WorldWideScience

Sample records for broadband x-ray spectrum

  1. X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst

    CERN Document Server

    Grebenev, S A; Burenin, R A; Krivonos, R A; Mescheryakov, A V

    2016-01-01

    Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiati...

  2. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ostorero, L.; /Turin U. /INFN, Turin; Moderski, R.; /Warsaw, Copernicus Astron. Ctr. /KIPAC, Menlo Park; Stawarz, L.; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Diaferio, A.; /Turin U. /INFN, Turin; Kowalska, I.; /Warsaw U. Observ.; Cheung, C.C.; /NASA, Goddard /Naval Research Lab, Wash., D.C.; Kataoka, J.; /Waseda U., RISE; Begelman, M.C.; /JILA, Boulder; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  3. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    Science.gov (United States)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  4. THE 5 hr PULSE PERIOD AND BROADBAND SPECTRUM OF THE SYMBIOTIC X-RAY BINARY 3A 1954+319

    International Nuclear Information System (INIS)

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of ∼5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of –1.8 × 10–4 hr hr–1 occurred. Between 2005 and 2008 a long-term spin-down trend of 2.1 × 10–5 hr hr–1 was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.

  5. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.;

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity of...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  6. The Broad-band X-ray Spectrum of IC 4329A from a Joint NuSTAR/Suzaku Observation

    CERN Document Server

    Brenneman, Laura; Fuerst, F; Matt, G; Elvis, M; Harrison, F A; Ballantyne, D R; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Grefenstette, B W; Hailey, C J; Madsen, K K; Marinucci, A; Rivers, E; Stern, D; Walton, D J; Zhang, W W

    2014-01-01

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption and distant reflection components in the spectrum. The absorbing column is found to be modest at $N_H = 6 \\times 10^{21}$ cm$^2$, and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe K{\\alpha} line: $E = 6.46^{+0.08}_{-0.07}$ keV rest frame with ${\\sigma} = 0.33^{+0.08}_{-0.07}$ keV and $EW = 34^{+8}_{-7}$ eV, though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K{\\alpha} line strengths observed in nearby, bright AGN (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-ene...

  7. Modelling the variable broad-band optical/UV/X-ray spectrum of PG1211+143: Implications for the ionized outflow

    CERN Document Server

    Papadakis, I E; Panagiotou, C

    2016-01-01

    We present the results from a detailed analysis of the 2007 Swift monitoring campaign of the quasar PG1211+143. We constructed broad-band, optical/UV/X-ray spectral energy distributions over three X-ray flux intervals. We fitted them with a model which accounts for the disc and the X-ray coronal emission and the warm absorber (well established in this source). The three flux spectra are well fitted by the model we considered. The disc inner temperature remains constant at ~2 eV, while X-rays are variable both in spectral slope and normalization. The absorber covers almost 90% of the central source. It is outflowing with a velocity less than 2.3*10^4 km/s (3sigma upper limit), and has a column density of ~10^23.2. Its ionization parameter varies by a factor of 1.6, and it is in photo-ionizing equilibrium with the ionizing flux. It is located at a distance of less than 0.35 pc from the central source and its relative thickness, DR/R is less than 0.1. The absorber' s ionization parameter variations can explain t...

  8. Modelling the variable broad-band optical/UV/X-ray spectrum of PG1211+143: implications for the ionized outflow

    Science.gov (United States)

    Papadakis, I. E.; Nicastro, F.; Panagiotou, C.

    2016-06-01

    Context. We present the results from a detailed analysis of the 2007 Swift monitoring campaign of the quasar PG1211+143. Aims: We study its broad-band optical/UV-X-ray spectral energy distribution and its variations, with the use of physically motivated models. Methods: We constructed broad-band, optical/UV-X-ray spectral energy distributions over three X-ray flux intervals, and we fitted them with a model which accounts for the disc and the X-ray coronal emission. We also added a spectral model component to account for the presence of the warm absorber which has been well established from past observations of the source. Results: We detected no optical/UV variations over the two-month period of the monitoring campaign. On the other hand, the X-rays are highly variable in a correlated way in the soft and hard X-ray bands with an amplitude larger than has been commonly observed in nearby Seyferts, even on longer time scales. The three flux spectra are well fitted by the model we considered. The disc inner temperature remains constant at ~2 eV, while X-rays are variable in slope and normalization. The absorber covers almost 90% of the central source. It is outflowing with a velocity less than 2.3 × 104 km s-1 (3σ upper limit), and has a column density of log NH ~ 23.2. Its ionization parameter varies by a factor of 1.6, and it is in photo-ionizing equilibrium with the ionizing flux. It is located at a distance of less than 0.35 pc from the central source, and its relative thickness, ΔR/R, is less than 0.1. The absorber's ionization parameter variations can explain the larger than average amplitude of the X-ray variations. Conclusions: The absence of optical/UV variations are consistent with the high black hole mass estimate of ~108M⊙ for this object, which implies variability time scales longer than the period of the Swift observations. It argues against the presence of inward propagating fluctuations in the disc as the reason for the flux variability in this

  9. A Soft X-ray Polarimeter Designed for Broad-band X-ray Telescopes

    OpenAIRE

    Marshall, Herman L.

    2007-01-01

    A novel approach for measuring linear X-ray polarization over a broad-band using conventional imaging optics and cameras is described. A new type of high efficiency grating, called the critical angle transmission grating is used to disperse soft X-rays radially from the telescope axis. A set of multilayer-coated paraboloids re-image the dispersed X-rays to rings in the focal plane. The intensity variation around these rings is measured to determine three Stokes parameters: I, Q, and U. By lat...

  10. A Soft X-ray Polarimeter Designed for Broad-band X-ray Telescopes

    CERN Document Server

    Marshall, Herman L

    2007-01-01

    A novel approach for measuring linear X-ray polarization over a broad-band using conventional imaging optics and cameras is described. A new type of high efficiency grating, called the critical angle transmission grating is used to disperse soft X-rays radially from the telescope axis. A set of multilayer-coated paraboloids re-image the dispersed X-rays to rings in the focal plane. The intensity variation around these rings is measured to determine three Stokes parameters: I, Q, and U. By laterally grading the multilayer optics and matching the dispersion of the gratings, one may take advantage of high multilayer reflectivities and achieve modulation factors over 50% over the entire 0.2 to 0.8 keV band. A sample design is shown that could be used with the Constellation-X optics.

  11. Broadband high-resolution x-ray frequency combs

    CERN Document Server

    Cavaletto, Stefano M; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H

    2014-01-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the x-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise x-ray atomic clocks may also be envisaged. In this work, an x-ray pulse-shaping method is put forward to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented by presently available x-ray technology.

  12. Broadband high-resolution X-ray frequency combs

    Science.gov (United States)

    Cavaletto, Stefano M.; Harman, Zoltán; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H.

    2014-07-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise X-ray atomic clocks may also be envisaged. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology.

  13. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    International Nuclear Information System (INIS)

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04−0.06+0.08×1040 erg s–1 for IC 342 X-1 and 7.40 ± 0.20 × 1039 erg s–1 for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies

  14. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona;

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 keV in...

  15. The first broad-band X-ray study of the Supergiant Fast X-ray Transient SAXJ1818.6-1703 in outburst

    CERN Document Server

    Sidoli, L; Esposito, P; La Parola, V; Kennea, J A; Krimm, H A; Chester, M M; Bazzano, A; Burrows, D N; Gehrels, N

    2009-01-01

    The Supergiant Fast X-ray Transient (SFXT) SAXJ1818.6-1703 underwent an outburst on 2009 May 6 and was observed with Swift. We report on these observations which, for the first time, allow us to study the broad-band spectrum from soft to hard X-rays of this source. No X-ray spectral information was available on this source before the Swift monitoring. The spectrum can be deconvolved well with models usually adopted to describe the emission from High Mass X-ray Binary X-ray pulsars, and is characterized by a very high absorption, a flat power law (photon index ~0.1-0.5) and a cutoff at about 7-12 keV. Alternatively, the SAXJ1818.6-1703 emission can be described with a Comptonized emission from a cold and optically thick corona, with an electron temperature kTe=5-7 keV, a hot seed photon temperature, kT0, of 1.3-1.4 keV, and an optical depth for the Comptonizing plasma of about 10. The 1-100 keV luminosity at the peak of the flare is 3E36 erg/s (assuming the optical counterpart distance of 2.5 kpc). These prope...

  16. The hard X-ray view of Giga-Hertz Peaked Spectrum Radio Galaxies

    CERN Document Server

    Guainazzi, M; Stanghellini, C; Grandi, P; Piconcelli, E; Azibuke, C

    2005-01-01

    We present the first broadband X-ray observations of 4 Giga-Hertz Peaked Spectrum (GPS) radio galaxies at redshift 2 keV) X-rays. All sources were detected. Their radio-to-X-ray spectral energy distributions are similar, except for PKS0941-080, which is by about two orders of magnitude X-ray under-luminous. The comparison between the full sample of GPS galaxies with measurements in hard X-rays and a control sample of radio galaxies rules out intrinsic X-ray weakness as an origin for the lower detection rate of GPS sources in X-ray surveys. 4 out of 7 GPS galaxies exhibit large X-ray column densities, whereas for the remaining 3 this measurement is hampered by the poor spectral statistics. Bearing in mind the still low number statistics in both the GPS and the control sample, the average column density measured in GPS galaxies is larger than in FRI or Broad Line Region FRII radio galaxies, but consistent with that measured in High-Excitation FRII galaxies. This leads to locating the absorbing gas in an obscuri...

  17. A nuclear spectrum generator for semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    A nuclear spectrum generator for semiconductor X-ray detectors is designed in this paper. It outputs step ramp signals with random distribution in amplitude and time according to specified reference spectrum. The signals are similar to the signals from an actual semiconductor X-ray detector, and can be use to check spectrum response characteristics of an X-ray fluorometer. This helps improving energy resolution of the X-ray fluorometer. The spectrum generator outputs step ramp signals satisfying the probability density distribution function of any given reference spectrum in amplitude through sampling on the basis of 32-bit randomizer. The system splits 1024 interval segmentation of the time that the step ramp signals appear, and calculates the appearance probability of step ramp signals in different intervals and the average time between the time intervals, by random sampling. The step ramp signals can meet the rule of exponential distribution in time. Test results of the spectrum generator show that the system noise is less than 2.43 mV, the output step ramp signals meet the Poisson distribution in counting rate and the probability density distribution function of the reference spectrum in amplitude. The counting rate of the output step ramp signals can be adjusted. It meets the rule of the output signals from semiconductor X-ray detectors, such as Si-pin detector and silicon drift detector. (authors)

  18. Effects of X-rays spectrum on the dose

    International Nuclear Information System (INIS)

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  19. The Swift BAT-detected Seyfert 1 Galaxies: X-ray Broadband Properties and Warm Absorbers

    CERN Document Server

    Winter, Lisa M; McKernan, Barry; Kallman, Tim

    2011-01-01

    We present results from an analysis of the broad-band, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased towards both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe K-alpha emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections are strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with N$_{\\rm war...

  20. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2000-06-01

    We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20-140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.

  1. X-ray variability of 104 active galactic nuclei. XMM-Newton power-spectrum density profiles

    OpenAIRE

    Gonzalez-Martin, O.; Vaughan, S

    2012-01-01

    AGN, powered by accretion onto SMBHs, are thought to be scaled up versions of Galactic black hole X-ray binaries (BH-XRBs). In the past few years evidence of such correspondence include similarities in the broadband shape of the X-ray variability power spectra, with characteristic bend times-scales scaling with mass. We have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z

  2. The hard x-ray spectrum of SN 1987A

    International Nuclear Information System (INIS)

    The authors report the discovery of hard x-rays in the energy range from 20 to 350 keV. The hard x-rays were first observed on August 10, 1987 and thereafter SN 1987A became the main target of the observatory. The measured spectrum is extremely hard. At high energies the photon spectrum has a power law index of ∼ 1.4. At lower energies the spectrum becomes flatter and there is indication of a cut-off below 25 keV. The luminosity in the above energy band is ∼ 2 x 1038 erg/s. The flux shows little variation between August 10 and beginning of October

  3. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    International Nuclear Information System (INIS)

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L X = (1.90 ± 0.03) × 1040 erg s–1 to L X = (3.35 ± 0.03) × 1040 erg s–1. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  4. Broadband X-ray spectra of the ultraluminous x-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Miller, J. M.; Bachetti, M.; Barret, D.; Boggs, S. E.; Christensen, Finn Erland; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Madsen, K.; Parker, M. L.; Ptak, A.; Rana, V.; Stern, D.; Webb, N.; Zhang, W. W.

    2014-01-01

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X...

  5. X-ray spectrum of a pinned charge density wave

    OpenAIRE

    Rosso, Alberto; Giamarchi, Thierry

    2004-01-01

    We calculate the x-ray diffraction spectrum produced by a pinned charge density wave (CDW). The signature of the presence of a CDW consists of two satellite peaks, asymmetric as a consequence of disorder. The shape and the intensity of these peaks are determined in the case of a collective weak pinning using the variational method. We predict divergent asymmetric peaks, revealing the presence of a Bragg glass phase. We deal also with the long range Coulomb interactions, concluding that both p...

  6. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  7. Broadband X-ray Spectroscopy of the ADC Source 4U 1822-37 with Suzaku

    Science.gov (United States)

    Cottam, J.; White, N.

    2006-01-01

    We will present the broadband spectra of the low mass x-ray binary 4U 1822-37, recently observed with Suzaku. 4U 1822-37 is the canonical accretion disk corona (ADC) source where the compact object is obscured by an extended corona that intercepts and scatters the central continuum emission, some of which is then reprocessed in the outer regions of the accretion disk. 4U 1822-37 therefore serves as an important link between x-ray binaries and AGN. The broadband x-ray spectra from the Suzaku XIS and HXD provide a unique opportunity to probe the physical conditions in the corona and the accretion disk for this important accretion geometry.

  8. The CHANDRA X-ray Grating Spectrum of Eta Carinae

    CERN Document Server

    Corcoran, M F; Petre, R; Ishibashi, K; Davidson, K; Townsley, L K; Smith, R; White, S; Viotti, R; Damineli, A

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively ``resolving'' the shock. The pre-shock wind velocities are ~500 and ~ 2000 km/s in our analysis, and these velocities are interpreted as the terminal velocities of the winds from Eta Car and from the hidden companion star. The abundances of Si and Fe are significantly non-solar based on the strengths of the observed H- and He-like emission lines. The iron fluorescent line at 1.93 Angstrom, first detected by ASCA, is clearly resolved from the thermal iron line in th...

  9. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer

    Science.gov (United States)

    Shang, Wanli; Zhao, Yang; Xiong, Gang; Yang, Jiamin; Zhu, Tuo

    2011-02-01

    A space-resolving transmission grating spectrometer is established on the “Shenguang-III" prototype laser facility and an iterative procedure for unfolding the X-ray spectrum with spatial resolution is described. The diagnostics is applied to measure the X-ray spectrum from laser-entered gold target and the typical space-resolved spectrum is provided. The relative standard uncertainty of the X-ray spectrum from the laser-generated plasma is also determined.

  10. Impulse through-target x-ray tube spectrum

    Science.gov (United States)

    Kitov, B. I.; Mukhachyov, Yu. S.

    2002-07-01

    At present x-ray compact tubes with pass-through anodes operating either in the pulse mode or in the direct voltage one are applied to the equipment for the shady microscopy, and the local XRF analysis. The report presents the calculated spectral intensity distributions of the bremsstrahlung versus the pass-through anode thickness. The spectral function of the bremsstrahlung Mo tube with the anode thickness over 100 microns is demosntrated to contract to the narrow energy interval lying near the characteristic anode radiation range. However under the same conditions the spectrum of the pulse Cu-anode tube tends to be dichromatic. The spectral distributions of the tube bremsstrahlung operating at the direct current and pulse voltage are compared.

  11. A new interpretation of the remarkable X-ray spectrum of the symbiotic star CH Cyg

    OpenAIRE

    Wheatley, Peter J.; Kallman, Timothy R.

    2006-01-01

    We have reanalysed the ASCA X-ray spectrum of the bright symbiotic star CH Cyg, which exhibits apparently distinct hard and soft X-ray components. Our analysis demonstrates that the soft X-ray emission can be interpreted as scattering of the hard X-ray component in a photo-ionised medium surrounding the white dwarf. This is in contrast to previous analyses in which the soft X-ray emission was fitted separately and assumed to arise independently of the hard X-ray component. We note the strikin...

  12. Characterization of a triboelectric x-ray spectrum

    International Nuclear Information System (INIS)

    Low-energy X-ray imaging system has been useful in medical diagnostic in order to obtain high contrast in soft tissue. Recently, Camara et al. and most recently Hird et al. have produced low-energy X-rays using a triboelectric effect. The main aim of this work is to characterize the penetration (beam quality) of a triboelectric X-ray source in terms of the computed Half Value Layer (HVL). Additionally, the computed HVL of the triboelectric X-ray source has been compared with the HVL of X-ray tube Mo-anode (Apogee 5000). According to our computations the triboelectric X-ray source has a similar penetration such as a X-ray tube source.

  13. Characterization of a triboelectric x-ray spectrum

    Science.gov (United States)

    Moya-Sánchez, E. Ulises; Romo-Espejel, J. A.; Aceves-Aldrete, F. J.

    2012-10-01

    Low-energy X-ray imaging system has been useful in medical diagnostic in order to obtain high contrast in soft tissue. Recently, Camara et al. and most recently Hird et al. have produced low-energy X-rays using a triboelectric effect. The main aim of this work is to characterize the penetration (beam quality) of a triboelectric X-ray source in terms of the computed Half Value Layer (HVL). Additionally, the computed HVL of the triboelectric X-ray source has been compared with the HVL of X-ray tube Mo-anode (Apogee 5000). According to our computations the triboelectric X-ray source has a similar penetration such as a X-ray tube source.

  14. Broad band X-ray spectrum of KS 1947+300 with BeppoSAX

    CERN Document Server

    Naik, S; Dotani, T; Paul, B

    2006-01-01

    We present results obtained from three BeppoSAX observations of the accretion-powered transient X-ray pulsar KS 1947+300 carried out during the declining phase of its 2000 November -- 2001 June outburst. A detailed spectral study of KS 1947+300 across a wide X-ray band (0.1--100.0 keV) is attempted for the first time here. Timing analysis of the data clearly shows a 18.7 s pulsation in the X-ray light curves in the above energy band. The pulse profile of KS 1947+300 is characterized by a broad peak with sharp rise followed by a narrow dip. The dip in the pulse profile shows a very strong energy dependence. Broad-band pulse-phase-averaged spectroscopy obtained with three of the BeppoSAX instruments shows that the energy spectrum in the 0.1--100 keV energy band has three components, a Comptonized component, a ~0.6 keV blackbody component, and a narrow and weak iron emission line at 6.7 keV with a low column density of material in the line of sight. We place an upper limit on the equivalent width of the iron K_\\...

  15. Mammography spectrum measurement using an x-ray diffraction device

    International Nuclear Information System (INIS)

    The use of a diffraction spectrometer developed by Deslattes for the determination of mammographic kV is extended to the measurement of accurate, relative x-ray spectra. Raw x-ray spectra (photon fluence versus energy) are determined by passing an x-ray beam through a bent quartz diffraction crystal, and the diffracted x-rays are detected by an x-ray intensifying screen coupled to a charge coupled device. Two nonlinear correction procedures, one operating on the energy axis and the other operating on the fluence axis, are described and performed on measured x-ray spectra. The corrected x-ray spectra are compared against tabulated x-ray spectra measured under nearly identical conditions. Results indicate that the current device is capable of producing accurate relative x-ray spectral measurements in the energy region from 12 keV to 40 keV, which represents most of the screen-film mammography energy range. Twelve keV is the low-energy cut-off, due to the design geometry of the device. The spectrometer was also used to determine the energy-dependent x-ray mass attenuation coefficients for aluminium, with excellent results in the 12-30 keV range. Additional utility of the device for accurately determining the attenuation characteristics of various normal and abnormal breast tissues and phantom substitutes is anticipated. (author)

  16. The Broadband XMM-Newton and NuSTAR X-ray Spectra of Two Ultraluminous X-ray Sources in the Galaxy IC 342

    DEFF Research Database (Denmark)

    Rana, Vikram; Harrison, Fiona A.; Bachetti, Matteo;

    2015-01-01

    ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk...... continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin......We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being $1...

  17. A Broadband X-Ray Study of the Supernova Remnant 3C 397

    CERN Document Server

    Safi-Harb, S; Arnaud, K A; Keohane, J W; Borkowski, K J; Dyer, K K; Reynolds, S P; Hughes, J P

    2000-01-01

    We present an X-ray study of the radio bright supernova remnant (SNR) 3C 397 with ROSAT, ASCA, and RXTE. A central X-ray spot seen with the ROSAT High-Resolution Imager hints at the presence of a pulsar-powered component, and gives this SNR a composite X-ray morphology. Combined ROSAT and ASCA imaging show that the remnant is highly asymmetric, with its hard X-ray emission peaking at the western lobe. The spectrum of 3C 397 is heavily absorbed, and dominated by thermal emission with emission lines evident from Mg, Si, S, Ar and Fe. Single-component models fail to describe the spectrum, and at least two components are required. We use a set of non-equilibrium ionization (NEI) models (Borkowski et al. in preparation). The temperatures from the soft and hard components are 0.2 keV and 1.6 keV respectively. The corresponding ionization time-scales $n_0 t$ ($n_0$ being the pre-shock hydrogen density) are 6 $\\times 10^{12}$ cm$^{-3}$ s and 6 $\\times$ 10$^{10}$ cm$^{-3}$ s, respectively. The spectrum obtained with t...

  18. A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, Eric V.; Dufour, Francois;

    2014-01-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband......V. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars....

  19. Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152

    Science.gov (United States)

    van der Horst, A. J.; Curran, P. A.; Miller-Jones, J. C. A.; Linford, J. D.; Gorosabel, J.; Russell, D. M.; de Ugarte Postigo, A.; Lundgren, A. A.; Taylor, G. B.; Maitra, D.; Guziy, S.; Belloni, T. M.; Kouveliotou, C.; Jonker, P. G.; Kamble, A.; Paragi, Z.; Homan, J.; Kuulkers, E.; Granot, J.; Altamirano, D.; Buxton, M. M.; Castro-Tirado, A.; Fender, R. P.; Garrett, M. A.; Gehrels, N.; Hartmann, D. H.; Kennea, J. A.; Krimm, H. A.; Mangano, V.; Ramirez-Ruiz, E.; Romano, P.; Wijers, R. A. M. J.; Wijnands, R.; Yang, Y. J.

    2013-12-01

    MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, submillimetre, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broad-band picture of the evolution of this outburst. We have performed broad-band spectral modelling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disc and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ˜3 yr after the outburst onset to examine the link between the jet and the accretion disc, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediate X-ray spectral state, consistent with our detection of the jet break at radio frequencies during these states.

  20. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    Science.gov (United States)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  1. Measurements of radio frequent cavity volt ages by X-ray spectrum measurements

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available This paper deals with X-ray spectrum measurement as a method for the measurement of radio frequent cavity voltage and the theory of X-ray spectrum calculation. Experimental results at 72 MHz for three different values of the radio frequent power of ACCEL K250 super conducting cyclotron are being presented.

  2. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ollefs, K. [Fakultät für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); European Synchrotron Radiation Facility (ESRF), CS 40220, 38043 Grenoble Cedex (France); Meckenstock, R.; Spoddig, D.; Römer, F. M.; Hassel, Ch.; Schöppner, Ch.; Farle, M. [Fakultät für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Ney, V.; Ney, A., E-mail: andreas.ney@jku.at [Fakultät für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria)

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.

  3. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    International Nuclear Information System (INIS)

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L3-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect

  4. Development of multilayer optics for X-ray broadband spectrometry of plasma emission

    International Nuclear Information System (INIS)

    Within the framework of the research on inertial confinement fusion, the 'Commissariat a l'energie atomique et aux energies alternatives' has studied and implemented an absolute calibrated time-Resolved broadband soft x-Ray spectrometer, called 'Diagnostic de Mesure du rayonnement X'. This diagnostic, composed of 20 measurement channels, measures the emitted radiant power from a laser created plasma in the range from 50 eV to 20 keV. We have developed additional measurement channels to obtain redundancy and an improvement in measurement accuracy. The principle of these new channels is based on an original concept to obtain spectral bounded flat-Responses. Two channels have been developed for the 2 - 4 keV and 4 - 6 keV spectral ranges, using aperiodic multilayer mirrors made at the 'Laboratoire Charles Fabry' with Cr/Sc and Ni/W/SiC/W layers respectively. These mirrors were characterized at synchrotron radiation facilities and integrated into the spectrometer. The two new channels were used during laser-Plasma experimental campaigns at the OMEGA laser facility in Rochester (USA). This allowed us to determine directly the radiant power with only one measurement within a certain spectral band, and with a better precision when compared with using standard channels. The results, in good agreement with the standard measurement channels, allowed us to validate the use of aperiodic multilayer mirrors for X-Ray broadband spectrometry. (author)

  5. INTEGRAL discovery of unusually long broad-band X-ray activity from the Supergiant Fast X-ray Transient IGR J18483-0311

    CERN Document Server

    Sguera, V; Bird, A J; Bazzano, A

    2015-01-01

    We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted XMM-Newton observation. Our INTEGRAL investigation discovered for the first time an unusually long X-ray activity (3-60 keV) which continuously lasted for at least 11 days, i.e. a significant fraction (about 60%) of the entire orbital period, and spanned orbital phases corresponding to both periastron and apastron passages. This prolongated X-ray activity is at odds with the much shorter durations marking outbursts from classical SFXTs especially above 20 keV, as such it represents a departure from their nominal behavior and it adds a further extreme characteristic to the already extreme SFXT IGR J18483-0311. Our IBIS/ISGRI high energy investigation (100-250 keV) of archival outbursts activity from the source showed that the recently reported hint of a possible hard X-ray tail is not real and it is likely due to noisy background. The new XMM-Newton targeted...

  6. ASCA observations of deep ROSAT fields V. The X-ray spectrum of hard X-ray selected QSOs

    CERN Document Server

    Pappa, A; Georgantopoulos, I; Griffiths, R E; Boyle, B J; Shanks, T

    2001-01-01

    We present an analysis of the \\rosat and \\asca spectra of 21 broad line AGN (QSOs) with $z\\sim 1$ detected in the 2-10 keV band with the \\asca \\gis. The summed spectrum in the \\asca band is well described by a power-law with $\\Gamma=1.56\\pm0.18$, flatter that the average spectral index of bright QSOs and consistent with the spectrum of the X-ray background in this band. The flat spectrum in the \\asca band could be explained by only a moderate absorption ($\\sim 10^{22} \\rm cm^{-2}$) assuming the typical AGN spectrum ie a power-law with $\\Gamma$=1.9. This could in principle suggest that some of the highly obscured AGN, required by most X-ray background synthesis models, may be associated with normal blue QSOs rather than narrow-line AGN. However, the combined 0.5-8 keV \\asca-\\rosat spectrum is well fit by a power-law of $\\Gamma=1.7\\pm0.2$ with a spectral upturn at soft energies. It has been pointed out that such an upturn may be an artefact of uncertainties in the calibration of the ROSAT or ASCA detectors. Nev...

  7. Broadband x-ray properties of the gamma-ray binary 1FGL J1018.6-5856

    DEFF Research Database (Denmark)

    An, Hongjun; Bellm, Eric; Bhalerao, Varun;

    2015-01-01

    We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray ...... broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered.......We report on NuSTAR, XMM-Newton, and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544 ± 0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X...

  8. Broadband observations of the X-ray burster 4U 1705-44 with BeppoSAX

    CERN Document Server

    Piraino, S; Mueck, B; Kaaret, P; Di Salvo, T; D'Ai, A; Iaria, R; Egron, E

    2016-01-01

    4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD) Results. We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The ...

  9. The First High Resolution X-ray Spectrum of Cyg X-1: Soft X-Ray Ionization and Absorption

    OpenAIRE

    Schulz, N. S.; Cui, W.; Canizares, C. R.; Marshall, H. L.; Lee, J. C.; Miller, J.M.; Lewin, W. H. G.

    2001-01-01

    We observed the black hole candidate Cyg X-1 for 15 ks with the High-Energy Transmission Grating Spectrometer aboard the CHANDRA X-ray Observatory. The source was observed during a period of intense flaring activity, so it was about a factor of 2.5 brighter than usual, with a 0.5-10 keV (1-24 A) luminosity of 1.6x10^37 erg/s (at a distance of 2.5 kpc). The spectrum of the source shows prominent absorption edges, some of which have complicated substructure. We use the most recent results from ...

  10. Suzaku observations of the hard X-ray spectrum of Vela Jr

    CERN Document Server

    Takeda, Sawako; Terada, Yukikatsu; Tashiro, Makoto S; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru

    2016-01-01

    We report the results of Suzaku observations of the young supernova remnant, Vela Jr.\\ (RX J0852.0$-$4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the north-west TeV-emitting region. The X-ray spectrum is well reproduced by a single power-law model with the photon index of 3.15$^{+1.18}_{-1.14}$ in the 12--22 keV band. Compiling this with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2--22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever the model of a single or broken power-law is appropriate, clearly the spectrum has no rolloff structure. Applying this result to the method introduced in \\citet{yama2014}, we find that one-zone synchro...

  11. First X-ray observations of Low-Power Compact Steep Spectrum Sources

    CERN Document Server

    Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M

    2013-01-01

    We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...

  12. X-ray spectrum estimation from transmission measurements by an exponential of a polynomial model

    Science.gov (United States)

    Perkhounkov, Boris; Stec, Jessika; Sidky, Emil Y.; Pan, Xiaochuan

    2016-04-01

    There has been much recent research effort directed toward spectral computed tomography (CT). An important step in realizing spectral CT is determining the spectral response of the scanning system so that the relation between material thicknesses and X-ray transmission intensity is known. We propose a few parameter spectrum model that can accurately model the X-ray transmission curves and has a form which is amenable to simultaneous spectral CT image reconstruction and CT system spectrum calibration. While the goal is to eventually realize the simultaneous image reconstruction/spectrum estimation algorithm, in this work we investigate the effectiveness of the model on spectrum estimation from simulated transmission measurements through known thicknesses of known materials. The simulated transmission measurements employ a typical X-ray spectrum used for CT and contain noise due to the randomness in detecting finite numbers of photons. The proposed model writes the X-ray spectrum as the exponential of a polynomial (EP) expansion. The model parameters are obtained by use of a standard software implementation of the Nelder-Mead simplex algorithm. The performance of the model is measured by the relative error between the predicted and simulated transmission curves. The estimated spectrum is also compared with the model X-ray spectrum. For reference, we also employ a polynomial (P) spectrum model and show performance relative to the proposed EP model.

  13. Measurement of the Kaonic Hydrogen X-Ray Spectrum

    International Nuclear Information System (INIS)

    The DEAR (DAΦNE exotic atom research) experiment measured the energy of x rays emitted in the transitions to the ground state of kaonic hydrogen. The measured values for the shift ε and the width Γ of the 1s state due to the K-p strong interaction are ε1s=-193±37 (stat) ±6 (syst) eV and Γ1s=249±111 (stat) ±30 (syst) eV, the most precise values yet obtained. The pattern of the kaonic hydrogen K-series lines, Kα, Kβ, and Kγ, was disentangled for the first time

  14. X Persei: The X-Ray Halo and Spectrum of a High-Latitude X-Ray Binary

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Smith, Randall

    2004-01-01

    The observations were completed on February 25,2003. Although the source was in the FOV for 31.4 ksec, only 18.2 ksec of data were usable due to a strong flare in the first part of the observations. We have extracted the X-ray halo from the good portion of the data, and were then faced with the problem of calibrating the far-off-axis point spread function, which is needed only for X-ray halo analysis; the same problem affected Chandra halo observations. We used data from 3C273, MCG 6-30-15, LMC X-1, and Her X-1 to measure the PSF, and found that it is reasonably well fit with a power law of the form PSF(theta) = A theta^-G, where A = 0.0034 arcmin^-2, and G = 3.05 for energies between 1-4 keV. This suggests there are fewer large dust grains along the When fitting the spectrum of X Persei, we found NH = 3e21 cm^-2, as expected. However, the X-ray halo (using a Mathis, Rumpl, Nordsieck 1977 dust model) required at most a column density of 1.4+/-0.1 e21 cm^-2; other models required sightline to X Per than would have been expected. In addition, a smoothly distributed dust model fit the observations better than a single cloud model, also against our expectations. We are in the process of writing a paper to be submitted to ApJ with these results, and will also present them at the 2004 HEAD meeting in New Orleans.

  15. The First High Resolution X-ray Spectrum of Cyg X-1 Soft X-Ray Ionization and Absorption

    CERN Document Server

    Schulz, N S; Canizares, C R; Marshall, H L; Lee, J C; Miller, J M; Lewin, W H G

    2002-01-01

    We observed the black hole candidate Cyg X-1 for 15 ks with the High-Energy Transmission Grating Spectrometer aboard the CHANDRA X-ray Observatory. The source was observed during a period of intense flaring activity, so it was about a factor of 2.5 brighter than usual, with a 0.5-10 keV (1-24 A) luminosity of 1.6x10^37 erg/s (at a distance of 2.5 kpc). The spectrum of the source shows prominent absorption edges, some of which have complicated substructure. We use the most recent results from laboratory measurements and and calculations to model the observed substructure of the edges. From the model, we derive a total absorption column of 6.21+/-0.22 10^21 cm^-2. Furthermore, the results indicate that there are ~ 10 - 25% abundance variations relative to solar values for neon, oxygen and iron. The X-ray continuuum is described well by a two-component model that is often adopted for black hole candidates: a soft multicolor disk component (with kT = 203 eV) and a hard power law component (with a photon index of ...

  16. The X-ray view of Giga-Hertz Peaked Spectrum Radio Galaxies

    CERN Document Server

    Tengstrand, Olof; Siemiginowska, A; Bonilla, N Fonseca; Labiano, A; Worrall, D M; Grandi, P; Piconcelli, E

    2009-01-01

    This paper presents the X-ray properties of a flux- and volume-limited complete sample of 16 Giga-Hertz Peaked Spectrum (GPS) galaxies. This study addresses three basic questions in our understanding of the nature and evolution of GPS sources: a) What is the physical origin of the X-ray emission in GPS galaxies? b) Which physical system is associated with the X-ray obscuration? c) What is the "endpoint" of the evolution of compact radio sources? We obtain a 100% (94%) detection fraction in the 0.5-2 keV (0.5-10 keV) energy band. GPS galaxy X-ray spectra are typically highly obscured. The X-ray column density is larger than the HI column density measured in the radio by a factor 10 to 100. GPS galaxies lie well on the extrapolation to high radio powers of the correlation between radio and X-ray luminosity known in low-luminosity FRI radio galaxies. On the other hand, GPS galaxies exhibit a comparable X-ray luminosity to FRII radio galaxies, notwithstanding their much larger radio luminosity. The X-ray to radio...

  17. X-ray Properties of the GigaHertz-Peaked and Compact Steep Spectrum Sources

    CERN Document Server

    Siemiginowska, Aneta; Aldcroft, Thomas L; Bechtold, Jill; Elvis, Martin

    2008-01-01

    We present {\\it Chandra} X-ray Observatory observations of Giga-Hertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. The {\\it Chandra} sample contains 13 quasars and 3 galaxies with measured 2-10 keV X-ray luminosity within $10^{42} - 10^{46}$ erg s$^{-1}$. We detect all of the sources, five of which are observed in X-ray for the first time. We study the X-ray spectral properties of the sample. The measured absorption columns in the quasars are different than those in the galaxies in the sense that the quasars show no absorption (with limits $\\sim 10^{21} \\rm cm^{-2}$) while the galaxies have large absorption columns ($> 10^{22} \\rm cm^{-2}$) consistent with previous findings. The median photon index of the sources with high S/N is $\\Gamma=1.84 \\pm0.24$ and it is larger than the typical index of radio loud quasars. The arcsec resolution of {\\it Chandra} telescope allows us to investigate X-ray extended emission, and look for diffuse components and X-ray jets. We found X-ray jets in two ...

  18. The CHANDRA HETGS X-ray Grating Spectrum of Eta Car

    OpenAIRE

    Corcoran, M. F; Swank, J.H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; S. White; Viotti, R; A. Damineli

    2001-01-01

    Eta Car may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emisssion. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on...

  19. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.;

    1998-01-01

    The study of X-ray emission from co-evolving populations of stars in open dusters is extremely important for understanding the dynamo activity among the stars. With this objective, we propose to observe a number of open clusters in the X-ray and UV bands using SPECTRUM-Rontgen-Gamma. The high...... of stars which include synchronous binaries, rapid rotators and peculiar stars, would also be carried out....

  20. Broadband observations of the X-ray burster 4U1705-44 with BeppoSAX

    Science.gov (United States)

    Piraino, S.; Santangelo, A.; Mück, B.; Kaaret, P.; Di Salvo, T.; D'Aì, A.; Iaria, R.; Egron, E.

    2016-06-01

    Context. 4U1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. Aims: The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Methods: Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of ~100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD). Results: We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The components observed are the soft Comptonization and hard Comptonization, the blackbody, and a reflection component with a broad iron line. When the source moves from the banana state to the island state, the parameters of the two Comptonization components change significantly and the blackbody component becomes too weak to be detected. Conclusions: We interpret the soft Comptonization component as emission from the hot plasma surrounding the neutron star, hard Comptonization as emission from the disk region, and the blackbody component as emission from the inner accretion disk. The broad feature in the iron line region is compatible with reflection from the inner accretion disk.

  1. Determination of X-ray spectrum from transmission curve for a dental radiography equipment

    International Nuclear Information System (INIS)

    The direct measurement of the spectrum of an X-ray beam by some spectroscopic method is relatively expensive, time consuming and require considerable expertise. Spectrum can be alternatively derived by an indirect method from measurement of transmission curve of the X-ray beam and the use of Laplace transforms. The objective of this work was the application of an indirect method that use a spectral model based on a pair of Laplace transforms to derive the X-ray spectrum for a dental radiography equipment. The spectral model was applied using a measured transmission curve and the derived spectrum show good agreement with experimental data, showing the value of the analysis of attenuation curves beside spectroscopic methods since the transmission data can be obtained with comparative ease. (author)

  2. Deconstructing the Spectrum of the Soft X-ray Background

    Science.gov (United States)

    Kuntz, K. D.; Snowden, S. L.

    2000-01-01

    The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.

  3. A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    CERN Document Server

    Corcoran, M F; Pablo, H; Shenar, T; Pollock, A M T; Waldron, W L; Moffat, A F J; Richardson, N D; Russell, C M P; Hamaguchi, K; Huenemoerder, D P; Oskinova, L; Hamann, W -R; Naze, Y; Ignace, R; Evans, N R; Lomax, J R; Hoffman, J L; Gayley, K; Owocki, S P; Leutenegger, M; Gull, T R; Hole, K T; Lauer, J; Iping, R C

    2015-01-01

    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parame...

  4. Reconstruction of the X-ray tube spectrum from a scattering measurement

    International Nuclear Information System (INIS)

    An inverse technique has been designed to unfold the x-ray tube spectrum from the measurement of the photons scattered by a target interposed in the path of the beam. A special strategy is necessary to circumvent the ill-conditioning of the forward transport algebraic problem. The proposed method is based on the calculation of both, the forward and adjoint analytical solutions of the Boltzmann transport equation. After testing the method with numerical simulations, a simple prototype built at the Operational Unit of Health Physics of the University of Bologna was used to test the method experimentally. The reconstructed spectrum was validated by comparison with a straightforward measurement of the X-ray beam. The influence of the detector was corrected in both cases using standard unfolding techniques. The method is capable to accurately characterize the intensity distribution of an X-ray tube spectrum, even at low energies where other methods fail. - Highlights: ► A complete inverse technique of source unfolding is presented. ► The X-ray tube spectrum is recovered from a scattering measurement. ► The ill conditioning of the plain forward transport algebraic problem is avoided. ► Forward and adjoint solutions of the Boltzmann transport equation are used. ► The technique characterizes X-ray tube spectra even at low energies.

  5. Firm Detection of a Cyclotron Resonance Feature with Suzaku in the X-ray Spectrum of GRO J1008-57 during a Giant Outburst in 2012

    CERN Document Server

    Yamamoto, Takayuki; Sugizaki, Mutsumi; Nakajima, Motoki; Makishima, Kazuo; Sasano, Makoto

    2014-01-01

    We report on the firm detection of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of the Be X-ray binary pulsar, GRO J1008-57, achieved by the Suzaku Hard X-ray Detector during a giant outburst which was detected by the MAXI Gas Slit Camera in 2012 November. The Suzaku observation was carried out on 2012 November 20, outburst maximum when the X-ray flux reached $\\sim 0.45$ Crab in 4-10 keV, which corresponds to a luminosity of $1.1 \\times 10^{38}$ erg s$^{-1}$ in 0.5--100 keV at 5.8 kpc. The obtained broadband X-ray spectrum from 0.5 keV to 118 keV revealed a significant absorption feature, considered as the fundamental CRSF, at $\\sim 76$ keV. This unambiguously reconfirm the previously suggested $\\sim$ 80 keV spectral feature in GRO J1008$-$57. The implied surface magnetic field, $6.6\\times 10^{12}$ G, is the highest among binary X-ray pulsars from which CRSFs have ever been detected.

  6. Segmentation-free x-ray energy spectrum estimation for computed tomography

    OpenAIRE

    Zhao, Wei; Zhang, Qiude; Niu, Tianye

    2016-01-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT ...

  7. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L. [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States)

    2013-08-10

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  8. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    International Nuclear Information System (INIS)

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible

  9. The Hard X-Ray Spectrum of NGC 1365: Scattered Light, Not Black Hole Spin

    Science.gov (United States)

    Miller, L.; Turner, T. J.

    2013-08-01

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the "light bending" model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant "red wing" in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  10. Selectivity and efficiency of pyrene attachment to alkanes induced by broadband X-rays

    Directory of Open Access Journals (Sweden)

    GERALD O. BROWN

    2003-03-01

    Full Text Available Bombardment of pyrene-doped n-heneicosane (C21H44 in its orthorhombic solid phase with MeV broadband X-rays results in the formation of both mono- and di-heneicosylpyrenes, whereas the same dose in liquid cyclohexane yields only monosubstituted pyrene. In both cases, the reaction efficiency decreases as pyrene concentration is increased from 10-5 to 10-2 M. Qualitatively, the overall attachment efficiency is higher in orthorhombic n-heneicosane than in liquid cyclohexane, but the selectivity of attachment is greater in cyclohexane. Differences between these results and those from irradiations of the same samples with eV range photons are discussed.A exposição de n-heneicosano (C21H44 dopado com pireno, em sua fase ortorrômbica sólida, a Raios X de faixa larga a MeV resulta na formação de mono- e di-heneicosilpirenos, enquanto que a mesma dose em ciclo-hexano líquido produz apenas pireno monossubstituído. Em ambos os casos, a eficiência da reação diminui quando a concentração de pireno aumenta de 10-5 a 10-2 M. Qualitativamente, a eficiência global de ligação é maior em n-heneicosano ortorrômbico do que em ciclohexano líquido, mas a seletividade de ligação é maior em ciclo-hexano. As diferenças entre estes resultados e os de irradiação das mesmas amostras com fotons na faixa de eV são discutidas.

  11. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane;

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  12. The hard X-ray spectrum of NGC 1365: scattered light, not black hole spin

    CERN Document Server

    Miller, L

    2013-01-01

    Active Galactic Nuclei (AGN) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (i) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (ii) neglect of the effect of Compton scattering on transmitted spectra and (iii) inadequate modeling of the expected spectrum of scattered X-rays. The scattered spectrum is geometry dependent and, for high...

  13. New measurements in plutonium L X ray emission spectrum using an electron probe micro-analyser

    International Nuclear Information System (INIS)

    Further studies by means of an electron-probe micro-analyser, allowed report CEA-R--1798 authors to set up a larger plutonium X ray spectrum table. Measurements of plutonium LII and LIII levels excitation potentials have also been achieved. Some remarks about apparatus performance data (such as spectrograph sensibility, resolving power and accuracy) will be found in the appendix. (authors)

  14. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    OpenAIRE

    Ramirez-Velasquez, J. M.; Garcia, J.

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H...

  15. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    International Nuclear Information System (INIS)

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849−400910, 1E 1547.0−5408, SGR 1806−20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ∼200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. (paper)

  16. X-ray outflows of active galactic nuclei warm absorbers: A 900 ks Chandra simulated spectrum

    CERN Document Server

    Ramirez-Velasquez, J M

    2016-01-01

    We report on the performance of the statistical, X-ray absorption lines identification procedure XLINE-ID. As illustration, it is used to estimate the time averaged gas density $n_H(r)$ of a representative AGN's warm absorber ($T\\approx 10^5$~K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionisation models spanning several orders of magnitude in gas density ($n_H$), plasma column density ($N_H$), and in ionization states; (3) theoretical curves of growth for a large set of atomic lines. By comparing theoretical and observed equivalent widths of a large set of lines, spanning highly ionized charge states from O, Ne, Mg, Si, S, Ar, and the Fe L-shell and K-shell, we are able to infer the location of the X-ray warm absorber.

  17. Development of the soft X-ray energy spectrum diagnostic system on EAST

    International Nuclear Information System (INIS)

    Background: Electron temperature is one of most important parameters in the controlled magnetic confinement fusion experiments. Purpose: We attempt to develop a set of soft X-ray energy spectrum diagnostic system for measuring the plasma soft X-ray (1-30 keV) spectra on Experimental Advanced Superconducting Tokamak (EAST). Methods: The diagnostic system is based on a 10-element Silicon Drift Detector (SDD) array and fast electronics, and basically views lower half-space of the plasma. Results: The diagnostic system can measure electron temperature under various plasma configuration conditions and the electron temperature obtained from the system is consistent with election circle emission (ECE) and X-ray crystal spectrometer (XCS) diagnostic systems. And the system can monitor the middle and high Z impurities in the plasma as the good energy resolution of the system. Conclusion: The diagnostic system had been installed on EAST and verified its reliability and effectiveness and gained the good experimental results. (authors)

  18. Simulations of X-ray spectrum and HVL for mammographic equipment using MCNP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rafael Toledo F. de; Alvarez, Matheus; Velo, Alexandre F.; Oliveira, Marcela de; Miranda, Jose Ricardo A. [Universidade Estadual Paulista Julio de mesquita Filho (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu. Dept. de Fisica e Biofisica; Pina, Diana R. [Universidade Estadual Paulista Julio de mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Dept. de Doencas Tropicais e Diagnostico por Imagem

    2012-07-01

    Full text: The main goal of mammography is early detection of breast cancer. Thus, the mammograph should be designed so that the X-ray photons are emitted within an appropriate energy range, to distinguish the normal breast tissue and cancerous tissue. The distribution of the photons amount of X-ray beam, with their respective energies, is called the spectrum. From the spectrum it is possible to estimate the quality of the X-ray beam from the Half Value Layer (HVL). Objectives: This study aims to simulate the Senographe 600T mammography unit, manufactured by General Electric (GE), using the MCNP5 Monte Carlo code, to obtain its spectrum and HVL, and compare the HVL of the simulated model with experimental data. Method: the mammography unit was simulated using a simplified model which a beam of 2x10{sup 8} electrons focuses on a Mo target angled 12 degrees, within a capsule filled with vacuum. The incident electrons were converted into photons. The capsule has a beryllium window, allowing the passage of the X-ray beam. The beam is detected by an air cylinder with 1 cm thickness placed 60 cm from the target. On the path of X-ray beam, is inserted a 0.03 mm Mo filter located 1.6 cm after the beryllium window. The space between the capsule and the detector cylinder was filled with air. The quality of X-ray beam was verified from the HVL using the MCNP5 code and the experimental method for the voltage range typically used in clinical routine (26-31 kVp). Results and discussion: the X-ray spectrum of the mammography device is satisfactorily simulated by MCNP5, showing the characteristic radiation peaks of molybdenum at 17.479 keV and 19.602 keV, the filtered spectrum generated by Bremsstrahlung, and reducing the total number of photons with the decrease in applied tension (kVp). The HVL obtained by MCNP5 and experimental measurements show a maximum difference of 5.31% (for 31 kVp). The result of both methods are within acceptable limits established by national

  19. Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    CERN Document Server

    Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan

    2015-01-01

    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...

  20. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence

    CERN Document Server

    Gaspari, M; Ruszkowski, M

    2014-01-01

    The hot plasma filling galaxy clusters emits copious radiation in the X-ray band. The classic unheated and unperturbed cooling flow model predicts dramatic cooling rates and an isobaric X-ray spectrum with constant differential luminosity distribution, $dL_{\\rm x}/dT \\propto (T/T_{\\rm hot})^0$. Combining past observations, it is however clear that the cores of clusters (and groups) show a strong deficit of emission increasing toward the soft X-ray band: $dL_{\\rm x}/dT \\propto (T/T_{\\rm hot})^{\\alpha=2\\pm1}$. Using 3D hydrodynamic simulations, we show that the deficit arises from the competition of thermal instability condensation and AGN outflow injection. During tight self-regulated feedback, the average luminosity distribution slope is $\\alpha\\approx2$, oscillating within the observed $18$), while pure cooling drives a too shallow slope, $\\alpha<1$. We disentangle the role of heating and turbulence via controlled experiments. Distributed heating alone induces a declining X-ray spectrum with $1<\\alpha&...

  1. The X-ray Spectrum Of The Black Hole Candidate Swift J1753.5-0127

    CERN Document Server

    Mostafa, Reham; Hiemstra, Beike; Soleri, Paolo; Belloni, Tomaso; Ibrahim, Alaa I; Yasein, Mohammed N; 10.1093/mnras/stt332

    2013-01-01

    We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5 0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer (RXTE) in 2006, when the source was in outburst. The aim of this paper is to test whether a thermal component due to the accretion disc is present in the X-ray spectrum. We fit the data with a range of spectral models, and we find that for all of these models the fits to the X-ray energy spectra significantly require the addition of the disc black-body component. We also find a broad iron emission line at around 6.5 keV, most likely due to iron in the accretion disc. Our results confirm the existence of a cool inner disc extending near or close to the innermost circular orbit (ISCO).We further discovered broad emission lines of NVII and OVIII at ~ 0.52 keV and 0.65 keV, respectively in the RGS spectrum of Swift J1753.5-0127.

  2. The energy spectrum of X-rays from rocket-triggered lightning

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Cramer, E. S.; Grove, J. E.; Gwon, C.; Hill, J. D.; Jordan, D. M.; Lucia, R. J.; Vodopiyanov, I. B.; Uman, M. A.; Rassoul, H. K.

    2015-10-01

    Although the production of X-rays from natural and rocket-triggered lightning leaders have been studied in detail over the last 10 years, the energy spectrum of the X-rays has never been well measured because the X-rays are emitted in very short but intense bursts that result in pulse pileup in the detectors. The energy spectrum is important because it provides information about the source mechanism for producing the energetic runaway electrons and about the electric fields that they traverse. We have recently developed and operated the first spectrometer for the energetic radiation from lightning. The instrument is part of the Atmospheric Radiation Imagery and Spectroscopy (ARIS) project and will be referred to as ARIS-S (ARIS Spectrometer). It consists of seven 3'' NaI(Tl)/photomultiplier tube scintillation detectors with different thicknesses of attenuators, ranging from no attenuator to more than 1'' of lead placed over the detector (all the detectors are in a 1/8'' thick aluminum box). Using X-ray pulses preceding 48 return strokes in 8 rocket-triggered lightnings, we found that the spectrum of X-rays from leaders is too soft to be consistent with Relativistic Runaway Electron Avalanche. It has a power law dependence on the energies of the photons, and the power index, λ, is between 2.5 and 3.5. We present the details of the design of the instrument and the results of the analysis of the lightning data acquired during the summer of 2012.

  3. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    Science.gov (United States)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  4. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    Science.gov (United States)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-08-01

    The behaviour of neutron stars in high mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7±0.2 K and inferred emitting radius of ˜0.2 - 0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  5. Definition of X-ray equivalent energy spectrum by the subtraction method

    International Nuclear Information System (INIS)

    Technique to reconstruct energy spectrum of X-ray radiation (initiating apparatus signal coinciding within the limits of measurement error with experimental one) at measurement conducted by filter technique, is described. The considered technique enables to determine minimal value of parameters necessary to describe energy spectrum. It may be useful when analyzing information contained in the experimental curve attenuation, especially in case of unadequacy or absence of a priori information on true spectrum. Criterion of choice of quantity and thickness of filters is suggested, as well

  6. Suzaku observations of the hard X-ray spectrum of Vela Jr. (SNR RX J0852.0-4622)

    Science.gov (United States)

    Takeda, Sawako; Bamba, Aya; Terada, Yukikatsu; Tashiro, Makoto S.; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru

    2016-06-01

    We report the results of Suzaku observations of the young supernova remnant, Vela Jr. (RX J0852.0-4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the northwest TeV-emitting region. The X-ray spectrum is reproduced well by a single power-law model with a photon index of 3.15^{+1.18}_{-1.14} in the 12-22 keV band. Compiling this hard X-ray spectrum with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2-22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever of the two models, single or broken power-law, is appropriate, clearly the spectrum has no roll-off structure. Applying this result to the method introduced in Yamazaki et al. (2014, Res. Astron. Astrophys., 14, 165), we find that a one-zone synchrotron model with electron spectrum having a power-law plus exponential cut-off may not be applicable to Vela Jr.

  7. X-Ray Ccds for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background

    Science.gov (United States)

    Gendreau, Keith Charles

    1995-01-01

    This thesis has two distinct components. One concerns the physics of the high energy resolution X-ray charge coupled devices (CCD) detectors used to measure the cosmic X-ray background (XRB) spectrum. The other involves the measurements and analysis of the XRB spectrum and instrumental background with these detectors on board the advanced satellite for cosmology and astrophysics (ASCA). The XRB has a soft component and a hard component divided at ~2 keV. The hard component is extremely isotropic, suggesting a cosmological origin. The soft component is extremely anisotropic. A galactic component most likely dominates the soft band with X-ray line emission due to a hot plasma surrounding the solar system. ASCA is one of the first of a class of missions designed to overlap the hard and soft X-ray bands. The X-ray CCD's energy resolution allows us to spectrally separate the galactic and cosmological components. Also, the resolution offers the ability to test several specific cosmological models which would make up the XRB. I have concentrated on models for the XRB origin which include active galactic nuclei (AGN) as principal components. I use ASCA data to put spectral constraints on the AGN synthesis model for the XRB. The instrumental portion of this thesis concerns the development and calibration of the X-ray CCDs. I designed, built and operated an X-ray calibration facility for these detectors. It makes use of a reflection grating spectrometer to measure absolute detection efficiency, characteristic absorption edge strengths, and spectral redistribution in the CCD response function. Part of my thesis research includes a study of radiation damage mechanisms in CCDs. This work revealed radiation damage-induced degradation in the spectral response to X-rays. It also uncovered systematic effects which affect both data analysis and CCD design. I have developed a model involving trap energy levels in the CCD band gap structure. These traps reduce the efficiency in which

  8. Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares

    OpenAIRE

    Goosmann, R. W.; Dovciak, M.; Karas, V.; Czerny, B.; Mouchet, M.; Ponti, G.

    2007-01-01

    Using Monte-Carlo simulations of X-ray flare distributions across the accretion disk of active galactic nuclei (AGN), we obtain modeling results for the energy-dependent fractional variability amplitude. Referring to previous results of this model, we illustrate the relation between the shape of the point-to-point fractional variability spectrum, F_pp, and the time-integrated spectral energy distribution, F_E. The results confirm that the spectral shape and variability of the iron Kalpha line...

  9. Optical characterisation of lithium fluoride detectors for broadband X-ray imaging

    International Nuclear Information System (INIS)

    Novel X-ray imaging detectors based on photoluminescence of colour centres in lithium fluoride (LiF) have been proposed and tested for extreme ultraviolet, soft and hard X-rays up to 10 keV. For the first time we present the optical characterisation of LiF crystals and thin films irradiated at the TOPO–TOMO beamline of synchroton light source Anka (Karlsruhe, Germany) in the energy range 6–40 keV for different exposure times. Absorption and photoluminescence spectra were analysed to study the optical response of the LiF-based detectors. High resolved X-ray imaging of commercial test patterns has been obtained on LiF crystals and films by optical readout with a confocal laser scanning fluorescence microscope

  10. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    CERN Document Server

    Mekaru, H; Hattori, T

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the p...

  11. The X-Ray Spectrum and Global Structure of the Stellar Wind in Vela X-1

    CERN Document Server

    Sako, M; Kahn, S M; Paerels, F B S; Sako, Masao; Liedahl, Duane A.; Kahn, Steven M.; Paerels, Frits

    1999-01-01

    We present a quantitative analysis of the X-ray spectrum of the eclipsing high mass X-ray binary Vela X-1 (4U 0900-40) using archival data from ASCA. The observation covers a time interval centered on eclipse of the X-ray pulsar by the companion. The spectrum exhibits two distinct sets of discrete features: (1) recombination lines and radiative recombination continua from mostly H- and He-like species produced by photoionization in an extended stellar wind; and (2) fluorescent K-shell lines associated with near-neutral species also present in the circumsource medium. Using a detailed spectral model that explicitly accounts for the recombination cascade kinetics for each of the constituent charge states, we are able to obtain a statistically acceptable (chi_r^2=0.88) fit to the observed spectrum and to derive emission measures associated with the individual K-shell ions of several elements. We find a best-fit mass loss rate of ~2.7 x 10^-7 M-solar/yr, which is approximately a factor of 10 lower than previous e...

  12. The Soft X-ray Spectrum of the High Mass X-Ray Binary V0332+53 in Quiescence

    CERN Document Server

    Elshamouty, K; Chouinard, R

    2016-01-01

    The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsations. Indications of spectral softening in systems in the propeller regime suggest that some HMXBs are undergoing fundamental changes in their accretion regime. A 39 ks \\textit{XMM-Newton} observation of the transient HMXB V0332+53 found it at a very low X-ray luminosity ($L_{x} \\sim 4\\times 10^{32}$ erg s${^{-1}}$). A power-law spectral fit requires an unusually soft spectral index ($4.4^{+0.9}_{-0.6}$), while a magnetized neutron star atmosphere model, with temperature \\lt\\ 6.7$\\pm 0.2$ K and inferred emitting radius of $\\sim0.2-0.3$ km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hot spot on the surface of the neutron star. We could not detect pulsations from V0332+53, due to the low count rate. Due to the high...

  13. Segmentation-free x-ray energy spectrum estimation for computed tomography

    CERN Document Server

    Zhao, Wei; Niu, Tianye

    2016-01-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT images, in this study, we develop a segmentation-free indirect transmission measurement based energy spectrum estimation method using dual-energy material decomposition. The general principle of the method is to compare polychromatic forward projection with raw projection to calibrate a set of unknown weights which are used to express the unknown spectrum together with a set of model spectra. After applying dual-energy material decomposition using high- and low-energy raw projection data, polychromatic forward projection ...

  14. Hard X-ray Spectrum of Mkn 421 during the Active Phase

    Indian Academy of Sciences (India)

    R. K. Manchanda

    2001-06-01

    Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.

  15. Hard X-Ray Spectrum from West Lobe of Radio Galaxy Fornax A Observed with Suzaku

    CERN Document Server

    Tashiro, Makoto S; Seta, Hiromi; Matsuta, Keiko; Yaji, Yuichi

    2009-01-01

    An observation of the West lobe of radio galaxy Fornax A (NGC 1316) with Suzaku is reported. Since Feigelson et al. (1995) and Kaneda et al. (1995) discovered the cosmic microwave background boosted inverse-Comptonized (IC) X-rays from the radio lobe, the magnetic field and electron energy density in the lobes have been estimated under the assumption that a single component of the relativistic electrons generates both the IC X-rays and the synchrotron radio emission. However, electrons generating the observed IC X-rays in the 1 -- 10 keV band do not possess sufficient energy to radiate the observed synchrotron radio emission under the estimated magnetic field of a few micro-G. On the basis of observations made with Suzaku, we show in the present paper that a 0.7 -- 20 keV spectrum is well described by a single power-law model with an energy index of 0.68 and a flux density of 0.12+/-0.01 nJy at 1 keV from the West lobe. The derived multiwavelength spectrum strongly suggests that a single electron energy distr...

  16. Escape probability methods versus ``exact" transfer for modelling the X-ray spectrum of Active Galactic Nuclei and X-ray binaries

    Science.gov (United States)

    Dumont, A.-M.; Collin, S.; Paletou, F.; Coupé, S.; Godet, O.; Pelat, D.

    2003-08-01

    In the era of XMM-Newton and Chandra missions, it is crucial to use codes able to compute correctly the line spectrum of X-ray irradiated thick media (Thomson thickness of the order of unity), in order to build models for the structure and the emission of the central regions of Active Galactic Nuclei (AGN), or of X-ray binaries. In all photoionized codes except in our code Titan, the line intensities are computed with the so-called ``escape probability approximation". In its last version, Titan solves the transfer of a thousand lines and of the continuum with the ``Accelerated Lambda Iteration" method, which is one of the most efficient and at the same time the most secure for line transfer. We first review the escape probability formalism and mention various reasons why it should lead to wrong results concerning the line fluxes. Then we check several approximations commonly used instead of line transfer in photoionization codes, by comparing them to the full transfer computation. We find that for conditions typical of the AGN or X-ray binary emission medium, all approximations lead to an overestimation of the emitted X-ray line spectrum, which can reach more than one order of magnitude. We show that it is due mainly to the local treatment of line photons, implying a delicate balance between excitations of X-ray transitions by the very intense underlying diffuse X-ray continuum (which are not taken properly into account in escape probability approximations) and the net rate of excitations by the diffuse line flux. The most affected lines are those in the soft X-ray range. Such processes are much less important in cooler and thinner media (like the Broad Line Region of AGN), as the most intense lines lie in the optical and near ultraviolet range where the diffuse continuum is small. We conclude that it is very important to treat correctly the transfer of the continuum to get the best results for the line spectrum. On the other hand the approximations used for the

  17. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  18. The High Resolution Chandra X-Ray Spectrum of 3C273

    Science.gov (United States)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  19. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    Science.gov (United States)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  20. Broadband short term X-ray variability of the quasar PDS 456

    Science.gov (United States)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.

    2016-05-01

    We present a detailed analysis of a recent 500 ks net exposure Suzaku observation, carried out in 2013, of the nearby (z=0.184) luminous (L_bol˜1047 erg s-1) quasar PDS 456 in which the X-ray flux was unusually low. The short term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. ˜ 0.25 c, at the 99.9% (3.26σ) confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than 20 R_g in PDS 456.

  1. The fluorescence-dominated X-ray spectrum of the spiral galaxy NGC 6552

    Science.gov (United States)

    Fukazawa, Yasushi; Makishima, Kazuo; Ebisawa, Ken; Fabian, Andrew C.; Gendreau, Keith C.; Ikebe, Yasushi; Iwasawa, Kazushi; Kii, Tsuneo; Mushotzky, Richard F.; Ohashi, Takaya

    1994-01-01

    A hard X-ray source with a 2-10 keV flux of approximately 6 x 10(exp -13) ergs/sec/sq cm was detected with ASCA in the north ecliptic pole region. It is identified with the spiral galaxy NGC 6552 at a redshift of z = 0.026, which is optically classified as a Seyfert 2 galaxy. The X-ray spectrum consists of a series of atomic K-emission lines from (nearly-) neutral species of at least seven abundant elements, and a heavily absorbed (N(sub H) approx. = 6 x 10(exp 23)/sq cm) hard continuum. The iron line has an equivalent width as large as approximately 0.9 keV. Our results show that NGC 6552 is an extreme type 2 Seyfert galaxy, in which the fluorescent lines are produced when hard X-rays from a hidden active nucleus are reflected off thick cool matter into our line of sight. The intrinsic 2-10 keV luminosity of the nucleus is estimated to be at least 6 x 10(exp 42) ergs/s.

  2. A variable absorption feature in the X-ray spectrum of a magnetar.

    Science.gov (United States)

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss. PMID:23955229

  3. Spectrum unfolding in X-ray spectrometry using the maximum entropy method

    International Nuclear Information System (INIS)

    The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). - Highlights: ► A new strategy to solve the unfolding problem in X-ray spectrometry is presented. ► The presented strategy uses a suitable combination of the codes MAXED and GRAVEL. ► The applied strategy provides additional information on the Detector Response Function. ► The code UMESTRAT is developed to apply this new strategy in a semi-automatic mode

  4. SPECTRUM SYNTHESIS MODELING OF THE X-RAY SPECTRUM OF GRO J1655-40 TAKEN DURING THE 2005 OUTBURST

    International Nuclear Information System (INIS)

    The spectrum from the black hole X-ray transient GRO J1655-40 obtained using the Chandra High Energy Transmission Grating in 2005 is notable as a laboratory for the study of warm absorbers, and for the presence of many lines from odd-Z elements between Na and Co (and Ti and Cr) not previously observed in X-rays. We present synthetic spectral models which can be used to constrain these element abundances and other parameters describing the outflow from the warm absorber in this object. We present results of fitting to the spectrum using various tools and techniques, including automated line fitting, phenomenological models, and photoionization modeling. We show that the behavior of the curves of growth of lines from H-like and Li-like ions indicate that the lines are either saturated or affected by filling-in from scattered or a partially covered continuum source. We confirm the conclusion of previous work by Miller et al., which shows that the ionization conditions are not consistent with wind driving due to thermal expansion. The spectrum provides the opportunity to measure abundances for several elements not typically observable in the X-ray band. These show a pattern of enhancement for iron peak elements, and solar or subsolar values for elements lighter than calcium. Models show that this is consistent with enrichment by a core-collapse supernova. We discuss the implications of these values for the evolutionary history of this system.

  5. The MOXE X-ray all-sky monitor for Spectrum-X-Gamma

    Energy Technology Data Exchange (ETDEWEB)

    In`t Zand, J.J.M.; Priedhorsky, W.C.; Moss, C.E. [and others

    1994-08-01

    MOXE is an X-ray all-sky monitor to be flown on the Russian Spectrum-X-Gamma satellite, to be launched in a few years. It will monitor several hundred X-ray sources on a daily basis, and will be the first instrument to monitor most of the X-ray sky most of the time. MOXE will alert users of more sensitive instruments on Russia`s giant high energy astrophysics observatory and of other instruments to transient activity. MOXE consists of an array of 6 X-ray pinhole cameras, sensitive from 3 to 25 keV, which views 4{pi} steradians (except for a 20{degree} {times} 80{degree} patch which includes the Sun). The pinhole apertures of 0.625 {times} 2.556 cm{sup 2} imply an angular resolution of 2{degree}.4 {times} 9{degree}.7 (on-axis). The MOXE hardware program includes an engineering model, now delivered, and a flight model. The flight instrument will mass approximately 118 kg and draw 38 Watts. For a non-focusing all-sky instrument that is limited by sky background, the limiting sensitivity is a function only of detector area. MOXE, with 6,000 cm{sup 2} of detector area, will, for a 24 hrs exposure, have a sensitivity of approximately 2 mCrab. MOXE distinguishes itself with respect to other all-sky monitors in its high duty cycle, thus being particularly sensitive to transient phenomena with time scales between minutes and hours.

  6. What is the correct Fe L{sub 23} X-ray absorption spectrum of magnetite?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaohui; Kalirai, Samanbir S. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Bazylinski, Dennis A. [School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004 (United States)

    2015-02-15

    Highlights: • Fe L{sub 3} X-ray absorption spectra of biological (MV-1 magnetotactic bacteria) and abiotic (Sigma–Aldrich) nano-magnetite are reported. • An inconsistency in the literature for this spectrum is documented. • Powder diffraction shows the abiotic sample is partly oxidized, toward maghemite. • H{sub 2} thermal reduction converts the Fe L{sub 3} spectrum of the abiotic sample to that of the biotic. • Strong oxidation (air, 600 °C) is needed to convert the spectrum of the biotic magnetite to that of maghemite; magnetosome chains are protected by an air-impervious membrane. - Abstract: Various groups have reported Fe L{sub 23} X-ray absorption spectra (XAS) of magnetite (Fe{sub 3}O{sub 4}), each claiming to be that of magnetite, but which contradict each other. Here we report an XAS study of two kinds of magnetite: one is biogenic magnetite nanocrystals extracted from the magnetotactic bacterium Magnetovibrio blakemorei strain MV-1; the other is synthetic, abiogenically produced nano-magnetite. We see significantly different XAS spectra of these two materials. Only when the abiogenic magnetite was reduced under H{sub 2} did it give the same spectrum as the biogenic sample. Extensive heating of the biogenic magnetite in air produced spectra similar to that of the abiogenic magnetite. These two spectra are typical of the range of published Fe L{sub 23} spectra of magnetite. X-ray diffraction confirmed that the biogenic material is stoichiometric Fe{sub 3}O{sub 4}, and showed that the as-received or partly reduced abiogenic material is a non-stoichiometric oxide, intermediate between magnetite and maghemite (γ-Fe{sub 2}O{sub 3}). When the membrane which surrounds magnetosome chains was intact, the biotic magnetite single crystals were surprisingly resistant to oxidation. This study clarifies a significant confusion existing in the literature as to the correct Fe L{sub 23} X-ray absorption spectra of magnetite and maghemite.

  7. The X-ray Spectrum of Soft Gamma Repeater 1806-20

    OpenAIRE

    Fenimore, E. E.; Laros, J. G.; Ulmer, A.

    1994-01-01

    Soft Gamma Repeaters (SGRs) are a class of rare, high-energy galactic transients that have episodes of short (~0.1 sec), soft (~30 keV), intense (~100 Crab), gamma-ray bursts. We report an analysis of the x-ray emission from 95 SGR1806-20 events observed by the International Cometary Explorer. The spectral shape remains remarkably constant for bursts that differ in intensity by a range of 50. Below 15 keV the number spectrum falls off rapidly such that we can estimate the total intensity of t...

  8. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    OpenAIRE

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. ...

  9. A new, high-precision measurement of the X-ray Cu K α spectrum

    Science.gov (United States)

    Mendenhall, Marcus H.; Cline, James P.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald

    2016-03-01

    One of the primary measurement issues addressed with NIST Standard Reference Materials (SRMs) for powder diffraction is that of line position. SRMs for this purpose are certified with respect to lattice parameter, traceable to the SI through precise measurement of the emission spectrum of the X-ray source. Therefore, accurate characterization of the emission spectrum is critical to a minimization of the error bounds on the certified parameters. The presently accepted sources for the SI traceable characterization of the Cu K α emission spectrum are those of Härtwig, Hölzer et al., published in the 1990s. The structure of the X-ray emission lines of the Cu K α complex has been remeasured on a newly commissioned double-crystal instrument, with six-bounce Si (440) optics, in a manner directly traceable to the SI definition of the meter. In this measurement, the entire region from 8020 eV to 8100 eV has been covered with a highly precise angular scale and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement is in modest disagreement with reference values for the wavelength of the Kα1 line, and strong disagreement for the wavelength of the Kα2 line.

  10. A high resolution spectrum of the diffuse soft X-ray background

    Science.gov (United States)

    Crowder, S. Gwynne

    Galactic contributions to the diffuse X-ray background were believed to largely come from thermal emission of hot gas and models of the Galactic neighborhood within ˜ 100 pc reflected this belief. However, recent observations led to the realization that emission from charge exchange within the Solar System might produce comparable intensities to that of thermal emission. A high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV was obtained for a ˜ 1 sr region of the sky centered at l = 90°, b = +60° in May 2008 using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum can be used to separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced about a factor of four by contamination that occurred early in the flight, limiting the significance of the results. The observed ratio of helium-like O VII forbidden plus intercombination to resonance lines is 1.2 +/- 1.2 at 90% confidence. This indicates that at least 67% of the emission is thermal. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3+0.3-0.2 , requiring at least a 33% contribution from charge exchange. In addition to these astrophysical results, I present experimental improvements from the addition of a gold coating to the detector array substrate which greatly reduces extraneous signals and from the use of silicon support meshes which improves blocking filter robustness. I also detail a new optimal filtering analysis technique that preserves spectral resolution and live time in the presence of pulse overlap.

  11. The soft X-ray spectrum of transient pulsars in the Small Magellanic Cloud

    Science.gov (United States)

    La Palombara, N.; Sidoli, L.; Esposito, P.; Pintore, F.; Tiengo, A.; Mereghetti, S.

    2016-06-01

    The Small Magellanic Cloud is characterized by a high number of transient accreting pulsars, which can reach luminosities up to 10^{38} erg s^{-1} during their outbursts. Due to the low Galactic interstellar absorption in the SMC direction, these sources offer a unique opportunity to investigate the soft end of the X-ray spectrum in accreting pulsars. In the last two years we observed with XMM-Newton the large outburst of two of these transient pulsars (RX J0059.2-7138 and SMC X-2). Thanks to the high throughput and spectral resolution of XMM, these observations allowed us to investigate at an unprecedented level of detail their spectral and timing properties at soft X-ray energies. We found that both sources show a pulsed emission also at low energies, and that they are characterized by a thermal component which dominates the source spectrum below 0.5 keV; moreover, we discovered several emission and absorption features, which are very likely produced by photoionization of plasma located above the inner regions of the accretion disc.

  12. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    Science.gov (United States)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  13. Development of broadband X-ray interference lithography large area exposure system.

    Science.gov (United States)

    Xue, Chaofan; Wu, Yanqing; Zhu, Fangyuan; Yang, Shumin; Liu, Haigang; Zhao, Jun; Wang, Liansheng; Tai, Renzhong

    2016-04-01

    The single-exposure patterned area is about several 10(2) × 10(2) μm(2) which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several square centimeters and even bigger by this technology. PMID:27131667

  14. Investigating Dueling Scenarios in NGC 7582 with Broadband X-ray Spectroscopy

    Science.gov (United States)

    Rivers, E.

    2015-09-01

    NGC 7582 is a well-studied X-ray bright Seyfert 2 with moderately heavy (NH = 10^{23} - 10^{24} cm^{-2}), highly variable absorption and unusually strong reflection spectral features. The spectral shape changed around the year 2000, dropping in observed flux and becoming much more highly absorbed. Two scenarios have been put forth to explain this spectral change: 1) the source "shut off" around this time, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light crossing time of the Compton-thick material or 2) the source is a "hidden nucleus" which has recently become more heavily obscured, with only a portion of the power law continuum leaking through. NuSTAR observed NGC 7582 twice in 2012 two weeks apart in order to quantify the reflection using high-quality data above 10 keV. We analyze both NuSTAR observations placing them in the context of historical X-ray, infrared and optical observations, including re-analysis of RXTE data from 2003-2005. We find that the most plausible scenario is that NGC 7582 has a hidden nucleus which has recently become more heavily absorbed by a patchy torus with a covering fraction of 80-90% and a column density of 3.6 x 10^{24} cm^{-2}. We find the need for an additional highly variable full-covering absorber with NH= 4-6 x 10^{23} cm^{-2}, possibly associated with a hidden broad line region or a dust lane in the host galaxy.

  15. A broadband X-ray study of the Geminga pulsar with NuSTAR And XMM-Newton

    International Nuclear Information System (INIS)

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ∼5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT 1 ∼ 42 eV) with a broken power law (Γ1 ∼ 2.0, Γ2 ∼ 1.4 and E break ∼ 3.4 keV) and (2) two blackbody components (kT 1 ∼ 44 eV and kT 2 ∼ 195 eV) with a power-law component (Γ ∼ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ∼ 0.05-0.5 keV. While strong phase variation of the power-law index is present below ∼5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Γ ∼ 1.3 emerges above ∼5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.

  16. The ROSAT-ESO Flux-Limited X-Ray (REFLEX) Galaxy Cluster Survey III: The Power Spectrum

    OpenAIRE

    Schuecker, Peter; Boehringer, Hans; Guzzo, Luigi; Collins, Chris A.; Neumann, Doris M.; Schindler, Sabine; Voges, Wolfgang; De Grandi, Sabrina; Chincarini, Guido; Cruddace, Ray; Mueller, Volker; Reiprich, Thomas H.; Retzlaff, Joerg; Shaver, Peter

    2000-01-01

    We present a measure of the power spectrum on scales from 15 to 800 Mpc/h using the ROSAT-ESO Flux-Limited X-Ray(REFLEX) galaxy cluster catalogue. The REFLEX survey provides a sample of the 452 X-ray brightest southern clusters of galaxies with the nominal flux limit S=3.0 10^{-12}erg/s/cm2 for the ROSAT energy band (0.1-2.4)keV. Several tests are performed showing no significant incompletenesses of the REFLEX clusters with X-ray luminosities brighter than 10^{43}erg/s up to scales of about 8...

  17. Effects of X-rays spectrum on the dose; Efectos del espectro de rayos X sobre la dosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T., E-mail: johann_greenday@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  18. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  19. Probing the clumping structure of giant molecular clouds through the spectrum, polarisation and morphology of X-ray reflection nebulae

    Science.gov (United States)

    Molaro, Margherita; Khatri, Rishi; Sunyaev, Rashid A.

    2016-04-01

    We introduce a new method for probing global properties of clump populations in giant molecular clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumping's overall effect on the reflected X-ray signal, in particular on the Fe K-α line's shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in the Galactic center (GC) region. We parametrise the gas distribution inside the cloud using a simple clumping model with theslope of the clump mass function (α), the minimum clump mass (mmin), the fraction of the cloud's mass contained in clumps (fDGMF), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clump populations with volume-filling factors of >10-3 do leave observational signatures, that are sensitive to the clump model parameters, in the reflected spectrum and polarisation. Future high angular resolution X-ray observations could therefore complement the traditional optical and radio observations of these GMCs, and prove to be a powerful probe in the study of their internal structure. Clumps in GMCs should further be visible both as bright spots and regions of heavy absorption in high resolution X-ray observations. We therefore also study the time-evolution of the X-ray morphology, under illumination by a transient source, as a probe of the 3D distribution and column density of individual clumps by future X-ray observatories.

  20. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Jones, Bernard L. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  1. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    International Nuclear Information System (INIS)

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  2. Determining the Nature of the SS 433 Binary Using an X-ray Spectrum During Eclipse

    CERN Document Server

    Lopez, L A; Canizares, C R; Schulz, N S; Kane, J F; Lopez, Laura A.; Marshall, Herman L.; Canizares, Claude R.; Schulz, Norbert S.; Kane, Julie F.

    2006-01-01

    We test the physical model of the relativistic jets in the galactic X-ray binary SS 433 proposed in our previous paper using additional observations from the Chandra High Energy Transmission Grating Spectrometer. These observations sample two new orbital/precessional phase combinations. In the observation near orbital phase zero, the H- and He-like Fe lines from both receding and approaching jets are comparably strong and unocculted while the He-like Si line of the receding jet is significantly weaker than that of the approaching jet. This condition may imply the cooler parts of the receding jet are eclipsed by the companion. The X-ray spectrum from this observation has broader emission lines than obtained in Paper I that may arise from the divergence of a conical outflow or from Doppler shift variations during the observation. Using recent optical results, along with the length of the unobscured portion of the receding jet assuming adiabatic cooling, we calculate the radius of the companion to be 9.6+/-1.0 R...

  3. The soft X-ray absorption spectrum of the allyl free radical.

    Science.gov (United States)

    Alagia, M; Bodo, E; Decleva, P; Falcinelli, S; Ponzi, A; Richter, R; Stranges, S

    2013-01-28

    The first experimental study of the X-ray absorption spectrum (XAS) of the allyl free radical, CH(2)CHCH(2), is reported. A supersonic He seeded beam of hyperthermal allyl radicals was crossed by a high resolution synchrotron radiation (SR) in the focus of a 3D ion momentum imaging time-of-flight (TOF) spectrometer to investigate the soft X-ray absorption and fragmentation processes. The XAS, recorded as Total-Ion-Yield (TIY), is dominated by C1s electron excitations from either the central carbon atom, C(C), or the two terminal carbon atoms, C(T), to the frontier orbitals, the semi-occupied-molecular-orbital (SOMO) and the lowest-unoccupied-molecular-orbital (LUMO). All of the intense features in the XAS could only be assigned with the aid of ab initio spectral simulation at the Multi-Configuration Self-Consistent-Field (MCSCF) level of theory, this level being required because of the multi-reference nature of the core-excited state wavefunctions of the open shell molecule. The ionization energies (IEs) of the singlet and triplet states of the C1s ionized allyl radical (XPS) were also calculated at the MCSCF level. PMID:23232557

  4. Photoionized features in the X-ray spectrum of EX Hydrae

    CERN Document Server

    Luna, G J M; Brickhouse, N S; Mauche, C W; Proga, D; Steeghs, D; Hoogerwerf, R

    2010-01-01

    We present the first results from a long (496 ks) Chandra High Energy Transmission Grating observation of the intermediate polar EX Hydrae. In addition to the narrow emission lines from the cooling post-shock gas, for the first time we have detected a broad component in some of the X-ray emission lines, namely O VIII 18.97, Mg XII 8.42, Si XIV 6.18, and Fe XVII 16.78. The broad and narrow components have widths of ~ 1600 km s^-1 and ~ 150 km s^-1, respectively. We propose a scenario where the broad component is formed in the pre-shock accretion flow, photoionized by radiation from the post-shock flow. Because the photoionized region has to be close to the radiation source in order to produce strong photoionized emission lines from ions like O VIII, Fe XVII, Mg XII, and Si XIV, our photoionization model constrains the height of the standing shock above the white dwarf surface. Thus, the X-ray spectrum from EX Hya manifests features of both magnetic and non-magnetic cataclysmic variables.

  5. The first broad-band X-ray images and spectra of the 30 Doradus region in the LMC

    CERN Document Server

    Dennerl, K; Aschenbach, B; Briel, U G; Balasini, M; Bräuninger, H; Burkert, W; Hartmann, R; Hartner, G; Hasinger, G; Kemmer, J; Kendziorra, E; Kirsch, M; Krause, N; Kuster, M; Lumb, D H; Massa, P; Meidinger, N; Pfeffermann, E; Pietsch, W; Reppin, C; Soltau, H; Staubert, R; Strüder, L; Trümper, J E; Turner, M; Villa, G; Zavlin, V E

    2001-01-01

    We present the XMM-Newton first light image, taken in January 2000 with the EPIC pn camera during the instrument's commissioning phase, when XMM-Newton was pointing towards the Large Magellanic Cloud (LMC). The field is rich in different kinds of X-ray sources: point sources, supernova remnants (SNRs) and diffuse X-ray emission from LMC interstellar gas. The observations are of unprecedented sensitivity, reaching a few 10^32 erg/s for point sources in the LMC. We describe how these data sets were analysed and discuss some of the spectroscopic results. For the SNR N157B the power law spectrum is clearly steeper than previously determined from ROSAT and ASCA data. The existence of a significant thermal component is evident and suggests that N157B is not a Crab-like but a composite SNR. Most puzzling is the spectrum of the LMC hot interstellar medium, which indicates a significant overabundance of Ne and Mg of a few times solar.

  6. Multiple compton scattering effect on the spectrum of X-ray radiation. Monte-Carlo computations

    International Nuclear Information System (INIS)

    Computation of the X-ray radiation spectrum forming at multiple scattering of low-frequency photons on relativistic electrons is carried out. A spherical cloud of relativistic plasma with optical depth on Thomson scattering tau and a given temperature of Maxwellian electrons kTsub(e) is considered. There is a point source of low frequency radiation in the centre of the cloud with a Planckian spectrum. Monte-Carlo computations and analytical estimates show that in the case of small optical depth tau < 1, the radiation escaping from the cloud has a power-law spectrum Isub(ν) approximately νsup(-α) where α is the spectral index. In the case of an optically thick cloud, the escaping radiation spectrum tends to the Wien equilibrium shape. The energy loss rate of the cloud is computed. The transfer of hard radiation from a central point source through a plasma cloud with kTsub(e) approximately 3 keV is considered. Monte-Carlo techniques for computing such problems are decribed

  7. Angular spectrum simulation of X-ray focusing by Fresnel zone plates

    International Nuclear Information System (INIS)

    An efficient computing simulation routine has been implemented to model explicitly several types of Fresnel zone plate taking advantage of the circular symmetry. This code was used to evaluate an optimized approach for stacking of two high-resolution Fresnel zone plates. A computing simulation routine to model any type of circularly symmetric diffractive X-ray element has been implemented. The wavefield transmitted beyond the diffractive structures is numerically computed by the angular spectrum propagation method to an arbitrary propagation distance. Cylindrical symmetry is exploited to reduce the computation and memory requirements while preserving the accuracy of the numerical calculation through a quasi-discrete Hankel transform algorithm, an approach described by Guizar-Sicairos & Gutierrez-Vega [J. Opt. Soc. Am. A, (2004 ▶), 21, 53–58]. In particular, the code has been used to investigate the requirements for the stacking of two high-resolution Fresnel zone plates with an outermost zone width of 20 nm

  8. X-ray Spectral Variability and Rapid Variability of the Soft X-ray Spectrum Seyfert 1 Galaxies Ark 564 and Ton S180

    CERN Document Server

    Edelson, R; Pounds, K; Vaughan, S; Markowitz, A R; Marshall, H; Dobbie, P D; Warwick, R; Edelson, Rick; Pounds, Ken; Vaughan, Simon; Markowitz, Alex; Marshall, Herman; Dobbie, Paul; Warwick, Robert

    2001-01-01

    The bright, soft X-ray spectrum Seyfert 1 galaxies Ark 564 and Ton S180 were monitored for 35 days and 12 days with ASCA and RXTE (and EUVE for Ton S180). The short time scale (hours-days) variability patterns were very similar across energy bands, with no evidence of lags between any of the energy bands studied. The fractional variability amplitude was almost independent of energy band. It is difficult to simultaneously explain soft Seyferts stronger variability, softer spectra, and weaker energy-dependence of the variability relative to hard Seyferts. The soft and hard band light curves diverged on the longest time scales probed, consistent with the fluctuation power density spectra that showed relatively greater power on long time scales in the softest bands. The simplest explanation is that a relatively hard, rapidly-variable component dominates the total X-ray spectrum and a slowly-variable soft excess is present in the lowest energy channels of ASCA. Although it would be natural to identify the latter w...

  9. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae

    Science.gov (United States)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Luna, G. J. M.; Wolk, S.

    2010-02-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature Te , electron density Ne , hydrogen column density NH , relative elemental abundances, and velocities, and reveals its source in three distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that Te = 2.50 ± 0.25 MK and Ne = 3.0 ± 0.2 × 1012 cm-3 in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model predictions for the postshock plasma. This gas is expected to cool radiatively, producing O VII as it flows into an increasingly dense stellar atmosphere. Surprisingly, O VII indicates Ne = 5.7+4.4 -1.2 × 1011 cm-3, 5 times lower than Ne in the accretion shock itself and ~7 times lower than the model prediction. We estimate that the postshock region producing O VII has roughly 300 times larger volume and 30 times more emitting mass than the shock itself. Apparently, the shocked plasma heats the surrounding stellar atmosphere to soft X-ray emitting temperatures and supplies this material to nearby large magnetic structures—which may be closed magnetic loops or open magnetic field leading to mass outflow. Our model explains the soft X-ray excess found in many accreting systems as well as the failure to observe high Ne signatures in some stars. Such accretion-fed coronae may be ubiquitous in the atmospheres of accreting young stars.

  10. Imprints of a high velocity wind on the soft x-ray spectrum of PG 1211+143

    CERN Document Server

    Pounds, Ken; Reeves, James; Vaughan, Simon; Costa, Michele

    2016-01-01

    An extended XMM-Newton observation of the luminous narrow line Seyfert galaxy PG 1211+143 in 2014 has revealed a more complex high velocity wind, with components distinguished in velocity, ionization level, and column density. Here we report soft x-ray emission and absorption features from the ionized outflow, finding counterparts of both high velocity components, v ~ 0.129c and v ~ 0.066c, recently identified in the highly ionized Fe K absorption spectrum. The lower ionization of the co-moving soft x-ray absorbers imply a distribution of higher density clouds embedded in the main outflow, while much higher column densities for the same flow component in the hard x-ray spectra suggest differing sight lines to the continuum x-ray source.

  11. Imprints of a high-velocity wind on the soft X-ray spectrum of PG1211+143

    Science.gov (United States)

    Pounds, K. A.; Lobban, A.; Reeves, J. N.; Vaughan, S.; Costa, M.

    2016-07-01

    An extended XMM-Newton observation of the luminous narrow-line Seyfert galaxy PG1211+143 in 2014 has revealed a more complex high-velocity wind, with components distinguished in velocity, ionization level, and column density. Here we report soft X-ray emission and absorption features from the ionized outflow, finding counterparts of both high-velocity components, v ˜ 0.129c and v ˜ 0.066c, recently identified in the highly ionized Fe K absorption spectrum. The lower ionization of the comoving soft X-ray absorbers imply a distribution of higher density clouds embedded in the main outflow, while much higher column densities for the same flow component in the hard X-ray spectra suggest differing sightlines to the continuum X-ray source.

  12. Spectrum Synthesis Modeling of the X-ray Spectrum of GRO J1655-40 Taken During the 2005 Outburst

    CERN Document Server

    Kallman, T R; Goriely, Stephane; Mendoza, Claudio; Miller, Jon M; Palmeri, Patrick; Quinet, Pascal; Raymond, John

    2009-01-01

    The spectrum from the black hole X-ray transient GRO J1655-40. obtained using the $Chandra$ High Energy Transmission Grating (HETG) in 2005 is notable as a laboratory for the study of warm absorbers, and for the presence of many lines from odd-$Z$ elements between Na and Co (and Ti and Cr) not previously observed in X-rays. We present synthetic spectral models which can be used to constrain these element abundances and other parameters describing the outflow from the warm absorber in this object. We present results of fitting to the spectrum using various tools and techniques, including automated line fitting, phenomenological models, and photoionization modeling. We show that the behavior of the curves of growth of lines from H-like and Li-like ions indicate that the lines are either saturated or affected by filling-in from scattered or a partially covered continuum source. We confirm the conclusion of previous work by \\cite{Mill06} and \\cite{Mill08} which shows that the ionization conditions are not consist...

  13. The average x-ray/$\\gamma$-ray spectrum of radio-quiet Seyfert 1s

    CERN Document Server

    Gondek-Rosinska, D; Johnson, W N; George, I M; McNaron-Brown, K; Magdziarz, P; Smith, D; Gruber, E

    1996-01-01

    We have obtained the average 1--500 keV spectrum of radio-quiet Seyfert 1s using data from EXOSAT, Ginga, HEAO, and GRO/OSSE. The spectral fit to the combined average EXOSAT and OSSE data is fully consistent with that for Ginga and OSSE, confirming results from an earlier Ginga/OSSE sample. The average spectrum is well-fitted by a power-law X-ray continuum with an energy spectral index of \\alpha \\simeq 0.9 moderately absorbed by an ionized medium and with a Compton reflection component. A high-energy cutoff (or a break) in the the power-law component at a few hundred keV or more is required by the data. We also show that the corresponding average spectrum from HEAO A1 and A4 is fully compatible with that obtained from EXOSAT, Ginga and OSSE. These results confirm that the apparent discrepancy between the results of Ginga (with \\alpha \\simeq 0.9) and the previous results of EXOSAT and HEAO (with \\alpha \\simeq 0.7) is indeed due to ionized absorption and Compton reflection first taken into account for Ginga but...

  14. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    CERN Document Server

    Epili, Prahlad; Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at $\\sim$18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to $\\sim$10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to $\\sim$70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission line...

  15. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Physics Department, Duke University, Durham, North Carolina 27708 (United States); Ramirez-Giraldo, Juan Carlos [Siemens Medical Solutions, Malvern, Pennsylvania 19355 (United States); Gauthier, Daniel J. [Physics Department, Duke University, Durham, North Carolina 27708 (United States); Stierstorfer, Karl [Siemens Healthcare, Forchheim 91301 (Germany)

    2014-06-15

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure

  16. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure

  17. A characterization of the NGC 4051 soft X-ray spectrum as observed by XMM-Newton

    CERN Document Server

    Nucita, A A; Longinotti, A L; Santos-Lleo, M; Maruccia, Y; Bianchi, S

    2010-01-01

    Soft X-rays high resolution spectroscopy of obscured AGNs shows the existence of a complex soft $X$-ray spectrum dominated by emission lines of He and H-like transitions of elements from Carbon to Neon, as well as L-shell transitions due to iron ions. In this paper we characterize the XMM-Newton RGS spectrum of the Seyfert 1 galaxy NGC 4051 observed during a low flux state and infer the physical properties of the emitting and absorbing gas in the soft X-ray regime. X-ray high-resolution spectroscopy offers a powerful diagnostic tool since the observed spectral features strongly depend on the physical properties of matter (ionization parameter U, electron density n_e, hydrogen column density N_H), which in turn are tightly related to the location and size of the X-ray emitting clouds. We carried out a phenomenological study to identify the atomic transitions detected in the spectra. This study suggests that the spectrum is dominated by emission from a photoionised plasma. Then, we used the photoionization code...

  18. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    Science.gov (United States)

    Epili, Prahlad; Naik, Sachindra; Jaisawal, Gaurava K.

    2016-05-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at ∼18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to ∼10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to ∼70 keV. The 1–110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be ∼1.2×1012 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.

  19. The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

    CERN Document Server

    Wolff, Michael T; Gottlieb, Amy M; Fürst, Felix; Hemphill, Paul B; Marcu-Cheatham, Diana M; Pottschmidt, Katja; Schwarm, Fritz-Walter; Wilms, Jörn; Wood, Kent S

    2016-01-01

    We report new spectral modeling of the accreting X-ray pulsar Hercules X- 1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker & Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase averaged 4 to 78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main- on phase of the Her X-1 35-day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  20. A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae

    CERN Document Server

    Brickhouse, N S; Dupree, A K; Luna, G J M; Wolk, S

    2010-01-01

    We present X-ray spectral analysis of the accreting young star TW Hydrae from a 489 ks observation using the Chandra High Energy Transmission Grating. The spectrum provides a rich set of diagnostics for electron temperature T_e, electron density N_e, hydrogen column density N_H, relative elemental abundances and velocities and reveals its source in 3 distinct regions of the stellar atmosphere: the stellar corona, the accretion shock, and a very large extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and Si XIV emission lines in the spectrum requires coronal structures at ~10 MK. Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK appear more consistent with emission from an accretion shock. He-like Ne IX line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/- 0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard magnetic accretion models. However, the Chandra observations significantly diverge from current model pred...

  1. The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    CERN Document Server

    Brinkman, A C; Van der Meer, R L J; Kinkhabwala, A; Behar, E; Kahn, S M; Paerels, F B S; Sako, M

    2002-01-01

    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises in low-temperature (kT few eV) photoionized plasma. We confirm the conclusions of Kinkhabwala et al. (2002), based on XMM-Newton RGS observations, that the entire nuclear spectrum can be explained by recombination/radiative cascade following photoionization, and radiative decay following photoexcitation, with no evidence for hot, collisionally ionized plasma. In addition, this model also provides an excellent fit to the spectrum of the Secondary region, albeit with radial column densities a factor of three lower, as would...

  2. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  3. Internal Bremsstrahlung spectrum from 57Co in coincidence with K-X rays

    International Nuclear Information System (INIS)

    In the present study, the IB photons from 57Co are measured in coincidence with 6.4 keV x rays emitted due to the EC process. The IB photons are measured using a (1.75 x 2.0 ) NaI(Tl) scintillation detector and k-x rays are detected using a proportional counter

  4. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk;

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  5. Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    OpenAIRE

    Ramírez-Velasquez, J. M.

    2016-01-01

    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of $(96 \\pm 3)$ days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extrac...

  6. Multilayer x-ray mirrors for the objective crystal spectrometer on the Spectrum Roentgen Gamma satellite

    DEFF Research Database (Denmark)

    Louis, E.; Spiller, E.; Abdali, S.;

    1995-01-01

    multiplied by 6 cm2 Si (111) crystals for the Objective Crystal Spectrometer on the Russian Spectrum Rontgen Gamma satellite. The coatings on the flight crystals have a period Lambda of 3.95 plus or minus 0.02 nm and a reflectivity of more than 8% averaged over s- and p-polarization over the entire......We carried out experiments to determine the optimum parameters for the production of multilayer x-ray mirrors for the lambda equals 4.4 - 7.1 nm range using electron beam evaporation and ion-polishing. We report on the deposition of Co/C and Ni/C coatings, of which we polished the metal layers with...... equals 0.154 nm) were used to analyze the coatings. We found optimum performance of the mirrors when applying polishing for 40 s with 500 eV Kr+-ions at an angle of 20 degrees and an ion beam current of 20 mA. Using these parameters, we produced Co/C multilayer coatings on forty flat super-polished 6...

  7. X-ray spectrum optimization of full-field digital mammography: Simulation and phantom study

    International Nuclear Information System (INIS)

    In contrast to conventional analog screen-film mammography new flat detectors have a high dynamic range and a linear characteristic curve. Hence, the radiographic technique can be optimized independently of the receptor exposure. It can be exclusively focused on the improvement of the image quality and the reduction of the patient dose. In this paper we measure the image quality by a physical quantity, the signal difference-to-noise ratio (SDNR), and the patient risk by the average glandular dose (AGD). Using these quantities, we compare the following different setups through simulations and phantom studies regarding the detection of microcalcifications and tumors for different breast thicknesses and breast compositions: Monochromatic radiation, three different anode/filter combinations: Molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh), and tungsten/rhodium (W/Rh), different filter thicknesses, use of anti-scatter grids, and different tube voltages. For a digital mammography system based on an amorphous selenium detector it turned out that, first, the W/Rh combination is the best choice for all detection tasks studied. Second, monochromatic radiation can further reduce the AGD by a factor of up to 2.3, maintaining the image quality in comparison with a real polychromatic spectrum of an x-ray tube. And, third, the use of an anti-scatter grid is only advantageous for breast thicknesses larger than approximately 5 cm

  8. Broadband Correlations Provide Evidence for Synchrotron Self-Compton X-rays from the Black Hole Binary GX 339-4

    International Nuclear Information System (INIS)

    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories (radio/infrared/optical) and satellites (X-rays). Here, we present some specific results of these broad band observational campaigns, focusing on the optical-infrared/X-ray flux correlations over the four outbursts. Thanks to our extensive data-set, we found a strong OIR/X-ray correlation over four decades with the presence of a break in the correlation index. These results seem to favour a synchrotron self-Compton origin for the X-ray emission in GX 339-4 during the hard state and could also provide an indirect detection of the break frequency in the synchrotron spectrum of the compact jets.

  9. X-Rays spectrum and air kerma during a mammography study

    International Nuclear Information System (INIS)

    The X-rays spectrum produced in a mammography has been calculated by means of Monte Carlo methods. In this calculation series it is modeled the electrons source, the target and the filter. The spectra were calculated for an energy of the electrons of 28 keV and for targets of W, Mo and Rh. The calculations extended to analyze the effect that produces the filters inclusion in the spectra; the spectra of W-A1, Rh-Rh, Mo-Mo, Mo-Rh and Mo-Be were calculated this way. Using thermoluminescent dosemeters of ZrO2+PTFE the air kerma was measured in five points located on a phantom made with acrylic and water when it is was exposed to a X-rays beam produced by electrons of 24 keV and 10 m A of current that it produces a mammography. The values of the air kerma on the entrance surface of the phantom were compared with the calculated values by means of Monte Carlo methods. The calculated spectra present a continuous component and another discreet and its form is similar to the reported spectra in the literature. The filters inclusion allows the elimination of the low energy photons that do not have utility in the obtaining of the mammography image and only they contribute to deposit a dose in the mamma. The values of the measured air kerma indicate that the five points receive the same air kerma approximately, what means that the beam is homogeneous, of the Monte Carlo calculations we find that the center receives a bigger dose which implies that the beam is not uniform, the explanation on this fact it is attributed to that a simple model was used in the calculations, nevertheless, the average of the air kerma measured on the entrance surface of the phantom was of 0.96 ± 0.03 m G, while the obtained by means of the calculations was of 0.96 ± 0.06 mGy, when comparing both significant differences do not exist. (Author)

  10. Study of underlying particle spectrum during huge X-ray flare of Mkn 421 in April 2013

    CERN Document Server

    Sinha, Atreyee; Misra, Ranjeev; Chitnis, Varsha R; Rao, A R; Acharya, B S

    2015-01-01

    Context: In April 2013, the nearby (z=0.031) TeV blazar, Mkn 421, showed one of the largest flares in X-rays since the past decade. Aim: To study all multiwavelength data available during MJD 56392 to 56403, with special emphasis on X-ray data, and understand the underlying particle energy distribution. Methods: We study the correlations between the UV and gamma bands with the X-ray band using the z-transformed discrete correlation function. We model the underlying particle spectrum with a single population of electrons emitting synchrotron radiation, and do a statistical fitting of the simultaneous, time-resolved data from the Swift-XRT and the NuSTAR. Results: There was rapid flux variability in the X-ray band, with a minimum doubling timescale of $1.69 \\pm 0.13$ hrs. There were no corresponding flares in UV and gamma bands. The variability in UV and gamma rays are relatively modest with $ \\sim 8 \\% $ and $\\sim 16 \\% $ respectively, and no significant correlation was found with the X-ray light curve. The ob...

  11. Probing the clumping structure of Giant Molecular Clouds through the spectrum, polarisation and morphology of X-ray Reflection Nebulae

    CERN Document Server

    Molaro, Margherita; Sunyaev, Rashid

    2015-01-01

    We suggest a method for probing global properties of clump populations in Giant Molecular Clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumping's overall effect on the reflected X-ray signal, in particular on the Fe K-alpha line's shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in our Galaxy. We parametrise the gas distribution inside the cloud using a simple clumping model, with the slope of the clump mass function (alpha), the minimum clump mass (m_{min}), the fraction of the cloud's mass contained in clumps (f_{DGMF}), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clu...

  12. Development of analytical software for semi-quantitative analysis of x-ray spectrum acquired from energy-dispersive spectrometer

    International Nuclear Information System (INIS)

    Software package for elemental analysis for X-ray spectrum obtained from Energy Dispersive Spectrometer (EDS) attached with Scanning Electron Microscope (SEM) has been developed: A Personal Computer Analyzer card PCA-800 is used to acquire data from the EDS. This spectrum is obtained in binary format, which is transformed into ASCII format using PCAII card software. The program is modular in construction and coded using Microsoft's QUICKBASIC compiler linker. Energy line library containing all lines of elements is created for analysis of acquired characteristic X-ray spectrum. Two techniques of peak identification are provided. Statistical tools are employed for smoothing of a curve and for computing area under the curve. Elemental concentration is calculated in weight % and in atomic. (author)

  13. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  14. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  15. Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2011-01-01

    Full Text Available The femtosecond nature of X-ray free electron laser (FEL pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.

  16. A redetermination of the X-ray spectrum of SN 1006 and excess diffuse emission from the Lupus region

    International Nuclear Information System (INIS)

    X-ray from SN 1006 and from the adjacent Lupus region were separately observed with the Tenma gas scintillation proportional counters. The spectrum of the local excess emission from the Lupus region can be consistently fitted with either a thin thermal bremsstrahlung spectrum with a temperature of 7.5 ± 2.6 keV or a power-law spectrum with a photon index of 2.1 ± 0.1. The x-ray emission from SN 1006, after subtraction of this local excess, has a spectrum which can be described as a power-law spectrum with a photon index of 3.3 ± 0.1 or a thin thermal bremsstrahlung spectrum with a temperature of 1.9 ± 0.1 keV which is much softer than the previously reported spectrum. No significant iron line emission was observed in the SN 1006 spectrum. The 90 % upper limit for the equivalent width of the iron line was reduced to 400 eV. The observed spectrum can also be interpreted in terms of a nonequilibrium ionization model of about 2-keV electron temperature. (author)

  17. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  18. The 1 keV to 200 keV X-ray Spectrum of NGC 2992 and NGC 3081

    CERN Document Server

    Beckmann, Volker; Tueller, Jack

    2007-01-01

    The Seyfert 2 galaxies NGC 2992 and NGC 3081 have been observed by INTEGRAL and Swift. We report about the results and the comparison of the spectrum above 10 keV based on INTEGRAL IBIS/ISGRI, Swift/BAT, and BeppoSAX/PDS. A spectrum can be extracted in the X-ray energy band ranging from 1 keV up to 200 keV. Although NGC 2992 shows a complex spectrum below 10 keV, the hard tail observed by various missions exhibits a slope with photon index = 2, independent on the flux level during the observation. No cut-off is detectable up to the detection limit around 200 keV. In addition, NGC 3081 is detected in the INTEGRAL and Swift observation and also shows an unbroken Gamma = 1.8 spectrum up to 150 keV. These two Seyfert galaxies give further evidence that a high-energy cut-off in the hard X-ray spectra is often located at energies E_C >> 100 keV. In NGC 2992 a constant spectral shape is observed over a hard X-ray luminosity variation by a factor of 11. This might indicate that the physical conditions of the emitting...

  19. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  20. An Extended Burst Tail from SGR 1900+14 with a Thermal X-ray Spectrum

    Science.gov (United States)

    Lenters, Geoffrey T.; Woods, Peter M.; Goupell, Johnathan E.; Kouveliotou, Chryssa; Goegues, Ersin; Hurley, Kevin; Frederiks, Dmitry; Golenetskii, Sergey; Swank, Jean; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Soft Gamma Repeater, SGR 1900+14, entered a new phase of activity in April 2001 initiated by the intermediate flare recorded on April 18. Ten days following this flare, we discovered an abrupt increase in the source flux between consecutive RXTE orbits. This X-ray flux excess decayed over the next several minutes and was subsequently linked to a high fluence burst from SGR 1900+14 recorded by other spacecraft (Ulysses and KONUS) while the SGR was Earth-occulted for RXTE. We present here spectral and temporal analysis of both the burst of 28 April and the long X-ray tail following it. We draw comparisons with other bursts and flares from SGR 1900+14 which have shown extended X-ray excesses (e.g. 1998 August 29) and discuss their physical origin.

  1. The Solar Flare 4: 10 keV X-ray Spectrum

    Science.gov (United States)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  2. Performance of microstrip proportional counters for x-ray astronomy on spectrum-roentgen-gamma

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; BAHNSEN, A; Christensen, Finn Erland;

    1991-01-01

    DSRI will provide a set of four imaging proportional counters for the Danish-Soviet X-ray telescopes XSPECT/SODART. The sensor principle is based on the novel micro-strip proportional counter (MSPC), where the strip electrodes are deposited by photolithography onto a rigid substrate. The MSPC off...

  3. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    Science.gov (United States)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  4. A strong and broad Fe line in the XMM-Newton spectrum of the new X-ray transient and black hole candidate XTEJ1652-453

    NARCIS (Netherlands)

    Hiemstra, Beike; Mendez, Mariano; Done, Chris; Diaz Trigo, Maria; Altamirano, Diego; Casella, Piergiorgio

    2011-01-01

    We observed the new X-ray transient and black hole candidate XTEJ1652-453 simultaneously with XMM-Newton and the Rossi X-ray Timing Explorer (RXTE). The observation was done during the decay of the 2009 outburst, when XTEJ1652-453 was in the hard-intermediate state. The spectrum shows a strong and b

  5. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  6. The Effect of Broadband Soft X-Rays in SO2-Containing Ices: Implications on the Photochemistry of Ices toward Young Stellar Objects

    Science.gov (United States)

    Pilling, S.; Bergantini, A.

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (˜keV) photoelectrons and low-energy (˜eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was on the order of (2-7) × 10-18 cm2. The ice temperature does not seem to affect the stability of SO2 in the presence of X-rays. Formation cross sections of new species produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  7. X-ray fluorescence spectrum of highly charged Fe ions driven by strong free-electron-laser fields

    Science.gov (United States)

    Oreshkina, Natalia S.; Cavaletto, Stefano M.; Keitel, Christoph H.; Harman, Zoltán

    2016-05-01

    The influence of nonlinear dynamical effects is analyzed on the observed spectra of controversial 3C and 3D astrophysically relevant x-ray lines in neonlike Fe{}16+ and the A, B, and C lines in natriumlike Fe{}15+ ions. First, a large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects. Also, quantum-electrodynamic corrections to the transition energies are calculated. Further considered dynamical effects provide a possible resolution of the discrepancy between theory and experiment found by recent x-ray free-electron-laser measurements of these controversial lines. We find that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient and nonlinear dynamical effects have to be taken into account. Thus, we advocate the use of light–matter-interaction models also valid for strong light fields in the analysis and interpretation of the associated astrophysical and laboratory spectra. We investigate line-strength ratios distinguishing between the coherent and incoherent parts of the emission spectrum. In addition, the spectrum of Fe{}15+, an autoionizing ion which was also present in the recent laboratory experiment, is analyzed as well.

  8. No Signatures of Black-Hole Spin in the X-ray Spectrum of the Seyfert 1 Galaxy Fairall 9

    CERN Document Server

    Yaqoob, Tahir; Tatum, Malachi M; Trevor, Max; Scholtes, Alexis

    2016-01-01

    Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe K$\\alpha$ emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe K$\\alpha$ line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only nonrelativistic and mundane physics provides an excellent fit to the data. The Fe K$\\alpha$ line emission and Compton reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of $\\sim 10^{24} \\ \\rm cm^{-2}$ is inferred. In this scenario, neither the Fe K$\\alpha$ line, nor the Co...

  9. Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics

    Science.gov (United States)

    Wang, Baoqing; Yi, Tao; Wang, Chuanke; Zhu, Xiaoli; Li, Tingshuai; Li, Jin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-07-01

    A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion. supported by National Natural Science Foundation of China (Nos. 11405158 and 11435011) and Development Foundation of China Academy of Engineering Physics (Nos. 2014B0102011 and 2014B0102012)

  10. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100–500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials’ excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis

  11. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    Science.gov (United States)

    Parish, Chad M.; Miller, Michael K.

    2015-07-01

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  12. X-ray Lβ215 emission spectrum of Ru in Ru(NH3)6Cl3

    International Nuclear Information System (INIS)

    One of the broader applications of synchrotron radiation has been to EXAFS studies for material structure determination, i.e., for an analysis of x-ray absorption over an extended energy region beyond a core ionization limit. Studies of the near edge structure (XANES) give a different type of information, characteristic of the local symmetry and electronic configuration of the absorbing atom. This type of information is reflected also in the x-ray emission spectra, in particular for transitions involving the valence levels. Examination of the near edge absorption or the emission spectrum does not require an instrument capable of scanning a wide energy range with high counting statistics, as does EXAFS; the needs are rather for good resolution and a reliable calibration of the energy scale. Some of the problems of near edge spectra were particularly evident in our investigation of Ru-Lβ215 emission from Ru(NH3)6Cl3. The Ru-Lβ215 emission was measured with a laboratory Rowland circle x-ray spectrometer with a curved quartz (1010) crystal (radius = 22 inches) in a fixed position appropriate to the energy range, and a position sensitive detector which can be positioned along the Rowland circle. The Ru spectrum was excited mainly by Sn-L/sub α/ primary radiation from a Sn anode in a demountable x-ray tube operating at 13 kV and 120 mA. The resolution of the instrument in this region is 1.5 eV. An accurate calibration of the energy scale was conveniently obtained by measuring a reference x-ray emission line in the same instrumental configuration. In the present case the Pd-L/sub α/ emission line at 2838 eV was used to establish the energy scale. The energy dispersion of the instrument was determined from the Cl-K/sub β/ emission spectrum of CH3Cl between 2810 eV and 2830 eV and Pd-Lα12 and extrapolated to the energy region of the recorded emission spectrum. 6 references, 1 figure

  13. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    International Nuclear Information System (INIS)

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ∼ 5.5 and galaxies out to z ∼ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ∼58% of X-ray Seyferts (1042 erg s–1 2–10keV 44 erg s–1) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L2–10keV >1044 erg s–1) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a

  14. Evidence for Resonance Scattering in the X-ray Spectrum of Zeta Puppis

    Science.gov (United States)

    Leutenegger, Maurice

    2008-01-01

    We present XMM-Newton Reflection Grating Spectrometer observations of pairs of X-ray emission line profiles from the 0 star Zeta Pup that originate from the same He-like ion. The two profiles in each pair have different shapes and cannot both be consistently fit by models assuming the same wind parameters. We show that the differences in profile shape can be accounted for in a model including the effects of resonance scattering, which affects the resonance line in the pair but not the intercombination line. This implies that resonance scattering is also important in single resonance lines, where its effect is difficult to distinguish from a low effective continuum optical depth in the wind. Thus, resonance scattering may help reconcile X-ray line profile shapes with literature mass-loss rates.

  15. Modeling the X-ray Fractional Variability Spectrum of Active Galactic Nuclei Using Multiple Flares

    Czech Academy of Sciences Publication Activity Database

    Goosmann, René; Dovčiak, Michal; Karas, Vladimír; Czerny, B.; Mouchet, M.; Ponti, G.

    San Francisco : Astronomical Society of the Pacific, 2007 - (Ho, L.; Wang, J.), s. 167-168 ISBN 978-1-58381-307-2. - (ASP Conference Series. 373). [The Central Engine of Active Galactic Nuclei. Xi'an (CN), 16.10.2006-21.10.2006] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays: galaxies * variability * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. X-Ray Photoelectron Spectrum Analysis of Yb3C60 Compound

    Institute of Scientific and Technical Information of China (English)

    CAO Xue-Wei; SHAO Yue; WANG Yu-Fang; LAN Guo-Xiang

    2001-01-01

    The nominal composition of the Yb3 C60 compound is characterized by means of x-ray photoelectron spectroscopy.Evidence of the divalent state for the Yb cation in the as-grown crystalline Yb3C60 is obtained. After exposure to air, the Yb3C60 compound transforms to an amorphous phase and Yb2O3 compound, while the valence state of the Yb cations changes from divalent to trivalent.

  17. Broad-band X-ray spectral evolution of GX 339−4 during a state transition

    NARCIS (Netherlands)

    M. Del Santo; T.M. Belloni; J. Homan; A. Bazzano; P. Casella; R.P. Fender; E. Gallo; N. Gehrels; W.H.G. Lewin; M. Méndez; M. van der Klis

    2009-01-01

    We report on X-ray and soft γ-ray observations of the black hole candidate GX 339−4 during its 2007 outburst, performed with the RXTE and INTEGRAL satellites. The hardness-intensity diagram of all RXTE/PCA data combined shows a q-shaped track similar to that observed in previous outbursts. The evolu

  18. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Science.gov (United States)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; ODell, S.; Ramsey, B.; Romaine, S.; Swartz. D/; Weisskopf, M.; Hasinger, G.; Predehl, P.; Grigorovich, S.; Litvin, D.; Meidinger, N.; Strueder, L. W.

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  19. Technical Note: spektr 3.0—A computational tool for x-ray spectrum modeling and analysis

    Science.gov (United States)

    Punnoose, J.; Xu, J.; Sisniega, A.; Zbijewski, W.; Siewerdsen, J. H.

    2016-01-01

    Purpose: A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. Methods: The spektr code generates x-ray spectra (photons/mm2/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20–150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. Results: The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30–140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. Conclusions: The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available.

  20. Comparative study of Energy Dispersive X-ray Spectrum Deconvolution: PyMCA and WinAxil

    International Nuclear Information System (INIS)

    A comparative study of spectrum deconvolution and quantitative analysis between PyMCA & WinAxil has been undertaken. Standard spectra of X-ray Kα lines (Ti, Fe, Co, Ni, Cu, Zn, As, Sr & Y) & Lα lines (Ce, Sm, Dy, Ta, W, Hg & U) were fitted with both software; also spectra of three soil samples were fitted with both software. Intensities of the elements of the standard spectra were obtained from the results of the fitting using both software and comparisons were made separately for both Kα & Lα lines between the two software. Sensitivity calibrations were done for both Kα & Lα lines and comparisons between the two software were also made. The intensities of the spectra of the three soil samples obtained from fitting using both software were also compared. Quantitative analysis of the spectra of the three soil samples was performed and the concentrations of the elements obtained using both software were compared. A simple manual for spectrum fitting and quantitative analysis using PyMCA has been written for first-time users of the software (PyMCA); a flowchart for the manual has also been prepared. Comparison of intensities for Kα elements showed excellent agreement between the two software. The intensities of Lα elements obtained also compared favourably. Comparison of the concentrations of the elements in the spectra of the three soil samples showed excellent agreement. The X-ray spectrum fitting capabilities of PyMCA compare favourably with those of WinAxil. The development of WinAxil has been discontinued; therefore, PyMCA when appropriately adapted can be used in place of WinAxil for qualitative and quantitative analysis for spectra from X-ray tube excitation sources. (au)

  1. A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705-44: looking at the inner accretion disc with X-ray spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Di Salvo, C.; D'Aí, A.; Iaria, R.; Burderi, L.; Dovčiak, Michal; Karas, Vladimír; Matt, G.; Papitto, A.; Piraino, S.; Riggio, A.; Robba, N.R.; Santangelo, A.

    2009-01-01

    Roč. 398, č. 4 (2009), s. 2022-2027. ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : line formation * individual stars4U 1705−44 * X-ray binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.103, year: 2009

  2. Inverse problem in ionospheric science: prediction of solar soft-X-ray spectrum from very low frequency radiosonde results

    Science.gov (United States)

    Palit, S.; Ray, S.; Chakrabarti, S. K.

    2016-05-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. This leads us to the possibility of uninterrupted observation of X-ray photon spectra of solar flares that are often hindered by the restricted observation window of space satellites to avoid charge particle damages. Such continuous means of observation are essential in deriving information on time evolution of physical processes related to electron acceleration and interaction with plasma in solar atmosphere. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma-ray Repeaters (SGRs) etc., by probing even the lower part of the Earth's atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong astronomical events.

  3. Prediction soft-X-ray spectrum of solar flares from Very Low Frequency observations: an inverse problem in ionospheric science

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    Earth's lower ionosphere and upper atmosphere absorb X-rays and gamma-rays from astronomical sources such as solar flares, Short Gamma ray Repeaters (SGRs) or Gamma Ray Bursts (GRBs). The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectrum and hence vary from one source to another. Obviously the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we examine the possibility of inverting the electron density-height profiles uniquely by deconvolution of the VLF amplitude signal to obtain information on the injected spectrum. We have been able to reproduce the soft-X-ray part of the injected spectra from two different classes of solar flares with satisfactory accuracy. With the possibilities of probing even lower parts of the atmosphere, the method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. We show that to a certain accuracy, the Earth's atmosphere may be used as a gigantic detector of relatively strong ionizing extra-terrestrial events.

  4. The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra

    OpenAIRE

    Brinkman, A. C.; Kaastra, J.S.; Van Der Meer, R.L.J.; Kinkhabwala, A.; Behar, E; Kahn, S. M.; Paerels, F. B. S.; Sako, M.

    2002-01-01

    Using the combined spectral and spatial resolving power of the Low Energy Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from the bright central source of NGC 1068 (Primary region), and from a fainter bright spot 4" to the NE (Secondary region). Both spectra are dominated by line emission from H- and He-like ions of C through S, and from Fe L-shell ions, but also include narrow radiative recombination continua, indicating that most of the soft X-ray emission arises ...

  5. Variation of focal switch with spectrum of a broadband laser

    Science.gov (United States)

    Zhang, Biyu; Peng, Runwu; Xie, Haiqing; Zhang, Wei

    2016-05-01

    Effects of the spectrum on focal switch of a broadband laser in a dispersion dual-focus system are presented in this paper. The numerical results show that the two maximum intensities of the broadband laser on the z-axis vary when the central frequency of the broadband laser shifts and the spectrum shape changes, and the variations affect the generation of the focal switch. It is also found that difference of the two maximum intensities tends to increase when the absolute value of central wavelength increases. According to the results in this paper, the generation of the focal switch can be controlled by choosing the shift of the central frequency, the bandwidth, the distance between the two lenses, and the spectrum shape of the broadband laser.

  6. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    Science.gov (United States)

    Strohmayer, Tod E.

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultra-compact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the L(alpha) and L(beta) lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i less than 0.3, and G = (f + i ) / r approx. = 1, combined with the strong resonance line are consistent with a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission horn an optically thin thermal plasma with an emission measure (EM) is a member of (kT/6.5 keV)(sup 0.8) (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further improves the fit, suggesting these elements may also be present at low abundance. We confirm in the X-rays the under- abundance of both carbon and oxygen relative to nitrogen, first deduced from optical spectroscopy by Marsh et al. The average X-ray luminosity of approx. = 3 x 10(exp 30) ergs/s implies a mass accretion rate dot-m approx. = 9 x 10(exp -13) solar mass/yr. The implied temperature and density of the emitting plasma, combined with the presence of narrow emission lines and the low dot-m value, are consistent with production of the X-ray emission in an optically thin boundary layer just above the surface of the white dwarf.

  7. Two methods for studying the X-ray variability

    Science.gov (United States)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-04-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray variability. One is amplitude-ratio spectrum analysis method. The other is mapping analysis method. Based on the consideration that the aperiodic variability originates from all spectral components whereas the QPO originates from one spectral component, we divided the root-mean-square (rms) amplitude spectrum of the power density spectrum (PDS) broadband noise component by the amplitude spectrum of an accompanying QPO, and first identified a high-frequency (> 10 Hz) aperiodic variability from the accretion disk (Yan et al. 2013). We now present the evolution of the amplitude-ratio spectrum with the cycle phase of the heartbeat state of the microquasar GRS 1915+105. We produced the energy-frequency-power map to investigate the origin of the X-ray variability, and show that most aperiodic X-ray variability is produced in the corona, and the low-frequency aperiodic variability from the corona is significant in the hard phase of the cycle phase of the heartbeat state of GRS 1915+105 while the low-frequency aperiodic variability from the disk and the corona are both significant in the soft phase.

  8. Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    CERN Document Server

    Ramírez-Velasquez, J M

    2016-01-01

    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of $(96 \\pm 3)$ days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extracted from this first stage is then used as input for computing full photoionization models of the ejecta in V4743 Sgr. The SSS spectrum is modeled with a simple black-body and multiplicative Gaussian lines, which provides us of a general kinematical picture of the system, before it decays to its faint phase (Ness et al. 2003). In the grating spectra taken between days 180.4 and 370, we can resolve the line profiles of absorption lines arising from H-like and He-like C, N, and O, including transitions involving higher princ...

  9. X-ray characterization by energy-resolved powder diffraction

    Science.gov (United States)

    Cheung, G.; Hooker, S. M.

    2016-08-01

    A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  10. The Soft X-Ray Variability and Spectrum of 1H0419-577 from a Long EUVE Observation

    Science.gov (United States)

    Marshall, H. L.; Halpern, J. P.; Leighly, K.

    1999-01-01

    The active galaxy associated with the hard X-ray source 1H0419-577 was observed with EUVE (Extreme Ultraviolet Explorer Satellite) for about 25 days to obtain a long, contiguous light curve and an EUV spectrum. An EUV source was detected which was about as bright as the AGN (Active Galactic Nuclei) and was later identified as an AM Her type system. The AGN showed variations as large as a factor of two over 5-10 day time scales and occasionally varied by 20-30% in less than 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple power law. There are possible emission lines without positive identifications but the lines are likely to be spurious.

  11. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    Science.gov (United States)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  12. A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation

    OpenAIRE

    MacDonald, Michael A.; Schaefers, Franz; Pohl, R.; Poole, Ian B.; Gaupp, Andreas; Quinn, Frances M.

    2008-01-01

    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edge...

  13. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    CERN Document Server

    Pintore, Fabio; Di Salvo, Tiziana; Del Santo, Melania; Riggio, Alessandro; D'Aì, Antonino; Burderi, Luciano; Scarano, Fabiana; Iaria, Rosario

    2016-01-01

    We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high energy tail is still under debate. In addition, a number of broad (~0.1-0.4 keV) emission features likely associated to reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity ...

  14. The effect of broadband soft X-rays in SO2-containing ices: Implication on the photochemistry of ices towards young stellar objects

    CERN Document Server

    Pilling, S

    2015-01-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (keV) photoelectrons and low-energy (eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 K and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In-situ analyses were performed by a Fourier transform infrared (FTIR) spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles,...

  15. X-ray photoemission spectrum, electronic structure, and magnetism of UCu{sub x}Sb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Samsel-Czekała, M., E-mail: M.Samsel@int.pan.wroc.pl [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Talik, E. [A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Winiarski, M.J.; Troć, R. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2015-07-25

    Highlights: • Electronic structure of UCu{sub x}Sb{sub 2} probed by X-ray photoemission (XPS) and ab initio. • Good agreement between experimental and calculated (x = 0.75) XPS valence spectra. • Good accord between experimental and calculated ferromagnetic moments on U atoms. • Complex experimental core-level XPS spectrum with three: 1-, 3- and 7-eV satellites. • Concluded dual and mixed-valence configuration of U 5f states in UCu{sub 0.83}Sb{sub 2}. - Abstract: The room temperature valence and core-level X-ray photoemission spectra of an UCu{sub 0.83}Sb{sub 2} single crystal were measured using the Al Kα source. The related theoretical valence spectra were determined from densities of states for UCu{sub x}Sb{sub 2} systems obtained from our band structure calculations using the FLAPW method in the LDA + U approximation, as implemented in the Wien2k code, and the supercell approach to simulate a deficit of the Cu atoms. The calculated spectrum of the Cu-deficit UCu{sub 0.75}Sb{sub 2} is in good accord with the experimental one, revealing a complete localization of the Cu 3d electrons and a dual (both localized and itinerant) behavior as well as unusual spin-up polarization of the U 5f states near the Fermi level. Our calculated total magnetic moments on the uranium atom are in reasonable agreement with the experimental value of magnetization. Some localization and valence-mixing of the 5f-electrons are reflected by the triple-satellite (sats. 1-eV, 3-eV and 7-eV) structure, visible in the spectrum of the U 4f core-lines. Also the calculated Fermi surface of the stoichiometric system is complex, containing five spin-polarized sheets of different dimensionality with some nesting features.

  16. Structure of the sulfur K x-ray emission spectrum: influence of the oxidation state

    Science.gov (United States)

    Pérez, P. D.; Carreras, A. C.; Trincavelli, J. C.

    2012-01-01

    The sulfur K x-ray emission was studied in pure sulfur, anhydrite (CaSO4) and sphalerite (ZnS) samples. The ionizations were induced by electron impact and the spectra were recorded with a wavelength dispersive spectrometer. The spectral processing was performed through a methodology based on the optimization of atomic and experimental parameters. Energies and intensities of diagram and satellite lines were determined for a set of transitions in the Kα and Kβ groups. The lines studied include Kα22, Kα2, Kα1, Kα‧, Kα3, Kα4, Kα5, Kα6, Kβ1,3, Kβ-RAE, KβIII, KβIV, Kβx, Kβ‧ and Kβ″. The main spectral differences between the three oxidation states were analysed, considering the influence of the ligand atoms. The results were compared with data published by other authors and the origin of certain lines was discussed on the basis of data available in the literature.

  17. X-rays spectrum and air Kerma during a mammography study

    International Nuclear Information System (INIS)

    In this calculation series was modeled the source of electrons, the target and the filter. Using thermoluminescent dosemeters of ZrO2+PTFE the air Kerma was measured in five points located on a phantom made with acrylic and water when it was exposed to a X-rays beam produced by electrons of 24 KeV and 10 m A of current that produces a mammography. The air Kerma values at the entrance surface of the phantom were compared with values calculated by Monte Carlo methods. The air Kerma values measured indicate that approximately the five points receive the same air Kerma, what means that the beam is homogeneous, of the Monte Carlo calculations we find that the center receives a greater dose what implies that the beam is not uniform, the explanation of this fact is attributed to was used a simple model in the calculations, nevertheless, the air Kerma average measured at the entrance surface of the phantom was of 0.96 +- 0.03 m G, while the other obtained by the calculations was of 0.96 +- 0.06 mGy, to compare both do not exist significant differences. (author)

  18. A Photoionization Model For The Soft X-Ray Spectrum Of NGC 4151

    CERN Document Server

    Armentrout, B K; Turner, T J

    2007-01-01

    We present analysis of archival data from multiple XMM-Newton observations of the Seyfert 1 galaxy NGC 4151. Spectral data from the RGS instruments reveal several strong soft X-ray emission lines, chiefly from hydrogen-like and helium-like oxygen, nitrogen, neon and carbon. Radiative recombination continua (RRC) from oxygen and carbon are also detected. Our analysis suggests that the emission data are consistent with photoionization. Using the CLOUDY photoionization code, we found that, while a two-component, high column density model (10e23 cm-2) with low covering factor proved adequate in reproducing all detected Lyman series lines, it proved insufficient in modeling He-like triplets observed (neon, oxygen, and nitrogen). If resonance line data were ignored, the two-component model was sufficient to match flux from intercombination and forbidden lines. However, with the inclusion of resonance line data, He-like triplets could no longer be modeled with only two components. We found that observed oxygen G and...

  19. The impact of accretion disk winds on the X-ray spectrum of AGN: Part 1 - XSCORT

    CERN Document Server

    Schurch, N J

    2007-01-01

    (abridged) The accretion disk in AGN is expected to produce strong outflows, in particular a UV-line driven wind. Despite providing a good fit to the data, current spectral models of the X-ray spectrum of AGN observed through an accretion disk wind are ad-hoc in their treatment of the properties of the wind material. In order to address these limitations we adopt a numerical computation method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner (XSCORT). We present a series of example spectra from the XSCORT code that allow us to examine the shape of AGN X-ray spectra seen through a wind, for a range of velocity and density distributions, total column densities and initial ionization parameters. These detailed spectral models clearly show considerable complexity and structure that is strongly affected by all these factors. The presence of sharp features in the XSCORT spectra contrasts strongly with both the previous models and...

  20. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

    DEFF Research Database (Denmark)

    Fürst, F.; Müller, C.; Madsen, K. K.;

    2016-01-01

    We present simultaneous XMM-Newton and NuSTAR observations spanning 3–78 keV of the nearest radiogalaxy, Centaurus A (Cen A), performed during a very high flux state. The accretion geometry around thecentral engine in Cen A is still debated, and we investigate possible configurations using detailed...... X-ray spectralmodeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources.The XMM-Newton and NuSTAR spectra agree well and can be described with an...... absorbed power-law witha photon index Γ = 1.815 ± 0.005 and a fluorescent Fe Kα line in good agreement with literature values.The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. Athermal Comptonization continuum describes the data well, with parameters that...

  1. Experimental evaluation of the image quality and dose in digital mammography: Influence of x-ray spectrum

    Science.gov (United States)

    Tomal, A.; Perez, A. M. M. M.; Silva, M. C.; Poletti, M. E.

    2015-11-01

    In this work, we studied experimentally the influence of x-ray spectrum on the contrast-to-noise ratio (CNR) and the average glandular dose (MDG) for two digital mammography systems: Senographe 2000D (GE Medical Systems) and Lorad Selenia (Hologic), with indirect and direct detector imaging technology, respectively. CNR and MGD were determined using PMMA phantoms simulating breasts with thicknesses of 4 cm and 6 cm. All available anode/filter combinations of the systems were evaluated for a wide range of tube voltages values. Results indicated that the Rh/Rh combination provides the highest image quality with the lower mean glandular dose for the Senographe 2000D system. For the Lorad Selenia system, the W/Ag combination at 30 kV showed the best performance, in terms of dose saving and image quality improvement in relation to all tube voltage range. The comparison between the optimal x-ray spectra and those selected by the AEC mode showed that this automatic selection mechanism could be readjusted to optimize the relationship between image quality and dose.

  2. A Compton-thin Solution for the Suzaku X-ray Spectrum of the Seyfert 2 Galaxy Mkn 3

    CERN Document Server

    Yaqoob, T; Scholtes, A; Gottlieb, A; Turner, T J

    2015-01-01

    Mkn 3 is a Seyfert 2 galaxy that is widely regarded as an exemplary Compton-thick AGN. We study the Suzaku X-ray spectrum using models of the X-ray reprocessor that self-consistently account for the Fe K$\\alpha$ fluorescent emission line and the associated Compton-scattered, or reflection, continuum. We find a solution in which the average global column density, $0.234^{+0.012}_{-0.010} \\times 10^{24} \\ \\rm cm^{-2}$, is very different to the line-of-sight column density, $0.902^{+0.012}_{-0.013} \\times 10^{24} \\ \\rm cm^{-2}$. The global column density is $\\sim 5$ times smaller than that required for the matter distribution to be Compton-thick. Our model accounts for the profiles of the Fe K$\\alpha$ and Fe K$\\beta$ lines, and the Fe K edge remarkably well, with a solar abundance of Fe. The matter distribution could consist of a clumpy medium with a line-of-sight column density higher than the global average. A uniform, spherically-symmetric distribution alone cannot simultaneously produce the correct fluoresce...

  3. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

    CERN Document Server

    Fuerst, F; Madsen, K K; Lanz, L; Rivers, E; Brightman, M; Arevalo, P; Balokovic, M; Beuchert, T; Boggs, S E; Christensen, F E; Craig, W W; Dauser, T; Farrah, D; Graefe, C; Hailey, C J; Harrison, F A; Kadler, M; King, A; Krauss, F; Madejski, G; Matt, G; Marinucci, A; Markowitz, A; Ogle, P; Ojha, R; Rothschild, R; Stern, D; Walton, D J; Wilms, J; Zhang, W

    2015-01-01

    We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A), performed during a very high flux state. The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power-law with a photon index {\\Gamma} = 1.815 +/- 0.005 and a fluorescent Fe K{\\alpha} line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_fold > 1MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature of kT_e ~ 220 k...

  4. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    CERN Document Server

    Strohmayer, T E

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultracompact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the Lyman alpha and beta lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i < 0.3, and G = (f + i)/r ~1, combined with the strong resonance line are consistent with formation in a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission from an optically thin thermal plasma (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further impr...

  5. Connections between the Radio, Optical and Soft X-ray Luminosities for Flat-Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Cai-Juan Pan; You-Bing Li; Yu-Tao Zhou

    2014-09-01

    We investigate the connections between radio, optical and soft X-ray luminosities with a sample of 538 FSRQs. We find that the radio luminosity is strongly correlated with the optical luminosity, as well as with the soft X-ray luminosity. We also find that the optical luminosity is strongly correlated with the soft X-ray luminosity.

  6. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  7. Inverse problem in Ionospheric Science: Prediction of solar soft-X-ray spectrum from Very Low Frequency Radiosonde results

    CERN Document Server

    Palit, Sourav; Chakrabarti, Sandip K

    2015-01-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma Ray Repeaters (SGRs) etc. by probing even the lower part of the atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong events.

  8. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.

    Science.gov (United States)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-05-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  9. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    Science.gov (United States)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  10. The Remarkably Featureless High Resolution X-ray Spectrum of Mrk 478

    CERN Document Server

    Marshall, H L; Vaughan, S; Malkan, M A; O'Brien, P T; Warwick, R; Marshall, Herman L.; Edelson, Rick A.; Vaughan, Simon; Malkan, Mathew A.; Brien, Paul O'; Warwick, Robert

    2002-01-01

    An observation of Mrk 478 using the Chandra Low Energy Transmission Grating Spectrometer is presented. The source exhibited 30-40% flux variations on timescales of order 10000 s together with a slow decline in the spectral softness over the full 80 ks observation. The 0.15--3.0 keV spectrum is well fitted by a single power law with photon index of Gamma = 2.91 +/- 0.03. Combined with high energy data from BeppoSAX, the spectrum from 0.15 to 10 keV is well fit as the sum of two power laws with Gamma = 3.03 +/- 0.04, which dominates below 2 keV and 1.4 +/- 0.2, which dominates above 2 keV (quoting 90% confidence uncertainties). No significant emission or absorption features are detected in the high resolution spectrum, supporting our previous findings using the Extreme Ultraviolet Explorer but contradicting the claims of emission lines by Hwang & Bowyer (1997). There is no evidence of a warm absorber, as found in the high resolution spectra of many Sy 1 galaxies including others classified as narrow line Sy...

  11. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating

    CERN Document Server

    Ewall-Wice, A; Hewitt, J N; Loeb, A; Mesinger, A; Neben, A R; Offringa, A R; Tegmark, M; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hurley-Walker, N; Johnston-Hollit, M; Jacobs, Daniel C; Kaplan, D L; Kasper, J C; Kim, HS; Kratzenberg, E; Lenc, E; Line, J; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Thyagarajan, Nithyanandan; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most se...

  12. Cluster iron lines and the X-ray spectrum of SC 0627 - 544

    International Nuclear Information System (INIS)

    Further observations with the MSSL proportional counter spectrometer on the Ariel V satellite have led to the detection (at a confidence level of at least 99 per cent) of a highly ionized iron emission feature in the spectrum of the southern cluster SC 0627 - 544. The data obtained are compared with previous observations of this source made by the Goddard Space Flight Center's instrument on OSO-8. Iron emission feature detections with greater than 99 per cent confidence levels have now been made for five clusters of galaxies. A value of cluster iron abundance is deduced from these data. (author)

  13. Sensitivity Analysis Applied to Atomic Data Used for X-ray Spectrum Synthesis

    Science.gov (United States)

    Kallman, T.

    2006-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. This talk describes simple numerical experiments designed to examine some of these issues.

  14. Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    CERN Document Server

    Chiang, Chia-Ying; Fabian, A C; Wilkins, D R; Gallo, L C

    2014-01-01

    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature ...

  15. Atomic Data for X-ray Spectrum Synthesis: Sensitivity Analysis and Consequences for Spectral Fitting

    Science.gov (United States)

    Kallman, Timothy R.

    2006-09-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters. In addition, I will discuss the likely effects on the ionization balance and spectrum synthesis due to the adoption of some recent calculations of dielectronic recombination rate coefficients.

  16. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.; Randall, Scott W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Markevitch, Maxim [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Loewenstein, Michael, E-mail: ebulbul@cfa.harvard.edu [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. We argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.

  17. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology

    International Nuclear Information System (INIS)

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  18. Soft X-ray spectrum of BL Lacertae object AO 0235+164 as a tracer of elemental abundances at z approximately 0.5

    Science.gov (United States)

    Madejski, Greg

    1994-01-01

    We report the soft X-ray spectrum of BL Lac object AO 0235+164, observed with the Einstein Observatory Imaging Proportional Counter (IPC). This object (z = 0.94) has an intervening galaxy (or a protogalactic disk) at z = 0.524 present in the line of sight, producing both radio and optical absorption lines in the background BL Lac continuum. The X-ray spectrum exhibits a substantial soft X-ray cutoff, corresponding to several times that expected from our own Galaxy; we interpret that excess cutoff as due to the intervening galaxy. The comparison of the hydrogen column density inferred from the 21 cm radio data and the X-ray absorption allows, in principle, the determination of the elemental abundances in the intervening galaxy. However, the uncertainties in both the H I spin temperature and X-ray spectral parameters only loosely restrict these abundances to be 2 +/- 1 solar, which even at the lower limit appears higher than that inferred from studies of samples of optical absoprtion-line systems.

  19. Distant and disk reflection in the average X-ray spectrum of AGN in the V\\'eron-Cetty & V\\'eron catalogue

    CERN Document Server

    Falocco, S; Barcons, X; Miniutti, G; Corral, A

    2014-01-01

    The X-ray spectra of active galactic nuclei (AGN) unveil properties of matter around the super massive black hole (SMBH). We investigate the X-ray spectra of AGN focusing on Compton reflection and fluorescence, important processes of interaction between primary radiation and circum-nuclear material. Unresolved emission lines (most notably the Fe line) in the X-ray spectra of AGN indicate that this material is located far away from the SMBH. Contributions from the inner accretion disk, affected by relativistic effects, have also been detected in several cases. We studied the average X-ray spectrum of a sample of 263 X-ray unabsorbed AGN that yield 419023 counts in the 2-12 keV rest-frame band distributed among 388 XMM-Newton spectra. We fitted the average spectrum using a (basically) unabsorbed power law (primary radiation). From second model that represents the interaction of the primary radiation with matter located far away from the SMBH, we found that it was very significantly detected. Finally, we added a...

  20. The ultraluminous X-ray sources NGC 1313 X-1 and X-2: A broadband study with NuSTAR and XMM-Newton

    International Nuclear Information System (INIS)

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ∼0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.

  1. Sensitivity Analysis Applied to Atomic Data Used for X-ray Spectrum Synthesis

    Science.gov (United States)

    Kallman, Tim

    2006-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn 011 many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. In this paper I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters.

  2. The complex optical to soft x-ray spectrum of the low-redshift radio-quiet quasars

    Science.gov (United States)

    Fiore, Fabrizio; Elvis, Martin; Mcdowell, Jonathan C.; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    Eight high signal-to-noise ROSAT Position Sensitive Proportional Counter (PSPC) observations of six low-redshift (o.048 less than z less than 0.155) radio-quiet quasars have been analyzed to study ant soft excess. All the spectra can, at least roughly, be described int eh 0.1-2.5 keV band by simple power laws reduced at low energies by Galactic absorption. The strong oxygen edges seen in the PSPC spectra of several Seyfert galaxies and quasars are not observed in this sample. The limits implied for the abount of absorbing gas intrinsic to the quasars are particularly tight: of the order of approximately 10(exp 20)/sq cm. THe range of energy indices is broad: 1.3 less than alpha(sub E) less than 2.3. The energy indices are systematically steeper than those found in the same sources at higher energies (by DELTA alpha(sub E) approximately 0.5-1 with respect to Ginga or EXOSAT (2-10 keV) measurements, and by DELTA alpha(sub E) approximately 0.5 with respect to IPC (0.2-3.5 keV) measurements). This suggests a break between the hard and soft components in the keV region and, therefore, that the PSPC spectra are strongly dominated by the soft compnents. In fact, a fit tot he composite, high signal-to-noise spectrum reveals a significant excess above approximately 1 keV withrespect to the simple power-law model. No evidence for strong emission lines is found in any of the quasars. This argues against emission from an ionized plasma as the main contributor to the soft X-ray compnentunless there is a distribution of te mperatures. If the soft X-ray spectrum of thee quasars is dominated by radiation reflected by the photoinonized surface of an accretion disk, the absence of strong emissionlines suggests high ionization parameters and therefore high accretion rates. We include in two Appendices a comarison of the two official PSPC resolution matrices, those released on1992 March and on 1993 January, a discussion of the amplitude of the residual systematic uncertainties in 1993

  3. A single-photon CCD-based setup for in situ measurement of the X-ray spectrum of mammographic units

    International Nuclear Information System (INIS)

    A technique enabling in situ measurements of the spectrum of X-ray tubes employed in mammographic screenings is described. The technique involves the use of a commercially available CCD camera and a set of metal foils and is particularly useful to perform a fast evaluation of the spectral properties of a Mo anode mammographic system operating at standard flux levels. A description of the detector calibration procedure is first given, followed by a discussion of the study and choice of an appropriate set of X-ray attenuation foils. Finally, the use of the system for a spectroscopic characterization of a mammographic system is reported

  4. The ultraluminous x-ray sources ngc 1313 x-1 and x-2: a broadband study with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Rana, Vikram; Walton, Dominic J.; Barret, Didier; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn Erland; Craig, William W.; Fabian, Andrew C.; Fuerst, Felix; Grefenstette, Brian W.; Hailey, Charles J.; Hornschemeier, Ann; Madsen, Kristin K.; Miller, Jon M.; Ptak, Andrew F.; Stern, Daniel; Webb, Natalie A.; Zhang, William W.

    2013-01-01

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by Nu...... downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at similar to 0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We...

  5. Characterizing X-ray and Radio emission in the Black Hole X-Ray Binary V404 Cygni during Quiescence

    CERN Document Server

    Rana, Vikram; Corbel, Stephane; Tomsick, John A; Chakrabarty, Deepto; Walton, Dominic J; Barret, Didier; Boggs, Steven E; Christensen, Finn E; Craig, William; Fuerst, Felix; Gandhi, Poshak; Grefenstette, Brian W; Hailey, Charles; Harrison, Fiona A; Madsen, Kristin K; Rahoui, Farid; Stern, Daniel; Tendulkar, Shriharsh; Zhang, William W

    2015-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broad-band (0.3-30 keV) quiescent luminosity of the source is 8.9$\\times$10$^{32}$ erg s$^{-1}$ for a distance of 2.4 kpc. The source shows clear variability on short time scales in radio, soft X-ray and hard X-ray bands in the form of multiple flares. The broad-band X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having photon index {\\Gamma}=2.13$\\pm$0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3{\\sigma} confidence level with e-folding energy of the cutoff to be 19$^{+19}_{-7}$ keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the JVLA reveal that the sp...

  6. A Cutoff in the X-ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516

    CERN Document Server

    Edelson, R; Edelson, Rick; Nandra, Kirpal

    1998-01-01

    During 1997 March-July, XTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every ~12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every ~4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-law slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The P...

  7. Fourier transform spectroscopy in the soft X-ray regime: An instrument for the study of the spectrum of helium

    Science.gov (United States)

    Locklin, Scott Christopher

    This dissertation is an account of an attempt to develop a novel type of vacuum ultraviolet spectrometer; with the most obvious application being the study of quantum chaos in the electronic spectrum of helium, as a classic example of the three body problem. The three-body problem in the form of the earth-moon-sun system has a history dating back to the ancient Greeks. It remains today an object of intense study in atomic physics. Classically, the problem is chaotic, yet, it remains a quantum mechanical problem. The history of the classical three-body problem is briefly examined. Some ideas in chaotic dynamics are explored, with a numeric investigation of the double-pendulum being used as an example. The quantum mechanics of the helium atom is reviewed, and the tension between classical and quantum physics; and the signs that one expects from the so-called "quantum chaos" are explored. Finally, a novel Fourier transform spectrometer designed to operate in the soft X-ray regime and based on a division-of-wavefront strategy is discussed. This is eventually to be used for the ultra-high resolution study of the helium atom. The instrument is described, and directions for future progress with this system are given.

  8. Accurate calculation of the x-ray absorption spectrum of water via the GW/Bethe-Salpeter equation

    Science.gov (United States)

    Gilmore, Keith; Vinson, John; Kas, Josh; Vila, Fernando; Rehr, John

    2014-03-01

    We calculate x-ray absorption spectra (XAS) of water within the OCEAN code, which combines plane-wave, pseudopotential electronic structure, PAW transition elements, GW self-energy corrections, and the NIST BSE solver. Due to the computational demands of this approach, our initial XAS calculations were limited to 17 molecule super cells. This lead to unphysical, size dependent effects in the calculated spectra. To treat larger systems, we extended the OCEAN interface to support well-parallelized codes such as QuantumESPRESSO. We also implemented an efficient interpolation scheme of Shirley. We applied this large-scale GW/BSE approach to 64 molecule unit cell structures of water obtained from classical DFT/MD and PIMD simulations. In concurrence with previous work, we find the calculated spectrum both qualitatively and quantitatively reproduces the experimental features. The agreement implies that structures based on PIMD, which are similar to the traditional distorted tetrahedral view, are consistent with experimental observations. Supported by the DOE CMCSN through DOE award DE-SC0005180 (Princeton University) and in part by DOE Grant No. DE-FG03-97ER45623 (JJR) with computer support from NERSC.

  9. Broadband detection of squeezed vacuum: A spectrum of quantum states

    OpenAIRE

    Breitenbach, Gerd; Illuminati, Fabrizio; Schiller, Stephan; Mlynek, Jurgen

    1999-01-01

    We demonstrate the simultaneous quantum state reconstruction of the spectral modes of the light field emitted by a continuous wave degenerate optical parametric amplifier. The scheme is based on broadband measurement of the quantum fluctuations of the electric field quadratures and subsequent Fourier decomposition into spectral intervals. Applying the standard reconstruction algorithms to each bandwidth-limited quantum trajectory, a "spectrum" of density matrices and Wigner functions is obtai...

  10. Research of the X-ray spectrum in the digital image acquisition and processing for internal disturbs detection in mangoes (Mangifera indica l.)

    International Nuclear Information System (INIS)

    In this work, digital image processing was associated to X-ray beam relevant to watching internal injuries, such as breakdown, soft nose and other physiological disturbs in mangoes CV Tommy Atkins. The X-ray source was a high frequency generator operating to a high tension between 14 to 35 kV on a molybdenum target tube, which generate X-ray characteristic near from 18,5 keV and 20 keV (k an l shell) plus a continuous spectrum, thought to be proper to get radiological images from mangoes in different maturation stages. Different filtrations and pseudo-colors technique were used to process the digital images produced. Results, from a group of comparative images, show the feasibility to detect several classes of internal disorders as well as others produced in packing houses and transport of mangoes. (author)

  11. THE WATER VAPOR SPECTRUM OF APM 08279+5255: X-RAY HEATING AND INFRARED PUMPING OVER HUNDREDS OF PARSECS

    International Nuclear Information System (INIS)

    We present the rest-frame 200-320 μm spectrum of the z = 3.91 quasar APM 08279+5255, obtained with Z-Spec at the Caltech Submillimeter Observatory. In addition to the J = 8 → 7 to J = 13 → 12 CO rotational transitions which dominate the CO cooling, we find six transitions of water originating at energy levels ranging up to 643 K. Most are first detections at high redshift, and we have confirmed one transition with CARMA. The CO cooling is well described by our X-ray dominated region (XDR) model, assuming L1-100keV ∼ 1 × 1046 erg s–1, and that the gas is distributed over a 550-pc size scale, as per the now-favored μ = 4 lensing model. The total observed cooling in water corresponds to 6.5 × 109 L☉, comparable to that of CO. We compare the water spectrum with that of Mrk 231, finding that the intensity ratios among the high-lying lines are similar, but with a total luminosity scaled up by a factor of ∼50. Using this scaling, we estimate an average water abundance relative to H2 of 1.4 × 10–7, a good match to the prediction of the chemical network in the XDR model. As with Mrk 231, the high-lying water transitions are excited radiatively via absorption in the rest-frame far-infrared, and we show that the powerful dust continuum in APM 08279+5255 is more than sufficient to pump this massive reservoir of warm water vapor.

  12. Inner-shell photoionized x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.J.

    1998-06-01

    The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 {angstrom} requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of {approximately} 15 {micro}m. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-{alpha} transition in the initially neutral lasant. The photo energy required to pump this scheme is only slightly greater than the photon energy of the lasing transition yielding a lasing scheme with high quantum efficiency. However, the overall efficiency is reduced due to low x-ray conversion efficiency and the large probability of Auger decay yielding an overall efficiency of {approximately} 10{sup {minus}7} resulting in an output energy of {micro}J's. They calculate that a driving laser with a pulse duration of 40 fs, a 10{micro}m x 1 cm line focus, and an energy of 1 J gives an effective gain length product (gl) of 10 in C at 45 {angstrom}. At saturation (gl {approximately} 18) they expect an output of

  13. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    International Nuclear Information System (INIS)

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue

  14. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  15. XMM-Newton reveals a Seyfert-like X-ray spectrum in the z=3.6 QSO B1422+231

    CERN Document Server

    Dadina, M; Cappi, M; Lanzuisi, G; Ponti, G; De Marco, B; Chartas, G; Giustini, M

    2016-01-01

    Matter flows in the central regions of quasars during their active phases are probably responsible for the properties of the super-massive black holes and that of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts. The few high quality X-ray spectra of distant QSO have been collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability. Here we present a single epoch, high-quality X-ray spectrum of the z=3.62 quasar B1422+231 whose flux is enhanced by gravitationally lensing (F$_{2-10 keV}\\sim$10$^{-12}$erg s$^{-1}$ cm$^{-2}$). The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is detected (N$_{H}\\sim$5$\\times$10$^{21}$ cm$^{-2}$ at the redshift of the source) while a strong absorption edge is me...

  16. Broadband X-ray Spectral Investigations of Magnetars, 4U 0142+61, 1E 1841-045, 1E 2259+586, and 1E 1048.1-5937

    CERN Document Server

    Weng, Shan-Shan

    2015-01-01

    We have generated an extended version of rather simplified but physically oriented three-dimensional magnetar emission model, STEMS3D, to allow spectral investigations up to 100 keV. We have then applied it to the broadband spectral spectra of four magnetars: 4U 0142+61, 1E 1841-045, 1E 2259+586 and 1E 1048.1-5937, using data collected with Swift/XRT or XMM-Newton in soft X-rays, and Nuclear Spectroscopic Telescope Array in the hard X-ray band. We found that the hard X-ray emission of 4U 0142+61 was spectrally hard compared to the earlier detections, indicating that the source was likely in a transition to or from a harder state. We find that the surface properties of the four magnetars are consistent with what we have obtained using only the soft X-ray data with STEMS3D, implying that our physically motivated magnetar emission model is a robust tool. Based on our broadband spectral investigations, we conclude that resonant scattering of the surface photons in the magnetosphere alone cannot account for the ha...

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  18. The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: a LoBAL Quasar with a Probable Polar Outflow

    CERN Document Server

    Berrington, Robert C; Gallagher, Sarah C; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D; Hall, Patrick B; Laurent-Muehleisen, S A

    2013-01-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e., an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Gamma = 1.7 or flatter at a >99% confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 10^23 cm^-2, with both partially ionized models and partially covering neutral hydrogen models providi...

  19. Broadband detection of squeezed vacuum A spectrum of quantum states

    CERN Document Server

    Breitenbach, G; Schiller, S; Mlynek, J; Breitenbach, Gerd; Illuminati, Fabrizio; Schiller, Stephan; Mlynek, Jurgen

    1998-01-01

    We demonstrate the simultaneous quantum state reconstruction of the spectral modes of the light field emitted by a continuous wave degenerate optical parametric amplifier. The scheme is based on broadband measurement of the quantum fluctuations of the electric field quadratures and subsequent Fourier decomposition into spectral intervals. Applying the standard reconstruction algorithms to each bandwidth-limited quantum trajectory, a "spectrum" of density matrices and Wigner functions is obtained. The recorded states show a smooth transition from the squeezed vacuum to a vacuum state. In the time domain we evaluated the first order correlation function of the squeezed output field, showing good agreement with the theory.

  20. Measurement of characteristic to total spectrum ratio of tungsten X-ray spectra for the validation of the modified Tbc model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, A. H.; Costa, P. R. [University of Sao Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Matao Street, alley R, 187, 66318 Sao Paulo (Brazil); Tomal, A., E-mail: ahlopezg@usp.br [Universidade Federal de Goias, Physics Institute, Campus Samambaia, 131 Goiania, Goias (Brazil)

    2014-08-15

    Primary X-ray spectra were measured in the range of 80 to 150 kV in order to validate a computer program based on a semiempirical model for X-ray spectra evaluation(tbc and mod). The ratio between the characteristic lines and total spectrum was considered for comparing the simulated results and experimental data. The raw spectra measured by the Cd Te detector were corrected by the detector efficiency, Compton effects and characteristic Cd and Te X-rays escape peaks, using a software specifically developed. The software Origin 8.5.1 was used to calculate the spectra and characteristic peaks areas. The obtained result shows that the experimental spectra have higher effective energy than the simulated spectra computed with tbc and mod software. The behavior of the ratio between the characteristic lines and total spectrum for simulated data presents discrepancy with the experimental result. Computed results are in good agreement with theoretical data published by Green, for spectra obtained with 3.04 mm of additional aluminum filtration. The difference of characteristic to total spectrum ratio between experimental and simulated data increases with the tube voltage. (Author)

  1. A multielement Ge detector with complete spectrum readout for x-ray fluorescence microprobe and microspectroscopy (abstract)

    Science.gov (United States)

    Rivers, Mark L.; Sutton, Stephen R.; Rarback, Harvey

    1995-02-01

    Multielement Ge and Si(Li) detectors have been used in recent years to improve the increase count rate capability and to improve the solid-angle efficiency in fluorescence x-ray absorption spectroscopy (XAS). Such systems have typically been equipped with one or more single-channel analyzers (SCAs) for each detector element. Such SCA-based electronics are sufficient when only the counts in one or two well-resolved peaks are of interest. For the fluorescence (XRF) microprobe at beamline X-26A at the NSLS, SCA-based electronics were not a satisfactory solution for two reasons: (1) for XRF experiments, the entire fluorescence spectrum is required; (2) for micro-XAS studies of trace elements in complex systems, the fluorescence peak often sits on a significant background or partially overlaps another fluorescence peak, requiring software background subtraction or peak deconvolution. An electronics system which permits collection of the entire fluorescence spectrum from each detector element has been designed. The system is made cost-effective by the use of analog multiplexors, reducing the number of analog-to-digital converters (ADCs) and multichannel analyzers (MCAs) required. The system was manufactured by Canberra Industries and consists of: (1) a 13 element Ge detector (11 mm diameter detector elements), (2) 13 NIM spectroscopy amplifiers with programmable gains, (3) four analog multiplexors with maximum of eight inputs each, (4) four ADCs with programmable offsets and gains and 800 ns conversion time, and (5) two MCAs with Ethernet communications ports and two ADC inputs each. The amplifiers have shaping times which are adjustable from 0.5 to 12 μs. The analog multiplexors were modified to perform pileup rejection. The analog multiplexing does not significantly reduce the count rate capability of the system, even at the shortest amplifier shaping times. The average detector resolution is 170 eV at 12 μs shaping time and 200 eV at 4 μs shaping time. The maximum

  2. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  3. Soft X-ray spectrum dynamics in wire-array liner implosion plasma on S-300 generator

    International Nuclear Information System (INIS)

    With the aim of helping to explain the X-ray emission mechanism of imploding multi-wire arrays, a number of diagnostic methods was used to study the S-300 generator (700 kV, 4 MA, 70 ns), a source of soft X-rays from the plasma produced by implosion of a wire-array liner. The diagnostic methods used included: three-frame laser shadowgraphy, optical streak-camera photography, three-frame optical ICT-photographs with a time resolution of ∼5 ns, three-frame soft X-ray ICT-photography with a time resolution of ∼5 ns, and a time-integrated two-pin-hole camera with different pairs of filters. The experiments were performed with wires of various mass and composition, always in the same geometry: the diameter of the wire-array was about 1 cm with a height of 1 cm. The highest X-ray outputs were observed at the implosion of tungsten wire arrays with masses of between 350 and 400 μg (60 to 80 wires of 6 μm diameter each). (A.K.)

  4. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  5. Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low sigma_8

    CERN Document Server

    Diego-Rodriguez, J M; Silk, J; Barcons, X; Voges, W

    2003-01-01

    We use the X-ray power spectrum of the ROSAT all-sky survey in the R6 band (approximately 0.9-1.3 keV) to set an upper limit on the galaxy cluster power spectrum. The cluster power spectrum is modelled with a minimum number of robust assumptions regarding the structure of the clusters. The power spectrum of ROSAT sets an upper limit on the Omega_m-sigma_8 plane which excludes all the models with sigma_8 above sigma_8 = 0.5/(Omega_m^0.38) in a flat LCDM universe. We discuss the possible sources of systematic errors in our conclusions, mainly dominated by the assumed L_x-T relation. Alternatively, this relation could be constrained by using the X-ray power spectrum, if the cosmological model is known. Our conclusions suggest that only models with a low value of sigma_8 (sigma_8 < 0.8 for Omega_m = 0.3) may be compatible with our upper limit. We also find that models predicting lower luminosities in galaxy clusters are favoured. Reconciling our cosmological constraints with these arising by other methods migh...

  6. Relativistic reflection in the average X-ray spectrum of active galactic nuclei in the Véron-Cetty and Véron catalogue

    Science.gov (United States)

    Falocco, S.; Carrera, F. J.; Barcons, X.; Miniutti, G.; Corral, A.

    2014-08-01

    Context. The X-ray spectra of active galactic nuclei (AGN) unveil properties of matter around the super-massive black hole (SMBH). Aims: We investigate the X-ray spectra of AGN focusing on Compton reflection and fluorescence. These are two of the most important processes of interaction between primary radiation and circumnuclear material that is located far away from the SMBH, as indicated by the unresolved spectral emission lines (most notably the Fe line) in the X-ray spectra of AGN. Contributions from the inner accretion disk, affected by relativistic effects as expected, have also been detected in several cases. Methods: We studied the average X-ray spectrum of a sample of 263 X-ray unabsorbed AGN that yield 419 023 counts in the 2-12 keV rest-frame band distributed among 388 XMM-Newton spectra. Results: We fitted the average spectrum using a (basically) unabsorbed power law (representing the primary radiation). From a second model that represents the interaction (through Compton reflection and fluorescence) of this primary radiation with matter located far away from the central engine (e.g. the putative torus), we found that it was very significantly detected. Finally, we added a contribution from interaction with neutral material in the accretion disk close to the central SMBH, which is therefore smeared by relativistic effects, which improved the fit at a 6 sigma. The reflection factors are 0.65 for the accretion disk and 0.25 for the torus. Replacing the neutral disk-reflection with low-ionisation disk reflection, also relativistically smeared, fits the data equally well, suggesting that we do not find evidence for significant ionisation of the accretion disk. Conclusions: We detect distant neutral reflection associated with a narrow Fe line in the average spectrum of unabsorbed AGN with ⟨ z ⟩ = 0.8. Adding the disk-reflection component associated with a relativistic Fe line improves the data description at a 6 sigma confidence level, suggesting that

  7. X-ray fluorescence spectrum of highly charged Fe ions driven by strong free-electron-laser fields

    CERN Document Server

    Oreshkina, Natalia S; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    The influence of nonlinear dynamical effects is analyzed on the observed spectra of controversial 3C and 3D astrophysically relevant x-ray lines in neonlike Fe${}^{16+}$ and the A, B, C lines in natriumlike Fe${}^{15+}$ ions. First, a large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects. Also, quantum-electrodynamic corrections to the transition energies are calculated. Further considered dynamical effects provide a possible resolution of the discrepancy between theory and experiment found by recent x-ray free-electron-laser measurements of these controversial lines. We find that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient and nonlinear dynamical effects have to be taken into account. Thus, we advocate the use of light-matter-interaction models also valid for strong light fields in the analysis and interpretation of...

  8. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    Science.gov (United States)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu 103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  9. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    CERN Document Server

    Gavriil, Fotis P; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT ~ 1.0 keV) plus power-law ($\\Gamma$ ~ 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v 10^3.6 erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that 1A 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  10. Characterization of a radiographic system with broad energy band X-ray source

    International Nuclear Information System (INIS)

    High energy X-ray beams with broad band energy spectra allow performing radiographic analysis on different materials and objects of relevant interest that cannot be investigated with conventional X-ray sources. The quality of a radiographic image strongly depends on the characteristics of radiation source as the size of the X-ray emitting area, or focal spot, and the energy spectrum of the radiation. In this work the characterization of a broad-band energy Bremsstrahlung source obtained from a linac providing a 5.5 MeV electron beam colliding with a tungsten target is presented. In order to measure the focal-spot size an ad hoc slit camera has been designed and built and a specific technique was used. Furthermore an analysis of the energy spectrum of the beam was performed using a method based on X-ray diffraction by a mosaic crystal.

  11. Comparison of Clinical and Laboratory Responses in Sheep and Dogs following Whole-Body Exposures to 250-Kvp X-Rays and Fission-Spectrum Neutrons

    International Nuclear Information System (INIS)

    Fifteen sheep and eight dogs were exposed to 400 rad (air dose) of pulsed fission-spectrum neutrons, and an equal number of sheep and 14 dogs to 400 r (midline air dose) 250 kVp X-rays. Seven additional sheep and four dogs served as un-irradiated controls. Control data were obtained for two weeks preceding the exposures and at frequent and regular intervals after the injury. In sheep, the most consistent clinical change was complete loss of wool by the 51st day post-exposure. The underlying skin was pink in colour closely resembling that of a mild blush sometimes noted in humans. Dogs did not demonstrate loss of hair. Formed blood elements, neutrophils, lymphocytes, and thrombocytes fell rapidly after the radiation in both species. At about post-exposure day 24 recovery in white cell numbers was noted only in the neutron groups. Thrombocyte levels decreased to safe level in both species but somewhat earlier in the dog. Recovery appeared during the third post-exposure week in both species ex posed to neutrons, but not in those given X-rays. Red blood-cell haematocrits showed significant drops in both groups of dogs by the ninth day, but neither group of sheep exhibited significant decrease in haematocrit values. Plasma Fe59 clearance rates were determined in the experimental subjects as a parameter of measurement of haematopoietic function. Prognostic implications of alteration in this parameter of haemapoiesis are discussed. The most significant gross-pathologic changes were confined to the lungs wherein extensive perivascular haemorrhage around the arteries was noted. On microscopic study the area of haemorrhage was observed to be within the advential-connective tissue and periarterial vessels. Thirty-day mortality for dogs was 50% following neutron exposures and 93% after the X-ray insult. In sheep neutrons produced 22% mortality and X-rays 80%. (author)

  12. Interstellar X-ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091

    CERN Document Server

    Paerels, F B S; Van der Meer, R L J; Kaastra, J S; Kuulkers, E; Den Boggende, A J F; Predehl, P; Drake, J J; Kahn, S M; Savin, D W; McLaughlin, B M; Paerels, Frits; Drake, Jeremy J.; Kahn, Steven M.; Savin, Daniel W.; Laughlin, Brendan M. Mc

    2000-01-01

    We find resolved interstellar O K, Ne K, and Fe L absorption spectra in the Chandra Low Energy Transmission Grating Spectrometer spectrum of the low mass X-ray binary X0614+091. We measure the column densities in O and Ne, and find direct spectroscopic constraints on the chemical state of the interstellar O. These measurements probably probe a low-density line of sight through the Galaxy and we discuss the results in the context of our knowledge of the properties of interstellar matter in regions between the spiral arms.

  13. The soft X-ray spectrum of the luminous narrow line Seyfert galaxy PG1211+143

    CERN Document Server

    Pounds, K A

    2013-01-01

    An XMM-Newton observation of the luminous Seyfert galaxy PG1211+143 in 2001 showed the first evidence for a highly ionised high speed wind (in a non-BAL AGN), with a velocity of v~0.1c based on the identification of blue-shifted absorption lines in both EPIC and RGS spectra. An order-of-magnitude lower velocity was subsequently claimed based on an ion-by-ion model fit to the soft X-ray data. Although repeated observations with XMM-Newton, Chandra and Suzaku confirmed a high velocity, all were based on detection of blue-shifted absorption lines of highly ionised Fe. We show here, in a new analysis of the XMM-Newton RGS data, that the high velocity is indeed present in the soft X-ray spectra, with the higher spectral resolution providing evidence for a second, lower ionisation component close to the systemic velocity of PG1211+143. Variability of the more highly ionised absorption component conforms with that found previously in EPIC spectra in excluding a local origin, while broad emission features are identif...

  14. Optical Stimulated Luminescence (OSL) linearity test into x-ray narrowed series spectrum (NSS) and gamma rays

    International Nuclear Information System (INIS)

    SSDL has made a turnover of 600 units dosimeters Optically Stimulated Luminescence (OSL) product by Nagase Landauer. A total of 20 units were randomly selected to test the ability of OSL dosimeters as personal dosimeters to replace the film badge. OSL dosimeters are irradiated to X-rays with the capability of 80 kV (65 keV) and 200 kV X-ray (171 keV) NSS, Cs-137 gamma rays (662 keV) and Co-60 gamma rays (1250 keV). OSL dosimeters affixed to the surface of the water phantom dimensions 30 cm x 30 cm x 15 cm and irradiated tissue in personal dose equivalent at a depth of 10 mm, Hp (10) of 0.1, 0.3, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0 and 10.0 mSv. Two additional units will dosimeters irradiated at each dose indicated. Analysis results showed that the straightness R2 (linear regression coefficient) for the four radiation quality is approaching the 1(R2∼1). (author)

  15. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  16. Exploring the nature of the broadband variability in the flat spectrum radio quasar 3C 273

    Science.gov (United States)

    Chidiac, C.; Rani, B.; Krichbaum, T. P.; Angelakis, E.; Fuhrmann, L.; Nestoras, I.; Zensus, J. A.; Sievers, A.; Ungerechts, H.; Itoh, R.; Fukazawa, Y.; Uemura, M.; Sasada, M.; Gurwell, M.; Fedorova, E.

    2016-05-01

    The detailed investigation of the broadband flux variability in the blazar 3C 273 allowed us to probe the location and size of emission regions and their physical conditions. We conducted correlation studies of the flaring activity in 3C 273, which was observed for the period between 2008 and 2012. The observed broadband variations were investigated using the structure function and the discrete correlation function methods. Starting from the commonly used power spectral density (PSD) analysis at X-ray frequencies, we extended our investigation to characterise the nature of variability at radio, optical, and γ-ray frequencies. The PSD analysis showed that the optical and infrared light-curve slopes are consistent with the slope of white-noise processes, while the PSD slopes at radio, X-ray, and γ-ray energies are consistent with red-noise processes. We found that the estimated fractional variability amplitudes strongly depend on the observed frequency. The flux variations at γ-ray and mm-radio bands are found to be significantly correlated. Using the estimated time lag of (110 ± 27) days between γ-ray and radio light-curves, where γ-ray variations lead the radio bands, we constrained the location of the γ-ray emission region at a de-projected distance of 1.2 ± 0.9 pc from the jet apex. Flux variations at X-ray bands were found to have a significant correlation with variations at both radio and γ-ray energies. The correlation between X-ray and γ-ray light curves indicates two possible time lags, which suggests that two components are responsible for the X-ray emission. A negative time lag of -(50 ± 20) days, where the X-rays are leading the emission, suggests that X-rays are emitted closer to the jet apex from a compact region (0.02-0.05 pc in size), most likely from the corona at a distance of (0.5 ± 0.4) pc from the jet apex. A positive time lag of (110 ± 20) days (γ-rays are leading the emission) suggests a jet-base origin of the other X-ray

  17. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni during Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; Fuerst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Hailey, Charles; Harrison, Fiona A.; Madsen, Kristin K.; Rahoui, Farid; Stern, Daniel; Tendulkar, Shriharsh; Zhang, William W.

    2016-04-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 × 1032 erg s-1 for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of Γ = 2.12 ± 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3σ confidence level with the e-folding energy of the cutoff as {20}-7+20 keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  18. Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration

    Science.gov (United States)

    Nakano, T.; Shumack, A. E.; Maggi, C. F.; Reinke, M.; Lawson, K. D.; Coffey, I.; Pütterich, T.; Brezinsek, S.; Lipschultz, B.; Matthews, G. F.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Rzadkiewicz, J.; Czarski, T.; Dominik, W.; Kasprowicz, G.; Pozniak, K.; Zabolotny, W.; Zastrow, K.-D.; Conway, N. J.; contributors, JET

    2015-07-01

    The {{W}45+} and {{W}46+} 3p-4d inner shell excitation lines in addition to M{{o}32+} 2p-3s lines have been identified from the spectrum taken by an upgraded high-resolution x-ray spectrometer. It is found from analysis of the absolute intensities of the {{W}46+} and M{{o}32+} lines that W and Mo concentrations are in the range of ˜ {{10}-5} and ˜ {{10}-6}, respectively, with a ratio of ˜5% in JET with the ITER-like wall configuration for ELMy H-mode plasmas with a plasma current of 2.0-2.5 MA, a toroidal magnetic field of 2.7 T and a neutral beam injection power of 14-18 MW. For the purpose of checking self-consistency, it is confirmed that the W concentration determined from the {{W}45+} line is in agreement with that from the {{W}46+} line within 20% and that the plasma effective charge determined from the continuum of the first order reflection spectrum is also in agreement with that from the second order within 50%. Further, the determined plasma effective charge is in agreement with that determined from a visible spectroscopy, confirming that the sensitivity of the x-ray spectrometer is valid and that the W and the Mo concentrations are also likely to be valid.

  19. A NuSTAR observation of the reflection spectrum of the low mass X-ray binary 4U 1728-34

    CERN Document Server

    Sleator, Clio C; King, Ashley L; Miller, Jon M; Boggs, Steven E; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Rahoui, Farid; Stern, Daniel K; Walton, Dominic J; Zhang, William W

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with kT = 1.5 keV and a cutoff power law with {\\Gamma} = 1.5. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K{\\alpha} line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of $R_{\\rm in} \\leq 2R_{\\rm ISCO}$ . Consequently we find that $R_{\\rm NS} \\leq 23$ km, assuming M = 1.4 $\\rm\\,M_{\\mathord\\odot}$ and a = 0.15. We also find an upper limit on the magnetic field of $B \\leq 2\\times 10^8$ G

  20. XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231

    Science.gov (United States)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.

    2016-08-01

    Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a

  1. Soft x-ray polarimeter laboratory tests

    Science.gov (United States)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  2. The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    CERN Document Server

    Coriat, M; Buxton, M M; Bailyn, C D; Tomsick, J A; Koerding, E; Kalemci, E

    2009-01-01

    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origi...

  3. Comets: mechanisms of x-ray activity

    Science.gov (United States)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  4. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES

    International Nuclear Information System (INIS)

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with approximately twice higher output become available

  5. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    Energy Technology Data Exchange (ETDEWEB)

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  6. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  7. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan;

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...

  8. Investigation of the antiprotonic X-ray spectrum of the lithium isotopes 6Li and 7Li

    International Nuclear Information System (INIS)

    Antiprotons of the low-energy separated anti p-beam K23 at CERN in Geneva have been stopped in thin (0.6 g/cm2) targets of the Lithium isotopes 6Li and 7Li. The characteristic X-rays of the formed antiprotonic atoms were measured with four identical high-resolution Si (Li) detectors. Three lines of the N- series, four lines of the M-series and the 3d-2p transition of the Balmer series were observed. The measured relative intensities of the M- and N-series transitions are well described by the simple cascade model of Eisenberg and Kessler. The 3d-2p transition is considerably influenced by the strong interaction between antiproton and nucleus and thus drastically reduced in intensity. The analysis of this transition yields the shift and width of the 2p level, whereas the width of the 3d level is deduced from intensity considerations. (orig./HSI)

  9. New Observations of the Solar 0.5-5 keV Soft X-ray Spectrum

    CERN Document Server

    Caspi, Amir; Warren, Harry P

    2015-01-01

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ~0.2 and ~4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially-integrated solar spectral irradiance from ~0.5 to ~5 keV, with ~0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5-10 MK) emission and are well fit by simple power-law temperature distributions with indices of ~6, ...

  10. Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system I. The non-dip spectrum in the low/hard state

    CERN Document Server

    Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Lee, Julia C

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect t...

  11. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal

    International Nuclear Information System (INIS)

    Purpose: Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. Methods: In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Results: Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering

  12. Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization

    OpenAIRE

    Henley, D. B.; Stevens, I. R.; Pittard, J. M.

    2004-01-01

    We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with ...

  13. The hard synchrotron X-ray spectrum of the TeV BL Lac 1ES 1426+428

    CERN Document Server

    Wolter, A; Ghisellini, G; Tavecchio, F; Maraschi, L; Costamante, L; Celotti, A; Ghirlanda, G

    2007-01-01

    We have observed 1ES 1426+428 with INTEGRAL detecting it up to $\\sim$150 keV. The spectrum is hard, confirming that this source is an extreme BL Lac object, with a synchrotron component peaking, in a $\

  14. A Jet Model for the Broadband Spectrum of the Seyfert-1 Galaxy NGC 4051

    CERN Document Server

    Maitra, Dipankar; Markoff, Sera; King, Ashley

    2011-01-01

    Recent radio VLBI observations of the ~parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy distribution data of the nuclear region of NGC 4051 spanning from radio through X-rays, to test whether the broadband SED can be explained within the framework of a relativistically outflowing jet model. We show that once the contribution from the host galaxy is taken into account, the broadband emission from the active galactic nucleus of NGC 4051 can be well described by the jet model. Contributions from dust and ongoing star-formation in the nuclear region tend to dominate the IR emission even at the highest resolutions. In the framework of the jet model, the correlated high variability of the extreme ultraviolet and X-rays compared to other wavelengths suggests that the emission at these wavelengths is optically thin synchrotron originating in the par...

  15. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: msgjhlee@mju.ac.kr; Sohn, S. G., E-mail: sgsohn@mju.ac.kr; Jung, H. I., E-mail: jhinumber1@hanmail.net; An, Y. J., E-mail: anyj0120@hanmail.net; Lee, S. H., E-mail: sangheelee@mju.ac.kr [Myongji University, Drug Resistance Proteomics Laboratory, Department of Biological Sciences (Korea, Republic of)

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  16. Synthesis conductivity, and X-ray photoelectron spectrum of Bi2Sr2Cu7+X. A new ternary bismuth-oxide system exhibiting metallic conductivity

    International Nuclear Information System (INIS)

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxides, Bi2Sr2Cu2O7+x, are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe. AC resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An X-ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed-valent species. The XPS spectrum of the Bi 4f orbital electrons in the oxides was nearly identical to that observed in Bi2O3, with no evidence of any Bi5+. 8 refs., 3 figs

  17. Circular intensity differential scattering (CIDS) measurements in the soft x-ray region of the spectrum (@16 eV to 500 eV)

    Energy Technology Data Exchange (ETDEWEB)

    Maestre, M.F. (Lawrence Berkeley Lab., CA (United States)); Bustamante, C. (Oregon Univ., Eugene, OR (United States). Dept. of Chemistry); Snyder, P. (Florida Atlantic Univ., Boca Raton, FL (United States). Dept. of Chemistry); Rowe, E.; Hansen, R. (Wisconsin Univ., Stoughton, WI (United States). Synchrotron Radiation Center)

    1991-03-01

    We propose the use of recently developed techniques of circular intensity differential scattering (CIDS), as extended to the soft x-ray region of the spectrum (16 eV to 500 eV), to study the higher order organization of the eukaryotic chromosome. CIDS is the difference in scattering power of an object when illuminated by right circularly polarized vs. left circularly polarized electromagnetic radiation of arbitrary wavelength. CIDS has been shown to be a very sensitive measure of the helical organization of the scattering object eg. the eukaryotic chromosome. Preliminary results of measurements of samples of bacteriophages and octopus sperm done at SRC, Wisconsin, show the technique to be very sensitive to the dimensional parameters of the particles interrogated by circularly polarized light. 7 refs., 5 figs.

  18. Tokamak x ray diagnostic instrumentation

    International Nuclear Information System (INIS)

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/ΔE is greater than 104 and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally

  19. Effect of fluoroscopic X-ray beam spectrum on air-kerma measurement accuracy: implications for establishing correction coefficients on interventional fluoroscopes with KAP meters.

    Science.gov (United States)

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-01-01

    The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify. PMID:27167287

  20. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  1. Galactic X-ray and gamma-ray emission and the nature of the interstellar electron spectrum

    International Nuclear Information System (INIS)

    An analysis is made of all available data, both direct and indirect, on the energy spectrum of cosmic ray electrons. It is shown that the data are consistent with an injection spectrum having a constant exponent, γ = 2.1 +- 0.1, over a wide range of energy: 10-10sup(g) MeV. Attention is drawn to the role of a possible deficit of sources in reducing the intensity of local electrons both above 10 GeV and below a few hundred MeV. (orig.)

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  3. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  4. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  5. X-ray apparatus

    International Nuclear Information System (INIS)

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  6. 3d-4p x-ray spectrum emitted by highly ionized uranium from a laser-produced plasma in the 3.8<λ<4.4-A wavelength range

    International Nuclear Information System (INIS)

    This work extends a previous analysis of the x-ray spectrum of a laser-produced uranium plasma [P. Mandelbaum et al., Phys. Rev. A 44, 5752 (1991)] to the longer-wavelength range (3.8+65) through As-like (U+59) isoelectronic sequences are identified in the spectrum, in good agreement with the previous analysis of the spectrum emitted at shorter wavelengths

  7. Chandra X-ray Spectroscopy of the Focused Wind In the Cygnus X-1 System I. The Non-Dip Spectrum in the Low/Hard State

    Science.gov (United States)

    Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.

  8. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  10. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  11. On the Putative Detection of z>0 X-ray Absorption Features in the Spectrum of Markarian 421

    CERN Document Server

    Rasmussen, A P; Den Herder, J W A; Kaastra, J; Kahn, S M; Paerels, F; Herder, Jan Willem den; Kaastra, Jelle; Kahn, Steven M.; Paerels, Frits; Rasmussen, Andrew P.; Vries, Cor de

    2006-01-01

    In a series of papers, Nicastro et al. have claimed the detection of z>0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate those claims in the context of a high quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955~ksec of usable exposure time and more than 26000 counts per 50 milliAngstroms at 21.6 Angstroms. We concentrate on the spectrally clean region (21.3 < lambda < 22.5 Angstrom) where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). In spite of the fact that the sensitivity of the RGS data is higher than that of the original LETGS data presented by Nicastro et al., we do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the Log(N)~14.6 (3sigma) s...

  12. X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    OpenAIRE

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore; Ishibashi, Kazunori; Pittard, Julian M.; Hillier, D. John; Damineli, Augusto; Davidson, Kris; Nielsen, Krister E.; Kober, Gladys Vieira

    2007-01-01

    We report the results of an X-ray observing campaign on the massive, evolved star Eta Carinae, concentrating on the 2003 X-ray minimum as seen by the XMM-Newton observatory. These are the first spatially-resolved X-ray monitoring observations of the stellar X-ray spectrum during the minimum. The hard X-ray emission, believed to be associated with the collision of Eta Carinae's wind with the wind from a massive companion star, varied strongly in flux on timescales of days, but not significantl...

  13. 3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039

    CERN Document Server

    Aharonian, F A; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Buhler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Fussling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; De Jager, O C; Kendziorra, E; Khelifi, B; Komin, N; Konopelko, A; Kosack, K; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Santangelo, A; Sauge, L; Schlenker, S; Schlickeiser, R; Schroder, R; Schwanke, U; Schwarzburg, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tavernet, J P; Terrier, R; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-01-01

    New observations of LS 5039, a High Mass X-ray Binary comprising a massive star and compact object, were carried out with the High Energy Stereoscopic System of Cherenkov Telescopes (H.E.S.S.) in 2005 at very high energy (VHE) gamma-ray energies. These observations reveal that its flux and energy spectrum are modulated with the 3.9 day orbital period of the binary system. This is the first time in gamma-ray astronomy that orbital modulation has been observed, and periodicity clearly established using ground-based gamma-ray detectors. The VHE gamma-ray emission is largely confined to half of the orbit, peaking around the inferior conjunction epoch of the compact object. For this epoch, there is also a hardening of the energy spectrum in the energy range between 0.2 TeV and a few TeV. The flux vs. orbital phase profile provides the first clear indication of gamma-ray absorption via pair production within an astrophysical source, a process which is expected to occur if the gamma-ray production site is situated w...

  14. On the Putative Detection of Z>0 X-Ray Absorption Features in the Spectrum of Mrk 421

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Andrew P.; /SLAC /KIPAC, Menlo Park; Kahn, Steven M.; /SLAC /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Paerels, Frits; /Columbia U., Astron. Astrophys.; Herder, Jan Willem den; Kaastra, Jelle; de Vries, Cor; /SRON, Utrecht

    2006-04-28

    In a series of papers, Nicastro et al. have claimed the detection of z > 0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate those claims in the context of a high quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955 ksec of usable exposure time and more than 2.6 x 10{sup 4} counts per 50 m{angstrom} at 21.6 {angstrom}. We concentrate on the spectrally clean region (21.3 < {lambda} < 22.5 {angstrom}) where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). In spite of the fact that the sensitivity of the RGS data is higher than that of the original LETGS data presented by Nicastro et al., we do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the log (N{sub i}) {approx} 14.6 (3{sigma}) sensitivity level. Each of the two purported WHIM features is rejected with a statistical confidence that exceeds that reported for its initial detection. While we can not rule out the existence of fainter, WHIM related features in these spectra, we suggest that previous discovery claims were premature. A more recent paper by Williams et al. claims to have demonstrated that the RGS data we analyze here do not have the resolution or statistical quality required to confirm or deny the LETGS detections. We show that the Williams et al. reduction of the RGS data was highly flawed, leading to an artificial and spurious degradation of the instrument response. We carefully highlight the differences between our analysis presented here and those published by Williams et al.

  15. A broadband X-ray spectral study of the intermediate-mass black hole candidate M82 X-1 with NuSTAR, Chandra and Swift

    CERN Document Server

    Brightman, Murray; Barret, Didier; Davis, Shane W; Fürst, Felix; Madsen, Kristin K; Middleton, Matthew; Miller, Jon M; Stern, Daniel; Tao, Lian; Walton, Dominic J

    2016-01-01

    M82 X-1 is one of the brightest ultraluminous X-ray sources (ULXs) known, which, assuming Eddington-limited accretion and other considerations, makes it one of the best intermediate-mass black hole (IMBH) candidates. However, the ULX may still be explained by super-Eddington accretion onto a stellar-remnant black hole. We present simultaneous NuSTAR, Chandra and Swift/XRT observations during the peak of a flaring episode with the aim of modeling the emission of M82 X-1 and yielding insights into its nature. We find that thin-accretion disk models all require accretion rates at or above the Eddington limit in order to reproduce the spectral shape, given a range of black hole masses and spins. Since at these high Eddington ratios the thin-disk model breaks down due to radial advection in the disk, we discard the results of the thin-disk models as unphysical. We find that the temperature profile as a function of disk radius ($T(r)\\propto r^{-p}$) is significantly flatter ($p=0.55^{+ 0.07}_{- 0.04}$) than expecte...

  16. The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

    CERN Document Server

    Papitto, A; Di Salvo, T; Burderi, L; D'Aì, A; Iaria, R; Bozzo, E; Menna, M T

    2010-01-01

    We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron temperature, kT_e=51(+6,-4) keV, is rather high, while the optical depth (tau=1.34(+0.03,-0.06)) is moderate. The energy dependence of the pulsed fraction supports the interpretation of the cooler thermal component as coming from the accretion disc, and indicates that the Comptonizing plasma surrounds the hot spots on the NS sur...

  17. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua

    International Nuclear Information System (INIS)

    We demonstrate sub-millijoule-energy, sub-4 fs-duration near-infrared laser pulses with a controlled waveform comprised of approximately 1.5 optical cycles within the full-width at half-maximum (FWHM) of their temporal intensity profile. We further demonstrate the utility of these pulses for producing high-order harmonic continua of unprecedented bandwidth at photon energies around 100 eV. Ultra-broadband coherent continua extending from 90 eV to more than 130 eV with smooth spectral intensity distributions that exhibit dramatic, never-before-observed sensitivity to the carrier-envelope offset (CEO) phase of the driver laser pulse were generated. These results suggest the feasibility of sub-100-attosecond XUV pulse generation for attosecond spectroscopy in the 100 eV range, and of a simple yet highly sensitive on-line CEO phase detector with sub-50-ms response time

  18. Effect of γ irradiation on non-isothermal decomposition kinetics, X-ray diffraction pattern, infrared spectrum and antibacterial property of tris(1,2-diaminoethane)nickel(II)oxalate

    International Nuclear Information System (INIS)

    Thermal decomposition, X-ray diffraction pattern, infrared (IR) spectrum and antibacterial property of tris(1,2-diaminoethane)nickel(II)oxalate were studied before and after γ-irradiation. Irradiation enhanced thermal decomposition. From X-ray diffraction studies, unirradiated and irradiated samples of the complex are found to be tetragonal. A change in lattice parameters was observed upon irradiation. Position and intensity of IR bands of -NH2 and >C=O group were found to be changed upon irradiation. Antibacterial studies showed that irradiation induced activity towards B. cereus. (author)

  19. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  20. Theory of spin-state selective nonlocal screening in Co 2p X-ray photoemission spectrum of LaCoO3

    International Nuclear Information System (INIS)

    The Co 2p X-ray photoemission spectrum (XPS) of LaCoO3 is investigated using a dp model simulating Co 3d and O 2p orbitals by means of a dynamical mean-field approach under the perovskite crystal structure. Across the spin-state transition from the low-spin to the high-spin state, the Co 2p3/2 main-line structure is substantially changed beyond expectation of a CoO6 cluster model calculation. In addition to the Coulombic multiplet effect, the origin of the spectral change is attributed to the nonlocal screening (NLS) from the correlated 3d band located on the top of the valence band to the core-excited Co site in the final state, where the NLS is practically active only for the high-spin state. The spin-state selectivity of the NLS is closely related to not only the spin state of the core-excited Co ion but also the spin and orbital character of the occupied Co 3d band in crystals. We emphasize that the Co 2p XPS can be an informative probe to investigate the spin state of Co ions in Co oxides, such as LaCoO3. (author)

  1. The origin of blue-shifted absorption features in the X-ray spectrum of PG 1211+143: Outflow or disc?

    CERN Document Server

    Gallo, L C

    2013-01-01

    In some radio-quiet active galaxies (AGN), high-energy absorption features in the x-ray spectra have been interpreted as Ultrafast Outflows (UFOs) -- highly ionised material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo & Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionised material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the a...

  2. X-ray absorption spectrum for guanosine-5{sup '}-monophosphate in water solution in the vicinity of the nitrogen K-edge observed in free liquid jet in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi Tokyo 184-8588 (Japan)], E-mail: ukai3@cc.tuat.ac.jp; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fujii, Kentaro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Synchrotron Radiation Research Center, Japan Atomic Energy Agency (JAEA), Sayo-gun, Hyogo 679-5148 (Japan); Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency (JAEA), Sayo-gun, Hyogo 679-5148 (Japan)

    2008-10-15

    A new spectroscopy for direct effect of radiation damage to nucleic acids such as DNA and RNA is underway using a liquid beam sample in vacuum combined with soft-X-ray synchrotron radiation. We show the X-ray absorption spectrum (XANES) of liquid phase water at X-ray photon energy in the vicinity of oxygen K-shell absorption edge obtained from total photoelectron yields ejected from a pure water beam. We confirm a 'liquid sample in vacuum' for the present experiment by the measurements of the temperature dependence of the XANES spectrum for a liquid beam of pure water. Shown is the first measurement of the XANES spectrum for guanosine-5{sup '}-monophosphate (GMP), which is one of the fundamental nucleotide unit for RNA, in water solution at X-ray photon energy in the vicinity of nitrogen K-shell absorption edge involved in the 'water-window' region, which corresponds to a selective excitation of guanine site.

  3. X-Rays spectrum and air kerma during a mammography study;Espectro de los rayos X y kerma en aire durante un estudio mamografico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur No. 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico); Hernandez V, R.; Chacon R, A.; Vega C, H. R., E-mail: ramirezgonzalezjaime@yahoo.com.m [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2009-10-15

    The X-rays spectrum produced in a mammography has been calculated by means of Monte Carlo methods. In this calculation series it is modeled the electrons source, the target and the filter. The spectra were calculated for an energy of the electrons of 28 keV and for targets of W, Mo and Rh. The calculations extended to analyze the effect that produces the filters inclusion in the spectra; the spectra of W-A1, Rh-Rh, Mo-Mo, Mo-Rh and Mo-Be were calculated this way. Using thermoluminescent dosemeters of ZrO{sub 2}+PTFE the air kerma was measured in five points located on a phantom made with acrylic and water when it is was exposed to a X-rays beam produced by electrons of 24 keV and 10 m A of current that it produces a mammography. The values of the air kerma on the entrance surface of the phantom were compared with the calculated values by means of Monte Carlo methods. The calculated spectra present a continuous component and another discreet and its form is similar to the reported spectra in the literature. The filters inclusion allows the elimination of the low energy photons that do not have utility in the obtaining of the mammography image and only they contribute to deposit a dose in the mamma. The values of the measured air kerma indicate that the five points receive the same air kerma approximately, what means that the beam is homogeneous, of the Monte Carlo calculations we find that the center receives a bigger dose which implies that the beam is not uniform, the explanation on this fact it is attributed to that a simple model was used in the calculations, nevertheless, the average of the air kerma measured on the entrance surface of the phantom was of 0.96 +- 0.03 m G, while the obtained by means of the calculations was of 0.96 +- 0.06 mGy, when comparing both significant differences do not exist. (Author)

  4. Monochromatic hard X-ray generators using laser-electron compton backscattering

    International Nuclear Information System (INIS)

    Conventional hard X-ray sources for medical/industrial use such as X-ray tubes generate broadband white light. Such X-ray tubes are inefficient sources of radiation for medical imaging, because only a small part of radiation contributes to imaging and a large part of radiation causes radiation hazard. A tunable monochromatic hard X-ray source by laser-electron Compton backscattering would be an ideal source of radiation for medical imaging. Its energy spectrum can be optimized for the best absorption energy of contrast agent such as Iodine (33.17 keV), Indium (27.95 keV) or Gadolium (50.2 keV). It is also possible to upgrade contrast by digital subtract imaging technology. We present several schemes of Compton backscattering for the generation of high-flux tunable monochromatic X-ray: -photocathode X-band normal-conducting RF linac and pulse Nd:YAG/ (or Ti:Sapphire) laser -CW superconducting accelerator with energy recovery and CW diode-pumped solid-state laser -CW superconducting accelerator and free electron laser. Photon fluxes and energy spectra of the output hard X-ray for the various schemes have been estimated

  5. BROADBAND JET EMISSION IN YOUNG AND POWERFUL RADIO SOURCES: THE CASE OF THE COMPACT STEEP SPECTRUM QUASAR 3C 186

    International Nuclear Information System (INIS)

    We present the X-ray analysis of a deep (∼200 ks) Chandra observation of the compact steep spectrum radio-loud quasar 3C 186 (z = 1.06) and investigate the contribution of the unresolved radio jet to the total X-ray emission. The spectral analysis is not conclusive on the origin of the bulk of the X-ray emission. In order to examine the jet contribution to the X-ray flux, we model the quasar spectral energy distribution, adopting several scenarios for the jet emission. For the values of the main physical parameters favored by the observables, a dominant role of the jet emission in the X-ray band is ruled out when a single-zone (leptonic) scenario is adopted, even including the contribution of the external photon fields as seed photons for inverse Compton emission. We then consider a structured jet, with the blazar component that—although not directly visible in the X-ray band—provides an intense field of seed synchrotron photons Compton-scattered by electrons in a mildly relativistic knot. In this case, the whole X-ray emission can be accounted for if we assume a blazar luminosity within the range observed from flat spectrum radio quasars. The X-ray radiative efficiency of such a (structured) jet is intimately related to the presence of a complex velocity structure. The jet emission can provide a significant contribution in X-rays if it decelerates within the host galaxy on kiloparsec scales. We discuss the implications of this model in terms of jet dynamics and interaction with the ambient medium.

  6. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    Science.gov (United States)

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  7. X-ray and fast neutron-induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    International Nuclear Information System (INIS)

    The author discusses the genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT). (Auth.)

  8. X-ray interferometers

    International Nuclear Information System (INIS)

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  9. X-ray - skeleton

    Science.gov (United States)

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  10. Extremity x-ray

    Science.gov (United States)

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  11. Dental x-rays

    Science.gov (United States)

    ... addition, many dentists are taking x-rays using digital technology. The image runs through a computer. The amount of radiation given off during the procedure is less than traditional methods. Other types of dental x-rays can create a 3-D picture ...

  12. SAXJ1712.6-3739: a persistent hard X-ray source as monitored with INTEGRAL

    CERN Document Server

    Fiocchi, Mariateresa; Ubertini, Pietro; De Cesare, Giovanni

    2007-01-01

    The X-ray source SAXJ1712.6-3739 is a very weak Low Mass X-ray Binary discovered in 1999 with BeppoSAX and located in the Galactic Center. This region has been deeply investigated by the INTEGRAL satellite with an unprecedented exposure time, giving us an unique opportunity to study the hard X-ray behavior also for weak objects. The spectral results are based on the systematic analysis of all INTEGRAL observations covering the source position performed between February 2003 and October 2006. SAXJ1712.6-3739 did not shows any flux variation along this period as well as compared to previous BeppoSAX observation. Hence, to better constrain the physical parameters we combined both instrument data. Long INTEGRAL monitoring reveals, for the first time, that this X-ray burster is a weak persistent source, displaying a X-ray spectrum extended to high energy and spending most of the time in a low luminosity hard state. The broad-band spectrum is well modeled with a simple Comptonized model with a seed photons temperat...

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  14. Determination of x-ray spectra from Al attenuation data by imposing a priori physical features of the spectrum: Theory and experimental validation

    International Nuclear Information System (INIS)

    The determination of the spectral distribution of an x-ray beam from attenuation measurements in a narrow beam is an ill-conditioned problem that has aroused great interest since it was first proposed by Silberstein in 1932. In this work, the explicit reconstruction of the spectral distribution directly from the attenuation curve, without differentiating it, is carried out by a maximum likelihood method that allows one to impose a priori physical features of an x-ray spectral distribution, such as the positiveness of the solution, the boundness of its support, and the position and shape of the spikes and edges associated with the characteristic radiation. The numerical simulations made and the experimental validation of the proposed method have shown that it is possible to reconstruct x-ray spectra that, having a realistic shape, accurately fit the attenuation curve and predict the energy fluence. Nevertheless, the reconstruction of spectra including the K x rays of W is less accurate than the reconstruction of spectra including L x rays of W or K x rays of Mo, even when a priori information about the position and shape of the spikes and edges associated with the characteristic radiation is used.

  15. X-ray source for mammography

    Science.gov (United States)

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  16. Chandra X-ray spectroscopy of the very early O supergiant HD 93129A: constraints on wind shocks and the mass-loss rate

    CERN Document Server

    Cohen, David H; Leutenegger, Maurice A; MacArthur, James P; Wollman, Emma E; Sundqvist, Jon O; Fullerton, Alex W; Owocki, Stanley P

    2011-01-01

    We present analysis of both the resolved X-ray emission line profiles and the broadband X-ray spectrum of the O2 If* star HD 93129A, measured with the Chandra HETGS. This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10% of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths Rstar. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star's closest visual companion at a distance of ~100 AU. The broadband X-ray spectrum ...

  17. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  18. Sensitivity measurements of a microchannel plate intensified x-ray detector in the 100 - 1500 eV photon energy range (abstract)

    International Nuclear Information System (INIS)

    Microchannel plate intensified (MPI) x-ray detectors are commonly used for imaging and spectral measurements in the 100 - 1500 eV photon energy range. Using a laser-produced plasma x-ray source, we measured the integrated detector response versus incident x-ray intensity and the relative efficiency versus photon energy of a MPI x-ray detector. Two identical 2000 lines/mm transmission grating spectrometers simultaneously record broadband plasma source emission from a tantalum target. The relative efficiency was determined by comparing the spectrum recorded with an absolutely calibrated x-ray CCD reference detector on one spectrometer to the spectrum recorded with a MPI x-ray detector on the other spectrometer. The integrated detector response versus incident x-ray intensity was measured by simultaneously illuminating the CCD reference detector and the MPI detector with step-wedge-filtered magnesium plasma emission. The aluminum step wedge x-ray filters pass the 1s - 2p emission lines of H-like Mg at 1470 eV and the 1s2 - 1s2p emission lines of He-like Mg at 1350 eV, and provide a four order of magnitude range in incident intensity on the detectors.copyright 1999 American Institute of Physics

  19. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  20. Suzaku view of Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    CERN Document Server

    Jaisawal, Gaurava K; Epili, Prahlad

    2016-01-01

    We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the observations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($\\leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $\\sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $\\sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  4. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  5. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  6. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  7. X-ray apparatus

    International Nuclear Information System (INIS)

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  8. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  9. Ten years of X-ray interferometry

    International Nuclear Information System (INIS)

    X-ray interferometers were the first optical instruments which utilized many Bragg reflecting components in monolithic blocks of perfect crystal. They have made important contributions to our knowledge of fundamental constants, of Bragg reflection x-ray optics, of strains and defects in crystals and of the optical constants of materials in the x-ray region of the electromagnetic spectrum. Based on an oversimplified optical analogue, their mode of operation is described in detail. Current applications of crystal interferometers and future work is briefly reviewed. (author)

  10. An analysis of the x-ray linear dichroism spectrum for NiO thin films grown on vicinal Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.Z.; Zhao, Y.; Arenholz, E.; Young, A.T.; Sinkovic, B.; Qiu, Z.Q.

    2008-05-10

    Antiferromagnetic (AFM) NiO thin films are grown epitaxially on vicinal Ag(118) substrate and investigated by x-ray linear dichroism (XLD). We find that the NiO AFM spin exhibits an in-plane spin reorientation transition from parallel to perpendicular to the step edges with increasing the NiO film thickness. In addition to the conventional L{sub 2} adsorption edge, x-ray linear dichroism (XLD) effect at the Ni L{sub 3} adsorption edge is also measured and analyzed. The result identifies a small energy shift of the L{sub 3} peak. Temperature-dependent measurement confirms that the observed XLD effect in this system at the normal incidence of the x-rays originates entirely from the NiO magnetic ordering.

  11. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  12. Medical X-Rays

    Science.gov (United States)

    ... The Conference of Radiation Control Program Directors (CRCPD) publishes Suggested State Regulations for the Control of Radiation , ... eSubmitter Guidance for Industry and Food and Drug Administration Staff - Assembler's Guide to Diagnostic X-Ray Equipment ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... Angioplasty & vascular stenting Video: Arthrography Video: Contrast Material Radiology and You Take our survey About this Site ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight June is Men's Health Month Recently posted: Focused Ultrasound for Uterine Fibroids ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny ...

  19. Achievement of Narrow-Band CARS Signal by Manipulating Broad-band Laser Spectrum

    International Nuclear Information System (INIS)

    We theoretically demonstrate the achievement of narrow-band coherent anti-Stokes Raman scattering (CARS) signal by manipulating broad-band probe spectrum. The narrowing of the CARS signal depends on the spectrum bandwidth of the probe beam, and thus high-resolution CARS signal for a complicated quantum system can be obtained by the simple spectrum manipulation. Furthermore, the energy-level diagram for the complicated quantum system can also be labelled by measuring the CARS signal at a given frequency. (fundamental areas of phenomenology (including applications))

  20. X-ray tubes

    International Nuclear Information System (INIS)

    An improved form of x-ray tube is described which consists of a rotatable anode disc and an electron beam source enclosed in an envelope. The beam of electrons strikes the edge of the anode disc at an acute angle, producing x-rays which are transmitted through a window in the envelope. To improve performance and life of the anode disc it is additionally reciprocated back and forth along its axis of rotation. Dimensions are specified. (U.K.)

  1. Parametric X-rays at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji [Fermilab

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... around or in bones. top of page How should I prepare? Most bone x-rays require no ... might interfere with the x-ray images. Women should always inform their physician and x-ray technologist ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  5. Unveiling the hard X-ray spectrum from the "burst-only" source SAX J1753.5-2349 in outburst

    CERN Document Server

    Del Santo, Melania; Romano, Patrizia; Bazzano, Angela; Wijnands, Rudy; Degenaar, Nathalie; Mereghetti, Sandro

    2010-01-01

    Discovered in 1996 by BeppoSAX during a single type-I burst event, SAX J1753.5-2349 was classified as "burst-only" source. Its persistent emission, either in outburst or in quiescence, had never been observed before October 2008, when SAX J1753.5-2349 was observed for the first time in outburst. Based on INTEGRAL observations,we present here the first high-energy emission study (above 10 keV) of a so-called "burst-only". During the outburst the SAX J1753.5-2349 flux decreased from 10 to 4 mCrab in 18-40 keV, while it was found being in a constant low/hard spectral state. The broad-band (0.3-100 keV) averaged spectrum obtained by combining INTEGRAL/IBIS and Swift/XRT data has been fitted with a thermal Comptonisation model and an electron temperature >24 keV inferred. However, the observed high column density does not allow the detection of the emission from the neutron star surface. Based on the whole set of observations of SAX J1753.5-2349, we are able to provide a rough estimate of the duty cycle of the sys...

  6. X-ray laser

    International Nuclear Information System (INIS)

    X-ray is among the most important research tools today, and has given priceless contributions to all disciplines within the natural sciences. State of the art in this field is called XFEL, X-ray Free Electron Laser, which may be 10 thousand million times stronger than the x-rays at the European Synchrotron Radiation Facility in Grenoble. In addition XFEL has properties that allow the study of processes which previously would have been impossible. Of special interest are depictions on atomic- and molecular level by the use of x-ray holographic methods, and being able to study chemical reactions in nature's own timescale, the femtosecond. Conclusion: The construction of x-ray lasers is a natural development in a scientific field which has an enormous influence on the surrounding society. While the discovery of x-ray was an important breakthrough in itself, new applications appear one after the other: Medical depiction, dissemination, diffraction, DNA and protein structures, synchrotron radiation and tomography. There is reason to believe that XFEL implies a technological leap as big as the synchrotrons some decades ago. As we are now talking about studies of femtosecond and direct depiction of chemical reactions, it is obvious that we are dealing with a revolution to come, with extensive consequences, both scientifically and culturally. (EW)

  7. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    International Nuclear Information System (INIS)

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material

  8. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E.; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2015-05-21

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  9. Computation of conversion coefficients relating air Kerma to Hp(0.07,α), Hp(10,α), and H*(10) for x-ray narrow spectrum from 40 to 140 kV

    International Nuclear Information System (INIS)

    A computation method was implemented to predict the conversion coefficients and the angular dependence factors relating air Kerma to Hp(0.07,α), Hp(10,α), and H*(10) in an ICRU slab phantom for tungsten anode x-ray spectra for tube potentials from 40 to 140 kV. The simulation of the unfiltered x-ray spectra is based on the Boone and Seibert model. The calculation of conversion coefficients were performed for an x-ray narrow spectrum at any filtration material and tube potentials in the diagnostic radiology range. This computation method has been checked for five narrow x-ray spectra using a comparison of the results with published data given by the International Organization for Standardization (ISO), and American National Standards Institute (ANSI). In all cases, the mean deviation of the calculated mean conversion coefficients values do not exceed 1% for Hp (0.07,α) and 1.5% for Hp (10,α), except at 60 deg. where a mean deviation from the ISO values of 1.72% and of 2.27% was, respectively, found. But it is still lower than the mean deviation of 2.31% for Hp(0.07,α), and of 3.08% for Hp(10,α) observed at this angle between ISO and ANSI values. Otherwise, the computed values of conversion coefficients of H*(10) differ by only 0.41% from the ISO values. The results of this computation method can be considered satisfactory considering the accuracy required in radioprotection fields, and can allow an appreciable estimation of conversion coefficients for the narrow x-ray spectra indispensable to calibrate the personnel dosimeters in terms of the personal dose equivalent

  10. Studies of atomic processes for x-ray lasers and x-ray sources

    International Nuclear Information System (INIS)

    An integrated system of computational atomic database for spectroscopic investigation of x-ray lasers and x-ray sources is developed. The system consists of atomic data codes, database, a collisional radiative code, and programs for visualizing spectrum. Gain of Ni-like La laser is analyzed using the model. Furthermore, EUV spectrum from Xe is investigated, to identify measured transition arrays in 10 nm to 16 nm for the EUV light source. (author)

  11. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 105 W/cm2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  12. The Case of the 300 kpc Long X-ray Jet in PKS 1127-145 at z=1.18

    CERN Document Server

    Siemiginowska, Aneta; Aldcroft, Thomas L; Stawarz, Lukasz; Cheung, C C; Sikora, Marek; Bechtold, Jill

    2007-01-01

    The complex X-ray morphology of the 300 kpc long X-ray jet in PKS1127-145 (z=1.18 quasar) is clearly discerned in a ~100 ksec Chandra observation. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core. The X-ray spectrum of the inner jet is relatively flat with alpha_X=0.66+/-0.15 and steep in the outer jet with alpha_X=1.0+/-0.2. The X-ray and radio jet intensity profiles are strikingly different, with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. We discuss the constraints implied by these data on the X-ray emission models and conclude that ``one-zone'' models fail and that at least a two-component model is needed to explain the jet's broadband emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.

  13. X-ray nanotomography

    Science.gov (United States)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  14. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  15. X-ray Variability of AGN and the Flare Model

    OpenAIRE

    Goosmann, R. W.; Czerny, B.; Dumont, A. -M.; Mouchet, M.; Rozanska, A.

    2004-01-01

    Short-term variability of X-ray continuum spectra has been reported for several Active Galactic Nuclei. Significant X-ray flux variations are observed within time scales down to 10^3-10^5 seconds. We discuss short variability time scales in the frame of the X-ray flare model, which assumes the release of a large hard X-ray flux above a small portion of the accretion disk. The resulting observed X-ray spectrum is composed of the primary radiation and of a reprocessed Compton reflection compone...

  16. IKAR on-line testing stand for investigation of X-ray optics and radiation detectors in the 0.5-120 nm spectrum range

    International Nuclear Information System (INIS)

    The IKAR vacuum testing stand is intended for calibration and investigation of X-ray optics and radiation detector radiation. The stand is equipped with a set of radiation sources, filters and monochromators on the basis of transparent and reflecting lattices, radiation receivers of various types. The facility operates on-line with SM-3 computer through the CAMAC interface and is provided with actuating mechanisms and software, necessary for controlling experiments

  17. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  18. Studies of soft x-ray emission during solar flares

    International Nuclear Information System (INIS)

    Solar flare soft x-ray emission from 0.5 A to 8.5 A was observed during 1967-68 by Bragg crystal (LiF and EDDT) spectrometers aboard the OSO-4 satellite and also by NRL broad-band ionization detectors aboard the OGO-4 satellite. In this work, instrumental parameters for the LiF crystal spectrometer based on experimental values have been determined and used in the data analysis. The total continuum emission in the 0.5 to 3 A and the 1 to 8 A broad band segments has been determined from OGO-4 data for 21 flares. In doing this, a simple and approximate method of converting the total emission based on the gray body approximation (in which the OGO-4 data are reported) to one based on the thermal continuum spectrum has been developed. (author)

  19. Broad-band modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability

    NARCIS (Netherlands)

    B.P. Gompertz; A.J. van der Horst; P.T. O'Brien; G.A. Wynn; K. Wiersema

    2015-01-01

    The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broad-band spectrum are not well explored. We investigate the broad-band modelling of four SGRBs with evidence for energy in

  20. X-ray astronomical spectroscopy

    Science.gov (United States)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  1. Measurement of specifications of x-ray quality for calibration

    International Nuclear Information System (INIS)

    The filtered continuous X-rays are often used for the calibration and measurement of the energy response of γ-ray dosemeter and dose ratemeter. These X-rays are easily made and sufficiently available for the measurement which does not require the strictly monoenergetic X-ray beam. It is necessary for the employment of continuous X-rays to specify the X-ray qualities such as representative energy and degree of filtration. This report describes a measurement of some specifications of the X-ray quality for a X-ray generator with 50 -- 120 kV of tube potential and a comparison between existing and ISO-4037 proposing expressions on the X-ray quality. According to the resolution of X-ray spectrum, we made four different X-ray quality sets : Wide, Middle, Narrow, and Extra-narrow spectrum series. The information described here about the filtered X-rays will be of use for the calibration and measurement of energy response of the health physics instruments. (J.P.N.)

  2. Energy resolved X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

    2013-05-13

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  3. X-ray apparatus

    International Nuclear Information System (INIS)

    The invention discloses an X-ray apparatus that can be used for tomography with the aid of a computer. With this apparatus plus computer, it is possible to quickly achieve the required edge values whereby the influence of the movement is diminished

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  5. Medical x-ray

    International Nuclear Information System (INIS)

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  6. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... time! Spotlight Recently posted: Pediatric MRI Intravascular Ultrasound Video: Chest CT Video:Thyroid Ultrasound Video: Head CT ...

  8. The microcalorimeter X-ray detector: a true paradigm shift in X-ray spectroscopy

    International Nuclear Information System (INIS)

    The microcalorimeter x-ray detector registers the heat deposited in an absorber from individual x-ray photons by means of a sensitive thermometer. It combines advantages of wavelength-dispersive and energy-dispersive detectors: relatively high energy resolution over a broad energy spectrum. Operating at very low temperatures reduces the noise, making the high energy resolution possible. The absorber can be tailored to any energy range, from soft x-rays to gamma rays. After many years of development, several designs have reached a level of performance and reliability that makes them competitive x-ray detectors for many kinds of experiment. We survey current microcalorimeter detectors using several different thermometers. Their applications already run from chemical analysis to plasma physics and x-ray astronomy. We describe two examples of how the microcalorimeter detector can enable novel determinations in x-ray physics, one concerning the comparison of x-ray line energies and the other dealing with valence band x-ray emission spectra.

  9. X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    CERN Document Server

    Hamaguchi, K; Gull, T; Ishibashi, K; Pittard, J M; Hillier, D J; Damineli, A; Davidson, K; Nielsen, K E; Kober, G V; Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore; Ishibashi, Kazunori; Pittard, Julian M.; Damineli, Augusto; Davidson, Kris; Nielsen, Krister E.; Kober, Gladys Vieira

    2007-01-01

    We report the results of an X-ray observing campaign on the massive, evolved star Eta Carinae, concentrating on the 2003 X-ray minimum as seen by the XMM-Newton observatory. These are the first spatially-resolved X-ray monitoring observations of the stellar X-ray spectrum during the minimum. The hard X-ray emission, believed to be associated with the collision of Eta Carinae's wind with the wind from a massive companion star, varied strongly in flux on timescales of days, but not significantly on timescales of hours. The lowest X-ray flux in the 2-10 keV band seen by XMM-Newton was only 0.7% of the maximum seen by RXTE just before the X-ray minimum. The slope of the X-ray continuum above 5 keV did not vary in any observation, which suggests that the electron temperature of the hottest plasma associated with the stellar source did not vary significantly at any phase. Through the minimum, the absorption to the stellar source increased by a factor of 5-10 to NH ~3-4E23 cm-2. The thermal Fe XXV emission line show...

  10. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    This paper discusses pyroelectric detectors which are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low energy x-rays. The authors report tests of LiTaO3, Sr.5Ba.5Nb2O6 and LiNbO3 detectors at Nova laser with 1 ns low energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The temporal and spectral responses are discussed

  11. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    Pyroelectric detectors are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low-energy x rays. We report our tests of LiTaO3 detectors at Nova laser with 1-ns low-energy x rays and at Zapp Z-pinch machine with 100-ns x rays. The temporal and spectral responses are discussed

  12. Characterization of an indirect X-ray imaging detector by simulation and experiment.

    Science.gov (United States)

    Doshi, C; van Riessen, G; Balaur, E; de Jonge, M D; Peele, A G

    2015-01-01

    We describe a comprehensive model of a commercial indirect X-ray imaging detector that accurately predicts the detector point spread function and its dependence on X-ray energy. The model was validated by measurements using monochromatic synchrotron radiation and extended to polychromatic X-ray sources. Our approach can be used to predict the performance of an imaging detector and can be used to optimize imaging experiments with broad-band X-ray sources. PMID:25203971

  13. Black Holes in Ultra-Luminous X-ray sources: X-ray timing versus spectroscopy

    CERN Document Server

    Caballero-Garcia, M D; Belloni, T M; Wolter, A

    2012-01-01

    Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ray timing and spectral data from the ULX in NGC 5408 provided by XMM-Newton. The main goal is to study the broad-band noise variability of the source. We found an anti-correlation of the fractional root-mean square variability versus the intensity of the source, similar to black-hole binaries during hard states.

  14. Backscatter, anisotropy, and polarization of solar hard X-rays

    Science.gov (United States)

    Bai, T.; Ramaty, R.

    1978-01-01

    The problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter are investigated in a study of solar hard X-rays. Effect of backscatter are found particularly important for anisotropic sources which emit hard X-rays predominantly toward the photosphere; for such anisotropic primary X-ray sources, the observed X-ray flux near 30 keV does not depend significantly on the position of the flare. In addition, the degree of polarization of the sum of the primary and reflected X-rays with energies in the 15 to 30 keV range may be as high as 30%. Determination of the height and anisotropy of the primary X-ray sources from study of the albedo patch is also discussed.

  15. Years of Magnetic X-Ray Dichroism

    Science.gov (United States)

    van der Laan, Gerrit

    A historical overview of magnetic x-ray dichroism is presented. I describe the first theoretical and experimental results that have led to the development of this powerful technique for element-specific magnetometry. The theoretical progress of the sum rules is also described, starting with the spinorbit sum rule for the isotropic spectrum which led on to the spin and orbital moment sum rules for x-ray magnetic circular dichroism. The latter has been particularly useful to understand the magnetic anisotropy in thin films and multilayers. Further developments of circular dichroism in (resonant) photoemission and Auger, as well as x-ray detected optical activity, also are summarized. Currently, magnetic x-ray dichroism finds a wide application in x-ray spectroscopy and imaging for the study of magnetic materials and it is considered to be one of the most important discoveries in the field of magnetism in the last few decennia. It is hard to imagine modern research into magnetism without the aid of polarized x-rays.

  16. The origin of blue-shifted absorption features in the X-ray spectrum of PG 1211+143: Outflow or disc?

    OpenAIRE

    Gallo, L.C.; Fabian, A.C.

    2013-01-01

    In some radio-quiet active galaxies (AGN), high-energy absorption features in the x-ray spectra have been interpreted as Ultrafast Outflows (UFOs) -- highly ionised material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason...

  17. X ray Production. Chapter 5

    International Nuclear Information System (INIS)

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4

  18. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  19. Dynamical Ne K Edge and Line Variations in the X-Ray Spectrum of the Ultra-compact Binary 4U 0614+091

    CERN Document Server

    Schulz, Norbert S; Chakrabarty, Deepto; Canizares, Claude R

    2010-01-01

    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the \\chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0$\\times10^{36}$ \\ergsec and 3.5$\\times10^{36}$ \\ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 \\kms. The data show that Ne K exhibits excess column densities of up to several 10$^{18}$ cm$^{-2}$. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the or...

  20. X-ray microtomography

    International Nuclear Information System (INIS)

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  1. X-ray generators

    International Nuclear Information System (INIS)

    Volume 4 provides a comparative survey on generators for stationary applications as available on the German market. It provides decision-making tools, physical characteristics, suggestions for radiation protection and for safe appliance operation as well as a concept for inspections all of which have been developed jointly by physicians of various specialities, physicists, engineers, business men, hospital experts and medicotechnical X-ray staff on the basis of a well-tried working concept. The systematic representation of correlations relevant to decision-making processes is based on a profile of technico-physical characteristics (standard product information) which was established by way of interdisciplinary dialog and which will enable any hospital or clinic to easily equip its X-ray department in an economic and purposeful way. The information on device data, device descriptions and market survey furnish the data tested by the manufacturers without guarantee and subject to correction. (orig./HP)

  2. X-ray lithography

    International Nuclear Information System (INIS)

    An invention relating to the development of photo-resists used in X-ray lithography is described. A COP resist which has been exposed to X-ray radiation, is developed with methyl ethyl ketone (MEK) developer and an ethanol solvent. The resist is first developed in a strong developing solution and then with a weaker developer whose concentration is slightly above that required to obtain complete development. Preferably the resist is exposed so as to obtain about a fifty per cent developed thickness and the developing is carried out in steps, the first with a concentration of 5:1.8 (MEK to ethanol) for five seconds, the second using concentrations of 5:1.8 and 5:2.7 for ten seconds and the third with a concentration of 5:2.7 for five seconds. (author)

  3. HINODE X-RAY TELESCOPE DETECTION OF HOT EMISSION FROM QUIESCENT ACTIVE REGIONS: A NANOFLARE SIGNATURE?

    International Nuclear Information System (INIS)

    The X-Ray Telescope (XRT) on the Japanese/USA/UK Hinode (Solar-B) spacecraft has detected emission from a quiescent active region core that is consistent with nanoflare heating. The fluxes from 10 broadband X-ray filters and filter combinations were used to construct differential emission measure (DEM) curves. In addition to the expected active region peak at log T = 6.3-6.5, we find a high-temperature component with significant emission measure at log T > 7.0. This emission measure is weak compared to the main peak-the DEM is down by almost three orders of magnitude-which accounts of the fact that it has not been observed with earlier instruments. It is also consistent with spectra of quiescent active regions: no Fe XIX lines are observed in a CHIANTI synthetic spectrum generated using the XRT DEM distribution. The DEM result is successfully reproduced with a simple two-component nanoflare model.

  4. X-ray diffraction

    International Nuclear Information System (INIS)

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  5. Weak soft X-ray excesses need not result from the high-frequency tail of the optical/ultraviolet bump in active galactic nuclei

    Science.gov (United States)

    Czerny, Bozena; Zycki, Piotr T.

    1994-01-01

    The broad-band ROSAT/EXOSAT X-ray spectra of six Seyfert 1 galaxies are fitted by a model consisting of a direct power law and a component due to reflection/reprocessing from a partially ionized, optically thick medium. The reflected spectrum contains emission features from various elements in the soft X-ray range. In all objects but one (Mrk 335), the fit is satisfactory, and no additional soft X-ray excess is required by the data. This means that in most sources there is no need for the thermal 'big blue bumps' to extend into soft X-rays, and the soft X-ray excesses reported previously can be explained by reflection/reprocessing. Satisfactory fits are obtained for a medium ionized by a source radiating at less than or approximately 15% of the Eddington rate. The fits require that the reflection is enhanced relative to an isotropically emitting source above a flat disk. The necessary high effectiveness of reflection in the soft X-ray band requires strong soft thermal flux dominating over hard X-rays.

  6. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.

    Science.gov (United States)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Aydin, Koray

    2015-03-11

    Ultrathin metasurfaces have recently emerged as promising materials that have huge potential to enable novel, flat optical components, and surface-confined, miniature photonic devices. Metasurfaces offer new degrees of freedom in molding the optical wavefronts by introducing abrupt and drastic changes in the amplitude, phase, and/or polarization of electromagnetic radiation at the wavelength scale. By carefully arranging multiple subwavelength anisotropic or gradient optical resonators, metasurfaces have been shown to enable anomalous transmission, anomalous reflection, optical holograms, and spin-orbit interaction. However, experimental realization of high-performance metasurfaces that can operate at visible frequency range has been a significant challenge due to high optical losses of plasmonic materials and difficulties in fabricating several plasmonic resonators of subwavelength size with high uniformity. Here, we propose a highly efficient yet a simple metasurface design comprising of a single, anisotropic silver antenna in its unit cell. We demonstrate broadband (450-850 nm) anomalous reflection and spectrum splitting at visible and near-IR frequencies with high conversion efficiency. Average power ratio of anomalous reflection to the strongest diffraction mode was calculated to be on the order of 10(3) and measured to be on the order of 10. The anomalous reflected photons have been visualized using a charge-coupled device camera, and broadband spectrum splitting performance has been confirmed experimentally using a free space, angle-resolved reflection measurement setup. Metasurface design proposed in this study is a clear departure from conventional metasurfaces utilizing multiple, anisotropic and/or gradient optical resonators and could enable high-efficiency, broadband metasurfaces for achieving flat high signal-to-noise ratio optical spectrometers, polarization beam splitters, directional emitters, and spectrum splitting surfaces for photovoltaics. PMID

  7. X-ray optics for axion helioscopes

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Pivovaroff, Michael J.; Christensen, Finn Erland

    2013-01-01

    A method of optimizing grazing incidence x-ray coatings in ground based axion helioscopes is presented. Software has been been developed to find the optimum coating when taking both axion spectrum and Micromegas detector quantum efficiency into account. A comparison of the relative effective area...

  8. Chandra X-ray spectroscopy of a clear dip in GX 13+1

    CERN Document Server

    D'Aì, A; Di Salvo, T; Riggio, A; Burderi, L; Robba, N R

    2014-01-01

    The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of $\\sim$ 400 km s$^{-1}$ and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation performed in 2010. We used Chandra/HETGS data (1.0--10 keV band) and contemporaneous RXTE/PCA data (3.5--25 keV) to analyze the broadband X-ray spectrum. We adopted different spectral models to describe the continuum emission and used the XSTAR-derived warm absorber component to constrain the highly ionized absorption features. ...

  9. Suzaku Observation of Be/X-ray Binary Pulsar EXO 2030+375

    CERN Document Server

    Naik, Sachindra

    2014-01-01

    In this paper we study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a $Suzaku$ observation on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s which suggests that the pulsar is spinning-up. The pulse profiles were found to be peculiar e.g. unlike that obtained from the earlier Suzaku observation on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broad-band spectrum of the pulsar was found to be well described by three continuum models such as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high-energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. U...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ...

  12. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si02. The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  14. Soft X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seely, John

    1999-05-20

    The contents of this report cover the following: (1) design of the soft x-ray telescope; (2) fabrication and characterization of the soft x-ray telescope; and (3) experimental implementation at the OMEGA laser facility.

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air appears black. Until recently, x-ray images were maintained on large film sheets (much ...

  19. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that helps physicians diagnose and treat medical conditions. Imaging with x-rays involves exposing a part of ... oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  2. Active X-ray Optics

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Inneman, A.; Pina, L.; Černá, D.; Tichý, V.

    Bellingham: SPIE, 2013 - (Juha, L.; Bajt, S.; London, R.; Hudec, R.; Pína, L.), 877718/1-877718/7. (Proceedings of SPIE. 8777). ISBN 9780819495792. [Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III. Praha (CZ), 15.04.2013-18.04.2013] Institutional support: RVO:67985815 Keywords : X-ray optics * active optics * active X-ray optics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Deposition and characterization of multilayers on thin foil x-ray mirrors for high-throughput x-ray telescopes

    DEFF Research Database (Denmark)

    Hussain, Ahsen M.; Joensen, Karsten D.; Hoeghoej, P.;

    1996-01-01

    W/Si and Co/C multilayers have been deposited on epoxy- replicated Au mirrors from the ASTRO-E telescope project, SPectrum Roentgen Gamma (SRG) flight mirrors, DURAN glass substrates and Si witness wafers. A characterization of the multilayers with both hard x-rays and soft x-rays is presented. The...... clearly indicates the effectiveness of the epoxy-replication process for the production of smooth substrates for multilayer deposition to be used in future x-ray telescopes....

  4. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... lies. A drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... that is extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  7. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  8. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A Text Size ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  9. X-Ray Exam: Finger

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A Text Size ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  10. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist Print A A A Text Size ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  11. X-Ray Exam: Hip

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip Print A A A Text Size ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  12. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm Print A A A Text Size ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that uses ...

  13. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A Text Size ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Foot

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A Text Size ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  16. Tokamak Spectroscopy for X-Ray Astronomy

    Science.gov (United States)

    Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.

    2000-01-01

    This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.

  17. DWDM/OOC and large spectrum sources performance in broadband access network

    Directory of Open Access Journals (Sweden)

    AhmedD. KORA

    2012-06-01

    Full Text Available This work presents a performance evaluation based on elaborated analytical expressions of error probability for broadband access networkin the case of a combined technique of dense wavelength division multiplexing (DWDM and one dimensional optical orthogonal codes (1D-OOC. Optical sources with relatively large spectrum has been considered and simulated.Besides the Multiple Access Interference (MAI at the receiver due to the access method which is optical code division multiple access (OCDMA,the emitted radiation of these sources in a dense WDM communication link introduces additional interference.Conventional correlation receiver (CCR and parallel interference cancellation (PIC receiverlimitations are discussed. This paper has investigated the kind of optical sources with large spectrum bandwidth which could be accepted for a targeted bit error rate (BERand given number of users inbroadband access network supporting DWDM with optical orthogonal codes.

  18. X-ray intensifying screens

    International Nuclear Information System (INIS)

    An x-ray intensifying screen comprises a support which has a luminescent composition comprising an isotropic phosphor and a polymer having an index of refraction within 0.02 of that of the phosphor over at least 80 percent of its emission spectrum. The support has an index of refraction up to or equal to 0.05 units higher than that of the phosphor and has a reflection optical density of at least 1.7 to light emitted by the phosphor. A preferred luminescent composition comprises Kl:Tl, Rbl:Tl at BaSrFCl:Eu mixed with two monomers such as 1-naphthylmethylmethacrylate, S(1-naphthylmethyl) thioacrylate, 1-bromo-2-naphthylacrylate, and benzyl methacrylate, coated on black anodised Al and polymerised in situ. The ratio of monomers is adjusted to give the desired refractive index. Other phosphors, polymers and supports are specified together with the preparation of the monomers and polymers. (author)

  19. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan;

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  20. X-ray diffraction

    International Nuclear Information System (INIS)

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  1. X-ray detector

    International Nuclear Information System (INIS)

    The multicell X-ray or gamma detector is used in computer tomography. To achieve good spatial resolution, the electrode plates are narrowly spaced in each cell and are designed identical over the whole length of the detector group. The uniform spacing and precise check of the angles between the electrodes and accurate control of the dimensions of the whole detector structure are achieved by depositing, in the fabrication process, a viscous, resin type material (e.g., epoxy resin) or glue at selected points between the electrodes and insulators. (ORU)

  2. X-ray spectrometer for observation of nonlinear Compton scattering

    International Nuclear Information System (INIS)

    An x-ray spectrometer, which consists of a multilayer device and a two-dimensional position sensitive detector, is designed for measurement of the x-ray energy spectrum and angular distribution from the nonlinear Compton scattering of 60 MeV electron and high power CO2 laser beams provided by a user facility at Brookhaven National Laboratory. A Prototype of the spectrometer has constructed and tested using isotropic 8 keV (Cu Kα) x-rays from a sealed x-ray tube

  3. eROSITA - Nearby Young Stars in X-rays

    CERN Document Server

    Robrade, Jan

    2015-01-01

    X-ray surveys are well suited to detect, identify and study young stars based on their high levels of magnetic activity and thus X-ray brightness. The eROSITA instrument onboard the Spectrum-Roentgen-Gamma (SRG) satellite will perform an X-ray all-sky survey that surpasses existing data by a sensitivity increase of more than an order of magnitude. The 4 yr survey is expected to detect more than half a million stars and stellar systems in X-rays.

  4. GRB Redshift determination in the X-ray band

    OpenAIRE

    Campana, Sergio; Ghisellini, Gabriele; Lazzati, Davide; Haardt, Francesco; Covino, Stefano; .

    1999-01-01

    If gamma-ray bursts originate in dense stellar forming regions, the interstellar material can imprint detectable absorption features on the observed X-ray spectrum. Such features can be detected by existing and planned X-ray satellites, as long as the X-ray afterglow is observed after a few minutes from the burst. Detection of these X-ray features will make possible the determination of the redshift of gamma-ray bursts even when their optical afterglows are severely dimmed by extinction.

  5. Observing broad-absorption line quasars with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Schnopper, H.W.; Westergaard, Niels Jørgen Stenfeldt

    1998-01-01

    Broad-absorption line quasars are found to have extremely weak soft X-ray emission when compared with other optically selected quasars. In the only example of PHL 5200 for which a detailed X-ray spectrum has been obtained with ASCA, strong absorption in the source appears to be responsible for the...... lack of soft Xray emission. Broad-band X-ray observations of a sample of BAL QSOs are proposed with a high throughput mission SPECTRUM-RONTGEN-GAMMA (SRG), to find out whether these sources are intrinsically weak over the entire bandwidth of X-rays or only in the soft X-rays due to absorption resulting...... from the line of sight passing through large column density clouds. Simultaneous UV observations will help to constrain the ionization state of the absorbers, and also improve the overall UV to X-ray continuum measurements in them....

  6. X-ray spectra for mamography

    International Nuclear Information System (INIS)

    By means of Monte Carlo methods the X-ray spectra that produce Mammography equipment have been obtained. The mammographs are widely used with the purpose of diagnosing the cancer of the mammary glands. Different makers and mammographs models are distinguished by the voltage capacity and the current, exist as well as in the target type and filter. The targets that are used are Mo, Rh and W and the filters are Mo, Rh, Al and Be. In this work the results obtained by means of the MCNP code of the X-ray spectra take place when an electron beam of 28 keV is made impact on Mo, Rh and W targets, as well as the spectra that result of filtering these X rays using different types of filters. The resulting spectra contain the continuous spectrum of the stopping radiation, as well as the X rays characteristic of the used target. The utility of estimating the spectra of X rays by means of Monte Carlo is that it can use to estimate the absorbed dose by the gland, as well as the absorbed dose by other organs. It also allows to calculate the detector response. (Author)

  7. Experimental device for the X-ray energetic distribution measurement in a tokamak plasma

    International Nuclear Information System (INIS)

    An experimental system to measure the X-ray spectrum in a tokamak plasma is described, emphasizing its characteristics: resolution, dead time and the pulse pile-up distortion effects on the X-ray spectra. (author)

  8. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.; Harrison, F. A.; Barret, D.; Bellm, E.; Boggs, S. E.; Christensen, Finn Erland; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Middleton, M. J.; Miller, J. M.; Rana, V.; Stern, D.; Zhang, W.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband...

  9. X-rays spectrum and air Kerma during a mammography study; Espectro de los rayos X y Kerma en aire durante un estudio mamografico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico); Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)], e-mail: fermineutron@yahoo.com

    2009-10-15

    In this calculation series was modeled the source of electrons, the target and the filter. Using thermoluminescent dosemeters of ZrO{sub 2}+PTFE the air Kerma was measured in five points located on a phantom made with acrylic and water when it was exposed to a X-rays beam produced by electrons of 24 KeV and 10 m A of current that produces a mammography. The air Kerma values at the entrance surface of the phantom were compared with values calculated by Monte Carlo methods. The air Kerma values measured indicate that approximately the five points receive the same air Kerma, what means that the beam is homogeneous, of the Monte Carlo calculations we find that the center receives a greater dose what implies that the beam is not uniform, the explanation of this fact is attributed to was used a simple model in the calculations, nevertheless, the air Kerma average measured at the entrance surface of the phantom was of 0.96 +{sub -} 0.03 m G, while the other obtained by the calculations was of 0.96 +{sub -} 0.06 mGy, to compare both do not exist significant differences. (author)

  10. THE XMM-NEWTON X-RAY SPECTRA OF THE MOST X-RAY LUMINOUS RADIO-QUIET ROSAT BRIGHT SURVEY-QSOs: A REFERENCE SAMPLE FOR THE INTERPRETATION OF HIGH-REDSHIFT QSO SPECTRA

    International Nuclear Information System (INIS)

    We present the broadband X-ray properties of four of the most X-ray luminous (LX ≥ 1045 erg s-1 in the 0.5-2 keV band) radio-quiet QSOs found in the ROSAT Bright Survey. This uniform sample class, which explores the extreme end of the QSO luminosity function, exhibits surprisingly homogenous X-ray spectral properties: a soft excess with an extremely smooth shape containing no obvious discrete features, a hard power law above 2 keV, and a weak narrow/barely resolved Fe Kα fluorescence line for the three high signal-to-noise ratio (S/N) spectra. The soft excess can be well fitted with only a soft power law. No signatures of warm or cold intrinsic absorbers are found. The Fe Kα centroids and the line widths indicate emission from neutral Fe (E = 6.4 keV) originating from cold material from distances of only a few light days or further out. The well-constrained equivalent widths (EW) of the neutral Fe lines are higher than expected from the X-ray Baldwin effect which has been only poorly constrained at very high luminosities. Taking into account our individual EW measurements, we show that the X-ray Baldwin effect flattens above LX ∼ 1044 erg s-1 (2-10 keV band) where an almost constant (EW) of ∼100 eV is found. We confirm the assumption of having very similar X-ray active galactic nucleus properties when interpreting stacked X-ray spectra. Our stacked spectrum serves as a superb reference for the interpretation of low S/N spectra of radio-quiet QSOs with similar luminosities at higher redshifts routinely detected by XMM-Newton and Chandra surveys.

  11. X-ray spectra of bursting neutron stars

    International Nuclear Information System (INIS)

    The global properties of type-I x-ray bursts can be successfully accounted for by the thermonuclear shell flash model of accreting neutron stars. According to this model, the luminosity of a relatively large burst approaches to the Eddington luminosity. We calculate the atmospheric structure and the photon energy spectrum of x-ray bursting neutron star taking account of comptonization. From the x-ray spectrum, theoretical color temperature-luminosity diagram is obtained. Observational color temperature-luminosity diagram of x-ray burster is constructed using data of Japanese x-ray sutellite Tenma. Comparing our theoretical diagram with observational ones, we can estimate a mass-radius relation of neutron stars and distances to the galactic center. (Mori, K.)

  12. Synthesis conductivity, and X-ray photoelectron spectrum of Bi sub 2 Sr sub 2 Cu sub 7+X. A new ternary bismuth-oxide system exhibiting metallic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Porter, L.C.; Appleman, E.; Beno, M.A.; Cariss, C.S.; Carlson, K.D.; Cohen, H.; Geiser, U.; Thorn, R.J.; Williams, J.M.

    1989-01-01

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxides, Bi{sub 2}Sr{sub 2}Cu{sub 2}O{sub 7+x}, are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe. AC resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An X-ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed-valent species. The XPS spectrum of the Bi 4f orbital electrons in the oxides was nearly identical to that observed in Bi{sub 2}O{sub 3}, with no evidence of any Bi{sup 5+}. 8 refs., 3 figs.

  13. Investigation of stability and x-ray spectrum in gas-puff z-pinch plasmas diriven by inductive energy storage pulsed power generator with a plasma opening switch

    International Nuclear Information System (INIS)

    Gas-puff z-pinch plasmas are driven by an inductive voltage adder - inductive energy storage pulsed power generator ''ASO-X''. ASO-X has the performance of the maximum output voltage and current are 180 kV and 400 kA respectively and can provide a fast rise time current with operating POS. The stability of the plasma column, spectrum radiated from z-pinch plasmas and the spatial distribution of hot spots are investigated in the case with and without operating POS. By driving ASO-X with operating POS the kink instability is restrained and the stability of plasma column is improved about three times in regard to the average dispersion. Furthermore the duration of soft x-ray radiation is increased and the spatial distribution of hot spots is 50% improved with regard to kurtosis of the intensity profile of pinhole photographs compared to those without operating POS. (author)

  14. Investigation of stability and x-ray spectrum in gas-puff z-pinch plasmas diriven by inductive energy storage pulsed power generator with a plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, K.; Fukudome, I. [Yatsushiro National College of Technology, Dept. of Mechanical and Electrical Engineering, Yatsushiro, Kumamoto (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto Univ., Dept. of Electrical and Computer Engineering, Kumamoto (Japan)

    2002-06-01

    Gas-puff z-pinch plasmas are driven by an inductive voltage adder - inductive energy storage pulsed power generator ''ASO-X''. ASO-X has the performance of the maximum output voltage and current are 180 kV and 400 kA respectively and can provide a fast rise time current with operating POS. The stability of the plasma column, spectrum radiated from z-pinch plasmas and the spatial distribution of hot spots are investigated in the case with and without operating POS. By driving ASO-X with operating POS the kink instability is restrained and the stability of plasma column is improved about three times in regard to the average dispersion. Furthermore the duration of soft x-ray radiation is increased and the spatial distribution of hot spots is 50% improved with regard to kurtosis of the intensity profile of pinhole photographs compared to those without operating POS. (author)

  15. NuSTAR study of Hard X-Ray Morphology and Spectroscopy of PWN G21.5-0.9

    CERN Document Server

    Nynka, Melania; Reynolds, Stephen P; An, Hongjun; Baganoff, Frederick K; Boggs, Steven E; Christensen, Finn E; Craig, William W; Gotthelf, Eric V; Grefenstette, Brian W; Harrison, Fiona A; Krivonos, Roman; Madsen, Kristin K; Mori, Kaya; Perez, Kerstin; Stern, Daniel; Wik, Daniel R; Zhang, William W; Zoglauer, Andreas

    2014-01-01

    We present NuSTAR high energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5-0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies NuSTAR clearly detects non-thermal emission up to ~20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at ~9 keV that cannot be reproduced by current SED models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, $L(E) \\propto E^{...

  16. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)

    2012-10-20

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.

  17. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  18. NUSTAR AND XMM-NEWTON OBSERVATIONS OF THE EXTREME ULTRALUMINOUS X-RAY SOURCE NGC 5907 ULX1: A VANISHING ACT

    International Nuclear Information System (INIS)

    We present results obtained from two broadband X-ray observations of the extreme ultraluminous X-ray source (ULX) NGC 5907 ULX1, known to have a peak X-ray luminosity of ∼5 × 1040 erg s–1. These XMM-Newton and NuSTAR observations, separated by only ∼4 days, revealed an extreme level of short-term flux variability. In the first epoch, NGC 5907 ULX1 was undetected by NuSTAR, and only weakly detected (if at all) with XMM-Newton, while in the second NGC 5907 ULX1 was clearly detected at high luminosity by both missions. This implies an increase in flux of ∼2 orders of magnitude or more during this ∼4 day window. We argue that this is likely due to a rapid rise in the mass accretion rate, rather than to a transition from an extremely obscured to an unobscured state. During the second epoch we observed the broadband 0.3-20.0 keV X-ray luminosity to be (1.55 ± 0.06) × 1040 erg s–1, similar to the majority of the archival X-ray observations. The broadband X-ray spectrum obtained from the second epoch is inconsistent with the low/hard accretion state observed in Galactic black hole binaries, but is well modeled with a simple accretion disk model incorporating the effects of photon advection. This strongly suggests that when bright, NGC 5907 ULX1 is a high-Eddington accretor

  19. Soft X-ray astronomy using grazing incidence optics

    International Nuclear Information System (INIS)

    The instrumental background of X-ray astronomy with an emphasis on high resolution imagery is outlined. Optical and system performance, in terms of resolution, are compared and methods for improving the latter in finite length instruments described. The method of analysis of broadband images to obtain diagnostic information is described and is applied to the analysis of coronal structures

  20. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    Science.gov (United States)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  1. X-ray lithography sources

    International Nuclear Information System (INIS)

    Synchrotron from dipole magnets in electron storage rings has emerged as a useful source of x-rays for lithography. To meet the need for these sources numerous groups around the world have embarked on projects to design and construct storage rings for x-ray lithography. Both conventional electromagnets as well as superconducting (SC) dipoles have been incorporated into the various designs. An overview of the worldwide effort to produce commercial x-ray sources will be presented. To better illustrate the elements involved in these sources a closer examination of the Superconducting X-ray Lithography Source Project (SXLS) at BNL will be presented. 11 refs., 1 fig., 5 tabs

  2. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  4. Application of deconvolution techniques in X-ray spectra

    International Nuclear Information System (INIS)

    The decay of Am-241, like that of Pu-239 is accompanied by the characteristic X-ray emission in this case, the Np-237. Being atomic number elements in a row, the X-ray emission of U (Z = 92) and Np (Z93) are very similar energies and thus inevitably overlapping photopeaks in the spectrum. This raises the question whether it is appropriate to try to separate their respective contributions in the spectrum, using spectral deconvolution techniques.

  5. X-Ray Spectroscopy Using Low Temperature Detectors

    Science.gov (United States)

    Porter, Frederick

    2011-01-01

    After several decades of development, a significant amount of the effort in low temperature detectors (LTDs) is concentrated on deploying real-world experiments. This has resulted from a great deal of basic detector physics performed by several generations of students, post-docs, and researchers. One of the most fruitful applications of LTDs is in non-dispersive x-ray spectroscopy. LTD x-ray spectrometers are broadband, efficient, moderately high-resolution, and can handle moderately high count rates. However, they require significantly more power, mass, and infrastructure compared to traditional solid state x-ray spectrometers, and cannot achieve, at least at low energies, the resolving powers achieved with dispersive spectrometers. In several fields, however, LTDs have or will make a significant contribution. In this review, we will discuss x-ray spectroscopy in general, the fields of science where LTDs are making a significant impact, and some of the current and near-term LTD spectrometers.

  6. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  7. Soft X-ray Calibration of the Co/C Multilayer Mirrors for the Objective Crystal Spectrometer on the Spectrum Röntgen-Gamma Satellite

    DEFF Research Database (Denmark)

    Abdali, Salim; Tarrio, C.; Christensen, Finn Erland;

    1996-01-01

    The objective crystal spectrometer (OXS) on the forthcoming Spectrum-Roentgen-Gamma satellite is designed to carry three kinds of crystals: LiF(220), Si(111) and RAP(001), placed in front of the SODART telescope. Thirty six super polished (RMS roughness <0.1nm) Si(111) substrates were coated with...

  8. Coherent hard x-ray focusing optics and applications

    International Nuclear Information System (INIS)

    Coherent hard x-ray beams with a flux exceeding 109 photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed

  9. NuSTAR, XMM-Newton and Suzaku Observations of the Ultraluminous X-Ray Source Holmberg II X-1

    DEFF Research Database (Denmark)

    Walton, D. J.; Middleton, M. J.; Rana, V.;

    2015-01-01

    rate and possibly exceeds it. The soft X-ray spectrum ( keV) appears to be dominated by two blackbody-like emission components, the hotter of which may be associated with an accretion disk. However, all simple disk models under-predict the NuSTAR data above ~10 keV and require an additional emission......We present the first broadband 0.3-25.0 keV X-ray observations of the bright ultraluminous X-ray source (ULX) Holmberg II X-1, performed by NuSTAR, XMM-Newton, and Suzaku in 2013 September. The NuSTAR data provide the first observations of Holmberg II X-1 above 10 keV and reveal a very steep high...

  10. Ariel 5 hard X-ray observations

    International Nuclear Information System (INIS)

    Results from the hard X-ray detector (8cm2 area, 80 f.w.h.m. field of view, energy range 26-1200 keV) are reviewed in the context of observations by other groups. At least three different classes of galactic sources are studied by this detector. In the first, magnetospheric control of the emission, which seems to be a modified thermal spectrum is dominant. Examples are Cen X-3, Her X-1, AO535 + 26 and GX 301 - 2. So far, only direct evidence on the magnetic field strength from cyclotron line emission has come from Her X-1. In the second, the characteristics are a power law spectrum extending to over about 200 keV and fast aperiodic time variations with little evidence of the presence of strong magnetic fields. Inverse Compton production of the X-ray photons seems important here. Examples are Cyg X-1, AO620-00, Ser X-1 and perhaps Cir X-1, although this last object suffers periodic heavy low energy absorption. The third is the white dwarf emitted class, e.g. AM Herculis and possibly AM Canum Venaticorum; sources in this class surprisingly tend to exhibit a power law rather than a thermal spectral shape. Sco X-1 and Sco X-2 are perhaps a fourth class of object. Hard X-ray upper limits obtained from a survey of COS-B γ-ray source positions are discussed. Further attempts to find hard X-ray emission from the galactic centre X-ray burst sources are mentioned. (author)

  11. Low-temperature detectors in X-ray astronomy

    International Nuclear Information System (INIS)

    The most compelling nature of X-ray astronomy is its richness and scale. Almost every observable object in the sky either naturally emits X-ray radiation or can be observed through X-ray absorption. Current X-ray observatories such as Chandra and XMM-Newton have considerably advanced our understanding of many of these systems by using imaging X-ray cameras and dispersed X-ray spectrometers. However, it is the combination of these two techniques to provide a true broadband, high spectral-resolution, imaging spectrometer that will drive the next revolution in X-ray astronomy. This is where Low-temperature detectors (LTDs) can play a key role but also where the science will continuously challenge the technology. In this brief overview we will explore the constraints that both the science goals and the space environment place on the implementation of LTDs, how current missions such as XQC and Astro-E2 have met these challenges, and where future missions such as Constellation-X, XEUS, and NeXT will drive LTD instruments to a much larger scale. Finally, we will address scaling issues in current LTD detectors and where the LTD community needs to proceed to address both the science goals and expectations of the astrophysics community

  12. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    OpenAIRE

    Roberts, T P; Colbert, E. J. M.

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly...

  13. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    Science.gov (United States)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  14. Radioisotope x-ray analysis

    International Nuclear Information System (INIS)

    Radioisotope x-ray fluorescence and x-ray preferential absorption (XRA) techniques are used extensively for the analysis of materials, covering such diverse applications as analysis of alloys, coal, environmental samples, paper, waste materials, and metalliferous mineral ores and products. Many of these analyses are undertaken in the harsh environment of industrial plants and in the field. Some are continuous on-line analyses of material being processed in industry, where instantaneous analysis information is required for the control of rapidly changing processes. Radioisotope x-ray analysis systems are often tailored to a specific but limited range of applications. They are simpler and often considerably less expensive than analysis systems based on x-ray tubes. These systems are preferred to x-ray tube techniques when simplicity, ruggedness, reliability, and cost of equipment are important; when minimum size, weight, and power consumption are necessary; when a very constant and predictable x-ray output is required; when the use of high-energy x-rays is advantageous; and when short x-ray path lengths are required to minimize the absorption of low-energy x-rays in air. This chapter reviews radioisotope XRF, preferential absorption, and scattering techniques. Some of the basic analysis equations are given. The characteristics of radioisotope sources and x-ray detectors are described, and then the x-ray analytical techniques are presented. The choice of radioisotope technique for a specific application is discussed. This is followed by a summary of applications of these techniques, with a more detailed account given of some of the applications, particularly those of considerable industrial importance. 79 refs., 28 figs., 7 tabs

  15. Powerful jets from black hole X-ray binaries in Low/Hard X-ray states

    OpenAIRE

    Fender, R. P.

    2000-01-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the Low/Hard X-ray state, which is characterised in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that spectral index alpha >= 0) radio spectrum in this state, markedly di...

  16. Blazar microvariability at hard X-rays

    OpenAIRE

    Foschini, L.; Gliozzi, M.; Pian, E.; Tagliaferri, G.; Tavecchio, F.; Bianchin, V.; L. Maraschi(INAF National Institute for Astrophysics, I-00136 Rome, Italy); Sambruna, R. M.; Di Cocco, G.; Ghisellini, G.; Malaguti, G.; Tosti, G.; Treves, A.

    2007-01-01

    Blazars are known to display strong and erratic variability at almost all the wavelengths of electromagnetic spectrum. Presently, variability studies at high-energies (hard X-rays, gamma-rays) are hampered by low sensitivity of the instruments. Nevertheless, the latest generation of satellites (INTEGRAL, Swift) have given suggestions not yet fully confirmed of variability on intraday timescales. Some specific cases recently observed are presented and physical implications are discussed (e.g. ...

  17. Suzaku view of the Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Epili, Prahlad

    2016-04-01

    We report the timing and spectral properties of the Be/X-ray binary pulsar GX 304-1 using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ˜275 s were clearly detected in the light curves from both observations. Pulse profiles were found to be strongly energy-dependent. During the 2010 observation, the prominent dips seen in soft X-ray (≤10 keV) pulse profiles were found to be absent at higher energies. However, during the 2012 observation, the pulse profiles were complex as a result of the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies (>35 keV). A phase shift of ˜0.3 was detected while comparing the phase of the main dip in the pulse profiles below and above ˜35 keV. The broad-band energy spectrum of the pulsar was well described by a partially absorbed negative and positive power law with exponential cut-off (NPEX) model with 6.4-keV iron line and a cyclotron absorption feature. The energy of the cyclotron absorption line was found to be ˜53 and 50 keV for the 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between the cyclotron line energy and luminosity, and the significant pulse-phase variation of cyclotron parameters are discussed from the perspective of theoretical models on the cyclotron absorption line in X-ray pulsars.

  18. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  19. The Swift X-ray Telescope

    Science.gov (United States)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Turner, M.; Willingale, R.; Holland, A.; Citterio, O.; Chincarini, G.; Campana, S.; Tagliaferri, G.; Swift XRT Team

    1999-12-01

    The Swift Gamma Ray Burst Explorer will be launched in 2003 to observe hundreds of gamma ray bursts per year and study their X-ray and optical afterglows, using a multiwavelength complement of three instruments: a wide-field Burst Alert Telescope (BAT), an X-Ray Telescope (XRT), and a UV/Optical Telescope (UVOT). The XRT is designed to study X-ray counterparts of the gamma ray bursts and their afterglows, beginning 20--70 s from the time of the burst, and continuing for days or weeks. The XRT utilizes a superb mirror set built for JET-X (Citterio et al. 1996) and a state-of-the-art XMM/EPIC CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of 110 cm2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 15 arcsec HPD. The sensitivity is 2 x 10-14 erg cm-2 s-1 in 104 seconds. The telescope electronics will be designed to provide automated source detection and position reporting, with a position good to 2.5 arcseconds transmitted to the ground within two minutes of the burst detection. The XRT will operate in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning within about a minute after the burst and will follow each burst until it fades from view, typically monitoring 2-3 ``old'' bursts at a time while waiting for a new burst to be detected. This work is supported at Penn State by NASA grant NAG5-8401 and at Leicester University by funding from PPARC.

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose of ionizing ...

  1. X-ray Dynamic Defectoscopy

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Visschers, J.; Jakůbek, J.; Ponchut, C.

    Orosei : IMC S.r.l., 2001. s. 47. [International Workshop on Radiation Imaging Detectors /3./. 23.09.2001-27.09.2001, Orosei] R&D Projects: GA ČR GA106/00/D064 Institutional research plan: CEZ:MSM 210000018 Keywords : X-ray Defectoscopy * Damage * X-ray Detectors Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. X-ray diagnostic equipment

    International Nuclear Information System (INIS)

    An X-ray tube is connected to several different image processing devices in X-ray diagnostic equipment. Only a single organ selector is allocated to it, for which the picture parameters for each image processing device are selected. The choice of the correct combination of picture parameters is made by means of a selector switch. (DG)

  3. X-ray tube arrangement

    International Nuclear Information System (INIS)

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is the procedure performed? The technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  6. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  7. High flux coherent supercontinuum soft X-ray source driven by a single-stage 10 mJ, kHz, Ti:sapphire laser amplifier

    CERN Document Server

    Ding, Chengyuan; Fan, Tingting; Hickstein, Daniel D; Popmintchev, Tenio; Zhang, Xiaoshi; Walls, Mike; Murnane, Margaret M; Kapteyn, Henry C

    2014-01-01

    We demonstrate the highest flux tabletop source of coherent soft X-rays to date, driven by a single-stage 10 mJ Ti:sapphire regenerative amplifier at 1 kHz. We first down-convert the laser to 1.3 um using a parametric amplifier, before up-converting it to soft X-rays using high harmonic generation in a high-pressure, phase matched, hollow waveguide geometry. The resulting optimally phase matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 10^6 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 10^9 photons/s/1% bandwidth, or approximately a three order-of-magnitude increase compared with past work. Finally, using this broad bandwidth X-ray source, we demonstrate X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure.

  8. Measurement of the 1s2l3l’ Dielectronic Recombination Emission Line in Li-Like Ar and Its Contribution to the Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    Science.gov (United States)

    Gall, Amy Christina; Silwal, Roshani; Dreiling, Joan; Borovik, Alexander; Ajello, Marco; Gillaspy, John; Kilgore, Ethan; Ralchenko, Yuri; Takacs, Endre

    2016-06-01

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, we investigated the resonant DR process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l’ was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our investigation. Apart from the mentioned transitions, we have found other features that can be possible contributors to the emission in this region. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. The DR cross sections were measured and normalized to the well-known photoionization cross sections using radiative recombination peaks in the measured spectra. Corrections for different instrument and method related effects such as charge state balance, electron beam space charge, and charge exchange have been considered. Our high-resolution crystal spectra allowed the experimental separation of features that are less than 2 eV apart. We have used a collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for the corrections and uncertainties. Experimental results were compared to the AtomDB theoretical emission lines used to fit the galaxy cluster spectra containing the unidentified 3.57 keV line. These data points can be added benchmarks in the database and used to accurately interpret spectra from current x-ray satellites, including Hitomi, Chandra, and XMM-Newton x-ray observatories.[1] Bulbul E. et al., 2014, ApJ, 789, 13[2] Ralchenko Yu. et al., 2014, JQSRT, 71

  9. EXAMINING THE BROADBAND EMISSION SPECTRUM OF WASP-19b: A NEW z-BAND ECLIPSE DETECTION

    International Nuclear Information System (INIS)

    WASP-19b is one of the most irradiated hot-Jupiters known. Its secondary eclipse is the deepest of all transiting planets and has been measured in multiple optical and infrared bands. We obtained a z-band eclipse observation with a measured depth of 0.080% ± 0.029%, using the 2 m Faulkes Telescope South, which is consistent with the results of previous observations. We combined our measurement of the z-band eclipse with previous observations to explore atmosphere models of WASP-19b that are consistent with its broadband spectrum. We use the VSTAR radiative transfer code to examine the effect of varying pressure-temperature profiles and C/O abundance ratios on the emission spectrum of the planet. We find that models with super-solar carbon enrichment best match the observations, which is consistent with previous model retrieval studies. We also include upper atmosphere haze as another dimension in the interpretation of exoplanet emission spectra and find that particles <0.5 μm in size are unlikely to be present in WASP-19b

  10. Nature of Hard X-ray Source from Optical Identification of the ASCA Large Sky Survey

    OpenAIRE

    Akiyama, M.; Ohta, K.; Yamada, T.; Ueda, Y.; Takahashi, T.; M. SAKANO; Tsuru, T.; Lehmann, I.; G. Hasinger(JHU)

    1998-01-01

    We present results of optical identification of the ASCA Large Sky Survey. X-ray sources which have hard X-ray spectra were identified with type-2 AGN at redshifts smaller than 0.5. It is supported that the absorbed X-ray spectrum of type-2 AGN makes the Cosmic X-ray Background harder in the hard X-ray band than type-1 AGN, which is main contributer in the soft X-ray band. Absence of type-2 AGN at redshift larger than 1 in the identified sample, which contrasts to the existence of 6 broad-lin...

  11. The variable hard X-ray emission of NGC 4945 as observed by NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Puccetti, Simonetta [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Comastri, Andrea [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Fiore, Fabrizio [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (RM) (Italy); Arévalo, Patricia; Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Risaliti, Guido [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Brandt, William N.; Luo, Bin [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Alexander, David M.; Gandhi, Poshak; Lansbury, George B. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Boggs, Steve E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Koss, Michael J. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Matt, Giorgio [Dipartimento di Matematica e Fisica, Universit' a Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-09-20

    We present a broadband (∼0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τ{sub Thomson} ∼ 2.9, and a global covering factor for the circumnuclear gas of ∼0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ∼0.1-0.3 λ{sub Edd} depending on the flux state. The substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L {sub Edd} values for obscured AGNs.

  12. The Variable Hard X-Ray Emission of NGC4945 as Observed by NuSTAR

    Science.gov (United States)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arevalo, Patricia; Risaliti, Guido; Bauer, Franz E.; Brandt, William N.; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.; Boggs, Steve E.; Christensen, Finn E.; Craig, William W.; Gandhi, Poshak; Hailey, Charles J.; Koss, Michael R.; Lansbury, George B.; Luo, Bin; Madejski, Greg M.; Matt, Giorgio; Walton, Dominic J.; Zhang, Will

    2014-01-01

    We present a broadband (approx. 0.5 - 79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and spectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (> 10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of Thomson approx.2.9, and a global covering factor for the circumnuclear gas of approx. 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200 - 300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range approx. 0.1 - 0.3 lambda(sub Edd) depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L(sub Edd) values for obscured AGNs.

  13. Asian conference on x-rays and related techniques in research and industry. Proceedings

    International Nuclear Information System (INIS)

    This proceedings compile the paper presented at the conference. The papers for presentation are from wide spectrum stressing the interdisciplinary nature of the conference i.e. x-ray fluorescence spectrometry (XRF), x-ray diffraction (XRD), TEM, scanning electron microscope (SEM), energy dispersive x-ray (EDX), auger electron microscopy, electron back scatter diffraction (EBSD)

  14. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  15. X-Ray Absorption and Scattering by Interstellar Grains

    CERN Document Server

    Hoffman, John A

    2015-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the following false assumptions: (1) the grains are "optically thin" at the observed X-ray wavelengths, and (2) scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open...

  16. Models for x-ray emission from Tycho's remnant

    International Nuclear Information System (INIS)

    The authors reexamine the x-ray emission from Tycho's remnant using results from hydrodynamic models computed with a detailed spherically symmetric code. The observed synchrotron radio contours appear to require a cloudy circumstellar medium. The authors explore the x-ray emission properties of similar models. They find that they tend to produce broad shells of x-ray emission that resemble the observed x-ray observations, but it has little similarity to the evolution of remnants in cloudy media dominated by thermal conduction. More work needs to be done to ensure that the spectrum as well as the x-ray map can be modeled with the same cloudy circumstellar medium, although we believe it will not be difficult to obtain as good as statistical agreement with the spectral data as other models have achieved

  17. Evidence for a resonant cyclotron line in IGR J16493-4348 from the Swift-BAT hard X-ray survey

    CERN Document Server

    D'Aì, A; La Parola, V; Segreto, A; Di Salvo, T; Iaria, R; Robba, N R; 10.1051/0004-6361/201117035

    2012-01-01

    Resonant absorption cyclotron features are a key diagnostic tool to directly measure the strength of the magnetic field of accreting neutron stars. However, typical values for cyclotron features lie in the high-energy part of the spectrum between 20 keV and 50 keV, where detection is often damped by the low statistics from single pointed observations. We show that long-term monitoring campaign performed with Swift-BAT of persistently, but faint, accreting high-mass X-ray binaries is able to reveal in their spectra the presence of cyclotron features. We extracted the average Swift-BAT 15-150 keV spectrum from the 54 months long Swift-BAT survey of the high-mass X-ray source IGR J16493-4348. To constrain the broadband spectrum we used soft X-ray spectra from Swift-XRT and Suzaku pointed observations. We model the spectra using a set of phenomenological models usually adopted to describe the energy spectrum of accreting high-mass X-ray binaries; irrespective of the models we used, we found significant improvemen...

  18. An X-ray variable absorber within the Broad Line Region in Fairall 51

    CERN Document Server

    Svoboda, Jiri; Guainazzi, Matteo; Longinotti, Anna Lia; Piconcelli, Enrico; Wilms, Joern

    2015-01-01

    Fairall 51 is a polar-scattered Seyfert 1 galaxy, a type of active galaxies believed to represent a bridge between unobscured type-1 and obscured type-2 objects. Fairall 51 has shown complex and variable X-ray absorption but only little is known about its origin. In our research, we observed Fairall 51 with the X-ray satellite Suzaku in order to constrain a characteristic time-scale of its variability. We performed timing and spectral analysis of four observations separated by 1.5, 2 and 5.5 day intervals. We found that the 0.5-50 keV broadband X-ray spectra are dominated by a primary power-law emission (with the photon index ~ 2). This emission is affected by at least three absorbers with different ionisations (log(xi) ~ 1-4). The spectrum is further shaped by a reprocessed emission, possibly coming from two regions -- the accretion disc and a more distant scattering region. The accretion disc emission is smeared by the relativistic effects, from which we measured the spin of the black hole as a ~ 0.8 (+-0.2...

  19. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  20. Elemental analysis using X - ray energy dispersive method

    International Nuclear Information System (INIS)

    The technique of x-ray fluorescence analysis (XRFA) involves creation of vacancies in atomic shells of a sample by variety of excitation methods (α ,β ,γ,protons, heavy particles and x - rays) and observation of characteristic x - rays emitted when the vacancies are filled from outer shells. The sensitivity of this technique depends on the ability of excitation methods and the accuracy of measuring the x - rays emitted from the specimen. The energy dispersive x - ray fluorescence provides a convenient nondestructive analytical tool for multielemental analysis of specimens . It has good ability to detect all the x-ray lines in the spectrum, simultaneously, with high resolution. Measurements were taken by the aid of x-ray spectrometer and a vacuum chamber for the assayed samples. The spectrometer consists of a germanium detector and a multichannel pulse height analyzer. The vacuum chamber contains two 239 Pu - sources (each of 10 μCi activity). It is evacuated by a vacuum system,and a Kapton foil (130μm) was fitted in the chamber as x-ray window

  1. Discovery of X-rays from Mars with Chandra

    CERN Document Server

    Dennerl, K

    2002-01-01

    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scattering of solar X-rays in the upper Mars atmosphere. The X-ray spectrum is dominated by a single narrow emission line, which is most likely caused by O-K_alpha fluorescence. No evidence for temporal variability is found. This is in agreement with the solar X-ray flux, which was almost constant during the observation. In addition to the X-ray fluorescence, there is evidence for an additional source of X-ray emission, indicated by a faint X-ray halo which can be traced to about three Mars radii, and by an additional component ...

  2. X-ray quasars and the X-ray background

    International Nuclear Information System (INIS)

    The Einstein X-ray observations of a sample of 202 radio-and optically-selected quasars due to Ku, Helfand and Lucy and to Zamorani et al. are analysed. Correlations between X-ray, optical and radio luminosities are examined. The contribution of radio-loud quasars to the 2-keV X-ray background is estimated using high-frequency radio-source counts, and the contribution due to radio-quiet, optically bright quasars using optical counts. It is shown that radio-loud quasars and radio-quiet optically bright quasars together contribute approximately 15 per cent of the observed 2-keV X-ray background. The contribution of optically faint radio-quiet quasars is uncertain, but may be limited to a maximum of approximately 30 per cent if recent indications of a flattening in optical counts at faint magnitudes are correct. (author)

  3. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology; Simulacion Monte Carlo de la interaccion del espectro de rayos X con el tejido humano, en el rango de energias de diagnostico radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L., E-mail: fredycayllahua@gmail.com [Universidad Nacional de San Agustin, Area de Fisica Medica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  4. X-ray diffraction apparatus

    International Nuclear Information System (INIS)

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  5. X-ray crystal interferometers

    International Nuclear Information System (INIS)

    Various configurations of the X-ray crystal interferometer are reviewed. The interferometer applications considered include metrology, the measurement of fundamental physical constants, the study of weakly absorbing phase objects, time-resolved diagnostics, the determination of hard X-ray beam parameters, and the characterization of structural defects in the context of developing an X-ray Michelson interferometer. The three-crystal Laue interferometer (LLL-interferometer), its design, and the experimental opportunities it offers are given particular attention. (instruments and methods of investigation)

  6. Recent Advances in X-ray Observations of Cataclysmic Variables

    OpenAIRE

    Mukai, K.

    2004-01-01

    A personal selection of noteworthy X-ray results on CVs are presented, with emphasis on XMM-Newton and Chandra observations. Progressing roughly from broad-band view to narrow-band, high spectral resolution studies, I summarize: the energy balance of polars; X-ray confirmation of IPs; eclipses in non-magnetic CVs; search for magnetism in "non-magnetic" CVs; multi-temperature plasma emission from the boundary layer; complex absorption in magnetic CVs; temperature and density diagnostics; and X...

  7. Total reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    In the past few years, total reflection X-ray flourescence analysis (TXRF) has found an increasing number of assignments and applications. Experience of trace element analysis using TXRF and examples of applications are already widespread. Therefore, users of TXRF had the opportunity of an intensive exchange of their experience at the 1st workshop on total reflection X-ray fluorescence analysis which took place on May 27th and 28th 1986 at the GKSS Research Centre at Geesthacht. In a series of lectures and discussions dealing with the analytical principle itself, sample preparation techniques and applications as well as comuter programs for spectrum evaluation, the present state of development and the range of applications were outlined. 3 studies out of a total of 14 were included separately in the INIS and ENERGY databases. With 61 figs., 12 tabs

  8. X-Ray Spectroscopy of Photoionized Plasmas

    Science.gov (United States)

    Kallman, Tim

    2008-01-01

    Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.

  9. Research of multilayers in EUV,soft X-ray and X-ray

    Institute of Scientific and Technical Information of China (English)

    WANG Zhan-shan; LI Cun-xia; WU Yong-rong; WANG Bei; QIN Shu-jin; CHEN Ling-yan; WANG Feng-li; ZHANG Zhong; WANG Hong-chang; WU Wen-juan; ZHANG Shu-min; XU Yao; GU Zhong-xiang; CHENG Xin-bin

    2005-01-01

    To develop beam splitters for soft X-ray laser Michelson interferometer at 13.9 nm, Mo/Si multilayers of 100 nm thickness deposited on both sides of silicon nitride were fabricated by using DC magnetron sputtering. Initial evaluation of their reflectivity and transmission showed that reflectivity and transmission were above 10% and 25%. The broadband analyzers have been designed, fabricated and characterized for 13~20 nm polarization measurements. The measured results are in good agreement with the design. The supermirrors with different angular intervals at 0.154 nm have been designed, fabricated and characterized.

  10. X-ray and optical counterparts of hard X-ray selected sources from the SHEEP survey: first results

    CERN Document Server

    Nandra, K; Brotherton, M; Papadakis, I E

    2004-01-01

    We present followup observations of five hard X-ray sources from the ASCA 5-10 keV SHEEP survey, which has a limiting flux of $\\sim 10^{-13}$ erg cm$^{-2}$ s$^{-1}$. Chandra data have been obtained to improve the X-ray positions from a few arcmin to $<1''$, which allows unambiguous optical identification. While the objects almost certainly house AGN based on their X-ray luminosity, optical spectroscopy reveals a variety of properties. The identifications indicate that the SHEEP survey samples the same populations as deeper surveys which probe the origin of the X-ray background, but because the SHEEP sources are far brighter, they are more amenable to detailed followup work. We find a variety of classifications and properties, including a type II QSO, a galaxy undergoing star formation, and a broad-line AGN which has a very hard X-ray spectrum, indicating substantial absorption in the X-ray but none in the optical. Two objects have X-ray/optical flux ratios which, were they at an X-ray flux level typical of...

  11. X-ray spectral diagnostics of activity in massive stars

    CERN Document Server

    Cohen, David H; Leutenegger, Maurice A

    2010-01-01

    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars zeta Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).

  12. Soft X-ray Absorption Edges in LMXBs

    Science.gov (United States)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  13. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Arévalo, P.; Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Puccetti, S. [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, M. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brightman, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching bei München (Germany); Christensen, F. E. [Danish Technical University, Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Gandhi, P. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory and Department of Physics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  14. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    International Nuclear Information System (INIS)

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 1024 cm–2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 1042 erg s–1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and LX versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  15. Surface-Enhanced X-Ray Fluorescence

    Science.gov (United States)

    Anderson, Mark

    2010-01-01

    Surface-enhanced x-ray fluorescence (SEn-XRF) spectroscopy is a form of surface- enhanced spectroscopy that was conceived as a means of obtaining greater sensitivity in x-ray fluorescence (XRF) spectroscopy. As such, SEn-XRF spectroscopy joins the ranks of such other, longer-wavelength surface-enhanced spectroscopies as those based on surface-enhanced Raman scattering (SERS), surface-enhanced resonance Raman scattering (SERRS), and surfaceenhanced infrared Raman absorption (SEIRA), which have been described in previous NASA Tech Briefs articles. XRF spectroscopy has been used in analytical chemistry for determining the elemental compositions of small samples. XRF spectroscopy is rapid and quantitative and has been applied to a variety of metal and mineralogical samples. The main drawback of XRF spectroscopy as practiced heretofore is that sensitivity has not been as high as required for some applications. In SEn-XRF as in the other surface-enhanced spectroscopies, one exploits several interacting near-field phenomena, occurring on nanotextured surfaces, that give rise to local concentrations of incident far-field illumination. In this case, the far-field illumination comes from an x-ray source. Depending on the chemical composition and the geometry of a given nanotextured surface, these phenomena could include the lightning-rod effect (concentration of electric fields at the sharpest points on needlelike surface features), surface plasmon resonances, and grazing incidence geometric effects. In the far field, the observable effect of these phenomena is an increase in the intensity of the spectrum of interest - in this case, the x-ray fluorescence spectrum of chemical elements of interest that may be present within a surface layer at distances no more than a few nanometers from the surface.

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x- ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and ...

  18. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG)

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and ... to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... like a photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...