV-soybean pathosystem.

  19. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Gronenborn, Bruno [Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette (France); Jeske, Holger, E-mail: holger.jeske@bio.uni-stuttgart.de [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2014-08-15

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.

  20. The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus

    DEFF Research Database (Denmark)

    Jiang, Lu; Ingvardsen, Christina Rønn; Lübberstedt, Thomas

    2008-01-01

    Sugarcane mosaic virus (SCMV) is the causal pathogen for a severe mosaic virus disease of maize worldwide. In our previous research, the maize resistance gene analog (RGA) Pic19 and its three cognate BAC contigs were mapped to the same region as the SCMV resistance gene Scmv1. Here we report...... the isolation and characterization of the Pic19R gene family members from the inbred line FAP1360A, which shows complete resistance to SCMV. Two primer pairs were designed based on the conserved regions among the known Pic19 paralogs and used for rapid amplification of cDNA ends of FAP1360A. Six full-length c......DNAs, corresponding to the Pic19R-1 to -6 paralogs, were obtained. Three of them (Pic19R-1 to -3) had uninterrupted coding sequences and were, therefore, regarded as candidates for the Scmv1 gene. A total of 18 positive BAC clones harboring the Pic19R-2 to -5 paralogs were obtained from the FAP1360A BAC library...

  1. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens.

    Science.gov (United States)

    Elbeshehy, Essam K F; Elazzazy, Ahmed M; Aggelis, George

    2015-01-01

    Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries.

  2. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  3. Herbicide spring treatments for the control of brome grasses (Bromus spp. in winter cereals

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The efficacy of different ALS-inhibiting herbicides for the control of brome species (Bromus spp. was tested in three field trials in the year 2010 – 2012 in the region of North-West-Bavaria Franken. As a result of the trials the standard herbicide Attribut (Propoxycarbazone was confirmed for the control of brome. In case of infestation with brome and black grass the herbicide Broadway (Pyroxsulam offers a certain control of both problematic grass weeds. This illustrates the high dependency of sufficient brome control in winter cereals on the effectiveness of specific ALS-Inhibitor herbicides. Because of the high risk of herbicide resistance to ACCaseand ALS-inhibiting herbicides in brome, integrated weed management is essential for the sustainable control of brome in winter cereals, respectively winter wheat.

  4. Purificação e propriedades do vírus do mosaico do quenopódio Purification and properties of chenopodium mosaic virus

    Directory of Open Access Journals (Sweden)

    Darcy M. Silva

    1958-01-01

    Full Text Available O vírus do mosaico do quenopódio foi purificado por meio de centrifugações alternadas de baixa e alta velocidade, complementadas pelo tratamento com clorofórmio e álcool amílico. Foram obtidas preparações altamente ativas, que apresentaram as reações características das proteínas e um espectro de absorção da luz ultravioleta igual ao das nucleoproteínas, e que não apresentavam o fenômeno de anisotropia de fluxo. O sedimento dessas preparações purificadas, obtido na ultracentrífuga, retomado em um pequeno volume de solução de sulfato de amônio 0,2 saturada e guardado a 4°C, produz um grande número de microcristais. As partículas que compõem as preparações examinadas ao microscópio são de aspecto e dimensões bastante uniformes; são "esféricas" e de cerca de 30 milimicros de diâmetro. O material purificado se assemelha ao vírus do mosaico "southern bean", quanto ao aspecto dos cristais, mas os testes de hospedeiros e sorológicos indicaram tratar-se de dois vírus perfeitamente distintos.The Chenopodium mosaic virus was purified by means of alternated low and high speed centrifugations combined with chloroform N-amyl alcohol treatment. Such preparations have a high activity, give positive tests for protein and its ultra-violet absorption spectrum is that of a nucleoprotein solution. They do not show the phenomenon of anisotropy of flow. When examined in the electron microscope they showed to be constituted of "spherical" particles of uniform size having an approximate diameter of 30 mμ.. If a pellet of the purified virus is resuspended in a small volume of 0,2 saturated (NH42 SO4 solution and kept at 4°C for several hours, masses of roughly rhombic crystals are formed. As far as the size of particles and the form of crystals are concerned, the Chenopodium mosaic virus resembles the southern bean mosaic virus. They differ, however, in their host range and are not related serologically.

  5. mosaic virus disease

    African Journals Online (AJOL)

    % A. socialis and 20% T variabilis) have been chronic for more than 20 years. Insecticide use on commercial crops (cotton, rice, sesame) in the region is heavy (Gold, 1987) and whiteflies may have become secondary pests because of this.

  6. mosaic virus disease

    African Journals Online (AJOL)

    return on available land, protection against soil erosion and ... a cropping system influences an herbivore's population dynamics. ... daily temperatures ranged from 26 to 30°C. Nataimais at 4°N ..... turn, affect whiteflies by altering microclimates.

  7. Identification of brome grass infestations in southwest Oklahoma using multi-temporal Landsat imagery

    Science.gov (United States)

    Yan, D.; de Beurs, K.

    2013-12-01

    The extensive infestation of brome grasses (Cheatgrass, Rye brome and Japanese brome) in southwest Oklahoma imposes negative impacts on local economy and ecosystem in terms of decreasing crop and forage production and increasing fire risk. Previously proposed methodologies on brome grass detection are found ill-suitable for southwest Oklahoma as a result of similar responses of background vegetation to inter-annual variability of rainfall. In this study, we aim to identify brome grass infestations by detecting senescent brome grasses using the 2011 Cultivated Land Cover Data Sets and the difference Normalized Difference Infrared Index (NDII) derived from multi-temporal Landsat imagery. Landsat imageries acquired on May 18th and June 10th 2013 by Operational Land Imager and Enhanced Thematic Mapper plus were used. The imagery acquisition dates correspond to the peak growth and senescent time of brome grasses, respectively. The difference NDII was calculated by subtracting the NDII image acquired in May from the June NDII image. Our hypotheses is that senescent brome grasses and crop/pasture fields harvested between the two image acquisition dates can be distinguished from background land cover classes because of their increases in NDII due to decreased water absorption by senescent vegetation in the shortwave infrared region. The Cultivated Land Cover Data Sets were used to further separate senescent brome grass patches from newly harvested crop/pasture fields. Ground truth data collected during field trips in June, July and August of 2013 were used to validate the detection results.

  8. Comparison of disease patterns assessed by three independent surveys of cassava mosaic virus disease in Rwanda and Burundi

    NARCIS (Netherlands)

    Bouwmeester, H.; Heuvelink, G.B.M.; Legg, J.P.; Stoorvogel, J.J.

    2012-01-01

    Cassava mosaic disease (CMD) seriously affects cassava yields in Africa. This study compared the spatial distribution of CMD using three independent surveys in Rwanda and Burundi. Geostatistical techniques were used to interpolate the point-based surveys and predict the spatial distributions of

  9. Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato.

    Science.gov (United States)

    Paz-Carrasco, Lenin C; Castillo-Urquiza, Gloria P; Lima, Alison T M; Xavier, Cesar A D; Vivas-Vivas, Leticia M; Mizubuti, Eduardo S G; Zerbini, F Murilo

    2014-08-01

    Viral diseases caused by begomoviruses are of economic importance due to their adverse effects on the production of tropical and subtropical crops. In Ecuador, despite reports of significant infestations of Bemisia tabaci in the late 1990s, only very recently has a begomovirus, tomato leaf deformation virus (ToLDeV, also present in Peru), been reported in tomato. ToLDeV is the first monopartite begomovirus discovered that originated in the Americas, and its presence in Ecuador highlights the need for a wider survey of tomato-infecting begomoviruses in this country. Tomato and weed samples were collected in 2010 and 2011 in six provinces of Ecuador, and begomovirus genomes were cloned and sequenced using a rolling-circle-amplification-based approach. Most tomato samples from the provinces of Guayas, Loja, Manabi and Santa Elena were infected with tomato leaf deformation virus (ToLDeV). One sample from Manabi had a triple infection with ToLDeV, rhynchosia golden mosaic Yucatan virus (RhGMYuV) and an isolate that was a recombinant between the two. A new begomovirus was detected in another tomato sample from Manabi. Samples of Rhynchosia sp. from the provinces of Guayas and Manabi were infected by RhGMYuV. These results indicate not only the prevalence of ToLDeV in tomato in Ecuador but also the presence of other viruses, albeit at a much lower frequency.

  10. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

    Science.gov (United States)

    Casteel, Clare L; Yang, Chunling; Nanduri, Ananya C; De Jong, Hannah N; Whitham, Steven A; Jander, Georg

    2014-02-01

    Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Modifications of the Helper Component-Protease of Zucchini yellow mosaic virus for Generation of Attenuated Mutants for Cross Protection Against Severe Infection.

    Science.gov (United States)

    Lin, Shih-Shun; Wu, Hui-Wen; Jan, Fuh-Jyh; Hou, Roger F; Yeh, Shyi-Dong

    2007-03-01

    ABSTRACT A nonpathogenic mild strain is essential for control of plant viruses by cross protection. Three amino acid changes, Arg(180)-->Ile(180) (GA mutation), Phe(205)-->Leu(205) (GB mutation), and Glu(396)-->Asn(396) (GC mutation), of the conserved motifs of the helper component-protease (HC-Pro) of a severe strain TW-TN3 of Zucchini yellow mosaic virus (ZYMV), a member of the genus Potyvirus, were generated from an infectious cDNA clone that carried a green fluorescent protein reporter. The infectivity of individual mutants containing single, double, or triple mutations was assayed on local and systemic hosts. On Chenopodium quinoa plants, the GB mutant induced necrotic lesions; the GA, GC, and GBC mutants induced chlorotic spots; and the GAB and GAC mutants induced local infection only visualized by fluorescence microscopy. On squash plants, the GA, GB, GC, and GBC mutants caused milder mosaic; the GAC mutant induced slight leaf mottling followed by recovering; and the GAB mutant did not induce conspicuous symptoms. Also, the GAC mutant, but not the GAB mutant, conferred complete cross protection against the parental virus carrying a mite allergen as a reporter. When tested on transgene-silenced transgenic squash, the ability of posttranscriptional gene silencing suppression of the mutated HC-Pro of GAC was not significantly affected. We concluded that the mutations of the HC-Pro of ZYMV reduce the degrees of pathogenicity on squash and also abolish the ability for eliciting the hypersensitive reaction on C. quinoa, and that the mutant GAC is a useful mild strain for cross protection.

  12. Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci.

    Science.gov (United States)

    Mar, Talita Bernardon; Mendes, Igor Rodrigues; Lau, Douglas; Fiallo-Olivé, Elvira; Navas-Castillo, Jesús; Alves, Murilo Siqueira; Murilo Zerbini, F

    2017-06-01

    The majority of Old World monopartite begomoviruses (family Geminiviridae) are associated with satellite DNAs. Alphasatellites are capable of autonomous replication, but depend on the helper virus for movement, encapsidation and transmission by the insect vector. Recently, Euphorbia yellow mosaic alphasatellite (EuYMA) was found in association with Euphorbia yellow mosaic virus (EuYMV) infecting Euphorbia heterophylla plants in Brazil. The geographical range of EuYMA was assessed in a representative sampling of E. heterophylla plants collected in several states of Brazil from 2009 to 2014. Infectious clones were generated and used to assess the phenotype of viral infection in the presence or absence of the alphasatellite in tomato, E. heterophylla, Nicotiana benthamiana, Arabidopsis thaliana and Crotalaria juncea. Phenotypic differences of EuYMV infection in the presence or absence of EuYMA were observed in A. thaliana, N. benthamiana and E. heterophylla. Symptoms were more severe when EuYMV was inoculated in combination with EuYMA in N. benthamiana and E. heterophylla, and the presence of the alphasatellite was determinant for symptom development in A. thaliana. Quantification of EuYMV and EuYMA indicated that EuYMA affects the accumulation of EuYMV during infection on a host-dependent basis. Transmission assays indicated that EuYMA negatively affects the transmission of EuYMV by Bemisia tabaci MEAM1. Together, these results indicate that EuYMA is capable of modulating symptoms, viral accumulation and whitefly transmission of EuYMV, potentially interfering with virus dissemination in the field.

  13. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    Science.gov (United States)

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  14. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans.

    Science.gov (United States)

    Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun

    2016-02-01

    A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C

  15. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires.

    Science.gov (United States)

    Saunders, Keith; Lomonossoff, George P

    2017-01-01

    We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes.

  16. In Planta Synthesis of Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to Fabricate Nano-Wires

    Science.gov (United States)

    Saunders, Keith; Lomonossoff, George P.

    2017-01-01

    We have utilized plant-based transient expression to produce tobacco mosaic virus (TMV)-based nano-rods of predetermined lengths. This is achieved by expressing RNAs containing the TMV origin of assembly sequence (OAS) and the sequence of the TMV coat protein either on the same RNA molecule or on two separate constructs. We show that the length of the resulting nano-rods is dependent upon the length of the RNA that possesses the OAS element. By expressing a version of the TMV coat protein that incorporates a metal-binding peptide at its C-terminus in the presence of RNA containing the OAS we have been able to produce nano-rods of predetermined length that are coated with cobalt-platinum. These nano-rods have the properties of defined-length nano-wires that make them ideal for many developing bionanotechnological processes. PMID:28878782

  17. Preparation of nanoporous polyimide thin films via layer-by-layer self-assembly of cowpea mosaic virus and poly(amic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Peng Bo; Wu Guojun; Lin Yuan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 (United States); Su Zhaohui, E-mail: zhsu@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2011-09-01

    Low dielectric (low-{kappa}) materials are of key importance for the performance of microchips. In this study, we show that nanosized cowpea mosaic virus (CPMV) particles can be assembled with poly(amic acid) (PAA) in aqueous solutions via the layer-by-layer technique. Then, upon thermal treatment CPMV particles are removed and PAA is converted into polyimide in one step, resulting in a porous low-{kappa} polyimide film. The multilayer self-assembly process was monitored by quartz crystal microbalance and UV-Vis spectroscopy. Imidization and the removal of the CPMV template was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy respectively. The dielectric constant of the nanoporous polyimide film thus prepared was 2.32 compared to 3.40 for the corresponding neat polyimide. This work affords a facile approach to fabrication of low-{kappa} polyimide ultrathin films with tunable thickness and dielectric constant.

  18. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

    Directory of Open Access Journals (Sweden)

    Shawn Sanctis

    2015-03-01

    Full Text Available Tobacco mosaic virus (TMV has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET. A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS, transmission electron microscopy (TEM, grazing incidence X-ray diffractometry (GI-XRD and atomic force microscopy (AFM. TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  19. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    Science.gov (United States)

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  20. New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering.

    Science.gov (United States)

    Martin, Stanton L; He, Lilin; Meilleur, Flora; Guenther, Richard H; Sit, Tim L; Lommel, Steven A; Heller, William T

    2013-08-01

    Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca(2+) and Mg(2+) was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395-10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations.

  1. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies.

    Science.gov (United States)

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Chen, Jianping

    2014-06-01

    Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa-Pro (nuclear inclusion-a protease) and VPg (viral protein genome-linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa-Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV-infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2-associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. A novel two-component Tobacco mosaic virus-based vector system for high-level expression of multiple therapeutic proteins including a human monoclonal antibody in plants.

    Science.gov (United States)

    Roy, Gourgopal; Weisburg, Sangeetha; Rabindran, Shailaja; Yusibov, Vidadi

    2010-09-15

    Expression of multiple therapeutic proteins from Tobacco mosaic virus (TMV)-based vectors was not successful when plants were coinoculated with a mixture of two TMV vectors engineered to express two foreign genes individually. Here, we have engineered and developed a defective RNA (dRNA)-based TMV vector (dRT-V) that utilizes two components of the same virus, with the dRNA component depending on the helper virus for replication. Agrobacterium-mediated coinoculation of Nicotiana benthamiana plants with both components of the dRT-V resulted in high-level expression of a human growth hormone and a lichenase-fused lethal factor protein of Bacillus anthracis. Furthermore, both heavy and light chains were expressed and assembled into a monoclonal antibody (mAb) specific to the protective antigen of B. anthracis, and the average yield of the purified antibody obtained was 120 mg/kg of fresh tissue. Our data suggest that dRT-V has a potential for rapid, cost-effective, large-scale manufacturing of multiple therapeutic proteins including mAbs in response to any biological emergencies. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Gain of virulence by Soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host.

    Science.gov (United States)

    Wang, Y; Hajimorad, M R

    2016-09-01

    'Gene-for-gene' theory predicts that gain of virulence by an avirulent pathogen on plants expressing resistance (R) genes is associated with fitness loss in susceptible hosts. However, the validity of this prediction has been studied in only a few plant viral pathosystems. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to test this prediction. In Rsv4-genotype soybeans, P3 of avirulent SMV strains provokes an as yet uncharacterized resistance mechanism that restricts the invading virus to the inoculated leaves. A single amino acid substitution in P3 functionally converts an avirulent to a virulent strain, suggesting that the genetic composition of P3 plays a crucial role in virulence on Rsv4-genotype soybeans. In this study, we examined the impact of gain of virulence mutation(s) on the fitness of virulent variants derived from three avirulent SMV strains in a soybean genotype lacking the Rsv4 gene. Our data demonstrate that gain of virulence mutation(s) by all avirulent viruses on Rsv4-genotype soybean is associated with a relative fitness loss in a susceptible host. The implications of this finding on the durable deployment of the Rsv4 gene in soybean are discussed. © 2015 BSPP and John Wiley & Sons Ltd.

  4. Analysis of the accumulation of Pea enation mosaic virus genomes in seed tissues and lack of evidence for seed transmission in pea (Pisum sativum).

    Science.gov (United States)

    Timmerman-Vaughan, Gail; Larsen, Richard; Murray, Sarah; McPhee, Kevin; Coyne, Clarice

    2009-11-01

    Pea enation mosaic virus (PEMV) is an important virus disease of pea. International movement of commercial pea cultivars and germplasm can be problematic due to uncertainty about seed transmission of the viruses responsible for the disease. Whether PEMV is seedborne was assessed by collecting developing seed from infected plants and determining the relative concentrations of the PEMV-1 and PEMV-2 viral genomes using quantitative real-time reverse-transcription polymerase chain reaction. The relative accumulation of PEMV-1 and PEMV-2 was approximately 1,240 and 13,000 times higher, respectively, in leaf than in embryo tissues. Accumulation of PEMV-1 and PEMV-2 RNA was also significantly higher in pod walls and seed coats than in cotyledons or embryo axes. No evidence was obtained for seed transmission of PEMV in pea. Although PEMV-1 and PEMV-2 genomic RNAs were found in developing seed, no PEMV symptoms were observed in the field on more than 50,000 plants from seed derived from PEMV-infected source plants. These data demonstrate that PEMV is seedborne in pea but do not support a previous report that PEMV is seed transmitted. Absence of seed transmission may result from the low abundance of PEMV viral genomes in embryo tissue.

  5. Returning succession to downy brome dominated rangelands: roadblocks to perennial grass establishment

    Science.gov (United States)

    The most common cause of successional retrogression in the Great Basin is wildfires fueled by downy brome (Bromus tectorum). Downy brome invasion has reduced fire intervals from an estimated 60-100 years down to 5-10 years. Our previous research found that establishment of long-lived perennial grass...

  6. Rehabilitating downy brome (Bromus tectorum)-invaded scrublands using imazapic and seeding with native shrubs

    Science.gov (United States)

    Suzanne M. Owen; Carolyn Hull Sieg; Catherine A. Gehring

    2011-01-01

    Rehabilitation of downy brome-infested shrublands is challenging once this invasive grass dominates native communities. The effectiveness of imazapic herbicide in reducing downy brome cover has been variable, and there is uncertainty about the impacts of imazapic on native species. We used a before-after-control-impact (BACI) field experiment and greenhouse studies to...

  7. [Competitiveness of hard wheat (Triticum durum Desf.) varieties against ripgut brome (Bromus rigidus Roth)].

    Science.gov (United States)

    Hamal, A; Benbella, M; Rzozi, S B; Bouhache, M; Msatef, Y

    2001-01-01

    Varieties with an excellent competitiveness against ripgut brome (Bromus rigidus Roth.) would be very important to reinforce others methods to control ripgut brome weed. This study was carried out in 1999-2000 season in a greenhouse experiment to test the aggressiveness degree of six varieties of hard wheat (Oum Rabia, Isly, Marzak, Karim, Sebou, and Massa) combined with ripgut brome. Plant density was fixed at 16 plants of wheat or Bromus for pure crop and 8 plants for wheat and 8 for Bromus mixture. The results showed that the numbers of kernels/spikes were higher in the mixture for on pure composition. For the kernel weight, the result was opposite except for Isly and Marzak varieties. Karim and Isly varieties obtained the highest grain yield and were more competitive in mixture composition but Sebou and Massa varieties were less competitive against ripgut brome. Results of ripgut brome productivity and water use efficiency were similar and were used to determine the aggressiveness coefficient of hard wheat varieties against ripgut brome. The reduction of the shoot dry matter of brome was 22 to 56% at flowering. The grain yield of brome was reduced from 57 to 81%.

  8. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  9. The effect of Chrysoperla carnea (Neuroptera: Chrysopidae) and Adalia bipunctata (Coleoptera: Coccinellidae) on the spread of cucumber mosaic virus (CMV) by Aphis gossypii (Hemiptera: Aphididae).

    Science.gov (United States)

    Garzón, A; Budia, F; Medina, P; Morales, I; Fereres, A; Viñuela, E

    2015-02-01

    The effects of two aphidophagous predators, the larvae of Chrysoperla carnea and adults of Adalia bipunctata, on the spread of cucumber mosaic virus (CMV) transmitted in a non-persistent manner by the cotton aphid Aphis gossypii were studied under semi-field conditions. Natural enemies and aphids were released inside insect-proof cages (1 m × 1 m × 1 m) with a central CMV-infected cucumber plant surrounded by 48 healthy cucumber seedlings, and the spatiotemporal dynamics of the virus and vector were evaluated in the short and long term (1 and 5 days) in the presence and absence of the natural enemy. The spatial analysis by distance indices methodology together with other indices measuring the dispersal around a single focus was used to assess the spatial pattern and the degree of association between the virus and its vector. Both natural enemies significantly reduced the number of aphids in the CMV-source plant after 5 days but not after 1 day. The CMV transmission rate was generally low, especially after 1 day, due to the limited movement of aphids from the central CMV-source plant, which increased slightly after 5 days. Infected plants were mainly located around the central virus-infected source plant, and the percentage of aphid occupation and CMV-infected plants did not differ significantly in absence and presence of natural enemies. The distribution patterns of A. gossypii and CMV were only coincident close to the central plant. The complexity of multitrophic interactions and the role of aphid predators in the spread of CMV are discussed.

  10. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Marathe, Rajendra; Dinesh-Kumar, S P

    2002-05-01

    The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.

  11. Mosaic Messages

    Science.gov (United States)

    Baldauf, Annemarie

    2012-01-01

    Through the generosity of a Lowes Toolbox for Education Grant and a grant from the Bill Graham Foundation, an interdisciplinary mosaic mural was created and installed at Riverview Middle School in Bay Point, California. The actual mural, which featured a theme of nurturing students through music, art, sports, science, and math, took about three…

  12. Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves.

    Science.gov (United States)

    Song, Xing-Shun; Wang, Yan-Jie; Mao, Wei-Hua; Shi, Kai; Zhou, Yan-Hong; Nogués, Salvador; Yu, Jing-Quan

    2009-03-01

    We examined the responses of the photosynthetic and respiratory electron transport and antioxidant systems in cell organelles of cucumber (Cucumis sativus L.) and tomato (Lycopersicon esculentum Mill.) leaves to infection of cucumber mosaic virus (CMV) by comparing the gas exchange, Chl fluorescence, respiratory electron transport, superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate-glutathione (AsA-GSH) cycle enzymes and the production of H(2)O(2) in chloroplasts, mitochondria and soluble fraction in virus-infected and non-infected leaves. Long-term CMV infection resulted in decreased photosynthesis and respiration rates. Photosynthetic electron flux to carbon reduction, respiratory electron transport via both complex I and complex II and also the Cyt respiration rate all significantly decreased, while photosynthetic alternative electron flux and alternative respiration significantly increased. These changes in electron transport were accompanied by a general increase in the activities of SOD/AsA-GSH cycle enzymes followed by an increased H(2)O(2) accumulation in chloroplasts and mitochondria. These results demonstrated that disturbance of photosynthetic and respiratory electron transport by CMV also affected the antioxidative systems, thereby leading to oxidative stress in various organelles.

  13. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    Science.gov (United States)

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  14. The sequencing of the complete genome of a Tomato black ring virus (TBRV) and of the RNA2 of three Grapevine chrome mosaic virus (GCMV) isolates from grapevine reveals the possible recombinant origin of GCMV.

    Science.gov (United States)

    Digiaro, M; Yahyaoui, E; Martelli, G P; Elbeaino, T

    2015-02-01

    The complete genome of a Tomato black ring virus isolate (TBRV-Mirs) (RNA1, 7,366 nt and RNA2, 4,640 nt) and the RNA2 sequences (4,437; 4,445; and 4,442 nts) of three Grapevine chrome mosaic virus isolates (GCMV-H6, -H15, and -H27) were determined. All RNAs contained a single open reading frame encoding polyproteins of 254 kDa (p1) and 149 kDa (p2) for TBRV-Mirs RNA1 and RNA2, respectively, and 146 kDa for GCMV RNA2. p1 of TBRV-Mirs showed the highest identity with TBRV-MJ (94 %), Beet ringspot virus (BRSV, 82 %), and Grapevine Anatolian ringspot virus (GARSV, 66 %), while p2 showed the highest identity with TBRV isolates MJ (89 %) and ED (85 %), followed by BRSV (65 %), GCMV (58 %), and GARSV (57 %). The amino acid identity of RNA2 sequences of four GCMV isolates (three from this study and one from GenBank) ranged from 91 to 98 %, the homing protein being the most variable. The RDP3 program predicted putative intra-species recombination events for GCMV-H6 and recognized GCMV as a putative inter-species recombinant between GARSV and TBRV. In both cases, the recombination events were at the movement protein level.

  15. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    Science.gov (United States)

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  16. First record of target-site-resistance of poverty brome (Bromus sterilis to ACCase inhibitors

    Directory of Open Access Journals (Sweden)

    Dicke, Dominik

    2014-02-01

    Full Text Available In 2011 reduced efficacy of grass weed herbicides to poverty brome (Bromus sterilis was observed in oilseed rape on a site in East Hessen. The field was cultivated by using the ploughless tillage system more than 25 years. The site showed high densities of poverty brome (>1000 plants/m² prior to herbicide treatment. Poverty brome seeds were collected in 2012 in the hessian oilseed rape field and from a site in East Westphalia, where poverty brome appeared at low densities (10 plants/m² and was not suspected to resistance. The seeds were sown in to pots and plants cultivated. The plants were treated with two application rates (normal dose, double dose with herbicides of different HRAC-classes. The time of treatment was adjusted to the best expectable treatment/efficiency conditions of the individual herbicides (see chapter 3. Clear differences in efficacy that were caused by herbicide, the origins of poverty brome and the dosages were recorded via visual rating eight weeks after spraying. The herbicides Agil and Focus Ultra were able to control about 90% of the poverty brome plants of the East Westphalia site origin. However, only 20-30% of the Hessian plants could be knocked out by the same herbicides. The ACCase-gene of single powerty brome leaf samples from the hessian site was analyzed after resistance assessment. A molecular genetic analysis on 7 variable positions identified target site resistance: Isoleucine (Ile was replaced by asparagine (Asn at position 2041.

  17. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    Science.gov (United States)

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  18. Short communication. Molecular analysis of the genomic RNAs 1 and 2 of the first Arabis mosaic virus isolate detected in Spanish grapevines

    Directory of Open Access Journals (Sweden)

    I. Lopez-Fabuel

    2013-02-01

    Full Text Available The Arabis mosaic virus (ArMV is one of the causative agent of the grapevine fanleaf disease, one of the most widespread and damaging viral diseases of grapevine. Recently, the ArMV has been detected in Spanish vineyards, and its determination and molecular characterization was undertaken. To this aim, the nucleotide sequence of the genomic RNAs 1 and 2 of the first isolate of ArMV infecting grapevine detected in Spain (ArMV-DU13 has been determined. The ArMV-DU13 genomic sequences were compared to the corresponding sequences of other isolates of ArMV, or nepoviruses. The most divergent genes among ArMV isolates were the X1 and VPg genes on the RNA 1, and the 2A gene on the RNA 2, with identity levels at the amino acid level of 78% (X1 and VPg or 69% (2A between the most distant isolates. Interestingly, the VPg genes were identical between the two grapevine isolates ArMV-Du13 and –NW, suggesting a possible implication of the host. The phylogenetic analysis of the RNA 2 showed that the Spanish isolate was close to Grapevine fanleaf virus isolates. The analysis of the full length RNA 2 suggests a recombination event between ArMV-DU13 and GFLV-GHu isolates between nucleotides 54 and 586 in the ArMV-DU13 isolate. Altogether, these results confirm the high variability between isolates of ArMV, and will be helpful to design more appropriate and reliable molecular diagnostic techniques for the control of this emerging virus in Spain.

  19. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  20. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    Directory of Open Access Journals (Sweden)

    Decai Tuo

    2015-12-01

    Full Text Available Papaya leaf distortion mosaic virus (PLDMV is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV. The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA, was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  1. Sources of resistance against the Pepper yellow mosaic virus in chili pepper Fontes de resistência ao Mosaico Amarelo do Pimentão em pimentas

    Directory of Open Access Journals (Sweden)

    Cíntia dos S Bento

    2009-06-01

    Full Text Available The Pepper yellow mosaic virus (PepYMV naturally infects chili and sweet pepper, as well as tomato plants in Brazil, leading to severe losses. This work reports the reaction to the PepYMV of 127 Capsicum spp. accessions, aiming at identifying resistance sources useful in breeding programs. The experiment was carried out in a completely randomized design, with eight replications, in greenhouse conditions. Plants were protected with an insect-proof screen to avoid virus dissemination by aphids. Leaves of Nicotiana debneyi infected with the PepYMV were used as the inoculum source. Plants were inoculated with three to four fully expanded leaves. A second inoculation was done 48 hours later to avoid escapes. Only the youngest fully expanded leaf was inoculated. Two plants were inoculated only with buffer, as negative control. Symptoms were visually scored using a rating scale ranging from 1 (assymptomatic plants to 5 (severe mosaic and leaf area reduction. Nine accessions were found to be resistant based on visual evaluation. Their resistance was confirmed by ELISA. Two resistance accessions belong to the species C. baccatum var. pendulum, while the seven other were C. chinense. No resistant accessions were identified in C. annuum var. annuum, C. annuum var. glabriusculum, and C. frutescens.O Mosaico Amarelo do Pimentão é causado pelo Pepper yellow mosaic virus (PepYMV e tem ocorrência natural na maioria das regiões produtoras de pimenta, pimentão e tomate do Brasil, causando sérias perdas nas culturas de pimentão e pimenta. Este trabalho teve como objetivo avaliar a resistência de 127 acessos de Capsicum spp. ao PepYMV, com o intuito de identificar fontes de resistência a serem utilizadas em programas de melhoramento. O experimento foi conduzido em delineamento inteiramente casualizado, com oito repetições, em casa de vegetação, protegida com tela à prova de insetos, para evitar a disseminação do vírus por afídeos vetores. Folhas

  2. Quantitative control of Lettuce mosaic virus fitness and host defence inhibition by P1-HCPro P1-HC Pro do Lettuce mosaic virus atua de forma quantitativa na inibição da resposta de defesa do hospedeiro e adaptação viral

    Directory of Open Access Journals (Sweden)

    Renate Krause-Sakate

    2007-06-01

    Full Text Available Two Lettuce mosaic virus isolates capable of overcoming the resistance afforded by the resistance gene mo1² in lettuce, LMV-AF199 from Brazil, and LMV-E, an European isolate, were evaluated for the rapidity and severity of symptoms induced on the lettuce variety Salinas 88 (mo1². The mosaic symptoms on Salinas 88 plants inoculated with LMV-AF199 appeared 7 days post-inoculation (dpi and 15 dpi for LMV-E. The symptoms induced by LMV-AF199 in this cultivar were also more severe than those induced by LMV-E. In order to identify the region of the viral genome responsible for this phenotype, recombinant viruses were constructed between these isolates and the phenotype of each recombinant was analysed. The region encoding proteins P1 and HcPro from LMV-AF199 was associated with the increased virulence in Salinas 88.Dois isolados de Lettuce mosaic virus capazes de contornar a resistência conferida pelo gene mo1² em alface, LMV-AF199 proveniente do Brasil e LMV-E um isolado europeu, foram avaliados quanto à rapidez e à severidade dos sintomas induzidos em alface variedade Salinas 88 (mo1². Os sintomas de mosaico induzidos pelo isolado LMV-AF-199 em Salinas 88 são mais severos e aparecem aos 7 dias após a inoculação (dpi, enquanto que para o isolado LMV-E os sintomas são visíveis somente a partir dos 15 dpi. Com o intuito de identificar a região do genoma viral responsável por este fenótipo, vírus recombinantes foram construídos entre estes dois isolados, e o fenótipo avaliado quanto a rapidez e severidade dos sintomas em Salinas-88. A região codificadora para as proteínas P1 e Hc-Pro do LMV-AF199 foi associada com o aumento da virulência deste isolado em Salinas-88.

  3. Populations dynamics of red brome (Bromus madritensis subsp. Rubens): Times for concern, opportunities for management

    Science.gov (United States)

    Salo, L.F.

    2004-01-01

    Red brome is a Mediterranean winter annual grass that has invaded south-western USA deserts. Unlike native annuals, it does not maintain a soil seed bank, but exhibits early and uniform germination. Above-average winter precipitation in these regions allows red brome to reach high density and biomass. These are time for concern, as large numbers of easily dispersed seeds increase the likelihood that it may spread into new areas. However, early and uniform germination can also lead to population crashes when drought precludes seed production. Winter droughts dramatically reduce densities of red brome, but provide opportunities for management of this exotic grass.

  4. Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome ().

    Science.gov (United States)

    Strawn, Daniel G; Rigby, April C; Baker, Leslie L; Coleman, Mark D; Koch, Iris

    2015-07-01

    Biochar is a renewable energy byproduct that shows promise for remediating contaminated mine sites. A common contaminant at mine sites is arsenic (As). In this study, the effects of biochar amendments to a mine-contaminated soil on As concentrations in mountain brome ( Nees ex Steud.) were investigated. In the biochar-amended soil, mountain brome had greater root biomass and decreased root and shoot As concentrations. X-ray absorption near-edge structure spectroscopy results showed that arsenate [As(V)] is the predominant species in both the nonamended and biochar-amended soils. Soil extraction tests that measure phosphate and arsenate availability to plants failed to accurately predict plant tissue As concentrations, suggesting the arsenate bioavailability behavior in the soils is distinct from phosphate. Results from this study indicate that biochar will be a beneficial amendment to As-contaminated mine sites for remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Viruses infecting maize

    OpenAIRE

    Krstić, Branka; Stanković, Ivana; Bulajić, Aleksandra

    2014-01-01

    Over 40 plant viruses has been known to cause diseases of maize, but economically the most important yield looses, which in certain years can be total, are caused by viruses from Potyvirus genera, known to be aphid-transmitted in a non-persistant maner. The most important viruses, pathogens of maize, sugar cane and sorghum are considered to be Maize dwarf mosaic virus (MDMV), Sorghum mosaic virus (SrMV), Sugarcane mosaic virus (SCMV), and Johnsongrass mosaic virus (JGMV). In Serbia, the prese...

  6. 4.6Å Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300keV on a 4k×4k CCD camera

    OpenAIRE

    Clare, Daniel K.; Orlova, Elena V.

    2010-01-01

    Tobacco mosaic virus (TMV) is a plant virus with a highly ordered organisation and has been described in three different structural states: As stacked disks without RNA (X-ray crystallography), as a helical form with RNA (X-ray fibre diffraction) and as a second distinct helical form with RNA (cryo-EM). Here we present a structural analysis of TMV as a test object to assess the quality of cryo-EM images recorded at 300?keV on a CCD camera. The 4.6?? TMV structure obtained is consistent with t...

  7. Soybean mosaic virus infection and helper component-protease enhance accumulation of Bean pod mottle virus-specific siRNAs

    Science.gov (United States)

    Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by post-transcriptional gene silencing (PTGS), which is ac...

  8. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus.

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication

  9. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus.

    Directory of Open Access Journals (Sweden)

    Balaji Jada

    Full Text Available Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494. Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the

  10. Multiple Different Defense Mechanisms Are Activated in the Young Transgenic Tobacco Plants Which Express the Full Length Genome of the Tobacco Mosaic Virus, and Are Resistant against this Virus

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J.; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489–1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7–8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV

  11. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea.

    Science.gov (United States)

    Ashby, Jamie A; Stevenson, Clare E M; Jarvis, Gavin E; Lawson, David M; Maule, Andrew J

    2011-01-24

    Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection. To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4E(S) bound to m(7)GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m(7)GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4E(R) and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m(7)GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation. The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4

  12. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco.

    Science.gov (United States)

    Tungadi, Trisna; Groen, Simon C; Murphy, Alex M; Pate, Adrienne E; Iqbal, Javaid; Bruce, Toby J A; Cunniffe, Nik J; Carr, John P

    2017-05-03

    Aphids, including the generalist herbivore Myzus persicae, transmit cucumber mosaic virus (CMV). CMV (strain Fny) infection affects M. persicae feeding behavior and performance on tobacco (Nicotiana tabacum), Arabidopsis thaliana and cucurbits in varying ways. In Arabidopsis and cucurbits, CMV decreases host quality and inhibits prolonged feeding by aphids, which may enhance virus transmission rates. CMV-infected cucurbits also emit deceptive, aphid-attracting volatiles, which may favor virus acquisition. In contrast, aphids on CMV-infected tobacco (cv. Xanthi) exhibit increased survival and reproduction. This may not increase transmission but might increase virus and vector persistence within plant communities. The CMV 2b counter-defense protein diminishes resistance to aphid infestation in CMV-infected tobacco plants. We hypothesised that in tobacco CMV and its 2b protein might also alter the emission of volatile organic compounds that would influence aphid behavior. Analysis of headspace volatiles emitted from tobacco plants showed that CMV infection both increased the total quantity and altered the blend produced. Furthermore, experiments with a CMV 2b gene deletion mutant (CMV∆2b) showed that the 2b counter-defense protein influences volatile emission. Free choice bioassays were conducted where wingless M. persicae could choose to settle on infected or mock-inoculated plants under a normal day/night regime or in continual darkness. Settling was recorded at 15 min, 1 h and 24 h post-release. Statistical analysis indicated that aphids showed no marked preference to settle on mock-inoculated versus infected plants, except for a marginally greater settlement of aphids on mock-inoculated over CMV-infected plants under normal illumination. CMV infection of tobacco plants induced quantitative and qualitative changes in host volatile emission and these changes depended in part on the activity of the 2b counter-defense protein. However, CMV-induced alterations in

  13. Insights into Alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 overexpression

    Directory of Open Access Journals (Sweden)

    Chanyong eJang

    2013-01-01

    Full Text Available Alternanthera mosaic virus (AltMV triple gene block 3 (TGB3 protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculation were observed in Nicotiana benthamiana when AltMV TGB3 was over-expressed from PVX. Plants with over-expressed TGB3 showed more lethal damage under dark conditions than under light. Yeast-two-hybrid analysis and bimolecular fluorescence complementation (BiFC reveal that A. thaliana PsbO1 has strong interactions with TGB3; N. benthamiana PsbO (NbPsbO also showed obvious interaction signals with TGB3 through BiFC. These results demonstrate an important role for TGB3 in virus cell-to-cell movement and virus-host plant interactions. The Photosystem II oxygen-evolving complex protein PsbO interaction with TGB3 is presumed to have a crucial role in symptom development and lethal damage under dark conditions. In order to further examine interactions between AtPsbO1, NbPsbO and TGB3, and to identify the binding domain(s in TGB3 protein, BiFC assays were performed between AtPsbO1 or NbPsbO and various mutants of TGB3. Interactions with C-terminally deleted TGB3 were significantly weaker than those with wild-type TGB3, and both N-terminally deleted TGB3 and a TGB3 mutant previously shown to lose chloroplast interactions failed to interact detectably with PsbO in BiFC. To gain additional information about TGB3 interactions in AltMV-susceptible plants, we cloned 12 natural AltMV TGB3 sequence variants into a PVX expression vector to examine differences in symptom development in N. benthamiana. Symptom differences were observed on PVX over-expression, with all AltMV TGB3 variants showing more severe symptoms than the WT PVX control, but without obvious correlation to sequence differences.

  14. Comparison of the complete sequences of three different isolates of Pepino mosaic virus: size variability of the TGBp3 protein between tomato and L. peruvianum isolates.

    Science.gov (United States)

    López, C; Soler, S; Nuez, F

    2005-03-01

    The complete nucleotide sequence of the genomes of two Spanish isolates (LE-2000 and LE-2002) from tomato and one Peruvian isolate (LP-2001) from Lycopersicon peruvianum of the Pepino mosaic virus (PepMV) were determined. The tomato isolates share identities higher than 99%, while the genome of LP-2001 had mean nucleotide identities of 95.6% to 96.0% with tomato isolates. The predicted amino acid sequences showed similarities ranging between 95.2% and 100% with TGBp3 and TGBp2 and CP proteins, respectively. In LP-2001 two main differences were found with respect to the tomato isolates; (i) the 5' untranslated region (UTR) was 2 nt shorter by deletion at position 12-13 and it had some polymorphims at the putative promoter sequence reported for PepMV tomato isolates and other potexviruses, which could be functionally significant for RNA replication, and (ii) the TGBp3 protein had two extra amino acids in the C-terminal region.

  15. Engineering of papaya mosaic virus (PapMV nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites.

    Directory of Open Access Journals (Sweden)

    Gervais Rioux

    Full Text Available Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine.

  16. Pengendalian Aphis craccivora Koch. dengan kitosan dan pengaruhnya terhadap penularan Bean common mosaic virus strain Black eye cowpea (BCMV-BlC pada kacang panjang

    Directory of Open Access Journals (Sweden)

    Dita Megasari

    2015-09-01

    Full Text Available Aphis craccivora is one of the important pests on yard long bean. It causes direct damage and also has an indirect effect as insect vector of the Bean common mosaic virus (BCMV. The research was done to test the effectiveness of chitosan in suppressing aphid population growth, feeding preference and its ability in transmiting BCMV. Chitosan with concentration ranging of 0.1–1.0% were applied on leaves using spraying method at 1 day before BCMV transmission. BCMV was transmitted by using 3 individuals of viruliferous aphids on each plant. Results show that chitosan treatments on leaves or plants significantly suppressed the population and feeding preferences of A. craccivora. Further, treated plants showed lower disease incidence, severity and BCMV titre significantly compared with untreated control plants. The positive effects of chitosan in suppressing population growth as feeding preferences and BCMV transmission might be due to the anti-feedant effect of chitosan on A. craccivora. Based on the result, chitosan at concentration 0.9% is the most effective concentration in suppressing BCMV and its vector A. craccivora.

  17. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Serino, Giovanna; Deng, Xing-Wang; Dinesh-Kumar, S P

    2002-07-01

    The tobacco N gene confers resistance to Tobacco mosaic virus (TMV) and encodes a toll-interleukin-1 receptor/nucleotide binding/Leu-rich repeat class protein. Recent evidence indicates that the Nicotiana benthamiana Rar1 gene (NbRar1), which encodes a protein with a zinc finger motif called CHORD (Cys- and His-rich domain), is required for the function of N. To investigate the role of NbRar1 in plant defense, we identified its interaction partners. We show that the NbRar1 protein interacts with NbSGT1, a highly conserved component of the SCF (Skp1/Cullin/F-box protein)-type E3 ubiquitin ligase complex involved in protein degradation. In addition, we show that NbSGT1 interacts with NbSKP1. Suppression of NbSGT1 and NbSKP1 shows that these genes play an important role in the N-mediated resistance response to TMV. Both NbRar1 and NbSGT1 associate with the COP9 signalosome, another multiprotein complex involved in protein degradation via the ubiquitin-proteasome pathway. Silencing of the NbCOP9 signalosome also compromises N-mediated resistance to TMV. Our results reveal new roles for SCF and the COP9 signalosome in plant defense signaling.

  18. Barley yellow mosaic virus VPg is the determinant protein for breaking eIF4E-mediated recessive resistance in barley plants

    Directory of Open Access Journals (Sweden)

    Huangai Li

    2016-09-01

    Full Text Available In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus factor(s responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6 in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10 and rym5-non-breaking (JK05 isolates indicated that genome-linked viral protein (VPg is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120 and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants.

  19. Immunogold silver staining associated with epi-fluorescence for cucumber mosaic virus localisation on semi-thin sections of banana tissues

    Directory of Open Access Journals (Sweden)

    B Helliot

    2009-08-01

    Full Text Available The immunogold-silver staining (IGSS technique in combination with epi-fluorescence detection was used to localise cucumber mosaic virus (CMV particles within banana infected tissues. For this purpose, tissue samples (2 mm3 were excised from CMV-infected and highly proliferating meristem cultures of Williams BSJ banana (ITC. 0570, AAA, Cavendish subgroup. These samples were immediately fixed in a 2% paraformaldehyde/0.25% glutaraldehyde mixture, dehydrated in ethanol, and finally embedded in L.R.White resin. Semi-thin sections were cut, mounted on clean treated glass slides and immunostained for CMV particles using gold-labelled secondary antibodies and silver enhancement. Sections were counterstained with basic fuchsin and examined using laser scanning confocal microscopy. Negative controls included immuno-stained samples excised from non-virus infected material as well as infected material on which primary or secondary antibodies were not applied. Images of autofluorescence (in red and of epi-reflectance of silver-enhanced immunogold particles (in green were recorded separately and merged, allowing the specific localisation of CMV particles at the cellular level on semi-thin sections of aldehyde-fixed banana tissues. The main advantage of this analytical approach compared to previously published protocols is that it combines a fast staining procedure, stable preparation, a high resolution, and a narrow plane of focus with the flexibility in generation, processing and analysis of images offered by laser scanning confocal microscopy. Finally, the presence of numerous CMV particles within banana meristems constitutes a clear explanation of the very low CMV elimination efficiency when using meristem- tip culture alone.

  20. The Triticum Mosaic Virus 5' Leader Binds to Both eIF4G and eIFiso4G for Translation.

    Directory of Open Access Journals (Sweden)

    Robyn Roberts

    Full Text Available We recently identified a remarkably strong (739 nt-long IRES-like element in the 5' untranslated region (UTR of Triticum mosaic virus (TriMV, Potyviridae. Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral translation element has a ten-fold greater affinity for the large subunit eIF4G/eIFiso4G than to the cap binding protein eIF4E/eIFiso4E. This data supports a translation mechanism that is largely dependent on eIF4G and its isoform. The binding of both scaffold isoforms requires an eight base-pair-long hairpin structure located 270 nucleotides upstream of the translation initiation site, which we have previously shown to be crucial for IRES activity. Despite a weak binding affinity to the mRNA, eIFiso4G alone or in combination with eIFiso4E supports TriMV translation in a cap-binding factor-depleted wheat germ extract. Notably, TriMV 5' UTR-mediated translation is dependent upon eIF4A helicase activity, as the addition of the eIF4A inhibitor hippuristanol inhibits 5' UTR-mediated translation. This inhibition is reversible with the addition of recombinant wheat eIF4A. These results and previous observations demonstrate a key role of eIF4G and eIF4A in this unique mechanism of cap-independent-translation. This work provides new insights into the lesser studied translation mechanisms of plant virus-mediated internal translation initiation.

  1. Heritable, de novo resistance to leaf rust and other novel traits in selfed descendants of wheat responding to inoculation with wheat streak mosaic virus.

    Directory of Open Access Journals (Sweden)

    Dallas L Seifers

    Full Text Available Stable resistance to infection with Wheat streak mosaic virus (WSMV can be evolved de novo in selfing bread wheat lines subjected to cycles of WSMV inoculation and selection of best-performing plants or tillers. To learn whether this phenomenon might be applied to evolve resistance de novo to pathogens unrelated to WSMV, we examined the responses to leaf rust of succeeding generations of the rust- and WSMV-susceptible cultivar 'Lakin' following WSMV inoculation and derived rust-resistant sublines. After three cycles of the iterative protocol five plants, in contrast to all others, expressed resistance to leaf and stripe rust. A subset of descendant sublines of one of these, 'R1', heritably and uniformly expressed the new trait of resistance to leaf rust. Such sublines, into which no genes from a known source of resistance had been introgressed, conferred resistance to progeny of crosses with susceptible parents. The F1 populations produced from crosses between, respectively, susceptible and resistant 'Lakin' sublines 4-3-3 and 4-12-3 were not all uniform in their response to seedling inoculation with race TDBG. In seedling tests against TDBG and MKPS races the F2s from F1 populations that were uniformly resistant had 3∶1 ratios of resistant to susceptible individuals but the F2s from susceptible F1 progenitors were uniformly susceptible. True-breeding lines derived from resistant individuals in F2 populations were resistant to natural stripe and leaf rust inoculum in the field, while the 'Lakin' progenitor was susceptible. The next generation of six of the 'Lakin'-derived lines exhibited moderate to strong de novo resistance to stem rust races TPMK, QFCS and RKQQ in seedling tests while the 'Lakin' progenitor was susceptible. These apparently epigenetic effects in response to virus infection may help researchers fashion a new tool that expands the range of genetic resources already available in adapted germplasm.

  2. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    Science.gov (United States)

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. General properties of grapevine viruses occurring in Hungary

    OpenAIRE

    Eszter Cseh; András Takács; László Kocsis; Richard Gáborjányi

    2012-01-01

    The past fifty years important advances have been made in the field of grapevine virus research, including characterization of pathogens and control measurements. Still the occurrence of Grapevine fanleaf virus (GFLV), Arabis mosaic virus (ArMV), Tomato black ring virus (TBRV), Grapevine chrome mosaic virus (GCMV), Alfalfa mosaic virus (AMV), Grapevine Bulgarian latent virus (GBLV), Grapevine fleck virus (GFkV), Grapevine leafroll- associated viruses (GLRaV1-4), Grapevine virus A (GVA), Grape...

  4. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  5. Interactions between the structural domains of the RNA replication proteins of plant-infecting RNA viruses.

    Science.gov (United States)

    O'Reilly, E K; Wang, Z; French, R; Kao, C C

    1998-09-01

    Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays of protein-protein interaction, thus permitting the identification of additional interacting domains. We now map an interaction found to take place between two 1a proteins. Using previously characterized 1a mutants, a perfect correlation was found between the in vivo phenotypes of these mutants and their abilities to interact with wild-type 1a (wt1a) and each other. Western blot analysis revealed that the stabilities of many of the noninteracting mutant proteins were similar to that of wt1a. Deletion analysis of 1a revealed that the N-terminal 515 residues of the 1a protein are required and sufficient for 1a-1a interaction. This intermolecular interaction between the putative capping domain and itself was detected in another tripartite RNA virus, cucumber mosaic virus (CMV), suggesting that the 1a-1a interaction is a feature necessary for the replication of tripartite RNA viruses. The boundaries for various activities are placed in the context of the predicted secondary structures of several 1a-like proteins of members of the alphavirus-like superfamily. Additionally, we found a novel interaction between the putative capping and helicase-like portions of the BMV and CMV 1a proteins. Our cumulative data suggest a working model for the assembly of the BMV RNA replicase.

  6. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV.

    Directory of Open Access Journals (Sweden)

    Angèle Geldreich

    Full Text Available Cauliflower mosaic virus (CaMV TAV protein (TransActivator/Viroplasmin plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA, which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB, which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.

  7. Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome.

    Science.gov (United States)

    Johnson, Matthew C; Sena-Velez, Marta; Washburn, Brian K; Platt, Georgia N; Lu, Stephen; Brewer, Tess E; Lynn, Jason S; Stroupe, M Elizabeth; Jones, Kathryn M

    2017-12-01

    Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Development of a One-Step Immunocapture Real-Time RT-PCR Assay for Detection of Tobacco Mosaic Virus in Soil

    Directory of Open Access Journals (Sweden)

    Jin-Guang Yang

    2012-12-01

    Full Text Available Tobacco mosaic virus (TMV causes significant losses in many economically important crops. Contaminated soils may play roles as reservoirs and sources of transmission for TMV. In this study we report the development of an immunocapture real-time RT-PCR (IC-real-time RT-PCR assay for direct detection of TMV in soils without RNA isolation. A series of TMV infected leaf sap dilutions of 1:101, 1:102, 1:103, 1:104, 1:105 and 1:106 (w/v, g/mL were added to one gram of soil. The reactivity of DAS-ELISA and conventional RT-PCR was in the range of 1:102 and 1:103 dilution in TMV-infested soils, respectively. Meanwhile, the detection limit of IC-real-time RT-PCR sensitivity was up to 1:106 dilution. However, in plant sap infected by TMV, both IC-real-time RT-PCR and real-time RT-PCR were up to 1:106 dilution, DAS-ELISA could detect at least 1:103 dilution. IC-real-time RT-PCR method can use either plant sample extracts or cultivated soils, and show higher sensitivity than RT-PCR and DAS-ELISA for detection of TMV in soils. Therefore, the proposed IC-real-time RT-PCR assay provides an alternative for quick and very sensitive detection of TMV in soils, with the advantage of not requiring a concentration or RNA purification steps while still allowing detection of TMV for disease control.

  9. THE PORIFERASTA COMPOUND-5,22E,25-TRIEN-3-Oβ FROM Clerodendrum paniculatum LEAF AS INDUCER AGENT OF SYSTEMIC RESISTANCE ON RED CHILLI PLANT Capsicum annuum L FROM CUCUMBER MOSAIC VIRUS (CMV

    Directory of Open Access Journals (Sweden)

    Weny Musa

    2010-06-01

    Full Text Available The poriferasta-5.22E.25-trien-3β-ol compound of leaves of this plant Clerodendrum paniculatum has activity as an inducer agent of plant systemic resistance of red plant toward Cucumber Mosaic Viruses (CMV, the inhibition activity compound shows 82% inhibition activity at 300 ppm. The structure of these compound were determined on the basis of spectroscopic data including UV, IR, 1H-NMR, 13C-NMR and 2D-NMR   Keywords: Poriferasta-5.22E.25-trien-3β-ol, Clerodendrum paniculatum, induction of systemic resistance, CMV

  10. Técnicas de cultivo in vitro e microenxertia ex vitro visando a eliminação do Cowpea Aphid-Borne Mosaic virus em Maracujazeiro-Azedo

    OpenAIRE

    Ribeiro,Leonardo Monteiro

    2006-01-01

    O maracujazeiro-azedo (Passiflora edulis Sims f. flavicarpa Deg.) é uma das principais frutíferas brasileiras e seu cultivo apresenta boas perspectivas de expansão. O desenvolvimento da cultura tem sido dificultado por doenças, especialmente a doença do endurecimento dos frutos, causada pelo Cowpea aphid-borne mosaic virus (CABMV). A eliminação de vírus pela cultura de tecidos tem sido uma alternativa viável para muitas espécies e pode contribuir para a propagação vegetativa de genótipos supe...

  11. Effects of soil amendments on germination and emergence of downy brome (Bromus tectorum) and Hilaria jamesii

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.; Miller, M.E.

    2003-01-01

    Downy brome is an introduced Mediterranean annual grass that now dominates millions of hectares of western U.S. rangelands. The presence of this grass has eliminated many native species and accelerated wildfire cycles. The objective of this study was to identify soil additives that allowed germination but inhibited emergence of downy brome, while not affecting germination or emergence of the native perennial grass Hilaria jamesii. On the basis of data from previous studies, we focused on additives that altered the availability of soil nitrogen (N), phosphorus (P), and potassium (K). Most water-soluble treatments inhibited downy brome germination and emergence. We attribute the inhibitory effects of these treatments to excessive salinity and ion-specific effects of the additives themselves. An exception to this was oxalic acid, which showed no effect. Most water-insoluble treatments had no effect in soils with high P but did have an effect in soils with low P. Zeolite was effective regardless of P level, probably due to the high amounts of Na+ it added to the soil solution. Most treatments at higher concentrations resulted in lower downy brome emergence rates in soils currently dominated by downy brome than in uninvaded (but theoretically invadable) Hilaria soils. This difference is possibly attributable to inherent differences in labile soil P. In Stipa soils, where Stipa spp. grow, but which are generally considered to be uninvadable by downy brome, additions of high amounts of N resulted in lower emergence. This may have been an effect of NH4 + interference with uptake of K or other cations or toxicity of high N. We also saw a positive relationship between downy brome emergence and pH in Stipa soils. Hilaria development parameters were not as susceptible to the treatments, regardless of concentration, as downy brome. Our results suggest that there are additions that may be effective management tools for inhibiting downy brome in calcareous soils, including (1

  12. Estudo ao microscópio electrônico de tecidos de plantas infetadas pelo vírus do mosaico comum e mosaico amarelo do feijoeiro Electron microscopy of common and yellow bean mosaic viruses in infected tissues

    Directory of Open Access Journals (Sweden)

    I. J. B. de Camargo

    1968-01-01

    Full Text Available Exames ao microscópio electrônico de tecidos foliares e radiculares de plantas infetadas pelo vírus do mosaico comum ou do mosaico amarelo do feijoeiro, mostraram a presença de dois tipos de inclusões no cito-plasma: filamentosas, consideradas como partículas de vírus, e lamelares, típicas dos vírus do grupo Y. Essas inclusões não foram encontradas no pólen ou no óvulo de feijoeiros infetados. Como o vírus do mosaico comum do feijoeiro é transmitido pelo pólen, sugere-se que êle ocorre nestas células em concentração muito baixa, ou mesmo na forma de ácido nucléico.Two types of cytoplasmic inclusions were observed in leaf and root tissues of host plants infected with the common and yellow bean mosaic viruses: (1 filamentous inclusions considered as an aggregate of virus particles and (2 lamellar inclusions which appeared with varied configurations that represent sections at different angles of the same cylindrical structure. No type of inclusion or virus particle was seen in pollen and ovule from bean plants infected with each of the two viruses. Since, however, the common bean mosaic virus is transmitted through the pollen it is suggested that it occurs in very low concentration in this structure or else as viral nucleic acid.

  13. Remote sensing and serological analysis of the resistance of tomato plants (Lycopersicon escylentum L.) to Tomato mosaic virus (ToMV)

    Science.gov (United States)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Diseases caused by Tomato mosaic virus (ToMV) are among the most important factors lim-iting tomato production worldwide, as they can completely destroy the crop. ToMV occurs in most countries of the world, and causes disease epidemics in many crops. Systemic acquired resistance (SAR) is an inducible defence mechanism that plays a central role in disease re-sistance. SAR is induced by most pathogens that cause tissue necrosis. Spectral reflectance and chlorophyll fluorescence analysis were applied to establish injury of young tomato plants (Lycopersicon escylentum L.) infected with ToMV. Leaf spectral reflectance and chlorophyll fluorescence were registered by a portable Ocean Optics spectrometer USB 2000 in the visi-ble and near infrared spectral ranges (450-850 nm) at a spectral resolution of 1.5 nm. As a model system, tomato plants of cultivar Nuton resistant to ToMV were used. The plants were grown in a green house under controlled conditions. They were divided into six groups. The first group consisted of untreated (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with ToMV. The other four groups were treated with following growth regulators: preparations Spermine, MEIA (beta-monomethyl ester of itaconic acid), (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin VS. On the next day, the tomato plants of these four groups were inoculated with ToMV. The viral concentrations in the plants were determined by the serological method Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). All analysis were performed on detached leaves from 20 uninfected and up to 20 leaves from infected plants on the 7th and 14th day after the inocu-lation. The differences between the reflectance spectra of virus-infected and uninfected leaves were analysed in the four most informative for green plants wavelength intervals: green (520-580 nm), red (640-680 nm), red edge (690-710 nm) and near infrared (720-760 nm

  14. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    Science.gov (United States)

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. CLEMENTINE HIRES MOSAIC

    Data.gov (United States)

    National Aeronautics and Space Administration — This CD contains portions of the Clementine HiRes Lunar Mosaic, a geometrically controlled, calibrated mosaic compiled from non-uniformity corrected, 750 nanometer...

  16. 4.6 Å Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k × 4k CCD camera

    Science.gov (United States)

    Clare, Daniel K.; Orlova, Elena V.

    2010-01-01

    Tobacco mosaic virus (TMV) is a plant virus with a highly ordered organisation and has been described in three different structural states: As stacked disks without RNA (X-ray crystallography), as a helical form with RNA (X-ray fibre diffraction) and as a second distinct helical form with RNA (cryo-EM). Here we present a structural analysis of TMV as a test object to assess the quality of cryo-EM images recorded at 300 keV on a CCD camera. The 4.6 Å TMV structure obtained is consistent with the previous cryo-EM structure and confirms that there is a second helical form of TMV. The structure here also shows that with a similar number of TMV segments an equivalent resolution can be achieved with a 4k CCD camera at 300 keV. PMID:20558300

  17. 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera.

    Science.gov (United States)

    Clare, Daniel K; Orlova, Elena V

    2010-09-01

    Tobacco mosaic virus (TMV) is a plant virus with a highly ordered organisation and has been described in three different structural states: As stacked disks without RNA (X-ray crystallography), as a helical form with RNA (X-ray fibre diffraction) and as a second distinct helical form with RNA (cryo-EM). Here we present a structural analysis of TMV as a test object to assess the quality of cryo-EM images recorded at 300 keV on a CCD camera. The 4.6A TMV structure obtained is consistent with the previous cryo-EM structure and confirms that there is a second helical form of TMV. The structure here also shows that with a similar number of TMV segments an equivalent resolution can be achieved with a 4k CCD camera at 300 keV. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Pathogenic fungal species isolated from leaves and seeds of smooth brome (Bromus inermis Leyss.).

    Science.gov (United States)

    Varga, Zs; Fischl, G

    2006-01-01

    Authors made mycological investigations on smooth brome (Bromus inermis Leyss.) cultivar 'K51'. During the vegetation period presence and dominance of fungal species were revealed and seed infection rates were tested in two winter season. Puccinia recondita, Puccinia coronata, Stagnospora bromi and Drechslera dictyoides were dominated on the leaves, but saprotrophic fungal genera (Alternaria, Epicoccum, Cladosporium, Pithomyces) were also identified. Considerable rate of seed infection were observed in both year. This is the first report on the presence of Pithomyces chartarum identified on leaves and seeds of smooth brome in Hungary.

  19. Yeast Interacting Proteins Database: YCR095C, YNL099C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available S. cerevisiae, which is a model system for studying replication of positive-strand RNA viruses in their natu...on of Brome mosaic virus in S. cerevisiae, which is a model system for studying r

  20. ORF Sequence: NC_001147 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available reductases, found in lipid particles; required for replication of Brome mosaic virus in S. cerevisiae, which... is a model system for studying replication of positive-strand RNA viruses in their natural hosts; Yor246cp