WorldWideScience

Sample records for briquettes sulfur dioxide

  1. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  2. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  3. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  4. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  5. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  6. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  7. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  8. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  9. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  10. Determination of sulfur dioxide by a radiorelease method

    Energy Technology Data Exchange (ETDEWEB)

    Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1983-04-13

    A radiorelease technique for the determination of sulfur dioxide using radiochlor /sup 36/Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined.

  11. Determination of sulfur dioxide by a radiorelease method

    International Nuclear Information System (INIS)

    Sriman Narayanan, S.; Rao, V.R.S.

    1983-01-01

    A radiorelease technique for the determination of sulfur dioxide using radiochlor 36 Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined. (author)

  12. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for...

  13. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  14. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  15. Sulfur dioxide: foe or friend for life?

    Science.gov (United States)

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  16. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    Science.gov (United States)

    1991-11-01

    AD-A274 908IIIIlIIIE McDonald , P. Harris, F. Goebel, S. Hossi ierra, M. Guentert, C. Todino 7 ad r nse TECHNICAL PRODUCTS INCY DTIC ELECTE JAN26 1994...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald , P. Harris, F. Goebel, S. Hossain...20 minutes. The electrochemical measurements were carried out using a I Starbuck 20-station cycler system which is connected to a computer to monitor

  17. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  18. Mechanism of the toxic action of sulfur dioxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Miroshnikova, A T; Firger, V V; Belokrylova, L M

    1975-01-01

    Experiments were performed to determine the effects of sulfur dioxide on U CO2 metabolism and photosynthesis in fescue and timothy grass and in maple and barberry branches. The free radical inhibitors, ascorbic acid and thiourea, were found to decrease the damaging effects of the sulfur dioxide. These results indicated that the processes involved are of the free-radical chain type. Even at low sulfur dioxide concentrations, photosphosphorylation and carbon dioxide assimilation were inhibited. In addition, starch and protein as well as the formation of polymeric substances were also inhibited.

  19. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  20. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  1. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  2. Induction of ovoviviparity in Rhabditis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J T; Tsui, R K

    1968-01-01

    While investigating the influence of atmospheric pollutants on soil and plant microbiotas, ovoviviparity was observed in the saprophagous nematode, Rhabditis sp., after exposure to various concentrations of sulfur dioxide.

  3. Preliminary study of varietal susceptibility to sulfur dioxide

    International Nuclear Information System (INIS)

    Miller, J.E.; Xerikos, P.B.

    1976-01-01

    The injury response of plants to air pollutants, such as sulfur dioxide, is known to vary in severity and type for different varieties or cultivars of a species. Differences in the susceptibility of soybean varieties to sulfur dioxide have previously been noted, but sufficient information is not available concerning the sulfur dioxide resistance of varieties commonly grown in the Midwest. Results are reported from preliminary experiments concerning acute sulfur dioxide effects on 12 soybean varieties. The injury symptoms ranged from cream colored necrotic lesions (generally on younger leaves) to a reddish brown necrotic stipling (on older leaves). Differences in the severity of symptom development for the varieties was evident on both the younger and older leaves. No injury was apparent with three of the varieties

  4. Effects of sulfur dioxide on conifers

    Energy Technology Data Exchange (ETDEWEB)

    Govi, G.; Tagliani, F.; Cimino, A.

    1974-01-01

    Trials on the resistance of several conifer and oak species to the effects of sulfur dioxide at different concentrations and moisture levels were conducted. 72 combinations were experimented. The damages began to appear under the following conditions: Abies alba: 0.3 ppm, 25/sup 0/C, 70% ur after 24 hours; Picea excelsa: 0.3 ppm, 15/sup 0/C, 70-95% ur after 24 hours; Cedrus deodara: 0.3 ppm, 15/sup 0/C, 95% ur after 48 hours; Pinus pinea: 0.3 ppm, 15/sup 0/C, 70-95% after 72 hours; Pinus strobus 0.3 ppm, 25/sup 0/C, 70-95%, after 48 hours; Pinus pinaster: similar to the former; Pinus nigra: 2 ppm, 25/sup 0/C, 70-95%, ur after 5 days; Cupressus arizonica and C. semperivirens: 2 ppm, 25%/sup 0/C, 90% ur after 72 hours; Quercus robur: 5 ppm, 25/sup 0/C, 90% ur, after 10 days. 6 references, 3 figures, 1 table.

  5. Sensing Free Sulfur Dioxide in Wine

    Science.gov (United States)

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  6. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Energy Incorporated. This disapproval does not in and of itself result in the growth restrictions of...

  7. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  8. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  9. Epiphytic lichens as indicators of air pollution by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, G; Rose, F

    1973-01-01

    Epiphytic lichens show specific differential responses to sulfur dioxide in the air, and it has been possible to construct a scale of SO/sub 2/ pollution based upon lichen communities present upon trees. Maps of pollution zones have now been prepared for England, Wales and Northern France. It has proved possible to correlate these zones with mean winter levels of sulfur dioxide measured instrumentally. Laboratory studies indicate the essential validity of this approach. An interesting correlation between air pollution and topography can be demonstrated in much of south-east England.

  10. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  11. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Avraamides, J.; Senanayake, G.; Clegg, R. [A.J. Parker Cooperative Research Centre for Hydrometallurgy, Murdoch University, Perth, WA 6150 (Australia)

    2006-09-22

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25{sup o}C. Alkaline leaching with 6M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30min at 30{sup o}C using 0.1-1.0M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1M to 2M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide. (author)

  12. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  13. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    Science.gov (United States)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  14. Development of environmentally friendly briquettes

    International Nuclear Information System (INIS)

    Kleisa, K.; Lehmann, J.; Verfuss, F.; Simon, G.

    1994-01-01

    The DMT has developed an industrial briquette consisting of about 87% hardcoal, 7% molasses pulp and 6% hydration limestone which meets the requirements of the clean air authority as an environmentally friendly fuel for travelling grate boilers. In extensive tests in a 4.4 MW travelling grate boiler these briquettes with molasses and limestone additives proved to be particularly effective in terms of reducing sulphur dioxide emission in the flue gas. They exhibited good ignition and combustion behaviour as well as a considerable reduction in nitrogen oxide emission. In a large-scale test with 1000 t of briquettes in a 46.5 MW travelling grate furnace it proved possible to confirm the good combustion behaviour and the reduced emission of sulphur oxide and nitrogen oxide in the flue gas. (orig.) [de

  15. Observations of foliar injury to plants by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K.; Chaphekar, S.B.

    1978-01-01

    Morphological and anatomical changes in mature leaves indicated that Raphanus sativus, Commelina benghalensis and Medicago sativa were injured and Pennisetum typhoideum, Alternanthere ficoidea and Mangifera indica (seedlings) were not injured by sulfur dioxide fumigation. The highly susceptible plants like Raphanus, Medicago, and Commelina can be used for monitoring air quality in a polluted atmosphere. Uninjured species like Pennisetum on the other hand, may be grown in polluted areas for maintaining agricultural production. 9 references, 1 table.

  16. Sorbic acid interaction with sulfur dioxide in model food systems

    Energy Technology Data Exchange (ETDEWEB)

    Namor, O G

    1987-01-01

    The first chapter deals with the chemistry of sorbic acid and sulfur dioxide. The second chapter describes a study of the degradation products of sorbic acid, in aqueous systems, in the presence of sulfur dioxide and a possible mechanism for the occurrence of these products is proposed. Chapter three deals with the preparation and degradation of 6-(/sup 13/C)sorbic acid in order to find evidence for, or against, the mechanism proposed in chapter two. It also gives details of syntheses attempted in order to obtain 6- (/sup 13/C)sorbic acid. The interaction of sorbic acid and sulfur dioxide in real food systems is the subject of the fourth chapter. The food systems studied were mayonnaise, tomato puree, orange juice and cottage cheese. The effect of packaging on the rate of degradation of sorbic acid was also investigated. The final chapter deals with a microbiological study of two homologues of sorbic acid, 2,4-heptadienoic acid, 2,4-octadienoic acid. The fungicidal activity of these two compounds, towards selected fungi, was analyzed. 4-Oxobut-2-enoic acid, a degradation product of sorbic acid in aqueous systems, was also analyzed as a possible fungistat.

  17. Regional sulfur dioxide emissions: shall we achieve the goal?

    Science.gov (United States)

    Tan, X.; Shi, L.; Wang, M.; Wang, JY

    2017-01-01

    Although economic growth is slowing down in the new normal period, air pollution is still a very serious problem in China. The 15% binding goal of sulfur dioxide emission reduction from 2016 to 2020, as stipulated in the 13th Five-Year Plan, has been an ambitious target for the Chinese government. This paper studies the synthetic evaluation and forecasting analysis of sulfur dioxide in China by means of a “grey model” approach combined with the grey relational analysis methods, with the panel data of 31 provinces from 2005 to 2015. Grey analysis used to analyse a system with imperfect information, such that a variety of available solutions is reviewed, and the optimal solution is identified. Some encouraging results show that national emissions and a majority of provinces will achieve the target. Over time, the gap of regional differences is rapidly closing. According to the results of grey relational analysis, we find industrial structure and energy consumption have a more significant impact on sulfur dioxide emissions than GDP. Atmospheric treatment investment and environmental protection manpower play a more important role in emissions variation. Based on the findings, we should distinguish different factors and take different measures to protect the environment.

  18. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  19. Effects on the forest of sulfur dioxide from a sulfur fire near Edson, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, D

    1975-01-01

    Sulfur was burnt in a sanitary landfill during August 9 and 10, 1974. Resulting sulfur dioxide impinged on the surrounding mixed forest for 29 h. About 4 ha of forest displayed visible injury symptoms of varying intensity soon after. However, only .4 ha remained permanently injured the next season. Here, white spruce (Picea glauca (Moench) Voss) and scattered individuals of balsam poplar (Populus balsamifera L.), alder (Alnus tenuifolia Nutt.), and trembling aspen (Populus tremuloides Michx.) were killed. This report describes the extent of injury, relative sensitivities of affected plant species, and recovery in the spring in 1975.

  20. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    Science.gov (United States)

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  1. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  2. Effects of sulfur dioxide pollution on bark epiphytes

    Energy Technology Data Exchange (ETDEWEB)

    Coker, P D

    1967-01-01

    The destructive effects of sulfur dioxide pollution on epiphytic bryophytes is seen to be due to chlorophyll degradation and the impairment of cell structure and function through plasmolysis. Morphological changes noted by Pearson and Skye (1965) in lichens were not seen, although stunting and infertility are evident in epiphyte remnants in polluted areas. The investigation of the ion exchange and buffer capacities of sycamore bark indicates a loss of both in approximate proportion to the degree of pollution. Smoke and aerosol particles are not considered to be of particular importance at the present time although they may well have been important in the past.

  3. Effects of acid rain and sulfur dioxide on marble dissolution

    Science.gov (United States)

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  4. Stability of patulin to sulfur dioxide and to yeast fermentation.

    Science.gov (United States)

    Burroughs, L F

    1977-01-01

    The affinity of patulin for sulfur dioxide (SO2) is much less than was previously reported and is of little significance at the SO2 concentrations (below 200 ppm) used in the processing of apple juice and cider. However, at concentrations of 2000 ppm SO2 and 15 ppm patulin, combination was 90% complete in 2 days. Removal of SO2 liberated only part of the patulin, which suggests that 2 mechanisms are involved: one reversible (opening the hemiacetal ring) and one irreversible (SO2 addition at the double bond). Test with 2 yeasts used in English commercial cider making confirmed that patulin is effectively removed during yeast fermentation.

  5. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  6. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  7. Lagrangian measurements of sulfur dioxide to sulfate conversion rates

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B D

    1981-12-01

    On the basis of Project MISTT data and proposed homogenous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measrements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.

  8. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  9. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  10. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Science.gov (United States)

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... gases which contain SO2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb...

  11. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  12. Sulfur dioxide initiates global climate change in four ways

    International Nuclear Information System (INIS)

    Ward, Peter L.

    2009-01-01

    Global climate change, prior to the 20th century, appears to have been initiated primarily by major changes in volcanic activity. Sulfur dioxide (SO 2 ) is the most voluminous chemically active gas emitted by volcanoes and is readily oxidized to sulfuric acid normally within weeks. But trace amounts of SO 2 exert significant influence on climate. All major historic volcanic eruptions have formed sulfuric acid aerosols in the lower stratosphere that cooled the earth's surface ∼ 0.5 o C for typically three years. While such events are currently happening once every 80 years, there are times in geologic history when they occurred every few to a dozen years. These were times when the earth was cooled incrementally into major ice ages. There have also been two dozen times during the past 46,000 years when major volcanic eruptions occurred every year or two or even several times per year for decades. Each of these times was contemporaneous with very rapid global warming. Large volumes of SO 2 erupted frequently appear to overdrive the oxidizing capacity of the atmosphere resulting in very rapid warming. Such warming and associated acid rain becomes extreme when millions of cubic kilometers of basalt are erupted in much less than one million years. These are the times of the greatest mass extinctions. When major volcanic eruptions do not occur for decades to hundreds of years, the atmosphere can oxidize all pollutants, leading to a very thin atmosphere, global cooling and decadal drought. Prior to the 20th century, increases in atmospheric carbon dioxide (CO 2 ) followed increases in temperature initiated by changes in SO 2 . By 1962, man burning fossil fuels was adding SO 2 to the atmosphere at a rate equivalent to one 'large' volcanic eruption each 1.7 years. Global temperatures increased slowly from 1890 to 1950 as anthropogenic sulfur increased slowly. Global temperatures increased more rapidly after 1950 as the rate of anthropogenic sulfur emissions increased. By

  13. Petunia cultivar sensitivity to ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Ozone and sulfur dioxide are widespread pollutants in many of the areas in which petunias are grown as bedding-plants. Controlled environment experiments were conducted to evaluate the sensitivity of Capri, White Magic and White Cascade to separate or combined O3 and SO2 at 2 growth stages. Relative cultivar sensitivity was the same for O3, SO2 or O3 + SO2, with Capri leaves least injured and White Cascade leaves most injured. Visible injury symptoms were similar in all cultivars. Leaves of intermediate age were most sensitive, but early vegetative plants were more sensitive to O3 than plants in immediate prefloral stage. Severity of leaf injury was generally greater from the combined gases than from the single gases, and the combination treatment at the early vegetative stage significantly reduced plant growth and flower weight 4 weeks later. 29 references, 4 figures, 7 tables.

  14. Measurement of sulfur dioxide oxidation rates in wintertime orographic clouds

    International Nuclear Information System (INIS)

    Snider, J.R.

    1990-01-01

    SO2-reaction studies in the clouds are examined and summarized to experimentally confirm model predictions and previous field studies regarding dominant SO2-reaction pathways. Controlled amounts of SO2 were released into nonprecipitating orographic clouds, and sulfate yields are compared to oxidant depletions. The sulfate yields were taken from cloud-water samples and liquid-water-concentration measurements, and oxidant-depletion data were generated from continuous gas-phase measurements. Comparisons of Y sub SO4 and D sub H2O2 suggest that H2O2 is the dominant oxidant, and the in-cloud reaction between H2O2 and the bisulfite ion can be expressed by a simple rate that agrees with predictions and laboratory results. The rate measurements are found to be inconsistent with the rate law proposed by Hegg and Hobbs (1982) and with some observational data. The present conclusions are of interest to evaluating the effects of sulfur dioxide emissions on sulfuric acid deposition. 30 refs

  15. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  16. Fluorine-fixing efficiency on calcium-based briquette: pilot experiment, demonstration and promotion.

    Science.gov (United States)

    Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo

    2010-02-05

    The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant

  17. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.

    Science.gov (United States)

    Lan, Yu; Wheeler, Steven E; Houk, K N

    2011-07-12

    Ozone and sulfur dioxide are valence isoelectronic yet show very different reactivity. While ozone is one of the most reactive 1,3-dipoles, SO2 does not react in this way at all. The activation energies of dipolar cycloadditions of sulfur dioxide with either ethylene or acetylene are predicted here by B3LYP, M06-2X, CBS-QB3, and CCSD(T) to be much higher than reactions of ozone. The dipolar cycloaddition of ozone is very exothermic, while that of than sulfur dioxide is endothermic. The prohibitive barriers in the case of SO2 arise from large distortion energies as well as unfavorable interaction energies in the transition states. This arises in part from the HOMO-LUMO gap of sulfur dioxide, which is larger than that of ozone. Valence bond calculations also show that while ozone has a high degree of diradical character, SO2 does not, and is better characterized as a dritterion.

  18. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination.

    Science.gov (United States)

    Wang, Wenyi; Wang, Binghe

    2017-09-12

    Sulfur dioxide (SO 2 ) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO 2 donors.

  19. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  20. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed...) of this section, any gases that contain SO2 in excess of: (1) 520 ng/J (1.20 lb/MMBtu) heat input and...

  1. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... sulfur dioxide (SO2). (a) Except as provided under paragraph (d) of this section, on and after the date... affected facility any gases that contain SO2 in excess of: (1) 340 ng/J heat input (0.80 lb/MMBtu) derived...

  2. Risk management for sulfur dioxide abatement under multiple uncertainties

    Science.gov (United States)

    Dai, C.; Sun, W.; Tan, Q.; Liu, Y.; Lu, W. T.; Guo, H. C.

    2016-03-01

    In this study, interval-parameter programming, two-stage stochastic programming (TSP), and conditional value-at-risk (CVaR) were incorporated into a general optimization framework, leading to an interval-parameter CVaR-based two-stage programming (ICTP) method. The ICTP method had several advantages: (i) its objective function simultaneously took expected cost and risk cost into consideration, and also used discrete random variables and discrete intervals to reflect uncertain properties; (ii) it quantitatively evaluated the right tail of distributions of random variables which could better calculate the risk of violated environmental standards; (iii) it was useful for helping decision makers to analyze the trade-offs between cost and risk; and (iv) it was effective to penalize the second-stage costs, as well as to capture the notion of risk in stochastic programming. The developed model was applied to sulfur dioxide abatement in an air quality management system. The results indicated that the ICTP method could be used for generating a series of air quality management schemes under different risk-aversion levels, for identifying desired air quality management strategies for decision makers, and for considering a proper balance between system economy and environmental quality.

  3. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    Science.gov (United States)

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time.

  4. Sulfur dioxide content of the air and its influence on the plant

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, G; Reckendorfer, P; Beran, F

    1929-01-01

    Clover was exposed to concentrations of sulfur dioxide ranging from 5 to 50 ppm for periods of 1 to 4 hours. The higher concentrations caused an increase in sulfur content. Single exposures did not affect the digestible protein content of the plants. 10 tables, 3 figures.

  5. Absorption of ozone, sulfur dioxide, and nitrogen dioxide by petunia plants

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1981-01-01

    Petunia plants (Petunia hybrida Vilm.) of three varieties with differing air pollutant sensitivities were grown in controlled environments and the absorption rates of ozone (O/sub 3/), sulfur dioxide (SO/sub 2/) and nitrogen dioxide (NO/sub 2/) determined during single gas and mixed gas exposures. Additional experiments were conducted to evaluate effects of duration of exposure, leaf age, and plant growth stage on absorption of O/sub 3/. Absorption of all pollutants from single gases or the mixture was generally greater for the more sensitive varieties. Absorption from single gases was generally greater than from the mixed gases. Absorption rates tended to decrease gradually throughout the day and from day to day with continuous exposure. Absorption of O/sub 3/ was proportional to exposure concentration and decreased with time at differing rates for each variety. More O/sub 3/ was absorbed by older than younger leaves and by plants at the early vegetative stage compared with those in the prefloral stage.

  6. Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba.

    Science.gov (United States)

    Alejo, Daniellys; Morales, Mayra C; de la Torre, Jorge B; Grau, Ricardo; Bencs, László; Van Grieken, René; Van Espen, Piet; Sosa, Dismey; Nuñez, Vladimir

    2013-07-01

    Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV-Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV-Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m(3) and 50 μg/m(3) for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).

  7. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2002-10-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. The PFS product was used in pilot-scale tests at a municipal water treatment facility and gave good results in removal of turbidity and superior results in removal of disinfection byproduct precursors (TOC, DOC, UV-254) when compared with equal doses of ferric chloride.

  8. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  9. Sulfur dioxide concentration measurements in the vicinity of the Albert Funk mining and metallurgical plant complex

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M

    1976-01-01

    This article discusses the ambient air concentration of sulfur dioxide in the area of Freiberg, GDR. The emission of sulfur dioxide results for the most part from brown coal combustion in heat and power plants and in metallurgical plants. Sulfur dioxide emission from neighboring industrial centers such as Dresden and North Bohemian towns affects the Freiburg area to some extent. The use of brown coal in household heating contributes an average of 50 kg of sulfur dioxide emission per coal burning household annually. A total of 1260 measurements at 28 points in the vicinity of Freiberg were made in the year 1972 in evaluating the concentration of sulfur dioxide present in the air. In 75% of the measurements the concentrations were below 0.15 mg/mat3, in 12% between 0.15 and 0.2 mg/mat3, in 7% between 0.2 and 0.3 mg/mat3 and in 6% between 0.3 and 0.5 mg/mat3. The results are described as average industrial pollution. The influence of air temperature, wind velocity, fog, season and time of day are also discussed. (4 refs.) (In German)

  10. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  11. Review of the health risks associated with nitrogen dioxide and sulfur dioxide in indoor air

    International Nuclear Information System (INIS)

    Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K.S.; Rich, R.; Teschke, K.

    2002-01-01

    The scientific literature on the health effects of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) were reviewed with particular focus on the chemical and physical properties of the 2 gases and the toxicological characteristics identified in animal studies at exposure concentrations near the rate of ambient human exposures. The study also examined the expected levels of non-industrial indoor exposure of Canadians compared to other regions with similar climates. The sources of indoor pollution were also reviewed, along with the contribution of outdoor pollution to indoor levels. Results from epidemiological studies of indoor exposures in homes, offices and schools were also presented. For each pollutant, the study identified anthropogenic sources, indoor sources, toxicological characteristics, biochemistry, pulmonary effects, immune response, and other effects. Indoor sources of NO 2 include gas-fired appliances, pilot lights, hot water heaters, kerosene heaters, and tobacco smoke. The impact of ventilation on both NO 2 and SO 2 levels was also examined. Outdoor sources such as traffic can also contribute to indoor levels, particularly in urban areas. In the case of SO 2 , coal heating and cooling appear to be associated in increased indoor levels. The epidemiological studies that were reviewed failed in general to indicate an association between NO 2 exposure and a wide range of health impacts. The studies, however, indicate that asthmatics are more susceptible to the effects of NO 2 exposure. In the case of SO 2 , evidence suggests that it has a chronic effect on lung function and respiratory symptoms and disease. 243 refs., 13 tabs

  12. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    Science.gov (United States)

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Foliar injury responses of eleven plant species to ozone/sulfur dioxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, D T; Reinert, R A; Dunning, J A; Heck, W W

    1973-01-01

    Eleven plant species were exposed to ozone and/or sulfur dioxide to determine if a mixture of the two gases enhanced foliar injury. Tobacco, radish, and alfalfa developed more injury that the additive injury of the single gases. In other species, such as cabbage, broccoli, and tomato, the foliar injury from mixed-gas exposures was additive or less than additive. Leaf injury from the ozone/sulfur dioxide mixture appeared as upper surface flecking, stipple, bifacial necrosis, and lower surface glazing and, in general, appeared similar to injury from oxidant or ozone. The concentrations of ozone and sulfur dioxide that caused plant injury were similar to those found in urban areas. These concentrations may result in yield losses to plants grown under field conditions.

  14. Simple spectrophotometry method for the determination of sulfur dioxide in an alcohol-thionyl chloride reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jinjian, E-mail: jinjian.zheng@merck.com; Tan, Feng; Hartman, Robert

    2015-09-03

    Thionyl chloride is often used to convert alcohols into more reactive alkyl chloride, which can be easily converted to many compounds that are not possible from alcohols directly. One important reaction of alkyl chloride is nucleophilic substitution, which is typically conducted under basic conditions. Sulfur dioxide, the by-product from alcohol-thionyl chloride reactions, often reacts with alkyl chloride to form a sulfonyl acid impurity, resulting in yield loss. Therefore, the alkyl chloride is typically isolated to remove the by-products including sulfur dioxide. However, in our laboratory, the alkyl chloride formed from alcohol and thionyl chloride was found to be a potential mutagenic impurity, and isolation of this compound would require extensive safety measures. As a result, a flow-through process was developed, and the sulfur dioxide was purged using a combination of vacuum degassing and nitrogen gas sweeping. An analytical method that can quickly and accurately quantitate residual levels of sulfur dioxide in the reaction mixture is desired for in-process monitoring. We report here a simple ultraviolet (UV) spectrophotometry method for this measurement. This method takes advantage of the dramatic change in the UV absorbance of sulfur dioxide with respect to pH, which allows for accurate quantitation of sulfur dioxide in the presence of the strong UV-absorbing matrix. Each sample solution was prepared using 2 different diluents: 1) 50 mM ammonium acetate in methanol +1% v/v hydrochloric acid, pH 1.3, and 2) 50 mM ammonium acetate in methanol +1% glacial acetic acid, pH 4.0. The buffer solutions were carefully selected so that the UV absorbance of the sample matrix (excluding sulfur dioxide) at 276 nm remains constant. In the pH 1.3 buffer system, sulfur dioxide shows strong UV absorbance at 276 nm. Therefore, the UV absorbance of sample solution is the sum of sulfur dioxide and sample matrix. While in the pH 4.0 buffer system, sulfur dioxide has

  15. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  16. Damage to greenhouse plants caused by town fogs with special reference to sulfur dioxide and light

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, C R

    1941-11-01

    This paper describes a series of experiments carried out on greenhouse plants to assess the effects of urban air pollution. The approach was to place fuming sulfuric acid in a greenhouse, then circulate the fumes throughout the greehouse with fans. Symptoms produced were then compared with those found on plants in urban areas. The symptoms matched well and sulfur dioxide was declared the culprit. 14 references, 2 figures, 1 table.

  17. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  18. Saskatoon serviceberry and ambient sulfur dioxide exposures: study sites re-visited, 1999

    International Nuclear Information System (INIS)

    Krupa, S.V.; Legge, A.H.

    2001-01-01

    Field surveys for symptoms of foliar injury in a regional airshed that is influenced by a number of point sources of SO x , NO x and hydrocarbons, combined with foliar and soil sulfur analyses, confirmed earlier results that Saskatoon serviceberry (Amelanchier alnifolia Nutt.) cv. Smokey can be used as a biological indicator of chronic sulfur dioxide exposures, in the presence of other phytotoxic air pollutants such as ozone. (Author)

  19. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Science.gov (United States)

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide (SO 2 ) National Ambient Air Quality Standard (NAAQS). The EPA is issuing this rule to identify areas...

  20. Dose-response relationships of acute exposure to sulfur dioxide

    International Nuclear Information System (INIS)

    Englehardt, F.R.; Holliday, M.G.

    1981-01-01

    Acute toxicity effects of sulphur dioxide are reviewed, and the derivation of a dose-lethality curve (presented as LC 50 vs. time) for human exposure to sulphur dioxide is attempted for periods ranging from ten seconds to two hours. As an aid to assessment of the hazards involved in operating heavy water manufacturing facilities, the fact that sulphur dioxide would be produced by the combustion of hydrogen sulphide was briefly considered in an appendix. It is suggested that sulphuric acid, a much more toxic substance than sulphur dioxide, may also be formed in such an event. It is concluded, therefore, that an overall hazard evaluation may have to address the contributory effects of sulphuric acid. (author)

  1. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000

    Directory of Open Access Journals (Sweden)

    Z. Lu

    2010-07-01

    Full Text Available With the rapid development of the economy, the sulfur dioxide (SO2 emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000–2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The aerosol optical depth (AOD products of Moderate Resolution Imaging Spectroradiometer (MODIS are found to be highly correlated with the surface solar radiation (SSR measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in

  2. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument

    NARCIS (Netherlands)

    Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, Kai; Levelt, P.F.

    2007-01-01

    We report the first daily observations of sulfur dioxide (SO2) emissions from copper smelters by a satellite-borne sensor - the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura spacecraft. Emissions from two Peruvian smelters (La Oroya and Ilo) were detected in up to 80% of OMI overpasses

  3. Experimental studies on the injurious effect of sulfur dioxide upon the rice cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T; Takahashi, T

    1952-01-01

    From experimental studies on the injurious effect of sulfur dioxide upon the cultivation of rice it was ascertained that SO2 strongly affects the pollen and the ovary. The pollen and the matured grain showed a decrease in fertility when the plant is fumigated at the flowering and boot stage.

  4. The sampling of sulfur dioxide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1963-01-01

    A method is suggested for the sampling of sulfur dioxide in air with impregnated filter paper instead of bubblers. The best aqueous impregnating solution contained potassium hydroxide with glycerol or triethanolamine. The possibilities and limitations of the method are discussed. High collection

  5. Gas chromatographic studies of the relative retention of the sulfur isotopes in carbonyl sulfide, carbon disulfide, and sulfur dioxide

    International Nuclear Information System (INIS)

    Fetzer, J.C.; Rogers, L.B.

    1980-01-01

    A precision gas chromatograph, coupled to a quadrupole mass spectrometer and an on-line computer, was used to study the fractionation on Porasil A of the 32 S/ 34 S isotopic pair in a variety of sulfur-containing molecules. Carbonyl sulfide (COS) yielded an average α value of 1.00074 +- 0.00017 (standard deviation) for the temperature range 25 0 C to 75 0 C. The carbon disulfide (CS 2 ) value was 1.00069 +- 0.00023 for the range 53 0 C to 103 0 C, and that for sulfur dioxide (SO 2 ) was 1.00090 +- 0.00018 for the range 62 0 C to 112 0 C. Differential thermodynamic data have been reported. A Porapak Q column showed no fractionation of this isotopic pair in these three molecules

  6. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  7. Obtention of charcoal briquettes from rice husks using low compaction pressure; Obtencao de briquetes de carvao vegetal de cascas de arroz utilizando baixa pressao de compactacao

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcia R.; Seye, Omar; Freitas, Katrina T. de; Rodrigues, Monica; Santos, Eyde C.S. dos; Souza, Rubem C.R. [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico

    2006-07-01

    This work consists of the preparation of briquette from carbonized rice's husks in low pressure. The results demonstrate are necessary a fine granulation of the rice's husks coal to obtainment of briquettes. The ultimate analysis of the briquette did not detect the presence of nitrogen and sulfur, and that prevents the formation and emission of acid gases that can produce corrosion in the equipment and pollute the atmosphere. The performance of the briquette production was superior to 80%. The briquettes present high heating value (HHV) 17,73 MJ/kg and adequate mechanic resistance for the use in gasifier-engine system. (author)

  8. Injury to fruit and forest trees from sulfur dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1959-01-01

    Observations and the results of examinations on the control of emissions in the northeastern part of the industrial area of Nordrhein-Westfalen led to the conclusions that under certain conditions plant analysis is an important tool in diagnosing smoke injuries. Schedules for the sensitivity of plants are only of local and temporary value. The applicability of comparative plant analyses to smoke injuries is demonstrated by examples. A number of examples show that parasitic attack or illness magnify the effects of SO/sub 2/. For several tree species the seasonal total content of sulfur (given as SO/sub 2/) in the foliage is shown by curves, which are similar to those obtained in Leicester. 17 references, 6 figures, 2 tables.

  9. A Sulfur Dioxide Climate Feedback on Early Mars

    Science.gov (United States)

    Halevy, I.; Pierrehumbert, R. T.; Schrag, D. P.

    2007-12-01

    Reconciling evidence for persistent liquid water during the late Noachian with our understanding of the evolution of the Martian atmosphere and of solar luminosity remains a challenge, despite several decades of research. An optically-thicker atmosphere to supply the necessary radiative forcing would result in the existence of a carbon cycle similar to Earth's, where the release of CO2 from volcanoes is balanced by burial of calcium carbonate through silicate weathering reactions that remove protons and release alkalinity to surface waters. Existence of such a carbon cycle on Mars, even for tens of millions of years, would yield carbonate sediments in far greater abundance than has been observed, as well as residual clay minerals. The high concentration of sulfur in Martian soils and rocks indicates that Martian volcanic emissions contained abundant sulfur volatiles in addition to CO2. However, the atmospheric and aquatic chemistry of SO2 under the reducing conditions of early Mars, in contrast with the presently oxidizing and biologically-catalyzed Earth, has not been thoroughly examined. We argue that these conditions may have allowed atmospheric concentrations of SO2 high enough to augment a thick CO2-H2O greenhouse. Furthermore, early Martian climate may have been stabilized by a feedback mechanism involving SO2 and the solubility of sulfite minerals instead of CO2 and the solubility of carbonates. We present the results of a one-dimensional radiative-convective model, demonstrating the radiative importance of SO2 to the planetary energy budget. We also use a simple geochemical model to show that the presence of SO2 in the early Martian atmosphere would have dominated the aquatic chemistry on the planet's surface, and may provide an explanation for how water could have persisted for millions of years without forming massive carbonate sediments, yet allowing the formation of clay minerals.

  10. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  11. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  12. Sulfur dioxide concentrations near thermoelectric power plant of Rossano Calabro (Italy)

    International Nuclear Information System (INIS)

    Florio, G.

    1991-01-01

    This article presents the results of a one-year atmospheric sulfur dioxide concentration monitoring campaign conducted with the use of five detection stations situated near the 320 MW thermoelectric power plant serving the coastal town of Rossano Calabro (population 50,000). Apart from the analysis of sulfur dioxide concentrations, a meteorological study was carried out based on anemological data. Comparisons were made with reference to the relevant legal standards. It was thus possible to ascertain that air quality near the power station is quite high. Nevertheless, it should be pointed out that, due to the particular local meteorological situation strongly turbulent sea breezes, new detection stations should be opened in this area which may undergo significant industrial development

  13. Sulfur dioxide concentrations near thermoelectric power plant of Rossano Calabro (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Florio, G. (Calabria Univ., Arcavacata di Rende (Italy). Dipt. di Meccanica)

    This article presents the results of a one-year atmospheric sulfur dioxide concentration monitoring campaign conducted with the use of five detection stations situated near the 320 MW thermoelectric power plant serving the coastal town of Rossano Calabro (population 50,000). Apart from the analysis of sulfur dioxide concentrations, a meteorological study was carried out based on anemological data. Comparisons were made with reference to the relevant legal standards. It was thus possible to ascertain that air quality near the power station is quite high. Nevertheless, it should be pointed out that, due to the particular local meteorological situation strongly turbulent sea breezes, new detection stations should be opened in this area which may undergo significant industrial development.

  14. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Asada, K

    1980-01-01

    Injury of plant leaf cells by sulfur dioxide-exposure is greater in day time than in night. A hypothesis is proposed that the free radical chain oxidation of sulfite is initiated by the superoxide radicals (O/sub 2//sup -/) produced in illuminated chloroplasts, and that the resulting amplified production of O/sub 2//sup -/, the hydroxyl radicals and the bisulfite radicals causes the injury of leaf tissues. In this review, the production of O/sub 2//sup -/ in illuminated chloroplasts and scavenging of O/sub 2//sup -/ by superoxide dismutase and their relation to oxidation of sulfite in chloroplasts are discussed. Superoxide dismutase in chloroplasts plays an important role in protecting leaf cells from injury by sulfur dioxide.

  15. Effect of gamma irradiation and sulfur dioxide treatment on storability of some grape varieties (Vitis Vinifera L.) in Syria

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    1997-12-01

    The feasibility of using gamma irradiation and sulfur dioxide to control post-harvest diseases and to extend shelf life of table grapes in cold storage (1-2 C deg) was studied using two local varieties of grapes (Baladi and Helwani). The experiment was conducted for two years (1995 and 1996). In the first year, the clusters of both varieties were subjected to one of the following treatments: Irradiation with 0, 0.5, 1.0 and 1.5 kGy of gamma rays, sulfur dioxide (3 g Na 2 S 2 O 5 / 5 Kg clusters) or combination of both 1.0 KGy of gamma irradiation and sulfur dioxide. In the second year, two additional doses were applied: 0.1 and 0.25 KGy for Helwani and 2.0 and 2.5 KGy for Baladi. Clusters of both var. were treated with combined treatments (1.5 KGy and sulfur dioxide for Baladi) and (0.5 KGy and sulfur dioxide for Helwani). Treated and untreated clusters were kept in cold storage (temperature, 1 to 2 C deg). Weight loss, spoilage and total loss were evaluated every two and four weeks of storage for Baladi and Helwani, respectively. With the exception of Helwani var. produced in the first year and treated with sulfur dioxide, the results indicated that separate application of sulfur dioxide and gamma radiation reduced the rotting induced by (B. cinerea) and improved the storability of both varieties. Gamma irradiation in combination with sulfur dioxide preserved the two varieties of table grapes. (author)

  16. Observed regional distribution of sulfur dioxide in Asia

    International Nuclear Information System (INIS)

    Carmichael, G.R.; Ferm, M.; Adikary, S.; Ahmad, J.; Mohan, M.; Hong, M.S.; Chen, L.; Fook, L.; Liu, C.M.; Soedomo, M.; Tran, G.; Suksomsank, K.; Zhao, D.; Arndt, R.; Chen, L.L.

    1995-01-01

    Increased use of coal for energy in Asia has led to increased SO 2 emissions. SO 2 concentrations have been measured for one year at forty-five locations throughout Asia using passive samplers. Duplicate samples were exposed at each site for one month intervals. The sites were selected to provide background information on the distribution of SO 2 over wide geographical regions, with emphasis on the regional characteristics around areas estimated to be sensitive to sulfur deposition. The annual mean values ranged from less than 0.3 μg/m 3 at Tana Rata, located at 1545 m on the Malaysia Peninsula, Lawa Mandau (Borneo), Malaysia, and Dhankuta, Nepal, to values greater than 20 μg/m 3 at Luchongguan (Guiyang) China, Babar Mahal, Nepal, and Hanoi, Vietnam. In general high concentrations were measured throughout China, with the highest concentrations in the heavy industrial areas in Guiyang. The concentrations in east Asia around the Korea peninsula were ∼ 5 μg/m 3 . The concentrations in the southeast Asia tropics were low, with no station in Malaysia and Indonesia having average concentrations exceeding 1.7 μg/m 3 . The observed SO 2 concentrations were found to display a distinct seasonal cycle which is strongly influenced by the seasonality of winds and precipitation patterns. 3 refs., 3 figs

  17. Non-mass-dependent fractionation of sulfur and oxygen isotopes during UV photolysis of sulfur dioxide

    Science.gov (United States)

    Pen, Aranh

    Since the discovery of anomalous sulfur isotope abundance in the geological record in sulfate and sulfide minerals (Farquhar et al., 2000), much effort has been put into understanding their origin to provide new insights into the environmental conditions on the early Earth (Farquhar et al., 2001; Pavlov and Kasting, 2002; Ono et al., 2003; Zahnle et al., 2006; Farquhar et al., 2007; Lyons, 2007; Lyons, 2008). This discovery gained immense interest because of its implications for both the lack of oxygen in the atmosphere during the Archean era 2.5-3.8 Gya (billion years ago), and for rise of oxygen, or the "Great Oxidation Event", that occurred 2.2-2.4 Gya (Holland, 2002). These signatures are believed to be produced in an anticorrelation to oxygen abundance in the early atmosphere, which will aid in quantifying the rate of oxygenation during the "Great Oxidation Event". According to Farquhar et al. (2000), the non-mass-dependent (NMD), or anomalous, fractionation signatures were produced by photochemical reactions of volcanic sulfur species in Earth's early atmosphere (> 2.3 Gya) due to the lack of an oxygen and ozone shield, resulting in an atmosphere transparent to solar ultraviolet (UV) radiation (Farquhar et al., 2001). Interpretation of the anomalous rock records, though, depends on the identification of (1) chemical reactions that can produce the NMD signature (Farquhar and Wing, 2003); and (2) conditions necessary for conversion of the gas-phase products into solid minerals (Pavlov and Kasting, 2002). The focus of my research addresses the first step, which is to determine whether the chemical reactions that occurred in Earth's early atmosphere, resulting in NMD fractionation of sulfur isotopes, were due to broadband UV photochemistry, and to test isotopic self-shielding as the possible underlying mechanism. In this project, our goals were to test isotopic self-shielding during UV photolysis as a possible underlying mechanism for anomalous sulfur isotopic

  18. Inhibition of phosphorylation and incorporation of thymidine in Duckweed (Lemna minor L. ) by sulfur dioxide and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Braendle, R; Stoeckli, B; Erismann, K H

    1975-05-15

    As there appears to be no thymidine kinase in duckweed (Lemna minor L.), thymidine seems to be phosphorylated by a nucleoside phosphotransferase. Phosphorylation and incorporation are inhibited by sulfur compounds such as sulfur dioxide and sulfite. The data are discussed in relation to the physiological effect of the air pollutant (SO2) on plant life. 12 references, 2 tables.

  19. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  20. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia

    Science.gov (United States)

    Arndt, Richard L.; Carmichael, Gregory R.; Streets, David G.; Bhatti, Neeloo

    Anthropogenic and volcanic emissions of SO 2 in Asia for 1987-1988 are estimated on a 1° × 1° grid. Anthropogenic sources are estimated to be 31.6 Tg of SO 2 with the regions' volcanoes emitting an additional 3.8 Tg. For Southeast Asia and the Indian sub-continent, the emissions are further partitioned into biomass, industrial, utilities, and non-specific sources. In these regions emissions from biomass, utilities and industrial sources account for 16.7, 21.7, and 12.2%, respectively. In Bangladesh, ˜ 90% of the SO 2 emissions result from biomass burning and nearly 20% of India's 5 Tg of SO 2 emissions are due to biomass burning. Malaysia and Singapore's emissions are dominated by the utilities with 42 and 62% of their respective emissions coming from that sector. The spatial distribution of sulfur deposition resulting from these emissions is calculated using an atmospheric transport and deposition model. Sulfur deposition in excess of 2 g m -2 yr -1 is predicted in vast regions of east Asia, India, Thailand, Malaysia, Taiwan, and Indonesia with deposition in excess of 5 g m -2 yr -1 predicted in southern China. For the Indian sub-continent and Southeast Asia the contribution of biomass burning, industrial activities, and utilities to total sulfur emissions and deposition patterns are evaluated. Biomass burning is found to be a major source of sulfur deposition throughout southeast Asia. Deposition in Bangladesh and northern India is dominated by this emissions sector. Deposition in Thailand, the Malay Peninsula and the island of Sumatra is heavily influenced by emissions from utilities. The ecological impact of the deposition, in 1988 and in the year 2020, is also estimated using critical loads data developed in the RAINS-ASIA projects. Much of eastern China, the Korean Peninsula, Japan, Thailand, and large regions of India, Nepal, Bangladesh, Taiwan, the Philippines, Malaysia, Indonesia, and sections of Vietnam are at risk due to deposition in excess of their

  1. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  2. Influence of sulfur dioxide and ozone on vegetation of bean and barley plants under different soil moisture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Markowski, A; Grzesiak, S

    1974-01-01

    The effects of toxic gases on extent of injuries to assimilating surface, dry weight yields, and generative development in bean and barley were studied in three successive phases of vegetation under conditions of optimum soil moisture and of drought just above the wilting point. Experiments with ozone and sulfur dioxide on bean and SO/sub 2/ on barley demonstrate that the susceptibility of plants to toxic gases decrease under drought conditions that cause a temporary dehydration of tissues. Determinations of sulfate sulfur contents in different plant organs show that a lower hydration of tissues is accompanied by lower adsorption of sulfur dioxide.

  3. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  4. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  5. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  6. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Science.gov (United States)

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.: photosynthetic tissues and berries

    Directory of Open Access Journals (Sweden)

    Michael James Considine

    2015-02-01

    Full Text Available Research on sulfite metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils and questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/ sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the ‘ambient’ environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO¬2 fumigation may extend for several months.

  8. Use of liquid chromatography for measuring atmospheric sulfur dioxide and nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E

    1973-02-01

    A literature search to ascertain the applicability of liquid chromatography to the analysis of atmospheric sulfur dioxide and various oxides of nitrogen is reported. Simple or enriched samples can be analyzed. Plastic bags are recommended for preparation of simple samples; and a table of 18 plastic materials, their manufacturers, and pollutants to which they are inert is provided. Enriched samples can be prepared in chromatographic columns by adsorption methods. Tables are provided listing carriers, stationary phase materials, temperatures, carrier liquids (helium or nitrogen), column dimensions, and other data recommended for chromatographic tests of SO/sub 2/ and NOx. Because of its reactivity and tendency to polymerize, sulfur trioxide should be reduced to SO/sub 2/ prior to analysis.

  9. Pyrolysis of biomass briquettes, modelling and experimental verification

    NARCIS (Netherlands)

    van der Aa, B; Lammers, G; Beenackers, AACM; Kopetz, H; Weber, T; Palz, W; Chartier, P; Ferrero, GL

    1998-01-01

    Carbonisation of biomass briquettes was studied using a dedicated single briquette carbonisation reactor. The reactor enabled continuous measurement of the briquette mass and continuous measurement of the radial temperature profile in the briquette. Furthermore pyrolysis gas production and

  10. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    OpenAIRE

    Schmidt, A; Witham, CS; Theys, N; Richards, NAD; Thordarson, T; Szpek, K; Feng, W; Hort, MC; Woolley, AM; Jones, AR; Redington, AL; Johnson, BT; Hayward, CL; Carslaw, KS

    2014-01-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We h...

  11. Banking behavior under uncertainty: Evidence from the US Sulfur Dioxide Emissions Allowance trading program

    International Nuclear Information System (INIS)

    Rousse, Olivier; Sevi, Benoit

    2006-02-01

    The aim of this paper is to examine portfolio management of emission allowances in the US Sulfur Dioxide Emissions Allowance Trading Program, to determine whether utilities have a real motive to bank when risk increases. We test a theoretical model linking the motivation of the firm to accumulate permits in order to prepare itself to face a risky situation in the future. Empirical estimation using data for years 2001 to 2004 provides evidence of a relationship between banking behavior and uncertainty the utility is facing with. (authors)

  12. Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan.

    Science.gov (United States)

    Su, Jung-Jeng; Chen, Yen-Jung

    2015-01-01

    The objective of this work tends to promote methane content in biogas and evaluate sulfur dioxide emission from direct biogas combustion without desulfurization. Analytical results of biogas combustion showed that combustion of un-desulfurized biogas exhausted more than 92% of SO₂ (P hydrogen sulfide was removed during the combustion process using un-desulfurized biogas (P hydrogen sulfide may deposit on the surfaces of power generator's engines or burner heads of boilers. Some of them (4.6-9.1% of H₂S) were converted to SO₂ in exhaust gas. Considering the impacts to human health and living environment, it is better to desulfurize biogas before any applications.

  13. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  14. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    Science.gov (United States)

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  15. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  16. Effects of growth retardants and fumigations with ozone and sulfur dioxide on growth and flowering of Euphorbia pulcherrima Willd

    Energy Technology Data Exchange (ETDEWEB)

    Cathey, H.M.; Heggestad, H.E.

    1973-01-01

    Eight cultivars of poinsettia, Euphorbia pulcherrima Willd., were evaluated for sensitivity to ..cap alpha..-cyclopropyl-..cap alpha.. (4-methoxyphenyl)-5-pyrimidine methanol (ancymidol) and protection from ozone and sulfur dioxide injury afforded by applications of ancymidol and (2-chloroethyl) trimethyl ammonium chloride (chlormequat). Foliar sprays of ancymidol were at least 80 to 500 times and the soil drench 1000 times more active than chlormequat in retarding stem elongation. The diam of the bracts was reduced, but branching increased more on plants treated with ancymidol than on untreated plants. The cv. Annette Hegg (AH) was more sensitive to ozone fumigations than was Eckespoint C-1' (C-1). Sulfur dioxide also caused more injury to AH than to C-1. Ancymidol and chlormequat reduced visible injury induced by ozone and sulfur dioxide.

  17. Environmental politics in the US: a study of state sulfur dioxide standards

    International Nuclear Information System (INIS)

    Davis, M.

    2005-01-01

    What determines the environmental regulatory regime of a country or region? This paper addresses the question in detail, using the US and its widely varying environmental policies as the case study. What factors lead some US states to pass strict environmental regulations, while others are content with the baseline standards required at the national level? This work outlines the state environmental choice as a trade-off between the desires of consumers (who want better environmental quality) and of producers (who want less restrictive environmental standards). A rational state legislator maximises her chances of being re-elected by balancing these two competing forces when setting environmental policy. I test this model by directly analysing the state decision to adopt more restrictive sulfur dioxide regulations than those required by the federal government under the Environmental Protection Agency's ''National Ambient Air Quality Standards'' program. The statistical results suggest that legislators weigh the relative influence of consumer and producer groups when setting sulfur dioxide standards, in addition to accounting for meteorological influences that affect the cost of compliance with stricter environmental regulations. Limited evidence is also provided to support an inverted-U shaped relationship between income levels and environmental regulations. (author)

  18. Model for estimating air pollutant uptake by forests: calculation of forest absorption of sulfur dioxide from dispersed sources

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sinclair, T.R.; Knoerr, K.R.

    1975-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant. To illustrate the utility of the model, estimates are made of the sink strength of forests for sulfur dioxide. The results agree with experimentally derived estimates of sulfur dioxide uptake in crops and forest trees. (auth)

  19. Sulfur dioxide emissions and market effects under the Clean Air Act Acid Rain Program

    International Nuclear Information System (INIS)

    Zipper, C.E.; Gilroy, L.

    1998-01-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO 2 ) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of SO 2 -emissions allowances. The paper presents an analysis of data describing electric utility SO 2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-95 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfurization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-95 period. Projections indicate that 13-15 million allowances will have been banked during the programs' Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO 2 emissions were below pre-CAAA90 expectations. The reduction of SO 2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls. 21 refs., 6 figs., 3 tabs

  20. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo

    Science.gov (United States)

    Miyakawa, T.; Takegawa, N.; Kondo, Y.

    2007-07-01

    Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.

  1. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Science.gov (United States)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  2. The Social Cost of Trading: Measuring the Increased Damages from Sulfur Dioxide Trading in the United States

    Science.gov (United States)

    Henry, David D., III; Muller, Nicholas Z.; Mendelsohn, Robert O.

    2011-01-01

    The sulfur dioxide (SO[subscript 2]) cap and trade program established in the 1990 Clean Air Act Amendments is celebrated for reducing abatement costs ($0.7 to $2.1 billion per year) by allowing emissions allowances to be traded. Unfortunately, places with high marginal costs also tend to have high marginal damages. Ton-for-ton trading reduces…

  3. Study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hibbert, D B; Tseung, A C.C.

    1979-12-01

    A study of the reduction of sulfur dioxide to elemental sulfur by carbon monoxide on a La/sub 0/ /sub 5/ Sr/sub 0/ /sub 5/ CoO/sub 3/ catalyst a perovskite oxide, to determine the effects of oxygen and water on SO2 reduction showed that in the presence of 5 to 16% oxygen, the reaction between sulfur dioxide and carbon monoxide still occurred if there was sufficient carbon monoxide in the gas to react with all the oxygen. At 600C, all the sulfur dioxide was removed at 5 to 16% oxygen levels. Water vapor at 2% did not adversely affect the reaction. The unwanted by-products, hydrogen disulfide and carbonyl sulfide, were reduced at contact times below 0.25 sec. During the reaction, the catalyst itself reacted with sulfur to give metal sulfides. When reagent grade CO/sub 2/O/sub 3/ was substituted for perovskite oxide, the maximum conversion of 98% of sulfur dioxide was attained at 550C, but an unacceptably high concentration of carbonyl sulfide was formed; within 1 hr, the sulfur dioxide conversion fell to 60%. The perovskite oxide reaction may be useful in removing sulfur dioxide from fosill fuel stack gases.

  4. Sulfur dioxide retrievals from OMI and GOME-2 in preparation of TROPOMI

    Science.gov (United States)

    Theys, Nicolas; De Smedt, Isabelle; Danckaert, Thomas; Yu, Huan; van Gent, Jeroen; Van Roozendael, Michel

    2016-04-01

    The TROPOspheric Monitoring Instrument (TROPOMI) will be launched in 2016 onboard the ESA Sentinel-5 Precursor (S5P) platform and will provide global observations of atmospheric trace gases, with unprecedented spatial resolution. Sulfur dioxide (SO2) measurements from S5P will significantly improve the current capabilities for anthropogenic and volcanic emissions monitoring, and will extend the long-term datasets from past and existing UV sensors (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This work presents the SO2 retrieval schemes performed at BIRA-IASB as part of level-2 algorithm prototyping activities for S5P and tested on OMI and GOME-2. With a focus on anthropogenic sources, we show comparisons between OMI and GOME-2 as well as ground-based measurements, and discuss the possible reasons for the differences.

  5. Simple in situ visual and tristimulus colorimetric determination of sulfur dioxide in air

    International Nuclear Information System (INIS)

    Pitschmann, V.; Tusarova, I.; Halamek, E.; Kobliha, Z. pitschmann@orites.cz

    2006-01-01

    A simple in situ visual and tristimulus colorimetric method of determination of the trace amount of sulfur dioxide in air has been developed. Tristimulus colorimetry is based on application of three-dimensional colour space L*a*b according to CIE (Commission Internationale de Eclairage). L* represents lightness and a* and b* represent chromaticity. The analytical method is based on drawing the harmful pollutants through a filter made of modified cotton fabric, which is planted on a special extension piece. The filter is saturated with chromogenic reagent based on 5,5-dithio-bis( 2-nitrobenzoic acid) in the mixture of N,N-dimethylformamide dimethyl sulfoxide (1 : 1). On the filter the orange colour appears; the intensity of the colour is assessed visually and/or by a tristimulus colorimeter (LMG 173, Lange, Germany). The detection limit is 0.01 mg.m -3 .Interferences of reduction (especially hydrogen sulfide), oxidation, alkaline and acid agents have been describes. (author)

  6. Combined method for reducing emission of sulfur dioxide and nitrogen oxides from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Grachev, S.P.

    1991-11-01

    Discusses the method developed by the Fossil Energy Research Corp. in the USA for combined desulfurization and denitrification of flue gases from coal-fired power plants. The method combines two methods tested on a commercial scale: the dry additive method for suppression of sulfur dioxide and the selective noncatalytic reduction of nitrogen oxides using urea (the NOXOUT process). The following aspects of joint flue gas desulfurization and denitrification are analyzed: flowsheets of the system, chemical reactions and reaction products, laboratory tests of the method and its efficiency, temperature effects on desulfurization and denitrification of flue gases, effects of reagent consumption rates, operating cost, efficiency of the combined method compared to other conventional methods of separate flue gas desulfurization and denitrification, economic aspects of flue gas denitrification and desulfurization. 4 refs.

  7. Degradation of sulfur dioxide using plasma technology; Degradacion de dioxido de azufre empleando tecnologia de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Estrada M, N.; Garcia E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Valdivia B, R.; Pacheco S, J., E-mail: nadiaemz@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-07-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO{sub 2}) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  8. Ozone and/or sulfur dioxide effects on tissue permeability of petunia leaves

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Measurements were made of potassium (K ) and total electrolyte leakage from leaf discs of 42-day old petunia plants exposed to 40 pphm ozone (O3) and/or 80 pphm sulfur dioxide (SO2). In an O3-sensitive cultivar White Cascade, K leakage was not affected by O3 or O3 and SO2 after 4 h exposure, but greatly increased by 4 h day exposure for 4 days to O3, SO2, or O3 and SO2. There was an indication of decreased K leakage from plants exposed for 4 h to SO2. Total electrolyte leakage was greater from leaf discs of White Cascade and White Magic, an intermediate sensitivity cultivar, than for Capri, the least O3-sensitive cultivar, when exposed to O3 for 4 h, while SO2 had little effect on total electrolyte leakage. There was also little effect on total K content of the leaves. 21 references, 2 figures, 1 table.

  9. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nilgun Karatepe; Ilkun Orbak; Reha Yavuz; Ayse Ozyuguran [Istanbul Technical University, Istanbul (Turkey). Institute of Energy

    2008-11-15

    Activated carbons from Turkish lignite were prepared with different methods to investigate the influence of physico-chemical characteristics of the carbon materials on the sulfur dioxide (SO{sub 2}) adsorption. The effects of SO{sub 2} concentration, adsorption temperature, and sample particle size on adsorption were investigated using a thermogravimetric analysis system. An intraparticle diffusion model based on Knudsen diffusion and Freundlich isotherm (or Henry isotherm) was applied for predicting the amount of SO{sub 2} adsorbed. The textural and chemical properties of the activated carbon samples, resulted from the effects of activation conditions and demineralization of the carbon precursor, on the SO{sub 2} adsorption were also analyzed. 30 refs., 7 figs., 4 tabs.

  10. Molecular Diagnosis of Brettanomyces bruxellensis’ Sulfur Dioxide Sensitivity Through Genotype Specific Method

    Directory of Open Access Journals (Sweden)

    Marta Avramova

    2018-06-01

    Full Text Available The yeast species Brettanomyces bruxellensis is associated with important economic losses due to red wine spoilage. The most common method to prevent and/or control B. bruxellensis spoilage in winemaking is the addition of sulfur dioxide into must and wine. However, recently, it was reported that some B. bruxellensis strains could be tolerant to commonly used doses of SO2. In this work, B. bruxellensis response to SO2 was assessed in order to explore the relationship between SO2 tolerance and genotype. We selected 145 isolates representative of the genetic diversity of the species, and from different fermentation niches (roughly 70% from grape wine fermentation environment, and 30% from beer, ethanol, tequila, kombucha, etc.. These isolates were grown in media harboring increasing sulfite concentrations, from 0 to 0.6 mg.L-1 of molecular SO2. Three behaviors were defined: sensitive strains showed longer lag phase and slower growth rate and/or lower maximum population size in presence of increasing concentrations of SO2. Tolerant strains displayed increased lag phase, but maximal growth rate and maximal population size remained unchanged. Finally, resistant strains showed no growth variation whatever the SO2 concentrations. 36% (52/145 of B. bruxellensis isolates were resistant or tolerant to sulfite, and up to 43% (46/107 when considering only wine isolates. Moreover, most of the resistant/tolerant strains belonged to two specific genetic groups, allowing the use of microsatellite genotyping to predict the risk of sulfur dioxide resistance/tolerance with high reliability (>90%. Such molecular diagnosis could help the winemakers to adjust antimicrobial techniques and efficient spoilage prevention with minimal intervention.

  11. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  12. Comparative analyses of physiological responses of Cynodon dactylon accessions from Southwest China to sulfur dioxide toxicity.

    Science.gov (United States)

    Li, Xi; Wang, Ling; Li, Yiqiao; Sun, Lingxia; Cai, Shizhen; Huang, Zhuo

    2014-01-01

    Sulfur dioxide (SO2), a major air pollutant in developing countries, is highly toxic to plants. To achieve better air quality and landscape, planting appropriate grass species in severe SO2 polluted areas is very critical. Cynodon dactylon, a widely used warm season turfgrass species, has good SO2-tolerant ability. In this study, we selected 9 out of 38 C. dactylon accessions from Southwest China as representatives of high, intermediate SO2-tolerant and SO2-sensitive accessions to comparatively analyze their physiological differences in leaves under SO2 untreated and treated conditions. Our results revealed that SO2-tolerant C. dactylon accessions showed higher soluble sugar, proline, and chlorophyll a contents under both SO2 treated and untreated conditions; higher chlorophyll b and carotenoid under SO2 treated condition; lower reactive oxygen species (ROS) level, oxidative damages, and superoxide dismutase (SOD) activities under SO2 treated condition; and higher peroxidase (POD) activities under SO2 untreated condition. Further results indicated that SO2-tolerant C. dactylon accessions had higher sulfur contents under both SO2 treated and untreated conditions, consistent with higher SO activities under both SO2 treated and untreated conditions, and higher SiR activities under SO2 treated condition. Taken together, our results indicated that SO2 tolerance of C. dactylon might be largely related to soluble sugar, proline and chlorophyll a contents, and SO enzyme activity.

  13. Multi-Satellite Air Quality Sulfur Dioxide (SO2) Database Long-Term L4 Global V1 (MSAQSO2L4) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are a part of Multi-Decadal Sulfur Dioxide Climatology from Satellite Instrument (MEaSUREs-12-0022 project). The catalogue MSAQSO2L4 file contains the...

  14. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  15. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P.; Ding, H.; Wang, X.B. [Harvard University, Boston, MA (United States). Dept. of Environmental Health

    1995-11-01

    The acute effects of air pollution on preterm delivery were examined in a prospective cohort in Beijing, China. From early pregnancy until delivery in 1988, we followed all registered pregnant women who lived in four residential areas of Beijing. Information for both mothers and infants was collected. Daily air pollution and meteorological data were obtained independently. The sample for analysis included 25 370 resident women who gave first live births in 1988. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on gestational age and preterm delivery (i.e. {lt} 37 wk), with adjustment for outdoor temperature and humidity, day of the week, season, maternal age, gender of child, and residential area. Very high concentrations of ambient sulfur dioxide (mean = 102 {mu}g/m{sup 3}), (maximum = 630 {mu}g/m{sup 3}) and total suspended particulates (mean = 375 {mu}g/m{sup 3}), (maximum =1 003 {mu}g/m{sup 3}) were observed in these areas. There was a significant dose-dependent association between gestational age and sulfur dioxide and total suspended particulate concentrations. The estimated reduced duration of gestation was 0.075 wk (12.6 h) and 0.042 wk (7.1 h) for each 100 {mu}g/m{sup 3} increase in sulfur dioxide and total suspended particulates 7-d lagged moving average, respectively. We concluded that high levels of total suspended particulates and sulfur dioxide, or of a more complex pollution mixture associated with these pollutants, appear to contribute to excess risk of preterm delivery in this population. Further work needs to be carried out, with more detailed information on personal exposure and effect modifiers.

  16. Ru-OSO coordination photogenerated at 100 K in tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-camphorsulfonate.

    Science.gov (United States)

    Phillips, Anthony E; Cole, Jacqueline M; d'Almeida, Thierry; Low, Kian Sing

    2012-02-06

    The photoinduced O-bound coordination mode in RuSO(2) complexes, previously observed only at 13 K, has been generated at 100 K in tetraammineaqua(sulfur dioxide)ruthenium(II) (±)-camphorsulfonate. This coordination state, often denoted MS1, decays to the η(2)-bound MS2 state, with an estimated half-life of 3.4(8) h and a long-lived population of 2.9(4)% at 120 K.

  17. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.

    Science.gov (United States)

    Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou

    2017-06-01

    Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.

  18. Sulfur Dioxide Emission Rates of Kilauea Volcano, Hawaii, 1979-1997

    Science.gov (United States)

    Elias, Tamar; Sutton, A.J.; Stokes, J.B.; Casadevall, T.J.

    1998-01-01

    INTRODUCTION Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Casadevall and others, 1987; Greenland and others, 1985; Elias and others, 1993; Elias and Sutton, 1996). The purpose of this report is to present a compilation of Kilauea SO2 emission rate data from 1979 through 1997 with ancillary meteorological data (wind speed and wind direction). We have included measurements previously reported by Casadevall and others (1987) for completeness and to improve the usefulness of this current database compilation. Kilauea releases SO2 gas predominantly from its summit caldera and rift zones (fig. 1). From 1979 through 1982, vehicle-based COSPEC measurements made within the summit caldera were adequate to quantify most of the SO2 emitted from the volcano. Beginning in 1983. the focus of SO2 release shifted from the summit to the east rift zone (ERZ) eruption site at Pu'u 'O'o and, later, Kupaianaha. Since 1984, the Kilauea gas measurement effort has been augmented with intermittent airborne and tripod-based surveys made near the ERZ eruption site. In addition, beginning in 1992 vehicle-based measurements have been made along a section of Chain of Craters Road approximately 9 km downwind of the eruption site. These several types of COSPEC measurements continue to the present.

  19. Sulfur dioxide alleviates programmed cell death in barley aleurone by acting as an antioxidant.

    Directory of Open Access Journals (Sweden)

    Sha-Sha Wang

    Full Text Available Sulfur dioxide (SO2, a gaseous signaling molecule in animal cells, has recently been found to play a physiological role in plants. Here we studied the role of SO2 in gibberellic acid (GA3-induced programmed cell death (PCD in barley (Hordeum vulgare L. aleurone layers. The application of the SO2 donor (NaHSO3/Na2SO3, 1:3 M/M effectively alleviated PCD in barley aleurone layers in a dose-dependent manner with an optimal concentration of 50 μM. Further investigations showed that SO2 reduced the accumulation of hydrogen peroxide (H2O2, superoxide anion (⋅O2- and malondialdehyde (MDA in aleurone layers. Moreover, the activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, glutathione reductase (GR and guaiacol peroxidase (POD were enhanced by SO2 donor treatment. Meanwhile, lipoxygenase (LOX activity was attenuated by SO2 donor treatment. Furthermore, an induction of endogenous H2S and NO were also observed in SO2-treated aleurone layers, suggesting interactions of SO2 with other well-known signaling molecules. Taken together, we show that SO2 negatively regulated PCD by acting as an antioxidant to scavenge excessive reactive oxygen species (ROS generated during PCD.

  20. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2013-01-01

    Full Text Available This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2 in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h. The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components.

  1. Management of industrial sulfur dioxide and nitrogen oxides emissions in Alberta - description of the existing system

    International Nuclear Information System (INIS)

    Macdonald, W.S.; Bietz, B.F.

    1999-01-01

    In addition to being key primary air contaminants, sulfur dioxide and nitrogen oxides are also major contributors to acidic deposition. The current management system for controlling industrial sources of SO(2) and NO(x) emissions in Alberta was developed in the late 1960s/early 1970s. The focus is on control of point source emissions through the use of appropriate technology. The approach taken for managing SO(2) and NO(x) emissions is similar to the approach taken to other industrial air and wastewater pollutants in Alberta. It is a command and control regulatory system. There are three main industry categories in Alberta which emit SO(2): sour gas processing, oil sand plants and thermal power plants. For NO(x) emissions, the two main categories with emissions: are natural gas production and thermal power plants. The two main goals of the existing industrial air quality management systems are to ensire that: (1) emissions from industrial facilities are minimized through the use of best available demonstrated technology, and (2) ambient levels of air contaminants in the vicinity of industrial facilities do not exceed Alberta guidelines. The four main policies which support these two goals of the existing management system are described. There are a number of key components of the existing management system including: ambient guideline levels, source emission standards, plume dispersion modelling, ambient air and source emission monitoring, environmental reporting, emission inventories, and approvals. 32 refs., 13 figs

  2. Interspecific differences in the effects of sulfur dioxide on angiosperm sexual reproduction

    International Nuclear Information System (INIS)

    DuBay, D.T.

    1981-01-01

    The major objective of this study was to test the potential direct effects of SO 2 on sexual reproduction in several plant species with different reproductive structures and processes. In marked contrast to the sensitivity to SO 2 reported by other investigators for pollen germination and pollen tube growth in vitro, and recorded for Lepidium virginicum in this study, 4 of 5 species tested were tolerant with respect to fruit and seed set after exposure to 0.6 ppm SO 2 for 8 hours during flowering. Seed set in the one sensitive species, Geranium carolinianum, was reduced 40% from the control after exposure to SO 2 , but only when relative humidity (RH) was at or above 90%. The effect of SO 2 on Lepidium pollen germination in vitro was greater than the effect of SO 2 on sexual reproduction in vivo. Sulfur dioxide reduced pollen germination in vitro 94% from the control. The same concentration of SO 2 , at 90% Rh, reduced pollen germination in vivo 50% from the control, but had no effect on seed set. Predictions of effects of SO 2 on reproduction in vivo based on effects of SO 2 on pollen germination and pollen tube growth in vitro are not valid

  3. [Relationship between sulfur dioxide pollution and upper respiratory outpatients in Jiangbei, Ningbo].

    Science.gov (United States)

    Wu, Yifeng; Zhao, Fengmin; Qian, Xujun; Xu, Guozhang; He, Tianfeng; Shen, Yueping; Cai, Yibiao

    2015-07-01

    To describe the daily average concentration of sulfur dioxide (SO2) in Ningbo, and to analysis the health impacts it caused in upper respiratory disease. With outpatients log and air pollutants monitoring data matched in 2011-2013, the distributed lag non-linear models were used to analysis the relative risk of the number of upper respiratory patients associated with SO2, and also excessive risk, and the inferred number of patients due to SO2 pollution. The daily average concentration of SO2 didn't exceed the limit value of second class area. The coefficient of upper respiratory outpatient number and daily average concentration of SO2 matched was 0.44,with the excessive risk was 10% to 18%, the lag of most SO2 concentrations was 4 to 6 days. It could be estimated that about 30% of total upper respiratory outpatients were caused by SO2 pollution. Although the daily average concentration of SO2 didn't exceed the standard in 3 years, the health impacts still be caused with lag effect.

  4. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    Science.gov (United States)

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  5. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  6. Uranium briquettes for irradiation target

    International Nuclear Information System (INIS)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo

    2011-01-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl x dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of 235 U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  7. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing; Chen, Fangping; Jin, Guanping; Feng, Xiaoshuang; Li, Xiaoxuan

    2015-01-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  8. The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from a coal fired power plant

    International Nuclear Information System (INIS)

    Newman, L.; Forrest, J.; Manowitz, B.

    1975-01-01

    The extent of oxidation of sulfur dioxide to sulfate in the plume of a coal fired plant has been studied by using sampling with a single engine aircraft. A technique employing isotopic ratio measurements was utilized in conjunction with simultaneous concentration measurements of sulfur dioxide and sulfate. The use of sulfur hexafluroide as a conservative tracer was explored. The heterogeneous mechanism postulated in an oil fired plume study appears to pertain to the coal fired plume. However, the extent of oxidation seldom exceeded 5% and is limited by the relatively low particulate content of the coal fired plume. Evidence is presented for the apparent dropping out of sulfate from the plume. Implications pertaining to the ambient oxidation of sulfur dioxide are presented. (author)

  9. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  10. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.

    Science.gov (United States)

    Xue, Meizhao; Yi, Huilan

    2018-01-01

    Sulfur dioxide (SO 2 ) is a common air pollutant that has complex impacts on plants. The effect of prior exposure to 30mgm -3 SO 2 on defence against Botrytis cinerea (B. cinerea) in Arabidopsis thaliana and the possible mechanisms of action were investigated. The results indicated that pre-exposure to 30mgm -3 SO 2 resulted in significantly enhanced resistance to B. cinerea infection. SO 2 pre-treatment significantly enhanced the activities of defence-related enzymes including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), β-1,3-glucanase (BGL) and chitinase (CHI). Transcripts of the defence-related genes PAL, PPO, PR2, and PR3, encoding PAL, PPO, BGL and CHI, respectively, were markedly elevated in Arabidopsis plants pre-exposed to SO 2 and subsequently inoculated with B. cinerea (SO 2 + treatment group) compared with those that were only treated with SO 2 (SO 2 ) or inoculated with B. cinerea (CK+). Moreover, SO 2 pre-exposure also led to significant increases in the expression levels of MIR393, MIR160 and MIR167 in Arabidopsis. Meanwhile, the expression of known targets involved in the auxin signalling pathway, was negatively correlated with their corresponding miRNAs. Additionally, the transcript levels of the primary auxin-response genes GH3-like, BDL/IAA12, and AXR3/IAA17 were markedly repressed. Our findings indicate that 30mgm -3 SO 2 pre-exposure enhances disease resistance against B. cinerea in Arabidopsis by priming defence responses through enhancement of defence-related gene expression and enzyme activity, and miRNA-mediated suppression of the auxin signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  12. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  13. Plume Tracker: Interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling

    Science.gov (United States)

    Realmuto, Vincent J.; Berk, Alexander

    2016-11-01

    We describe the development of Plume Tracker, an interactive toolkit for the analysis of multispectral thermal infrared observations of volcanic plumes and clouds. Plume Tracker is the successor to MAP_SO2, and together these flexible and comprehensive tools have enabled investigators to map sulfur dioxide (SO2) emissions from a number of volcanoes with TIR data from a variety of airborne and satellite instruments. Our objective for the development of Plume Tracker was to improve the computational performance of the retrieval procedures while retaining the accuracy of the retrievals. We have achieved a 300 × improvement in the benchmark performance of the retrieval procedures through the introduction of innovative data binning and signal reconstruction strategies, and improved the accuracy of the retrievals with a new method for evaluating the misfit between model and observed radiance spectra. We evaluated the accuracy of Plume Tracker retrievals with case studies based on MODIS and AIRS data acquired over Sarychev Peak Volcano, and ASTER data acquired over Kilauea and Turrialba Volcanoes. In the Sarychev Peak study, the AIRS-based estimate of total SO2 mass was 40% lower than the MODIS-based estimate. This result was consistent with a 45% reduction in the AIRS-based estimate of plume area relative to the corresponding MODIS-based estimate. In addition, we found that our AIRS-based estimate agreed with an independent estimate, based on a competing retrieval technique, within a margin of ± 20%. In the Kilauea study, the ASTER-based concentration estimates from 21 May 2012 were within ± 50% of concurrent ground-level concentration measurements. In the Turrialba study, the ASTER-based concentration estimates on 21 January 2012 were in exact agreement with SO2 concentrations measured at plume altitude on 1 February 2012.

  14. Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2014-02-01

    Full Text Available Sulfur dioxide (SO2 is a major atmospheric pollutant with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality, and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements is essential to ascertain the credibility of these models and to guide model improvements. In this study, the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5 model is used to simulate aerosol and SO2 concentrations. Data taken in November 2010 over Frostburg, Maryland during an SO2 field campaign involving ground instrumentation and aircraft are used to evaluate GEOS-5 simulated SO2 concentrations. Preliminary data analysis indicated the model overestimated surface SO2 concentration, which motivated the examination of the specification of SO2 anthropogenic emission rates. As a result of this analysis, a revision of anthropogenic emission inventories in GEOS-5 was implemented, and the vertical placement of SO2 sources was updated. Results show that these revisions improve the model agreement with observations locally and in regions outside the area of this field campaign. In particular, we use the ground-based measurements collected by the United States Environmental Protection Agency (US EPA for the year 2010 to evaluate the revised model simulations over North America.

  15. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham [University of North Dakota, Grand Forks, ND (United States). Department of Chemical Engineering

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  16. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  17. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

    Directory of Open Access Journals (Sweden)

    Z. Lu

    2011-09-01

    Full Text Available China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2 and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %–17 % due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs of SO2, BC, and OC emissions are estimated to be −16 %–17 %, −43 %–93 %, and −43 %–80 % for China, and −15 %–16 %, −41 %–87 %, and −44 %–92

  18. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    Science.gov (United States)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  19. A study of reactions of sulfur dioxide in the gaseous phase. Production and evolution of aerosols resulting from these reactions

    International Nuclear Information System (INIS)

    Boulaud, Denis

    1977-01-01

    The reactions of sulfur dioxide in the gaseous phase with atmospheric pollutants (NO x ; hydrocarbons) were studied. Experiments showed that NO 2 contribution was significant and suggested that SO 2 transformation into sulfuric acid and sulfates might occur through oxidising agents mainly hydroxyl (OH) and hydro-peroxyl (HO 2 ) radicals. The production and evolution of the resulting aerosols was also studied. It was demonstrated that the effect of water vapour on particle production was significant and that primary embryos were formed from the hetero-molecular homogeneous nucleation acting on water vapour and very likely on sulfuric acid. There was a semi-quantitative agreement between our experimental results and some theoretical investigations on nucleation rate of the system (H 2 O - H 2 SO 4 ). The subsequent growth of particles was studied in a simulation chamber. Finally a model of sulfuric acid vapour evolution in presence of atmospheric aerosols made it possible to extend the previous results as far as possible to the case of atmosphere and then to compare the importance of homogeneous and heterogeneous nucleation of the vapours according to atmospheric conditions. (author) [fr

  20. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  1. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  2. Effect of sulfur dioxide on the development of an anaphylactic reaction in guinea pigs sensitized by an immunosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, L; Orlov, G

    1973-01-01

    The effect of sulfur dioxide on the development of experimentally- induced anaphylaxis in guinea pigs inhaling antigenic aerosol (egg albumin) was studied. The animals were sensitized in advance with a complex of protein and sefadex (immunosorbent). Animals exposed for 60 min to SO/sub 2/ showed more severe anaphylactic seizures immediately after aerosol provocation than did animals not exposed to SO/sub 2/. The use of the immunosorbent resulted in the formation of large amounts of antibodies and prolonged antibody response, indicating the suitability of this method for sensitization.

  3. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  4. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  5. Sulfur dioxide (SO2 from MIPAS in the upper troposphere and lower stratosphere 2002–2012

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2015-06-01

    Full Text Available Vertically resolved distributions of sulfur dioxide (SO2 with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS revealed a slightly varying bias with altitude of −20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within −10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS. Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO2 for the altitude ranges 10–14, 14–18 and 18–22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual

  6. Study and make sulfur dioxide treatment equipment for degradation process of fine silicate zircon ore by sulfuric acid

    International Nuclear Information System (INIS)

    Cao Dinh Thanh; Le Xuan Thu; Tran Van Hoa; Pham Kim Thoa

    2003-01-01

    The against absorbent method was researched by research group to solve the above issue. This method was carried out by adsorbent lime-milk agent on the buffer of porous material with diameter D=9 cm and height H=1.2 m. The main parameters were gained: absorbent effect reached 98% with lime-milk concentration of 14% in water, against air flow speed of 0.7 m/s and lime-milk output of 0.45 liter/minute. Base on the above main researched parameter, the SO 2 treatment equipment system by sulfuric acid was worked out with the scale of 0.5 ton/batch/day; absorbent tower diameter D=0.47 m, buffer height H=3.5 m and expenditure of 33.2 kg CaO/ton of zircon silicate. (author)

  7. Fuel briquettes from wood and agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Natividad, R.A.

    1982-01-01

    A short review of the production and uses of briquettes and of machinery available for briquetting fine dry, coarse dry and coarse wet raw materials. The potential of a fuel briquette industry in the Philippines with an estimated annual production of 217 million ton of sawdust, 2.09 billion ton of rice hulls and 2.87 million ton of coconut husks is discussed. Studies at the Forest Products Research and Development Institute (FPRDI) have shown that sawdust, coir dust rice hulls briquettes with 1-2% resin binder have heating values of 6882, 5839 and 3913 cal/g respectively.

  8. Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste.

    Science.gov (United States)

    Bazargan, Alireza; Rough, Sarah L; McKay, Gordon

    2018-04-01

    Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.

  9. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    Science.gov (United States)

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed. Copyright © 2014. Published by Elsevier B.V.

  10. Determination of sulfur dioxide in ambient air and in industrial stack using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Sumitra, T.; Chankow, N.; Punnachaiya, S.; Laopaibul, R.

    1988-01-01

    Sulfur dioxide is a major air pollutant of concern. The gas has to be monitored both in ambient air and in industrial stacks. There are several methods of measuring sulfur dioxide. Standard methods adopted for Thailand are based on chemical methods. These are normally sensitive to light and temperature changes. Therefore a method of collecting air sample and determination of SO 2 by X-ray fluorescence technique was developed. Air sampling was done by an in-house low cost air sampler using automobile battery, dependency on a.c. source was thus avoided. The air pump has a flow rate between 0.2-1.5 liters/minute and draw about 0.6 A from a 12 V battery. SO 2 was collected on 37 mm filters impregnated with 5% sodium carbonate. This method could detect SO 2 from 10 μg up. The method has been checked by interlaboratory comparison. Field test has also been performed at some tobacco curing plants in Amphoe Sansai, Changwat Chiengmai, both in ambient air and in stacks. The results were found to be satisfactory and comparable with the standard methods

  11. Constraints on water vapor and sulfur dioxide at Ceres: Exploiting the sensitivity of the Hubble Space Telescope

    Science.gov (United States)

    Roth, Lorenz

    2018-05-01

    Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.

  12. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  13. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  14. [Significance of endogenous sulfur dioxide in the regulation of cardiovascular system].

    Science.gov (United States)

    Jin, Hong Fang; DU, Shu Xu; Zhao, Xia; Zhang, Su Qing; Tian, Yue; Bu, Ding Fang; Tang, Chao Shu; DU, Jun Bao

    2007-08-18

    Since the 1980's nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S), the endogenous gas molecules produced from metabolic pathway, have been realized as signal molecules to be involved in the regulation of body homeostasis and to play important roles under physiological and pathophysiological conditions. The researches on these endogenous gas signal molecules opened a new avenue in life science. To explore the new member of gasotransmitter family, other endogenous gas molecules which have been regarded as metabolic waste up to date, and their biological regulatory effects have been paid close attention to in the current fields of life science and medicine. Sulfur dioxide (SO(2)) can be produced endogenously from normal metabolism of sulfur-containing amino acids. L-cysteine is oxidized via cysteine dioxygenase to L-cysteinesulfinate, and the latter can proceed through transamination by glutamate oxaloacetate transaminase (GOT) to beta-sulfinyl pyruvate which decomposes spontaneously to pyruvate and SO(2). In mammals, activated neutrophils by oxidative stress can convert H(2)S to sulfite through a reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase-dependent process. The authors detected endogenous production of SO(2) in all cardiovascular tissues, including in heart, aorta, pulmonary artery, mesenteric artery, renal artery, tail artery and the plasma SO(2) content. As the key enzyme producing SO(2), GOT mRNA in cardiovascular system was detected and found to be located enriched in endothelial cells and vascular smooth muscle cells near the endothelial layer. When the normal rats were treated with hydroxamate(HDX), a GOT inhibitor, at a dose of 3.7 mg/kg body weight, the blood pressure (BP) went high markedly, the ratio of wall thickness to lumen radius was increased by 18.34%, and smooth muscle cell proliferation was enhanced. The plasma SO(2) level in the rats injected with 125 micromol/kg body weight SO(2) donor was

  15. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study)

    NARCIS (Netherlands)

    Sunyer, J; Ballester, F; Le Tertre, A; Atkinson, R; Ayres, JG; Forastiere, F; Forsberg, B; Vonk, JM; Bisanti, L; Tenias, JM; Medina, S; Schwartz, J; Katsouyvanni, K

    The objective of this study is to assess the short-term effect of sulfur dioxide (SO2) air pollution levels on hospital admissions for cardiovascular diseases. Daily mean hospital admissions for cardiovascular diseases, ischemic heart diseases (IHDs), and stroke in seven European areas (the cities

  16. comparative analysis of calorific value of briquettes produced

    African Journals Online (AJOL)

    yanky

    4.30% at 40% starch level while Daniella oliveri + Rice husk briquettes at 20% starch level had the ... transportation, handling and storage (Husan et al. 2002). .... Table 1: Combustion Properties of Briquettes at 20% Starch Level. Biomass.

  17. combustion properties of briquettes produced from maize cob

    African Journals Online (AJOL)

    joke

    2014-03-01

    Mar 1, 2014 ... were densified into briquettes using starch as binder. Combustion related ... Keywords: Briquette, maize cob, combustion properties, mesh sizes, binding agent ... smaller space requirement for storage (Yaman et al., 2000 and ...

  18. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability

    Science.gov (United States)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.

    2017-10-01

    Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.

  19. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study.

    Science.gov (United States)

    Kan, Haidong; Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Qian, Zhengmin

    2010-04-01

    Sulfur dioxide (SO(2)) has been associated with increased mortality and morbidity, but only few studies were conducted in Asian countries. Previous studies suggest that SO(2) may have adverse health effects independent of other pollutants. In the Public Health and Air Pollution in Asia (PAPA) project, the short-term associations between ambient sulfur dioxide (SO(2)) and daily mortality were examined in Bangkok, Thailand, and three Chinese cities: Hong Kong, Shanghai, and Wuhan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates. Effect estimates were obtained for each city and then for the cities combined. The impact of alternative model specifications, such as lag structure of pollutants and degree of freedom (df) for time trend, on the estimated effects of SO(2) were also examined. In both individual-city and combined analysis, significant effects of SO(2) on total non-accidental and cardiopulmonary mortality were observed. An increase of 10 microg/m(3) of 2-day moving average concentrations of SO(2) corresponded to 1.00% [95% confidence interval (CI), 0.75-1.24], 1.09% (95% CI, 0.71-1.47), and 1.47% (95% CI, 0.85-2.08) increase of total, cardiovascular and respiratory mortality, respectively, in the combined analysis. Sensitivity analyzes suggested that these findings were generally insensitive to alternative model specifications. After adjustment for PM(10) or O(3), the effect of SO(2) remained significant in three Chinese cities. However, adjustment for NO(2) diminished the associations and rendered them statistically insignificant in all four cities. In conclusion, ambient SO(2) concentration was associated with daily mortality in these four Asian cities. These associations may be attributable to SO(2) serving as a surrogate of other substances. Our findings suggest that the role of outdoor exposure to SO(2) should be investigated further in this region. (c) 2010

  20. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    Science.gov (United States)

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  1. A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Hanisco, Thomas F.; Baumann, Esther; Giorgetta, Fabrizio R.; Bui, Thaopaul V.; Fahey, David W.

    2016-01-01

    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt).

  2. The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China: A Spatial Panel Data Approach

    Directory of Open Access Journals (Sweden)

    Zhimin Zhou

    2017-04-01

    Full Text Available This paper aims to reveal the nexus for sulfur dioxide (SO2 emission and income, as well as the effects of technical progress on SO2 emission in China based on environment Kuznets curve (EKC hypothesis. The spatial panel technique is used in case the coefficient estimates are biased due to the negligence of spatial dependence. With the provincial panel data of China from 2004 to 2014, this is the first research that finds an inverse N-trajectory of the relationship between SO2 emission and economic growth and confirms the beneficial impacts of technical advancement on SO2 emission abatement. The empirical results also suggest that the industrial structure change is an important driving force of the SO2 EKC. In addition, the direct and spillover effects of determinants on sulfur emission are clarified and estimated by a correct approach. Finally, we check the stability of our conclusions on the EKC shape for SO2 and technical progress effects when controlling for different variables and specifications, through which we find the turning points are sensitive to variables selections.

  3. Particle density determination of pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, Fabienne; Temmerman, Michaeel [Centre wallon de Recherches agronomiques, Departement de Genie rural, CRA-W, Chaussee de Namur, 146, B 5030 Gembloux (Belgium); Boehm, Thorsten; Hartmann, Hans [Technologie und Foerderzentrum fuer Nachwachsende Rohstoffe, TFZ, Schulgasse 18, D 94315 Straubing (Germany); Daugbjerg Jensen, Peter [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK 1958 Frederiksberg C (Denmark); Rathbauer, Josef [Bundesanstalt fuer Landtechnik, BLT, Rottenhauer Strasse,1 A 3250 Wieselburg (Austria); Carrasco, Juan; Fernandez, Miguel [Centro de investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense, 22 E 28040 Madrid (Spain)

    2006-11-15

    Several methods and procedures for the determination of particle density of pellets and briquettes were tested and evaluated. Round robin trials were organized involving five European laboratories, which measured the particle densities of 15 pellet and five briquette types. The test included stereometric methods, methods based on liquid displacement (hydrostatic and buoyancy) applying different procedures and one method based on solid displacement. From the results for both pellets and briquettes, it became clear that the application of a method based on either liquid or solid displacement (only tested on pellet samples) leads to an improved reproducibility compared to a stereometric method. For both, pellets and briquettes, the variability of measurements strongly depends on the fuel type itself. For briquettes, the three methods tested based on liquid displacement lead to similar results. A coating of the samples with paraffin did not improve the repeatability and the reproducibility. Determinations with pellets proved to be most reliable when the buoyancy method was applied using a wetting agent to reduce surface tensions without sample coating. This method gave the best values for repeatability and reproducibility, thus less replications are required to reach a given accuracy level. For wood pellets, the method based on solid displacement gave better values of repeatability, however, this instrument was tested at only one laboratory. (author)

  4. Influence of sulfur dioxide on the mineral composition of needles from spruces

    Energy Technology Data Exchange (ETDEWEB)

    Materna, J

    1961-01-01

    Until recently all the authors knew about changes in the mineral composition of plants exposed to air pollution was that the sulfur content increases considerably. The question arises whether other mineral substances, too, accumulate in the assimilating organs of smoke injured plants, particularly cations such as calcium, potassium and magnesium. Results of analyses of spruce needles from an air polluted forest in the Erzebirge in Czechoslovakia yielded no relationship between the accumulation of sulfates and the mentioned cations.

  5. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  6. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities.

    Science.gov (United States)

    Wang, Lijun; Liu, Cong; Meng, Xia; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Tse, Lap Ah; Chen, Jianmin; Zhou, Maigeng; Chen, Renjie; Yin, Peng; Kan, Haidong

    2018-04-28

    Ambient sulfur dioxide (SO 2 ) remains a major air pollutant in developing countries, but epidemiological evidence about its health effects was not abundant and inconsistent. To evaluate the associations between short-term exposure to SO 2 and cause-specific mortality in China. We conducted a nationwide time-series analysis in 272 major Chinese cities (2013-2015). We used the over-dispersed generalized linear model together with the Bayesian hierarchical model to analyze the data. Two-pollutant models were fitted to test the robustness of the associations. We conducted stratification analyses to examine potential effect modifications by age, sex and educational level. On average, the annual-mean SO 2 concentrations was 29.8 μg/m 3 in 272 cities. We observed positive and associations of SO 2 with total and cardiorespiratory mortality. A 10 μg/m 3 increase in two-day average concentrations of SO 2 was associated with increments of 0.59% in mortality from total non-accidental causes, 0.70% from total cardiovascular diseases, 0.55% from total respiratory diseases, 0.64% from hypertension disease, 0.65% from coronary heart disease, 0.58% from stroke, and 0.69% from chronic obstructive pulmonary disease. In two-pollutant models, there were no significant differences between single-pollutant model and two-pollutant model estimates with fine particulate matter, carbon monoxide and ozone, but the estimates decreased substantially after adjusting for nitrogen dioxide, especially in South China. The associations were stronger in warmer cities, in older people and in less-educated subgroups. This nationwide study demonstrated associations of daily SO 2 concentrations with increased total and cardiorespiratory mortality, but the associations might not be independent from NO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mapping critical levels of ozone, sulfur dioxide and nitrogen oxide for crops, forests and natural vegetation in the United States

    International Nuclear Information System (INIS)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. This paper, presents example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. This approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. Presents the first stage of an analysis that reports the distribution of exceedances of critical levels for NO 2 , SO 2 , and O 3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. It is concluded that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. Pollutant data depicted in this analysis are limited to locationally specific data, and would be enhanced by utilizing spatial statistics, along with converging associated anthropogenic and climatological factors. Values used for critical levels were derived from current scientific knowledge. While not intended to be a definitive value, adjustments will occur as the scientific community gains new insight to pollutant/receptor relationships. We recommend future analysis to include a refinement of sensitive receptor data coverages and to report relative proportions of exceedances at varying grid scales. 27 refs., 4 figs., 1 tab

  8. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    Science.gov (United States)

    2015-11-24

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  9. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    Science.gov (United States)

    2015-12-14

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  10. Means of absorption for dry removal of sulfur dioxide from slack gases. Absorptionsmittel fuer die trockene Entfernung von Schwefedioxid aus Rauchgasen

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, G; Glaser, W; Hein, K

    1984-03-01

    This is a means of absorption for the dry removal of sulfur dioxide and other harmful substances from the stack gases from boilers. The means of absorption consists mainly of a fine-grained inorganic alkaline earth compound, particularly a calcium and/or a magnesium compound and an additive in the form of one or more carbonic acids and/or of their alkali salts, ammonium salts or alkaline earth salts.

  11. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  12. Effects of air pollution on crops. I. Effects of gaseous sulfur dioxide and ozone on the occurrence of symptoms of injuries on vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Masahara, O; Mega, K

    1974-06-01

    In order to obtain information on plant injuries due to air pollution to utilize susceptible plants as biological indicators of air pollution, potted plants such as chard, spinach, Chinese cabbage, and Japanese radish or cut plants such as Welsh onion were exposed in a glass house to sulfur dioxide at 0.4 ppM continuously for a week or to ozone for 6 hr at 0.13, 0.2, 0.4, and 0.6 ppM. The symptoms due to sulfur dioxide appeared first as peripheral and interveinal necrosis, followed by dehydration. The period of exposure required for the appearance of injuries depended mainly on the vegetable species and ranged from 1 day for potted herb mustard to more than a week for maize. A variety of cabbage did not show any injury after 1 week of continuous exposure to sulfur dioxide. The symptoms due to ozone appeared on the veinal or interveinal parts of leaves and were white to light brown in color on cruciferous vegetables and onions. Brown spots appeared on cucumber, and brown, reddish-purple, or dark purple lesions appeared on burdock, rice, and kidney bean. Damage was most severe on cucumbers occurring even at 0.13 ppM. The environmental conditions before and after the exposure to these gases affected the appearance of the symptoms.

  13. Ultrafast Photodissociation Dynamics of the F State of Sulfur Dioxide by Femtosecond Time-Resolved Pump-Probe Method

    International Nuclear Information System (INIS)

    Zhang Dong-Dong; Ni Qiang; Luo Si-Zuo; Zhang Jing; Liu Hang; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2011-01-01

    A femtosecond pump-probe method is employed to study the dissociation dynamics of sulfur dioxide. SO 2 molecules are excited to the F state by absorbing two photons of 267 nm femtosecond laser pulses, and ionized by 400 nm laser pulses at different delay times between the two lasers. Transients of both parent ions (SO + 2 ) and the fragment ions (SO + , S + and O + ) are observed. The SO + 2 transient can be well fitted to a biexponential decay comprising a fast and a slow component of 280 fs and 2.97 ps lifetimes, respectively. The SO + transient consists of two growth components of 270 fs and 2.50 ps. The results clearly show that the F state of SO 2 dissociates along an S-O bond. The transients of S + and O + , however, have different behavior, which consist of a fast growth and a long decay component. A possible mechanism of the fragment formation is discussed to understand the dissociation dynamics of the F state of SO 2 . (atomic and molecular physics)

  14. Growth response of four species of Eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide

    International Nuclear Information System (INIS)

    Davis, D.D. Skelly, J.M.

    1992-01-01

    In 1987 a study was conducted in controlled environment chambers to determine the foliar sensitivity of tree seedlings of eight species to ozone and acidic precipitation, and to determine the influence of leaf position on symptom severity. Jensen and Dochinger conducted concurrent similar studies in Continuously Stirred Tank Reactor (CSTR) chambers with ten species of forest trees. Based on the results of these initial studies, four species representing a range in foliar sensitivity to ozone were chosen: black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.). These species were also chosen because of their ecological and/or commercial importance in Pennsylvania. Seedlings were exposed in growth chambers simulated acid rain. In addition acute exposures to sulfur dioxide were conducted in a regime based on unpublished monitoring data collected near coal-fired power plants. The objective of this study was to determine if the pollutant treatments influenced the growth and productivity of seedlings of these four species. This information will help researchers and foresters understand the role of air pollution in productivity of eastern forests

  15. In vivo antitussive activity of Coccinia grandis against irritant aerosol and sulfur dioxide-induced cough model in rodents

    Directory of Open Access Journals (Sweden)

    Shakti Prasad Pattanayak and Priyashree Sunita

    2009-12-01

    Full Text Available Coccinia grandis (Cucurbitaceae has extensively used to get relief from asthma and cough by the indigenous people of India. The antitussive effect of aerosols of two different concentrations (2.5%, 5% w/v of methanol extract of C. grandis fruits were tested by counting the numbers of coughs produced due to aerosols of citric acid, 10 min after exposing the male guinea pigs to aerosols of test solutions for 7 min. In another set of experiment methanol extract was investigated for its therapeutic efficacy on a cough model induced by sulfur dioxide gas in mice. The results showed significant reduction of cough number obtained in the presence of both concentrations of methanol extract as that of the prototype antitussive agent codeine phosphate. Also, methanol extract exhibited significant antitussive effect at 100, 200 and 400 mg/kg, per orally by inhibiting the cough by 20.57, 33.73 and 56.71% within 90 min of performing the experiment respectively.

  16. Using CATS Near-Real-time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    Science.gov (United States)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  17. Reducing information asymmetry in the power industry: Mandatory and voluntary information disclosure regulations of sulfur dioxide emission

    International Nuclear Information System (INIS)

    Zhu Xufeng; Zhang Chao

    2012-01-01

    This paper focuses on the institutional framework for sulfur dioxide emission information disclosure (SDEID) in power industries. The authors argue that mandatory and voluntary SDEID are two complementary regulatory instruments for emission reduction in the power industry. An analytical framework of SDEID with six facets is suggested in this paper to demonstrate relevant legal provisions and regulatory policies of mandatory and voluntary SDEID of power industries in the US. Empirical research shows that mandatory and voluntary SDEID of the power industry have been regulated simultaneously in the US. The foundation of power companies' willingness to disclose emission information voluntarily is the combination of mandatory scientific monitoring with market regulation in the current SDEID system in the US. In comparison, the SDEID of power industries has yet to be widely implemented in developing countries. Finally, the paper provides some implications to developing countries that plan to learn institutional arrangements from developed countries. - Highlights: ► Mandatory and voluntary SDEID are two complementary regulatory instruments. ► An analytical framework is suggested to demonstrate SDEID of power industry in the US. ► Voluntary disclosure can be attributed to scientific monitoring and market regulation. ► We provide implications to developing countries learning from developed countries.

  18. Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil

    Science.gov (United States)

    Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos

    2011-09-01

    Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.

  19. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  20. Approach to air pollution abatement in Czechoslovakia (especially of sulfur dioxide)

    International Nuclear Information System (INIS)

    Bilik, O.

    1991-01-01

    The development of particulate and SO 2 emissions in Czechoslovakia in 1970-1989 and the contributions of the individual industry branches are given. The Air Protection Act was adopted in July 1991; it introduces the concept of emission limits, to be laid down in a differentiated way for new and existing facilities. An overview of the limits for newly built facilities is given. Coal desulfurization, which is a crucial point in the minimization of air pollution, is a difficult task because in Czechoslovakia, sulfur is present in coal in various forms. The coal gasification and pressure fluidized combustion techniques hold great promise in this respect. Desulfurization shall be implemented so that for each source exceeding 100 MWe, the SO 2 level shall be lower than approximately 500 mg/Nm 3 ; this requires a desulfurization efficiency of about 95%. For smaller sources the situation will be less severe because their limiting SO 2 concentration will be about 1700 mg/Nm 3 , requiring a desulfurization efficiency of about 55%. For NO x emissions, the reaching of the emission limit of 650 mg/Nm 3 seems practicable for the majority of brown coal powder furnaces. As to particulate emissions, none of the existing energy sources complies with the proposed limit of 100 mg/Nm 3 for new sources. This will call for reconstruction or complete upgrading of separator facilities at all the operated sources. (Z.S.). 2 tabs

  1. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  2. Sulfur dioxide emissions in Asia in the period 1985-1997

    Science.gov (United States)

    Streets, David G.; Tsai, Nancy Y.; Akimoto, Hajime; Oka, Kaoru

    A consistent set of SO 2 emission trends has been developed for Asian countries for the time period 1985-1997. The trend is based on extrapolation of a detailed 1990 inventory, which was constructed as part of the World Bank's RAINS-ASIA project, using IEA energy-use data. The trend shows Asian SO 2 emissions growing from 33.7 Tg in 1990 to 39.2 Tg in 1997. Estimates interpolated from the RAINS-ASIA computer model suggest a value for 1997 of 46.4 Tg, assuming no major changes in emission abatement policies after 1990. The reduction in the 1997 value, by some 16%, is primarily due to regulatory requirements and other trends toward lower sulfur content of oil products and coal. A slowdown in the growth of emissions in China - due to a reduction in economic growth, the mining of higher-quality coals, enhanced environmental awareness, and a reduction in industrial coal use - has been instrumental in arresting the growth of Asian emissions. Most of the positive developments have occurred in East Asia, and high-emission growth rates persist in Southeast Asia and the Indian subcontinent. The outlook for the future is that Asian SO 2 emissions may well peak in the region of 40-45 Tg by the year 2020 or earlier, in contrast to previous predictions of 2020 emissions as high as 80-110 Tg. The trends developed in this paper are good news for the local and regional environment, particularly in East Asia. However, they also signify lower-than-anticipated concentrations of sulfate aerosol over the Asian continent, with the resulting possibility of greater-than-anticipated regional and global warming.

  3. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  4. Process and device to produce fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Caroe, C J

    1980-10-23

    A two-stage process for the production of briquettes consisting essentially of cellulose (sawdust, peanut shells) is proposed. The fuel material (in case with additives) is molded by high pressure to pellets of the size of a few centimeters. The pellets are mixed with flammable binding agents like paraffin, wax, polyethylene etc. and molded at a lower pressure or extruded in a second step. A suited molding device is described. The wax content could be lowered with respect to known processes.

  5. Endogenous sulfur dioxide regulates hippocampal neuron apoptosis in developing epileptic rats and is associated with the PERK signaling pathway.

    Science.gov (United States)

    Niu, Manman; Han, Ying; Li, Qinrui; Zhang, Jing

    2018-02-05

    Epilepsy is among the most common neurological diseases in children. Recurrent seizures can result in hippocampal damage and seriously impair learning and memory functions in children. However, the mechanisms underlying epilepsy-related brain injury are unclear. Neuronal apoptosis is among the most common neuropathological manifestations of brain injury. Endogenous sulfur dioxide (SO 2 ) has been shown to be involved in seizures and related neuron apoptosis. However, the role of endogenous SO 2 in epilepsy remains unclear. This study assessed whether endogenous SO 2 is involved in epilepsy and its underlying mechanisms. Using a rat epilepsy model induced by an intraperitoneal injection of kainic acid (KA), we found that hippocampal neuron apoptosis was induced in epileptic rats, and the SO 2 content and aspartate aminotransferase (AAT) activity in the plasma were increased compared to those in the control group. However, the inhibition of SO 2 production by l-aspartate-β-hydroxamate (HDX) can subvert this response 72h after an epileptic seizure. No difference in apoptosis was observed 7 d after the epileptic seizure in the KA and KA+HDX groups. The protein expression levels of AAT2, glucose-regulated protein 78 (GRP78), pancreatic eIF2 kinase-like ER kinase (PERK) and phospho-PERK (p-PERK) were remarkably elevated in the hippocampi of the epileptic rats, while the HDX treatment was capable of reversing this process 7 d after the epileptic seizure. These results indicate that the inhibition of endogenous SO 2 production can alleviate neuronal apoptosis and is associated with the PERK signaling pathway during the initial stages after epileptic seizure, but inhibiting SO 2 production only delayed the occurrence of apoptosis and did not prevent neuronal apoptosis in the epileptic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of sulfur dioxide on net CO/sub 2/ assimilation in the lichen Evernia mesomorpha Nyl

    Energy Technology Data Exchange (ETDEWEB)

    Huebert, D B; L' Hirondelle, S J; Addison, P A

    1985-01-01

    Physiologically active thalli of the lichen Evernia mesomorpha Nyl. were very sensitive to short-term fumigations with low concentrations of gaseous sulfur dioxide. Net CO/sub 2/ assimilation rate (NAR) was significantly reduced after exposure to 0.085 ..mu..l l/sup -1/ (250 ..mu..g m/sup -3/) SO/sub 2/ for 1 h or more, and the reduction increased with increasing concentration. Duration of exposure had no significant effect on NAR, indicating the importance of rate of SO/sub 2/ uptake rather than the total amount absorbed. Respiration was significantly reduced after 4 h or more of exposure to 0.265 ..mu..l l/sup -1/ (639 ..mu..g m/sup -3/) SO/sub 2/ or higher. Recovery of NAR after fumigation was dependent on both SO/sub 2/ concentration and duration of fumigation, and on the time allowed for recovery. Virtually complete recovery occurred within 24 h after episodes with up to 0.355 ..mu..l l/sup -1/ (856 ..mu..g m/sup -3/) SO/sub 2/ for 1 h and 0.085 ..mu..l l/sup -1/ SO/sub 2/ for 4 h. Above these levels, recovery was incomplete or nonexistent after 24 h in clean air. The level of sensitivity found can be attributed to the environmental conditions during fumigation, which prevented thallus desiccation and inactivity. Based on this study, neither the concept of dose (concentration x time) nor that of threshold levels of SO/sub 2/ fumigations are supported. Peak exposures to SO/sub 2/ for short periods may be of primary importance in determining the survival of lichens in industrial areas.

  7. Changes in Atmospheric Sulfur Dioxide (SO2) over the English Channel - 1.5 Years of Measurements from the Penlee Point Atmospheric Observatory

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas; Hopkins, Frances; Smyth, Timothy

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near near the Plymouth Sound. International Maritime Organization regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. We observed a three-fold reduction from 2014 to 2015 in the estimated ship-emitted SO2 during southeasterly winds. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~1/3 in 2014 to ~1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  8. Pyrolysis Process and Characteristics of Products from Sawdust Briquettes

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2016-01-01

    Full Text Available The pyrolysis of briquettes made from biomass is an available and economic technological route for the production of briquette charcoal, but by-products (tar and gas cannot be brought into full utilization, leading to the waste of resources and the addition of environmental concerns. Temperature is the most important parameter that affects the distributions and properties of briquette charcoal. This work investigated the three kinds of products of the pyrolysis of sawdust briquette in a fixed bed across a wide temperature range (250 to 950 °C. The purpose of this experiment was to study the pyrolysis process and the properties of the resulting products (briquette charcoal, liquid, and gas of sawdust briquettes and explore the optimum operating temperature to generate good quality briquette charcoal, liquid, and gaseous products simultaneously. According to the results, the optimum pyrolysis temperature range was 450 to 650 °C, for which the briquette charcoal produced within this range had the highest calorific value (2,9.14 to 30.21 MJ/kg. Meanwhile, the liquid product is considered to be useful for liquid fuels or valuable chemical materials, and the low heating value of the gaseous product was 11.79 to 14.85 MJ/Nm3 in this temperature range.

  9. Results of determinations of the sulfur-dioxide content of the atmospheric air with a portable measurement kit based on the pararosaniline method

    Energy Technology Data Exchange (ETDEWEB)

    Lampadius, F

    1963-01-01

    Among the toxides emitted by industry, home heating, and transportation and which are polluting the atmospheric air, sulfur dioxide occupies the forefront of our interest in any examination of smoke damage to agricultural and forest growth. This primary position is based on the high degree of the sensitivity of plants to sulfur dioxide. The SO/sub 2/ toxicity threshold, for example, for spruce trees is between 0.4 and 0.5 mg/m/sup 3/. In contrast, an irritant concentration threshold for the nervous system of man has been set at 0.6 mg SO/sub 2//m/sup 3/. Studies have demonstrated that the SO/sub 2/ damage to plants - aside from the plant's stage of development - can be attributed to the product of the concentration and the duration of the toxide's action. The air-analytical proof of the sulfur dioxide as the cause for plant smoke damage must extend then to the selective recording of the SO/sub 2/ admixture in the atmospheric air, to the determination of the SO/sub 2/ level of the air in mg/m/sup 3/ within a longer period of time, and finally through short-term measurements to the discovery of when and how long peak concentrations of phytoxic SO/sub 2/ occur. In keeping with this goal, an SO/sub 2/ device was developed and used to conduct, on several occasions in the course of 1962, air examinations in individual smoke-damaged areas of the German Democratic Republic. The results of these air measurements are treated in this paper. 7 figures, 2 tables.

  10. The Swedish market for wood briquettes - Production and market development

    Energy Technology Data Exchange (ETDEWEB)

    Karlhager, Johan

    2008-02-15

    Wood briquettes have constituted an important input to the Swedish energy system during the last two decades. However, the development of the production and markets for briquettes during the years 2000-2007 has not been studied in detail. The purpose of this study was to elucidate the state of the briquette industry. More specifically, the aims were to map the production of briquettes, describe the development of its markets, describe the production process, describe the producers and to examine the competitive situation for the producers. To collect data regarding the production and the producers, the markets, raw materials and company structures, a questionnaire was sent out to the producers during the fall in the year 2007. The results were then compiled and compared to previous studies. The description of the production process was mainly based on literature studies. The results were analyzed and related to M.E. Porter's Five force model to be able to describe the competitive environment for the briquette producers. The study was limited to production in Sweden and did not intend to cover a possible import of briquettes. Regarding the production process, the most common types of briquetting equipment were described. The results showed that the trend in the briquette industry was neutral, possibly negative. The turnover derived from briquette sales during the year 2006 was roughly a quarter of a billion SEK. The industry was very concentrated, with one producer accounting for 43 % of the aggregate production in the year 2006. Since the year 2000, the production of briquettes among the participating producers increased from some 210 000 tons (980 GWh) (2002) to some 280 000 tons (1 300 GWh) in the year 2006. The planned expansion of the production capacity was 3,8 % within the two years to come. A typical small scale briquette producer was a small saw mill, planing mill or a joinery using their by-products as raw material. 78 % of the briquettes are produced

  11. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  12. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    Science.gov (United States)

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  13. Study and modeling of the reduction of sulfur dioxide, nitrogen oxides and hydrogen chloride by dry injection technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wuyin

    1997-05-01

    The potential and mechanism to reduce acid gases, such as sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}) and hydrogen chloride (HCl), by dry Ca-based sorbents have been studied to improve the efficiency of the process and sorbent utilization. Several natural limestones were tested for SO{sub 2} removal. Calcium conversion as high as 45 % was achieved in the first 0.3 s at 1000 deg C, 1000 ppm SO{sub 2} and Ca/S=1. A SO{sub 2} removal efficiency of 95 % was reached at Ca/S=2. Two models for estimating the sulfation of CaO at high temperature are presented. Short-residence-time sulfation is described by a pore size distribution model and long-residence-time sulfation by a particle expansion model. The pore size distribution model explains the effects of particle size, pore size distribution and partial pressure of SO{sub 2}, suggesting these three factors be the most important for CaO conversion. For particles larger than 1-2 {mu}m in furnace sorbent injection, pore diameters of 50-300 Aa are desirable. When large particles or long residence times are used, as in fluidized bed combustion, the particle expansion model shows the particle size and the sorbent type to be the main factors affecting the reaction. By using the selected limestone and additives the simultaneous SO{sub 2}/NO{sub x} removal was also measured. Several ammonium salts as well as urea were tested. Urea was found to give the highest NO{sub x} removal efficiency. To fully utilize the unreacted Ca-based sorbents, the spent sorbents from SO{sub 2} reduction processes were tested in a fixed-bed reactor to measure the capacity for HCl removal at 150-600 deg C. The results showed that all spent materials could react with HCl to some extent. After being calcined and slaked, they even showed the same reactivity as pure Ca(OH){sub 2}. A shrinking core model was derived for fixed-bed reactor. For the best sorbent tested, the multiple sorbent utilization reached about 80 %. 100 refs, 42 figs, 12 tabs

  14. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  15. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  16. Trading sulfur dioxide allowances

    International Nuclear Information System (INIS)

    Goldburg, C.B.; Lave, L.B.

    1992-01-01

    The 1990 Clean Air Act is aimed at generators larger than 25 MW, as these are the largest polluters. Market incentives give each source an emissions allocation but also flexibility. If a plant has lower emissions than the target, it can sell the 'surplus' emissions as allowances to plants that fail to meet the target. Only a few trades have occurred to date. Market-based incentives should lower the costs of improving environmental quality significantly. However, currently institutional dificulties hamper implementation

  17. Selected parameters of maize straw briquettes combustion

    Directory of Open Access Journals (Sweden)

    Kraszkiewicz Artur

    2018-01-01

    Full Text Available An analysis of the process of burning briquettes made of maize straw was performed. A number of traits have been evaluated, including physical characteristics of the fuel through parameters describing combustion kinetics as well as products and combustion efficiency. The study was conducted in a grate boiler, during which the differentiating factor was the air velocity flowing to the boiler. It was observed that the obtained values of the considered parameters were different, particularly temperature of the flue gas and the amount of CO and SO2 in the flue gas.

  18. An Improved Metabolism Grey Model for Predicting Small Samples with a Singular Datum and Its Application to Sulfur Dioxide Emissions in China

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-01-01

    Full Text Available This study proposes an improved metabolism grey model [IMGM(1,1] to predict small samples with a singular datum, which is a common phenomenon in daily economic data. This new model combines the fitting advantage of the conventional GM(1,1 in small samples and the additional advantages of the MGM(1,1 in new real-time data, while overcoming the limitations of both the conventional GM(1,1 and MGM(1,1 when the predicted results are vulnerable at any singular datum. Thus, this model can be classified as an improved grey prediction model. Its improvements are illustrated through a case study of sulfur dioxide emissions in China from 2007 to 2013 with a singular datum in 2011. Some features of this model are presented based on the error analysis in the case study. Results suggest that if action is not taken immediately, sulfur dioxide emissions in 2016 will surpass the standard level required by the Twelfth Five-Year Plan proposed by the China State Council.

  19. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  20. Characterization of Briquette Produced from Tannery Solid Waste

    Directory of Open Access Journals (Sweden)

    Olatunde Ajani Oyelaran

    2017-06-01

    Full Text Available Skin processing produces large volumes of wastes, much of which are not utilized but disposed in the landfill. This study explored the possibility of producing briquettes from tannery waste that could be used for heating purposes for cottage factories and domestic cooking. Wastes studied are buffing dust, chrome shavings, fleshing, and hair. The briquette properties tested were moisture content, volatile matter, ash content, fixed carbon content, calorific value, compressive strength, density and durability. The moisture content of the raw materials ranged between 2.04 and 8.37% while the moisture content of the produced briquettes after 19 days of drying ranges between 1.17 and 4.13%. The volatile matter also decreases while the ash content increases after briquetting. The fixed carbon content ranges 73.79 and 93.23%. The heating values of the briquettes also showed a great increased after briquetting of between 19.82 and 21.86 MJ/kg. The compressive strength ranges between 0.17 and 0.21 kN/cm2, the durability ranges between 97.83 and 99.54%. The maximum densities of the briquettes also meet the required specifications of minimum value of 600 kg/m3. The briquettes produced also possess good qualities that make tannery solid waste a materials for production of briquettes for heating and in cottage industries

  1. Comparative study of durability test methods for pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Temmerman, Michaeel; Rabier, Fabienne [Centre wallon de Recherches agronomiques (CRA-W), 146, chaussee de Namur, B-5030, Gembloux (Belgium); Jensen, Peter Daugbjerg [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe-TFZ, Schulgasse 18, D-94315 Straubing (Germany)

    2006-11-15

    Different methods for the determination of the mechanical durability (DU) of pellets and briquettes were compared by international round robin tests including different laboratories. The DUs of five briquette and 26 pellet types were determined. For briquettes, different rotation numbers of a prototype tumbler and a calculated DU index are compared. For pellets testing, the study compares two standard methods, a tumbling device according to ASAE S 269.4, the Lignotester according to ONORM M 7135 and a second tumbling method with a prototype tumbler. For the tested methods, the repeatability, the reproducibility and the required minimum number of replications to achieve given accuracy levels were calculated. Additionally, this study evaluates the relation between DU and particle density. The results show for both pellets and briquettes, that the measured DU values and their variability are influenced by the applied method. Moreover, the variability of the results depend on the biofuel itself. For briquettes of DU above 90%, five replications lead to an accuracy of 2%, while 39 replications are needed to achieve an accuracy of 10%, when briquettes of DU below 90% are tested. For pellets, the tumbling device described by the ASAE standard allows to reach acceptable accuracy levels (1%) with a limited number of replications. Finally, for the tested pellets and briquettes no relation between DU and particle density was found. (author)

  2. Analysis of Calorific Value of Tibarau Cane Briquette

    Science.gov (United States)

    Nurdin, H.; Hasanuddin, H.; Darmawi, D.; Prasetya, F.

    2018-04-01

    The development of product diversification through tibarau cane briquettes as an effort in obtaining alternative fuels. Tibarau cane is one of the potential materials of renewable energy sources that can be processed into briquette. So as to reduce dependence on energy fuel oil, which for the middle to lower class is the main requirement. Efforts and innovations tibarau cane briquettes in producing fuel that has quality and performance can be measured with calorific value. Prior to development of this potential required the existence of test and evaluation stages according to the order of the flow of new material product development. Through process technology of briquette product making with compaction and optimization of composition content on tapioca adhesive and mesh particles suitable to get optimum calorific value. The results obtained in this research are the development of tibarau cane briquette model which is recommended as replacement fuel. Where the calorific value of tibarau cane briquette is 11.221,72 kJ / kg at composition percentage 80: 20 and its density is 0,565 gr/cm3. The comparison of mass tibarau with tapioca, particle size, pressure force (compaction), can affect the calorific value and density of tibarau cane briquette.

  3. Far-infrared irradiation drying behavior of typical biomass briquettes

    International Nuclear Information System (INIS)

    Chen, N.N.; Chen, M.Q.; Fu, B.A.; Song, J.J.

    2017-01-01

    Infrared radiation drying behaviors of four typical biomass briquettes (populus tomentosa leaves, cotton stalk, spent coffee grounds and eucalyptus bark) were investigated based on a lab-scale setup. The effect of radiation source temperatures (100–200 °C) on the far-infrared drying kinetics and heat transfer of the samples was addressed. As the temperature went up from 100 °C to 200 °C, the time required for the four biomass briquettes drying decreased by about 59–66%, and the average values of temperature for the four biomass briquettes increased by about 33–39 °C, while the average radiation heat transfer fluxes increased by about 3.3 times (3.7 times only for the leaves). The specific energy consumptions were 0.622–0.849 kW h kg"−"1. The Modified Midilli model had the better representing for the moisture ratio change of the briquettes. The values of the activation energy for the briquettes in the first falling rate stage were between 20.35 and 24.83 kJ mol"−"1, while those in the second falling rate stage were between 17.89 and 21.93 kJ mol"−"1. The activation energy for the eucalyptus bark briquette in two falling rate stages was the least one, and that for the cotton stalk briquette was less than that for the rest two briquettes. - Highlights: • Far infrared drying behaviors of four typical biomass briquettes were addressed. • The effect of radiation source temperatures on IR drying kinetics was stated. • Radiation heat transfer flux between the sample and heater was evaluated. • Midilli model had the better representing for the drying process of the samples.

  4. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  5. Mathematical modelling of the kinetics of aerosol oxidation of sulfur dioxide upon electron-beam purification of power-plant flue gases from nitrogen and sulfur oxides

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Gerasimova, T.S.; Fadeev, S.A.

    1996-01-01

    A kinetic model of SO 2 oxidation in flue gases, irradiated with accelerated electron flux is proposed. The model comprises an optimized mechanism of gas phase radiation chemical oxidation of NO and SO 2 , kinetics circuit of SO 2 and NH 3 thermal interaction, kinetic models of volumetric condensation of water and sulfuric acid vapors and liquid-phase oxidation of SO 2 in aerosol drops, produced in the course of volumetric condensation. Calculation results are in a satisfactory agreement with experimental data. (author)

  6. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    Directory of Open Access Journals (Sweden)

    F. Zannikos

    2013-01-01

    Full Text Available This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET, the behavior in the combustion is steadier because of the increase of oxygen supply. The smoke levels are between the 3rd and 4th grades of the smoke number scale. Measuring the carbon monoxide emission, it was observed that the burning of the plastic in the mixture with biomass increases the carbon monoxide emissions from 10% to 30% as compared to carbon monoxide emission from sawdust biomass emissions which was used as a reference.

  7. Production and quality testing of fuel briquettes made from ...

    Indian Academy of Sciences (India)

    Santhosh Ujjinappa

    2018-04-13

    Apr 13, 2018 ... Thus, this work proved that the blending of PS and TS gives better quality briquettes ... parameters such as compressed density, relaxed density, relaxation ratio ... developed for coal. The test was conducted after two weeks.

  8. Investigation of Mechanical Properties of Briquette Product of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    with the increased in the consumption of fuel wood etc. ... depletion is one of the most crucial issues for many countries. ... emissions since nearly zero net gain CO2 can be achieved when ..... Using cotton plant residue to produce briquettes.

  9. Briquetting mechanism and waterproof performance of bio-briquette

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G.; Chen, L.; Cao, J. [Henen Polytechnic University, Jiaozuo (China)

    2008-07-15

    Maize stalk and bio-briquette binder made from it were studied comparatively by FTIR and the microstructure of bio-briquette was observed and analyzed by microscopy. It was found that a large amount of unreacted biomass fibers exist in the binder. These form a multi-level network structure inside the bio-briquette and could make fine coal particles connect together. The multi-level network structure would be still present after the bio-briquettes are immersed in water for 24 hours. On the other hand, stalk materials could be partly degraded after treatment and, with other liquid ingredients in the binder, the degradation products could form a viscous fluid which would work as a bonding ingredient inside the bio-briquette and could improve the waterproofing ability of the binder after solidification. Therefore, the multi-level network structure of the biomaterial and the presence of viscous fluid are very important to the shaping and the improvement of the waterproofing ability of bio-briquettes. 11 refs., 3 figs.

  10. Development of alternative sulfur dioxide control strategies for a metropolitan area and its environs, utilizing a modified climatological dispersion model

    Science.gov (United States)

    K. J. Skipka; D. B. Smith

    1977-01-01

    Alternative control strategies were developed for achieving compliance with ambient air quality standards in Portland, Maine, and its environs, using a modified climatological dispersion model (CDM) and manipulating the sulfur content of the fuel oil consumed in four concentric zones. Strategies were evaluated for their impact on ambient air quality, economics, and...

  11. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  12. Effects of combined action of γ-irradiation and sulfur dioxide or N-methyl-N'-nitro-N-nitrosoguanidin on bacteria and higher plants

    International Nuclear Information System (INIS)

    Kal'chenko, V.A.; Lotareva, O.V.; Spirin, D.A.; Karaban', R.T.; Mal'tseva, L.N.; Ignat'ev, A.A.

    1988-01-01

    Effect of combined action of of gamma-irradiation and sulfur dioxide or N-methyl-N-nitro-N-nitrosoguanidin on baceria (Bacillus subtilis) and higher plants (Hordeum vulgare L., Pinus sylvestris L.) have been studied. The number of barley germ root cells with chromosomal aberrations depends on the order of treatment with the studied agents. The coefficients of SO 2 and gamma-irradiation correlation fluctuate from 1,3 to 2,6 in the above experiments. In experiments with pine seedlings, these correlation coefficients were similar to additive ones. The data obtained suggest that the pattern of action of the agents is determined by the radiation sensitivity of objects and the order of action of the agents

  13. Acute effects of sulfur dioxide on the circulation of animals as well as on the contractility of isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Laszt, L; Schaad, R

    1974-01-01

    In support of earlier work on exhaust gases experiments were carried out to determine the acute effects of sulphur dioxide on the circulation of the cat and dog. Inhalation of SO/sub 2/ during 30 min at concentrations of up to 1000 ppm caused no circulatory reaction. Such a reaction first appeared after infusion of larger quantities of SO/sub 2/. The action of sulphur dioxide on systemic and pulmonar circulation is different. A difference was also observed for the contractility of the corresponding isolated vessels.

  14. Organic matter fuel briquettes as a forest conservation tool in Lake ...

    African Journals Online (AJOL)

    Organic matter fuel briquettes as a forest conservation tool in Lake Malawi National Park: research note. ... Open Access DOWNLOAD FULL TEXT ... towards fuel briquettes, cost is the limiting factor when people choose their fuel source.

  15. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  16. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    Science.gov (United States)

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  17. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  18. Synergism between sulfur dioxide and carbon particles. Studies on adsorption and on ciliary movements in the rabbit trachea in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Dalhamn, T; Strandberg, L

    1963-01-01

    Various types of carbon were shown to absorb gaseous SO/sub 2/ (about 75% at equilibrium in one case), which was rapidly converted to sulfuric acid (30% of that adsorbed in one case). However, carbon did not act synergistically with SO/sub 2/ in reducing rabbit trachea ciliary beat; carbon had no effect by itself and had no additional effect when administered with SO/sub 2/. 74 to 134 ppM SO/sub 2/ reduced ciliary beat from 1265 to 1091 beats/min after 45 min, and 175 to 239 ppM SO/sub 2/ reduced it from 1200 to 891 beats/min after 45 min.

  19. Structural and Redox Properties of Vanadium Complexes in Molten Salts of Interest for the Catalytic Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2000-01-01

    Electronic absorption (UV/VIS) spectra have been obtained at 450 degrees C from V2O5-K2S2O7 molten mixtures in SO2 ( P-SO2 = 0 - 1.2 atm) gas atmospheres. The data are in agreement with the V-V reversible arrow V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(l) + SO2(g) - 2VO(SO4)(2)(2-)(l) + SO3(g). Sulfur...... and vibrational properties of the vanadium complexes formed in the molten salt-gas system V2O5-M2S2O7-M2SO4/SO2-O-2 (M = K or Cs). The spectral features and the exploitation of the relative Raman intensities indicate that the (VO)(2)O(SO4)(4)(+) dimeric complex unit which possesses a V-O-V bridge is formed...

  20. Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-year Plans and lessons for the future

    International Nuclear Information System (INIS)

    Schreifels, Jeremy J.; Fu, Yale; Wilson, Elizabeth J.

    2012-01-01

    China's Central government established national goals to reduce sulfur dioxide (SO 2 ) emissions by 10% in both the 10th and 11th Five-year Plan periods, 2001–2005 and 2006–2010, respectively. But the early policies were unsuccessful at reducing emissions—emissions increased 28% during the 10th Five-year Plan. After adapting a number of policies and introducing new instruments during the 11th Five-year Plan, SO 2 emissions declined by 14%. We examine the evolution of these policies, their interplay with technical and institutional factors, and capture lessons from the 11th Five-year Plan to guide future pollution control programs. We find that several factors contributed to achievement of the 11th Five-year Plan SO 2 reduction goal: (1) instrument choice, (2) political accountability, (3) emission verification, (4) political support, (5) streamlined targets, and (6) political and financial incentives. The approach integrated multiple policy instruments—market-based, command-and-control, and administrative instruments specific to the Chinese context. The evolution of SO 2 reduction policies and programs has implications for further SO 2 reductions from power plants and other sources, as well as control of other atmospheric pollutants such as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ) in China. - Highlights: ► This paper assesses China's SO 2 reduction policies between 2000 and 2010. ► Government used a variety of policy instruments to achieve emission targets. ► Experience shows that accountability, incentives, and political support were key. ► The policy lessons can aid future policies for SO 2 , NO x , and CO 2 reductions.

  1. Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge

    Science.gov (United States)

    Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang

    2017-06-01

    The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.

  2. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  3. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  4. The Role of Sulfur Dioxide in the Regulation of Mitochondrion-Related Cardiomyocyte Apoptosis in Rats with Isopropylarterenol-Induced Myocardial Injury

    Directory of Open Access Journals (Sweden)

    Junbao Du

    2013-05-01

    Full Text Available The authors investigated the regulatory effects of sulfur dioxide (SO2 on myocardial injury induced by isopropylarterenol (ISO hydrochloride and its mechanisms. Wistar rats were divided into four groups: control group, ISO group, ISO plus SO2 group, and SO2 only group. Cardiac function was measured and cardiomyocyte apoptosis was detected. Bcl-2, bax and cytochrome c (cytc expressions, and caspase-9 and caspase-3 activities in the left ventricular tissues were examined in the rats. The opening status of myocardial mitochondrial permeability transition pore (MPTP and membrane potential were analyzed. The results showed that ISO-treated rats developed heart dysfunction and cardiac injury. Furthermore, cardiomyocyte apoptosis in the left ventricular tissues was augmented, left ventricular tissue bcl-2 expression was down-regulated, bax expression was up-regulated, mitochondrial membrane potential was significantly reduced, MPTP opened, cytc release from mitochondrion into cytoplasm was significantly increased, and both caspase-9 and caspase-3 activities were increased. Administration of an SO2 donor, however, markedly improved heart function and relieved myocardial injury of the ISO-treated rats; it lessened cardiomyocyte apoptosis, up-regulated myocardial bcl-2, down-regulated bax expression, stimulated mitochondrial membrane potential, closed MPTP, and reduced cytc release as well as caspase-9 and caspase-3 activities in the left ventricular tissue. Hence, SO2 attenuated myocardial injury in association with the inhibition of apoptosis in myocardial tissues, and the bcl-2/cytc/caspase-9/caspase-3 pathway was possibly involved in this process.

  5. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    Science.gov (United States)

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  6. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    International Nuclear Information System (INIS)

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.; Yokota, T.

    1980-01-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system [SO 2 (liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)] by γ-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO 2 -DMSO, DEA-DMSO, and SO 2 -DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO 2 -DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversion rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO 2 -DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO 2 -DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO 2 -DMSO and SO 2 -DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low

  7. Fabrication and characterization of rice husk charcoal bio briquettes

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.

    2018-02-01

    Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.

  8. Physical Properties of Biomass Fuel Briquette from Oil Palm ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized ... fossil fuel in the world market is impacting negatively ... useful products that can be applied in many sectors ... at 350 µm, 250 µm and 150 µm with Octagon digital ... formula is one of the models developed to accurately.

  9. Production of Solid Fuel Briquettes from Agricultural and Wood ...

    African Journals Online (AJOL)

    Fibrous agricultural and wood waste materials have been compressed with suitable adhesive into solid fuel briquettes in a compressing machine, which was designed and constructed for this purpose. Nine samples of fibrous waste materials were prepared into different categories:- Category A (100% saw-dust, 100% ...

  10. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Na Li

    2011-01-01

    Full Text Available The mole ratio r(r=[I−]0/[ClO2]0 has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r=6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0.

  11. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  12. Report on investigations in fiscal 2000 on the projects to support introduction of environment friendly coal utilization system. Green helmet project for briquette production plant - Mae Moh coal mine, Thailand; 2000 nendo kankyo chowagata sekitan riyo system donyu shien jigyo chosa hokokusho. Briquette seizo setsubi ni kakawaru green helmet jigyo (Thai koku Mae Moh tanko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This Green Helmet Project is intended to suppress generation of environment polluting substances in association with coal utilization in Thailand by demonstrating and improving the proliferation infrastructure for the clean coal technology to be used widely in Thailand. The project is also intended to serve for stabilized assurance of energies for Japan. The demonstration project related to briquette manufacturing facilities executed as one of the 'Projects to support introduction of environment friendly coal utilization system' is intended to manufacture at low cost a briquette which is low in odor, free of smoke, and suppressed largely of sulfur oxide generation. The briquette is made by adding clayish minerals, sulfur, a fixing agent and a binder into brown coal being a low grade coal. The project implements proliferation of the technology to reduce environmental load associated with coal utilization in developing countries according to the situation and needs of the counterpart countries. The present project has performed the site surveys and guidance of operation and maintenance techniques as follow-up works of the demonstration project having been completed by cooperation between Japan and Thailand. It is considered that what had been intended in the beginning has been achieved sufficiently. (NEDO)

  13. Influence of sublethal concentrations of sulfur dioxide on morphology, growth, and product yield of the duckweed Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Fankhauser, H; Brunold, C; Erismann, K H

    1976-01-01

    There was no disturbance in the growth of Lemna minor L. with a SO/sub 2/ concentration of up to 0.3 ppM in air. A SO/sub 2/ concentration of 0.6 ppM caused an initial depression of the growth rate of about 25 percent, but in the course of adaptation, the rate rose to the values of the control. The average dry weight per frond was not influenced by the SO/sub 2/ fumigation. The initial sporadic appearance of chloroses by fumigation with 0.6 ppM SO/sub 2/ was considered a sign of the proximate toxicity limit for Lemna minor L. With 0.15 ppM SO/sub 2/ in air, the size of the fronds was reduced. The average surface of the fronds was diminished by 0.3 ppM SO/sub 2/ for about 16 percent as compared with the control plants. The protein remained quantitatively unafffected up to a SO/sub 2/ concentration of 0.6 ppM. As a qualitative influence of SO/sub 2/, the nitrogen content of the proteins remained constant, but the sulfur content of the proteins increased. Under 0.3 and 0.6 ppM SO/sub 2/, the starch content decreased immediately by 20 to 30 percent, under 0.15 ppM SO/sub 2/ the decrease reached the same level after a longer time than in the case of the higher concentrations. The SO/sub 2/ concentrations up to 0.6 ppM had no effect on chlorophyll concentration. The contents of C, N, H, P, K, Na, Ca, Mg, Mn, and Fe were not affected by SO/sub 2/ fumigation. It is concluded that SO/sub 2/ may have some effect on product yield, even under low concentrations, without provoking acute damage; the plant is able to adapt by regulation of its metabolism, and enters a new steady state.

  14. Estimating Sulfur Dioxide in Volcanic Plumes Using an Ultraviolet Camera. First Results from Lascar, Ollagüe and Irruputuncu Volcanoes

    Science.gov (United States)

    Geoffroy, C. A.; Amigo, A.

    2014-12-01

    Volcanic gas fluxes give important information on both the amount of degassing and magma reservoirs. In most of magmas, water vapor (H2O) and carbon dioxide (CO2) are major components of volcanic gas. However, sulfur dioxide (SO2) is one of the targets of remote sensing due to their low concentration in the environment and easy detection by ultraviolet spectroscopy. Accordingly, plume imaging using passive ultraviolet cameras is a relatively simple method to study volcanic degassing, expeditious manner and can be used up from distances of about 10 km from source of emissions. We estimated SO2 concentrations and fluxes in volcanic plumes with the ultraviolet camera Envicam-2, developed by Nicarnica Aviation, acquired by the Geological Survey of Chile (SERNAGEOMIN). The camera has filters that allow passage of ultraviolet radiation at wavelengths of interest. For determining whether there is absorption of radiation associated with the presence of SO2 the Beer-Lambert law was used for quantifying concentrations using appropriate calibration cells. SO2 emissions to the atmosphere were estimated using wind speed as an approximation to the plume transport. In this study we reported the implementation of a new methodology for using Envicam-2 and subsequent collection of SO2 concentrations and fluxes in passive degassing volcanoes. Measurements were done at Lascar, Ollagüe and Irruputuncu volcanoes, located in northern Chile. The volcanoes were chosen because of optimal atmospheric conditions for ultraviolet imaging. Results indicate concentrations within the expected ranges for three volcanoes generally between 400-1700 ppm•m. In the case of Láscar volcano, the emission rates of SO2 range from 250 to 500 tonnes/day for a same image of the plume. In particular, wind speed was determined from scaling images and are consistent with data from regional numerical models, as well as records of the meteorological stations installed at the ALMA astronomical center, located

  15. Effect of sulfur dioxide inhalation on CYP2B1/2 and CYP2E1 in rat liver and lung

    Energy Technology Data Exchange (ETDEWEB)

    Guohua Qin; Ziqiang Meng [Shanxi University, Taiyuan (China). Institute of Environmental Medicine and Toxicology

    2006-07-15

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air and in higher concentrations in the working environment. In this study, we investigated the effects of inhaled SO{sub 2} on the O-dealkylase of pentoxyresorufin (PROD) and p-nitrophenol hydroxylases (p-NP) activities and mRNA levels of CYP2B1/2 and CYP2E1 in the lung and liver of Wistar rats. Male Wistar rats were housed in exposure chambers and treated with 14.11 {+-}1.53, 28.36 {+-} 2.12, and 56.25 {+-} 4.28 mg /m{sup 3}SO{sub 2} for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. The mRNAs of CYP2B1/2 and -2E1 were analyzed in livers and lungs by using reverse-transcription polymerase chain reaction (RT-PCR). Results showed that the PROD activities and mRNA of CYP2B1/2 were decreased in livers and lungs of rats exposed to SO{sub 2}. The p-NP activities and mRNA of CYP2E1 were decreased in lungs but not in livers of rats exposed to SO{sub 2}. Total liver microsomal cytochrome P-450 (CYP) contents were diminished in SO{sub 2} -exposed rats. These results lead to two conclusions: (1) SO{sub 2} exposure can suppress CYP2B1/2 and CYP2E1 in lungs and CYP2B1/2 in livers of rats, thus modifying the liver and lung toxication/detoxication potential, and (2) the total liver microsomal CYP contents were diminished, although the activity and mRNA expression of CYP2E1 in rat livers were not affected by SO{sub 2} exposure.

  16. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    Science.gov (United States)

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  17. Modification of commercial briquetting machine to produce 35mm diameter briquettes suitable for gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N.; Bhoi, P.R.; Patel, S.R. [Thermo chemical Conversion Division, Sardar Patel Renewable Energy Research Institute (SPRERI), Vallabh Vidyanagar, 388 120 Gujarat (India)

    2007-03-15

    This paper describes an experience on producing 35mm dia briquettes with a modified commercial briquetting machine and the results of studies on the combustion and gasification behavior of briquettes. Study reveals that at 12% (w.b.) moisture content of groundnut shell powder (1180-150{mu}m), good quality briquettes can be made, but it reduces the production rate and increases the power requirement. Combustion as well as gasification studies revealed that biomass briquettes of 35mm diameter do not crumble or disintegrate during the conversion process, therefore these are suitable as feedstock for gasifiers. (author)

  18. Reduced emissions from inexpensive high-sulphur coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W.; Ahmad, N.; Siltain, F.; Raza, M.Z.

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO 2 . In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO 2 , NO x , and RSP. The high peak amounts of CO (100--250 ppm), SO 2 (2--5 ppm), and NO x (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring

  19. Physical Properties of Biomass Fuel Briquette from Oil Palm Residues

    African Journals Online (AJOL)

    Palm Kernel Shell (PKS) and Mesocarp Fibre (MF) were used for the production of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized and then sieved into different grain particles of 350 μm, 250 μm and 150 μm, before mixing with MF in the ratios: 90:10, 80:20 and 70:30 ...

  20. Investigation of mechanical properties of briquette product of ...

    African Journals Online (AJOL)

    This research investigated the relaxed densities of biomass briquettes produced from combination of sawdust and charcoal. Cassava starch gel and orange waste were used as binder for briquetting. Five sizes; 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm and mixing ratios 50:50, 60:40, 70:30, 80:20 and 90:10 of biomass ...

  1. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  2. Briquettes of plant remains from the greenhouses of Almeria (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A. J.; Lopez-Martinez, J. A.

    2009-07-01

    Since ancient times, plant biomass has been used as a primary fuel, and today, with the impending depletion of fossil fuels, these vegetal sources constitute a cleaner alternative and furthermore have a multitude of uses. The aim of the present study is to design a method of recycling and reuse of plant wastes from intensive agriculture under plastic, by manufacturing briquettes in an environmentally friendly manner. In Almeria (SE Spain), agriculture generates 769,500 t year{sup -}1 of plant remains from greenhouse-grown horticultural crops, a resource currently used for composting and for producing electricity.With the machinery and procedures of the present study, another potential use has been developed by detoxifying and eliminating the plastic wastes of the original biomass for the fabrication of briquettes for fireplaces. The results were slightly inferior to the commercial briquette from other non-horticultural plant materials (no forestry material), specifically 2512 kJ kg{sup -}1, in the least favourable case. On the contrary, the heating value with respect to the two charcoals was significantly lower, with a difference of 12,142 kJ kg{sup -}1. In conclusion; a procedure, applicable in ecological cultivation without agrochemicals or plastic cords, has been developed and tested to reuse and transform plant materials from intensive cultivation into a stable non-toxic product similar to composite logs, applicable in commercial settings or in residential fireplaces. (Author) 48 refs.

  3. Influence of Production Variables on Eco-Friendly Briquettes from Coconut and Bambara Nut Shells

    Directory of Open Access Journals (Sweden)

    O. A. Sotannde

    2017-08-01

    Full Text Available This study investigates the influence of production variables on the properties of molasses-induced fuel briquettes from Coconut (Cocos nucifera L. and Bambara nut (Vigna subterranea L. Verdc. shells. The milled samples of both raw materials were mixed with molasses at ratios 100:20, 100:25, 100:30 and 100:35 by weight respectively, and briquetted using a Jack press at an average pressure of 1.2KN/m2. A 3x4 factorial experiment in completely randomized design was used. The briquettes produced were subjected to both physical and combustion tests. The tests revealed that majority of the variations in briquette properties were largely influenced by the type of biomass residues used while molasses’ content also contributed significant effect atp < 0.05. Coconut shell briquettes had higher compressed density though lower in relaxed form (0.80 g·cm-3vs 0.78 g·cm-3 when compared to Bambara nut shell briquettes (0.77 g.cm-3vs0.75 g.cm-3. Both physical and combustion properties were significantly improved when both bio-residue mixtures were used. Briquettes from the mixtures had the highest average fixed carbon and heating values of 85.21% and 32.80 MJ·kg-1 respectively, though it was 83.83% and 32.12 MJ·kg-1for coconut shell briquette and 82.18% and 32.03 MJ·kg-1for Bambara nut shell briquette. Therefore, based on physical and combustion characteristics, the best Bambara nut briquettes and its mixture with coconut shell were produced when molasses content was 30%. In contrast, the best coconut shell briquette was produced when molasses content was 35%. These two level are therefore recommended for production of quality briquettes from these agro-residues.

  4. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  5. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine.

    Science.gov (United States)

    Li, Dan; Duan, Huazhen; Ma, Yadan; Deng, Wei

    2018-05-01

    This study demonstrates a novel strategy for colorimetric/surface-enhanced Raman scattering (SERS) dual-mode sensing of sulfur dioxide (SO 2 ) by coupling headspace sampling (HS) with paper-based analytical device (PAD). The smart and multifunctional PAD is fabricated with a vacuum filtration method in which 4-mercaptopyridine (Mpy)-modified gold nanorods (GNRs)-reduced graphene oxide (rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol, and starch-iodine complex are immobilized into cellulose-based filter papers. The resultant PAD exhibits a deep-blue color with a strong absorption peak at 600 nm due to the formation of an intermolecular charge-transfer complex between starch and iodine. However, the addition of SO 2 induces the Karl Fischer reaction, resulting in the decrease of color and increase of SERS signals. Therefore, the PAD can be used not only as a naked-eye indicator of SO 2 changed from blue to colorless but also as a highly sensitive SERS substrates because of the SO 2 -triggered conversion of Mpy to pyridine methyl sulfate on the GNRs. A distinguishable change in the color was observed at a SO 2 concentration of 5 μM by the naked eye, and a detection limit as low as 1.45 μM was obtained by virtue of UV-vis spectroscopy. The PAD-based SERS method is effective over a wide range of concentrations (1 μM to 2000 μM) for SO 2 , and the detection limit for SO 2 is found to be 1 μM. The HS-PAD based colorimetric/SERS method is applied for the determination of SO 2 in wine, and the detection results match well with those obtained from the traditional Monier-Williams method. This study not only offers a new method for on-site monitoring of SO 2 but also provides a new strategy for designing of paper-based sensing platform for a wide range of field-test applications.

  6. Sulfur dioxide (SO2 as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2013-10-01

    Full Text Available We present a climatology of monthly and 10° zonal mean profiles of sulfur dioxide (SO2 volume mixing ratios (vmr derived from MIPAS/Envisat measurements in the altitude range 15–45 km from July 2002 until April 2012. The vertical resolution varies from 3.5–4 km in the lower stratosphere up to 6–10 km at the upper end of the profiles, with estimated total errors of 5–20 pptv for single profiles of SO2. Comparisons with the few available observations of SO2 up to high altitudes from ATMOS for a volcanically perturbed situation from ACE-FTS and, at the lowest altitudes, with stratospheric in situ observations reveal general consistency of the datasets. The observations are the first empirical confirmation of features of the stratospheric SO2 distribution, which have only been shown by models up to now: (1 the local maximum of SO2 at around 25–30 km altitude, which is explained by the conversion of carbonyl sulfide (COS as the precursor of the Junge layer; and (2 the downwelling of SO2-rich air to altitudes of 25–30 km at high latitudes during winter and its subsequent depletion on availability of sunlight. This has been proposed as the reason for the sudden appearance of enhanced concentrations of condensation nuclei during Arctic and Antarctic spring. Further, the strong increase of SO2 to values of 80–100 unit{pptv} in the upper stratosphere through photolysis of H2SO4 has been confirmed. Lower stratospheric variability of SO2 could mainly be explained by volcanic activity, and no hints of a strong anthropogenic influence have been found. Regression analysis revealed a QBO (quasi-biennial oscillation signal of the SO2 time series in the tropics at about 30–35 km, an SAO (semi-annual oscillation signal at tropical and subtropical latitudes above 32 km and annual periodics predominantly at high latitudes. Further, the analysis indicates a correlation with the solar cycle in the tropics and southern subtropics above 30 km

  7. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  8. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm−1

    Directory of Open Access Journals (Sweden)

    R. L. Aggarwal

    2016-02-01

    Full Text Available Raman spectra of ammonia (NH3, chlorine (Cl2, hydrogen sulfide (H2S, phosgene (COCl2, and sulfur dioxide (SO2 toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′, sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr, 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr, 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr, 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr, and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr were determined for the differential Raman cross section of the 967 cm−1 mode of NH3, sum of the 554, 547, and 539 cm−1 modes of Cl2, 870 cm−1 mode of H2S, 570 cm−1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr for the 1285 cm−1 mode of CO2 as the reference.

  9. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  10. Combustion behavior of briquettes from oil palm's empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Pratoto, A. [Andalas Univ., Padang (Indonesia). Dept. of Mechanical Engineering

    2006-07-01

    Empty fruit bunch (EFB) briquettes from palm plantations are now being considered as a renewable energy source in Indonesia. This paper provided details of a study that investigated the combustion behaviour of an EFB briquette. Thermogravimetry was used to study the briquettes under dynamic conditions at 50 degrees C in a muffle furnace. Thermal decomposition rates and phases were identified, and the effect of the briquette's size on the decomposition rate was evaluated by comparing the combustion behaviour of the briquette to that of loose EFB materials. Rates of devolatilization and char oxidation were also examined. Results of the derivative thermogravimetry (DTG) analysis showed that larger briquettes did not exhibit a sharp peak on the DTG curve. Results suggested that heat transfer was predominant over the kinetic reaction during combustion. The ignition temperature of the briquettes was comparable to typical lignocellulose biomass. Peak combustion temperatures for loose EFB were only slightly lower than other types of biomass. Maximum combustion rates decreased with the size of the fuel. It was concluded that small briquettes are suitable for applications where high rates of heat are required. 16 refs., 1 tab., 6 figs.

  11. Study on the combustion properties of bio-coal briquette blends of ...

    African Journals Online (AJOL)

    This study was carried out to investigate the properties of bio-coal briquette produced from blending cassava stalk and coal. The cassava stalk and coal lumps were carbonized at 160 oC, pulverized and used to produce biocoal briquettes of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %,70 %, 80 %, 90 % and 100 % biomasses.

  12. Biomass Briquette Investigation from Pterocarpus Indicus Leaves Waste as an Alternative Renewable Energy

    Science.gov (United States)

    Anggono, Willyanto; Sutrisno; Suprianto, Fandi D.; Evander, Jovian

    2017-10-01

    Indonesia is a tropical country located in Southeast Asia. Indonesia has a lot of variety of plant species which are very useful for life. Pterocarpus indicus are commonly used as greening and easily found everywhere in Surabaya city because of its characteristics that they have dense leaves and rapid growth. Pterocarpus indicus leaves waste would be a problem for residents of Surabaya and disturbing the cleanliness of the Surabaya city. Therefore, the Pterocarpus indicus leaves waste would be used as biomass briquettes. This research investigated the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the effect of tapioca as an adhesive material to the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the optimum composition for Pterocarpus indicus leaves waste biomass briquette as an alternative renewable fuel and the property of the optimum resulted biomass briquette using ultimate analysis and proximate analysis based on the ASTM standard. The calorific value biomass briquettes from the Pterocarpus indicus leaves waste were performed using an oxygen bomb calorimeter at various composition of Pterocarpus indicus from 50% to 90% rising by 10% for each experiment. The experimental results showed that the 90% raw materials (Pterocarpus indicus leaves waste)-10% adhesive materials (tapioca) mixtures is the optimum composition for biomass briquette Pterocarpus indicus leaves waste. The lower the percentage of the mass of tapioca in the biomass briquettes, the higher calorific value generated.

  13. Study on the Combustion Properties of Bio-Coal Briquette Blends of ...

    African Journals Online (AJOL)

    2017-10-09

    Oct 9, 2017 ... This study was carried out to investigate the properties of bio-coal briquette produced from blending cassava stalk and coal. ... solar, gas and kerosene will certainly take a few decades to ..... Physical Properties of. Briquettes ...

  14. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    Science.gov (United States)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  15. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda

    International Nuclear Information System (INIS)

    Hakizimana, Jean de Dieu K.; Kim, Hyung-Taek

    2016-01-01

    Commercialization of peat briquetting technology was analyzed to know whether the technology is economically viable or not compared to commercialization of charcoal. The investigation of economic viability was assessed from raw-peat production to briquetting technologies. The briquettes were made by naturally dried of peat from Bisika, Bahimba, Ndongozi and Nyirabirande bogs, through a rotary pulverizer and a briquette press; they were carbonized into furnace at 450 °C to reduce its health effects. The burning rate of peat briquettes made varied from 0.178 kg/hour to 0.222 kg/hour. Ash content varying between 3 and 7.2 percent was also observed. The results showed that peat briquettes can be sold at USD0.18 per unit, with a total NPV of USD17.2 million. However, as the NPV tends to be zero, the selling price would be approximately USD0.155 per briquette. Monthly charcoal expenses were about USD23.20/household compared to a per-household cost of USD16.20/month of peat briquettes consumption; the supplanting of charcoal by peat briquettes would help the average Rwandan household reduce its monthly expenses by 30 percent. Peat briquettes utilization as cooking fuel in Rwanda could save 0.05 percent of CO_2 and more than 99 percent of CH_4 emissions, compared to charcoal emissions. - Highlights: • A technical process for peat production and peat briquetting. • An efficiency test of carbonized briquettes. • Commercialization of peat briquettes is compared to commercialization of charcoal. • Opportunities for greenhouse gas emissions reduction.

  16. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  17. Reduction of sulphur dioxide emissions by pyrolysis reduction of the burning sulfur of coal, applied in the power station 'Maritsa-East 3'

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1999-01-01

    A study for applying of the new method for reduction of the sulfur content in solid fuel reported at the Energy Forum '98 has been carried out. The calculations for using this method at the power station 'Maritsa-East 3' were made. The advantages compared to the conventional methods for removing of SO 2 from flue gases are reported. The application of this method reduces the emissions of SO 2 with 83-85%. The heat saved is equal to the heat from 13.8% of the coal. The tar obtained after removing of sulfur can be used as fuel. The expenses for transport and treatment of limestone and of obtained gypsum (needed at the conventional methods for removing the sulfur) are eliminated. The capital investments needed are smaller because of the 25-30 times smaller volume of the equipment for sulfur reduction

  18. Energetics of coal substitution by briquettes of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Pallav; Tripathi, Arun Kumar; Kandpal, Tara Chandra [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2006-07-15

    The suitability of using biomass briquettes to substitute coal is debatable, as a substantial amount of energy is required for briquetting of biomass. In the present work, an attempt to evaluate the energetic viability of briquetting of agricultural residues compared with the energy embodied in coal in India has been made. Briquetting of agricultural residues is not found to be an energetically viable option even for locations at a distance of about 1500km from the coal pithead (even if the briquetting unit is located very close to the place of availability of the agricultural residues). A need for transportation of agricultural residues further pushes this critical distance upwards. (author)

  19. Metallization of Extruded Briquettes (BREX in Midrex Process

    Directory of Open Access Journals (Sweden)

    Aitber Bizhanov

    2017-07-01

    Full Text Available The results of the full-scale testing of the Extruded Briquettes (BREX as the charge components of the industrial Midrex reactor are discussed. The influence of the type of binder on the degree of metallization of BREX is analyzed. Magnesium sulfate-based binder helps to reach highest metallization degree of BREX. Mineralogical study shows the difference in the iron-silicate phase’s development as well as in the porosity change during metallization depending on the binder used.

  20. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  1. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    International Nuclear Information System (INIS)

    Mohanty, M K; Mishra, S; Sarkar, S; Samal, S K; Mishra, B

    2016-01-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results. (paper)

  2. Effect of Briquetting Process Variables on Hygroscopic Property of Water Hyacinth Briquettes

    Directory of Open Access Journals (Sweden)

    R. M. Davies

    2013-01-01

    Full Text Available The knowledge of water resistance capacity of briquettes is important in order to determine how sensitive the produced briquettes are to moisture change during storage. The relative changes in length and diameter of briquettes during immersion in water for 6 hours were investigated. This was conducted to determine hygroscopic property of produced briquettes under process variables levels of binder (10, 20, 30, 40, and 50% by weight of residue, compaction pressure (3.0, 5.0, 7.0, and 9.0 MPa and particle size (0.5, 1.6, and 4 mm of dried and ground water hyacinth. Data was statistically analysed using Analysis of Variance, the Duncan Multiple Range Test, and descriptive statistics. The relative change in length of briquettes with process variables ranged significantly from % to % (binder, % to % (compaction pressure, and % to % (particle size (. Furthermore, the relative change in diameter of briquettes with binder, compaction pressure, and particle size varied significantly from % to %, % to %, and % to %, respectively (. This study suggests optimum process variables required to produce briquettes of high water resistance capacity for humid environments like the Niger Delta, Nigeria, as 50% (binder proportion, 9 MPa (compaction pressure, and 0.5 mm (particle size.

  3. Use of coffee (Coffea arabica pulp for the production of briquettes and pellets for heat generation

    Directory of Open Access Journals (Sweden)

    Robert Cubero-Abarca

    2014-10-01

    Full Text Available Coffee bean (Coffea arabica processing generates high amount of residues that are sources of environmental pollution. Therefore, an appropriate solution is needed. The objective of this study was to determine the potential of coffee pulp to produce briquettes and pellets. The study included pulp drying (using air, solar and hot air methods; the production of briquettes and pellets; the evaluation of their energy, physical and mechanical properties; and the evaluation of pellet quality using X-ray densitometry. The results showed that the pulp presented an initial moisture content of 90%, resulting in drying times of 699, 308 and 55 hours for air, solar and hot air drying, respectively, and the calorific values of the pellets and briquettes were 12,501 kJ kg-1 and 11,591 kJ kg-1, respectively. The ash content was 8.68% for the briquettes and 6.74% for the pellets. The density of the briquettes was 1,110 kg m-3, compared with 1,300 kg m-3 for the pellets. The apparent densities were 1,000 kg m-3 and 600 kg m-3 for the briquettes and pellets, respectively, and the water absorptions by the briquettes were 7.90% and 8.10% by the pellets. The maximum horizontal compression effort was 26.86 kg cm-2, measured in the pellets, compared with 4.52 kg cm-2 in the briquettes. The maximum horizontal load was 93.24 kg, measured in the briquettes, compared with 33.50 kg in the pellets. The value of the pellet durability test was 75.54%. X-ray densitometry showed that the pellet was uniform and a few cracks were observed on the pellet surface.

  4. Biomass-derived carbonaceous materials as components in wood briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Stadlbauer, E.A.; Scheer, J. [Univ. of Applied Sciences, THM Campus Giessen, Giessen (Germany); Weber, B. [Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), Coyoacan (Mexico); Strohal, U.; Fey, J. [Strohal Anlagenbau, Staufenberg (Germany)

    2012-11-01

    The present paper describes a briquette composed of a substantial amount of wooden biomass and up to 35% of carbonaceous materials derived from biogenic residues. The cellulosic component may be a mixture of any wooden residue. Suitable substrates for the carbonaceous fraction are vegetation wastes from land management or agriculture. Depending on physical and chemical nature of the substrate, Hydrothermal Carbonisation (HTC) or Low Temperature Conversion (LTC) may be used to produce the carbonaceous part of the briquette. HTC turns wet biomass at temperatures around 200 deg C in an autoclave into lignite whereas LTC treatment at 400 deg C and atmospheric pressure produces black coal. This is manifested by a molar ratio of 0.1 {<=} H/C (LTC) {<=} 0.7; 0.05{<=} O/C (LTC) {<=} 0.4 and 0.7 < H/C (HTC) <1.5 ; 0.2< O/C (HTC) < 0.5. Solid state {sup 13}C-NMR confirms these findings showing a strong absorption band for sp{sup 2}-hybridized carbon atoms at chemical shifts of 100 ppm und 165 ppm for LTC biochar. Depending on the substrate, HTC gives rise to an increase in the specific calorific value (MJ/kg) by a factor of {Psi} {approx} 1.2 - 1.4; LTC by 1.5 - 1.8. In addition ash melting points are significantly increased; in case of wheat straw by about 200 deg C. Compacted products may have a cylindrical or rectangular profile.

  5. Physical and chemical evaluation of furniture waste briquettes.

    Science.gov (United States)

    Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A

    2016-03-01

    Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified material by co-densification of furniture wood waste and polyurethane foam waste. Densification of furniture wood and the co-densification of furniture wood waste with polyurethane foam have been studied. On the one hand, the parameters that have an effect on the quality of the furniture waste briquettes have been analysed, i.e., moisture content, compaction pressure, presence of lignin, etc. The maximum weight percentage of polyurethane foam that can be added with furniture wood waste to obtain durable briquettes and the optimal moisture were determined. On the other hand, some parameters were analysed in order to evaluate the possible effect on the combustion. The chemical composition of waste wood was compared with untreated wood biomass; the higher nitrogen content and the concentration of some metals were the most important differences, with a significant difference of Ti content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reduction disintegration mechanism of cold briquettes from blast furnace dust and sludge

    Directory of Open Access Journals (Sweden)

    Leandro Rocha Lemos

    2015-07-01

    Full Text Available It is important to understand the reduction disintegration mechanism in ferriferous burden that is used in blast furnaces. The behavior of this burden in the granular zone of this metallurgical reactor is important for smooth operation. The objective of this work was to prepare cold self-reducing briquettes using blast furnace dust and sludge and binders and compare the reduction disintegration index (RDI of these agglomerates with conventional ferriferous burdens such as pellets, sinter and iron ore. In the present work, 25 different mixtures were prepared to produce briquettes in two geometries: pillow and cylindrical. The RDI value was determined for the briquettes that passed the tumbling test.

  7. Strength of briquettes made of Cu concentrate and carbon-bearing materials

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the present paper, results of the research on application of residual fine-grained, carbon-bearing materials as coke substitutes in the shaft process of copper matter smelting are discussed. The addition was introduced into the charge as a component of concentrate-made briquettes, then, its effects on properties of the obtained briquettes were analysed for their compressive and drop strengths. The results of investigations confirmed the potential use of proposed alternative fuels (as briquette components in the process of copper matte smelting.

  8. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, tall-oil fatty, N-[2-[2... Significant New Uses for Specific Chemical Substances § 721.9672 Amides, tall-oil fatty, N-[2-[2-hydroxyethyl... identified as amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur...

  9. Ramie (Boehmeria nivea) decortication waste bio-briquette business model canvas with design thinking approach

    Science.gov (United States)

    Pahlavi, Ghifari Rezka; Purnomo, Dwi; Bunyamin, Anas; Wulandari, Asri Peni

    2017-03-01

    Ramie (Boehmeria nivea) is a plant that can produce fibers from its stem but in the production process, it still produces waste containing high lignin and cellulose. The high content of these substances can be used as bio-briquette raw material because they can produce carbon and can offer a business opportunity to establish bio-briquette industry. The purpose of this study is to obtain a ramie decortification waste bio-briquette business model because until now there is no bio-briquette has been made from ramie decortication waste as its raw material. This research uses descriptive analysis method with a design thinking approach. The result of this research shows that the business model canvas is designed based on consumer's experience when interacting with the product via customer journey tool in order to get the business model in accordance with customer expectations.

  10. Combustion quality analysis of briquettes from variety of agricultural waste as source of alternative fuels

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Mulyana, C.

    2017-05-01

    The increasing in world population and the industrial sector led to increased demand for energy sources. To do this by utilizing the agricultural waste as a fuel source of alternative energy in the form of bio briquette. The aim at this study was to obtain data onto the characteristics of a wide variety of biomass briquettes from waste agricultural industry. The basic ingredients used are biomass waste from coconut husks, sawdust, rice husks and coffee husks. Each of these biomass residues are dried, crushed, then mixed with starch adhesives. This mixture is molded and dried using sunlight. Each type of briquettes was characterized and analyzed the physical-chemical properties, including calorific value, water content, fixed carbon content and the results were compared with charcoal and coal that was used as fuel in public. The results showed that bio briquettes from coconut husks get the highest calorific value of 4,451 cal/g.

  11. An experimental study of the combustion characteristics of groundnut shell and waste paper admixture briquettes

    Directory of Open Access Journals (Sweden)

    O. A. Oyelaran

    2015-12-01

    Full Text Available The study was undertaken to assess the heat released of briquettes produced from waste paper and groundnut shell admixture in five mixing ratios (90:10; 80:20; 70:30; 60:40; and 50:50. The briquettes were prepared on an existing motorized briquetting machine. The suitability of briquetted fuel as domestic fuel was studied in terms of flame propagation, afterglow, calorific value, and utilized heat, after sun drying the prepared briquettes for nineteen (19 days. The results of propagation rate and afterglow obtained for all the six compositions are satisfactory they range between 0.13 to 0.14 and 365 to 380 respectively. These energy values obtained for the whole samples are sufficient enough to produce heat required for household cooking and small scale industrial cottage applications. Finally it was observed that composition variation affects the properties of the briquettes.

  12. Heat Energy From Value-Added Sawdust Briquettes Of Albizia Zygia ...

    African Journals Online (AJOL)

    Choice-Academy

    ... physical properties between the sawdust briquettes and the solid wood of the same species were carried out. The results ... kerosene and cooking gas in Nigeria, draw attention to the .... between the physical properties of solid wood used for ...

  13. Enhancing the Properties of Coal Briquette Using Spear Grass (Imperata Cylindrica

    Directory of Open Access Journals (Sweden)

    Adaora Stellamaris OGBUAGU

    2010-12-01

    Full Text Available Studies have been carried out on utilizing agricultural wastes (spear grass to enhance the properties of coal briquette. The proximate analysis of the plant material was carried out alongside with a sample of coal (sub-bituminous coal. Briquettes of different compositions were produced by blending the plant material with the coal at various concentrations: 0%, 10%, 20%, 30%, 40%, 50% and 100%, using cassava starch as a binder and calcium hydroxide (Ca(OH2 as desulfurizing agent. The properties of the briquettes were compared. It was found that the ignition, burning rate and reduction in smoke emission showed improvement with increase in biomass concentration. Compressive strength and cooking efficiency (water boiling time and specific fuel consumption showed initial improvement and rendered to decrease with briquette containing 30% biomass.

  14. Technologies for the treatment of the sulfur dioxide and nitrogen oxides generated by the combustion in open chamber; Tecnologias para el tratamiento de dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Villalpando, Maria Dolores [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1993-12-31

    In general terms, there are only three ways of avoiding the sulfur dioxide and the nitrogen oxides, generated by the combustion in open chamber, from contaminating the air; the first one is utilizing low sulfur and nitrogen content fuels, the second one is by controlling the parameters that affect the combustion and the third one to treat and/or clean the gases before exhausting them to the air. In this document, some of the treatments for diminishing the pollutant emissions generated by the combustion in open chamber, are presented. [Espanol] En terminos generales, solo existen 3 maneras de evitar que el dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta sigan contaminando el aire, la primera es utilizar un combustible de bajo contenido de azufre y nitrogeno, la segunda es controlar los parametros que afectan la combustion, y la tercera es tratar y/o limpiar los gases antes de emitirlos a la atmosfera. En este documento se presentan algunos tratamientos para disminuir las emisiones de contaminantes generados por la combustion en camara abierta.

  15. Technologies for the treatment of the sulfur dioxide and nitrogen oxides generated by the combustion in open chamber; Tecnologias para el tratamiento de dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Villalpando, Maria Dolores [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1992-12-31

    In general terms, there are only three ways of avoiding the sulfur dioxide and the nitrogen oxides, generated by the combustion in open chamber, from contaminating the air; the first one is utilizing low sulfur and nitrogen content fuels, the second one is by controlling the parameters that affect the combustion and the third one to treat and/or clean the gases before exhausting them to the air. In this document, some of the treatments for diminishing the pollutant emissions generated by the combustion in open chamber, are presented. [Espanol] En terminos generales, solo existen 3 maneras de evitar que el dioxido de azufre y oxidos de nitrogeno generados por la combustion en camara abierta sigan contaminando el aire, la primera es utilizar un combustible de bajo contenido de azufre y nitrogeno, la segunda es controlar los parametros que afectan la combustion, y la tercera es tratar y/o limpiar los gases antes de emitirlos a la atmosfera. En este documento se presentan algunos tratamientos para disminuir las emisiones de contaminantes generados por la combustion en camara abierta.

  16. Development of Briquette from Coir Dust and Rice Husk Blend: An Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Md. Hamidul Islam

    2014-05-01

    Full Text Available Biomass is one of the predominant renewable energy sources and the use of biomass for the energy generation has got much attention due to its environmental friendliness. Densification of coir dust into fuel briquette can solve waste disposal problem as well as can serve as an alternative energy source. The objective of this study was to investigate the possibility of producing briquette from coir dust and rice husk blend without binder. During this study, a briquetting experiment was conducted with different coir dust and rice husk blends (i.e. coir dust and rice husk ratio of 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100. Briquetting operation was performed using a die-screw press type briquetting machine. The briquettes were tested to evaluate their density, compressive strength, calorific value, burning rate and water vaporizing capacity and it was found that mixing ratio had a significant effect on the physical, mechanical and combustion properties of the coir dust-rice husk briquettes. Density, compressive strength and calorific value and water vaporizing capacity were increased with increasing mixing ratio while burning rate was decreased. Coir dust-rice husk briquettes with mixing ratio of 20:80 had higher density (1.413 g/cm3, compressive strength (218.4 N/cm2, calorific value (4879 kcal/kg, water vaporizing capacity (0.853 l/kg and low burning rate (0.783 kg/hour followed by the mixing ratio 40:60, 50:50, 60:40 and 0:100. The results indicate that coir dust and rice husk blend briquettes were found to have better overall handling characteristics over rice husk briquette. However, production of briquettes from coir dust and rice husk at mixing ratio of 50:50 was found to be more suitable for commercial application in terms of cost effectiveness.

  17. The effects of moderate die pressure on banana-peel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Wilaipon, P. [Khon Kaen Univ., Khon Kaen (Thailand). Faculty of Engineering]|[Narasuan Univ., Phitsanulok (Thailand). Faculty of Engineering; Trirattanasirichai, K.; Tangchaichit, K. [Khon Kaen Univ., Khon Kaen (Thailand). Faculty of Engineering

    2006-07-01

    Bananas are one of the most important crops in Thailand, and are now being considered as a renewable energy source. This study investigated the impacts of moderate die pressure on banana peel briquettes. The pressure range in the study was set at 3-11 MPa. Water resistance characteristics were also analyzed. Four factors were considered: (1) the relaxation in length of the briquettes; (2) impact resistance; (3) relaxation in volume; and (4) water resistance. Experiments were conducted in laboratory conditions with humidity set at between 50 and 60 per cent at 27 degrees C. An impact resistance test was performed 168 hours after the briquetting process. The briquettes were immersed in water in order to conduct the water resistance test. Results of the tests demonstrated a rapid increase in the length of the briquettes. The maximum percentage of elongation occurred within 1 hour after being removed from the die. Results of the strength tests showed that the briquettes had a compaction pressure over 5 MPa. The briquettes showed significant potential as a biomass fuel. 15 refs., 1 tab., 12 figs.

  18. Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production

    International Nuclear Information System (INIS)

    Rezania, Shahabaldin; Md Din, Mohd Fadhil; Kamaruddin, Siti Fatimah; Taib, Shazwin Mat; Singh, Lakhveer; Yong, Ee Ling; Dahalan, Farrah Aini

    2016-01-01

    In the present study we investigated the fuel properties of bio-briquettes made from a combination of water hyacinth and empty fruit bunch fiber (palm oil mill residue). Water hyacinth (WH) was mixed with empty fruit bunch (EFB) fibers in a ratio of 25, 50, 75, 90, and 100% by weight and cassava starch added as binder. The experimental results showed that the addition of WH had a little effect (p < 0.05) on the physical and combustion properties of the briquettes. The proximate analysis showed that the moisture content, ash content and fixed carbon content were increased with the increase in WH amount from 25 to 100%, while the volatile matter content and calorific value decreased. Combustion test showed that the increase in the WH percentage in bio-briquette resulted in the decreased of O_2 and CO level, whereas, that of CO_2 and NO, NO_2 and SO_2 were increased. Therefore, the results conclude that the WH: EFB biomass bio-briquette could be a great potential as an alternative source to conventional coal to minimize the emission of greenhouse gases. - Highlights: • Fuel briquettes of mixtures of water hyacinth and empty fruit bunches were studied. • Various ratios of WH and EFB were analyzed, burned and the flue gas analyzed. • A ratio of WH 25% and EFB 75% was the optimum mixture. • The mixed content briquettes burn well with coal and can displace some coal.

  19. INVESTIGATION ON THE QUALITY OF BRIQUETTES MADE FROM RARELY USED WOOD SPECIES, AGRO-WASTES AND FOREST BIOMASS

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2015-03-01

    Full Text Available Characteristics of briquettes made from various biomass resources (staghorn sumac wood, vineyard and apple tree pruning biomass, pine cones, corn stalk and corn cobs were investigated in the present paper. The moisture content of raw materials was first determined, before compacting them in a hydraulic briquetting machine. Briquettes with diameter of 40mm and various lengths were obtained. Five replicates of each briquette type were selected for the determination of density, compression strength and calorific value. The results were compared to those of beech and pine briquettes obtained under similar conditions. Based on the experimental results, mathematical correlations between density and compression strength and density and calorific value were investigated.

  20. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  1. Effect of Binder on Combustion Quality on EFB Bio-briquettes

    Science.gov (United States)

    Handra, Nofriady; Hafni

    2017-12-01

    Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.

  2. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  3. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  4. Sustainable energy development of bio briquettes based on rice husk blended materials: an alternative energy source

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.

    2018-05-01

    Rice husk as an abundant waste of biomass up to 21 million tons/year, it is unfortunate if it is not utilized. By converting it into bio briquettes, the value of rice husk bio briquettes in some studies before obtaining a relatively low value of 3,221-3,350 cal/g. The purpose of this research is to increase the calorific value of rice husk bio briquettes by mixing with coconut shell charcoal or corncob charcoal at various composition ratios of 50:50 and 80:20, to reach the optimal value that the industrial sector needed. Carbonization process was carried out at a temperature of 250-350 °C for 1.5 hours. From the results of the proximate analysis test using selected carbonization temperature at 300 °C, it can be seen that the best briquette value is made by mixing rice husk and coconut shell charcoal at composition ratio of 50:50, resulting 47.92% fixed carbon, 8.52% moisture content, 23.40% volatile matter and 20.16% ash content. The highest calorific value of 4,886 cal/g at ratio composition of 50:50, is slightly higher than the East Kalimantan coal standard of 4,828 cal/g. Hence, this bio briquettes are suitable for small scale industry application and household community use.

  5. Implications of Charcoal Briquette Produced by Local Communities on Livelihoods and Environment in Nairobi- Kenya

    Directory of Open Access Journals (Sweden)

    M. Njenga

    2013-02-01

    Full Text Available The residents of Nairobi, Kenya, use 700 tonnes of charcoal per day, producing about88 tonnes of charcoal dust that is found in most of the charcoal retailing stalls that is disposed of inwater drainage systems or in black garbage heaps. The high costs of cooking fuel results in poorhouseholds using unhealthy materials such as plastic waste. Further, poor households are opting tocook foods that take a short time to prepare irrespective of their nutritional value. This articlepresents experiences with community self-help groups producing charcoal fuel briquettes fromcharcoal dust in poorer nieghbourhoods of Nairobi for home use and sale. Households thatproduced charcoal fuel briquettes for own use and those that bought them saved 70% and 30% ofmoney spent on cooking energy respectively. The charcoal fuel briquettes have been found to beenvironmentally beneficial since they produce less smoke and increase total cooking energy bymore than 15%, thereby saving an equivalent volume of trees that would be cut down for charcoal.Charcoal briquette production is a viable opportunity for good quality and affordable cooking fuel.Bioenergy and waste management initiatives should promote recovery of organic by-products forcharcoal briquette production.

  6. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in § 101-26...

  7. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    International Nuclear Information System (INIS)

    Habib, M.; Khan, A.U.; Habib, U.; Memon, A.R.

    2013-01-01

    Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA) in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N). Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5) coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time. (author)

  8. Studying the dependence of quality of coal fine briquettes on technological parameters of their production

    Directory of Open Access Journals (Sweden)

    Т. Н. Александрова

    2016-08-01

    Full Text Available The study characterizes the role of coal in the fuel and energy balance of the Far East Region and points out the issue of losses of coal fines in the processes of coal mining, transportation and processing. To solve the problem of losses of coal fines, the mined coal is sorted into different size classes and fuel briquettes are produced from coal fines. Physical foundations are presented in short of briquetting solid combustible mineral resources. The dependences and variations of briquette compression strength limit are studied vs. charge humidity and briquetting pressure. Optimal parameters are retrieved for briquetting coal fines. The principal technological scheme is given of the process of briquette production. The developed technological solutions include sorting regular coal and briquetting coal fines, as well as the involvement of technogenic carbon-containing wastes from the hydrolysis production lines, plus residuals from oil refining.

  9. Investigation of combustion of coal briquettes in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    This paper discusses the results obtained from an experimental combustion work undertaken to investigate the behaviour of multicomponent briquettes, prepared by mixing two different particle sizes of coal and two different types of binder species. single briquettes were burned over a wide range of temperatures in a laboratory scale fluidised bed combustor facility. Nitrogen (NO{sub x}, and N{sub 2}O) and Sulphur (SO{sub 2}) oxides emissions resulting from the combustion of these briquettes were constantly monitored during the time of burning. The levels of O{sub 2}, CO{sub 2} and CO were also recorded during the same period. Experimental results showed that coal particle size influenced burn-out times and emissions levels of some of gaseous species. The hinder type was also found to have a major influence on the emissions of different pollutants.The temperature was observed to significantly influence the extent of the effects of the other operating parameters studied.

  10. Production of high-calorie energy briquettes from bark waste, plastic and oil

    Science.gov (United States)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  11. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  12. Inactivation of different strains of Escherichia coli O157:H7 in various apple ciders treated with dimethyl dicarbonate (DMDC) and sulfur dioxide (SO2) as an alternative method.

    Science.gov (United States)

    Basaran-Akgul, N; Churey, J J; Basaran, P; Worobo, R W

    2009-02-01

    Escherichia coli has been identified as the causative agent in numerous foodborne illness outbreaks associated with the consumption of fresh apple cider. Apple cider has a pH which is normally below 4.0 and would not be considered a medium capable of supporting the growth of foodborne pathogens. The association of unpasteurized apple cider with foodborne illness due to E. coli O157:H7 has however, led to increased interest in potential alternative methods to produce pathogen free cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 10(6)-10(7) CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895) and tested to determine the effectiveness of sulfur dioxide (SO(2)) and dimethyl dicarbonate (DMDC). Bacterial populations for treated and untreated samples were then enumerated by using non-selective media. Eight different ciders were treated with DMDC (125 and 250 ppm) and SO(2) (25, 50, 75, 100 ppm). Greater than a 5-log reduction was achieved at room temperature with 250 ppm of DMDC and 50 ppm of SO(2) after the incubation time of 6h and 24h, respectively. Addition of DMDC and/or SO(2) may offer an inexpensive alternative to thermal pasteurization for the production of safe apple cider for small apple cider producers.

  13. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total suspended particulates and sulfur dioxide in California Seventh-Day Adventist residents

    Energy Technology Data Exchange (ETDEWEB)

    Euler, G.L.; Abbey, D.E.; Magie, A.R.; Hodgkin, J.E.

    1987-07-01

    Risk of chronic obstructive pulmonary disease symptoms due to long-term exposure to ambient levels of total suspended particulates (TSP) and sulfur dioxide (SO/sub 2/) symptoms was ascertained using the National Heart, Lung, and Blood Institute (NHLBI) respiratory symptoms questionnaire on 7445 Seventh-Day Adventists. They were non-smokers, at least 25 yr of age, and had lived 11 yr or more in areas ranging from high to low photochemical air pollution in California. Participant cumulative exposures to each pollutant in excess of four thresholds were estimated using monthly residence zip code histories and interpolated dosages from state air monitoring stations. These pollutant thresholds were entered individually and in combination in multiple logistic regression analyses with eight covariables including passive smoking. Statistically significant associations with chronic symptoms were seen for: SO/sub 2/ exposure above 4 pphm (104 mcg/m3), (p = .03), relative risk 1.18 for 500 hr/yr of exposure; and for total suspended particulates (TSP) above 200 mcg/m3, (p less than .00001), relative risk of 1.22 for 750 hr/yr.

  14. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktur, K.N.; Lawson, G.J.

    1984-09-01

    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lowerrank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy.

  16. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktar, K.N.; Lawson, G.J.

    1984-09-01

    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lower-rank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash yield and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy. 38 references.

  17. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages at it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial

  18. Compression Characteristics and Energy Requirement of Briquettes Made from a Mixture of Corn Stover and Peanut Shells

    Directory of Open Access Journals (Sweden)

    Chunxiao Gong

    2015-07-01

    Full Text Available Corn stover and peanut shells are both abundantly available biomass feedstocks in China. To determine the compression characteristics and energy requirement of briquettes, mixtures of the corn stover and peanut shells were compressed under three different pressures (30, 60, and 90 MPa with three moisture contents (9%, 14%, and 19%, wet basis and five corn stover-peanut shell mixtures (0%-100%, 25%-75%, 50%-50%, 75%-25%, and 100%-0% by mass. The results showed that applied pressure, moisture content, and the corn stover-peanut shell mixture all significantly affected briquette density and specific energy consumption. The density of the briquette ranged from 646 to 1052 kg/m3 and the specific energy consumption varied from 6.6 to 25.1 MJ/t. A moisture content of 9% was found to be better for the compression of the corn stover and peanut shells mixture. Adding peanut shells to the corn stover improved briquette density and reduced the specific energy consumption. Linear models were developed to describe the briquette density and the specific energy consumption. The briquette durability ranged from 57% to 94% and durable briquettes can be obtained when corn stover and peanut shells are compressed with the mixing ratio of 1:1 (50%-50% at moisture content of 9%.

  19. Permeability changes of coal cores and briquettes under tri-axial stress conditions

    Czech Academy of Sciences Publication Activity Database

    Wierzbicki, M.; Konečný, Pavel; Kožušníková, Alena

    2014-01-01

    Roč. 59, č. 4 (2014), s. 1129-1138 ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : coal * gas permeability * tri-axial stress * coal briquettes Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.608, year: 2013 http://mining.archives.pl

  20. Briquettes of rice husk, polyethylene terephthalate (PET), and dried leaves as implementation of wastes recycling

    Science.gov (United States)

    Hariyanto, Sucipto; Usman, Mohammad Nurdianfajar; Citrasari, Nita

    2017-06-01

    This research aim is to determine the best briquettes as implementation of wastes recycle based on scoring method, main component composition, compressive strength, caloric value, water content, vollatile content, and ash content, also the suitability with SNI 01-6235-2000. Main component that used are rice husk, 2mm and 6 mm PET, and dried leaves. Composition variation in this research are marked as K1, K2, K3, K4, and K5 with 2 mm PET plastic and K1, K2, K3, K4, and K5 with 6 mm PET plastic. The total weight of the briquettes is 100 g and divided into 90% main components and 10% tapioca as binder. The compressive strength, caloric value, water content, vollatile content, and ash content were tested according to ASTM D 5865-04, ASTM D 3173-03, ASTM D 3175-02, ASTM D 3174-02. The tested results were used to determine the best briquette by scoring method, and the chosen briquettes is K2 with 6 mm PET plastic. The composition is 70% rice husk, 20% 6 mm PET plastic, and 10% dried leaves with the compressive strength, caloric value, water content, vollatile content, and ash content value is 51,55 kg/cm2; 5123 kal/g; 3,049%; 31,823%, dan 12,869%. The suitable value that meet the criteria according to SNI 01-6235-2000 is compressive strength, caloric value, water content, and ash content.

  1. The Effect of Moisture of the Raw Material on the Properties Briquettes for Energy Use

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2016-01-01

    Full Text Available At logging and at the subsequent wood and wood semi-products treatment the fine grained loose waste is arising, e.g. wood dust, saw dust, shavings, chips, bark etc. One of possibilities of its meaningful utilization is the briquetting technology, which product are briquettes determined for energetic utilization (combustion. This report contains the results of tests carried out with the aim to assess the influence of moisture on the briquettes final properties. For the tests the platan tree chips of four moisture levels, namely 5.7 %, 7.7 %, 15.7 % and 23.9 % were used. The basic physical-mechanical properties were the evaluation criteria. Following properties were determined: ash amount, gross calorific value, total moisture content, density, rupture force, length, diameter, weight and mechanical durability. From the results of carried out tests it follows that the best properties were reached at briquettes made from chips of moisture 7.7 %. At higher or lower moisture the briquettes properties were sharply failing (namely rupture force and density.

  2. Impact on indoor air quality during burning of Pakistani coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Ahmad, N.; Sibtain, F.; Raza, M.Z.

    1993-01-01

    A comparison was made of airborne emissions from combustion of new types of Pakistani coal briquettes and traditional fuels. A mud-lined Angethi stove was operated under the standard nominal conditions of burning 200 g charges of fuel inside a 12 m 3 shed with a forced rate of air exchange of 14/hr. Coal was cold briquetted with lime, clay, and oxidant. Traditional fuels were wood, charcoal, and animal dung. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) while dramatically reducing overall SO 2 release. Initial burning was restricted to the outer layers of the briquettes during which time reaction of SO 2 with lime was incomplete and early emissions of SO 2 were substantial. The measurements overall indicated that, with respect to CO, SO 2 , NO x , and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. The traditional fuels and coal briquettes emit elevated peak amounts of CO (100-250μL/L), SO 2 (2-5 μL/L), and NO x (1-5 μL/L) in the early phase of volatiles burning with much reduced emissions in the later char-burning phase. Stove operators can substantially lower exposures by lighting the fuel outside and later moving the stove inside

  3. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  4. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  5. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  6. Effects of coal composition and flotation reagents on the water resistance of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Motaung, S.R.; Mangena, S.J.; de Korte, G.J. [Syngas & Coal Technology, Sasolburg (South Africa)

    2007-10-15

    The difference in the physical properties, particularly the water resistance or wet strength, of the binderless coal briquettes produced from flotation feed and concentrate was investigated using six bituminous coals from two collieries in the Witbank Coalfield. The coal samples were analyzed for their proximate, petrographic, and mineralogical properties. The presence, in the flotation concentrates, of the reagents used during the froth flotation process was also investigated using gas chromatography. Pillow-shaped binderless briquettes were produced from coal samples at various moisture contents and a pressure of approximately 17 MPA using a Komarek B-100A double-roll press. The briquettes were tested for some physical properties (i.e., dry- and wet-compressive strengths), which were thereafter compared with the properties determined for the coal samples. The binderless briquettes produced from the flotation concentrates were more water-resistant than those produced from the flotation feed. The flotation feed and concentrates of the coals tested were found to have similar petrographic properties. As expected, the ash and kaolinite contents were found to be lower in the flotation concentrates than in the flotation feed. Flotation reagents were detected in the flotation concentrates from both collieries. From the results obtained it is concluded that the increased water resistance of the binderless briquettes produced from flotation concentrates of the coals tested is due to a combination of the fineness of the coal particles, assisted by the amount of reactive macerals (most particularly vitrinite) with the lower ash and kaolinite contents, together with the presence of the flotation reagents, particularly the collector, in the flotation concentrate.

  7. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  8. Study on Reduction Kinetics of Briquettes of Hematite Fines with Boiler Grade Coal and Coke Dust in Two Different Forms: Intermixing and Multilayered

    Science.gov (United States)

    Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib

    2017-10-01

    An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.

  9. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  10. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    Science.gov (United States)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.

  11. Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Blesa; J.L. Miranda; M.T. Izquierdo; R. Moliner; A. Arenillas; F. Rubiera [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2003-04-01

    The effect of curing temperature on smokeless fuel briquettes has been studied by Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS), and temperature programmed decomposition (TPD). These techniques help to predict the final properties of these briquettes which were prepared with a low-rank coal, sawdust, and olive stone as biomasses and humates as binder. The best mechanical properties are reached with both the mildest thermal curing at 95{sup o}C and the cocarbonized at 600{sup o}C of Maria coal (M2) and sawdust (S) due to the fibrous texture of sawdust. The temperature of curing causes the release of a certain amount of oxygenate structures and the decrease of the mechanical resistance. 15 refs., 7 figs., 3 tabs.

  12. Use of grape must as a binder to obtain activated carbon briquettes

    Directory of Open Access Journals (Sweden)

    Deiana A. C.

    2004-01-01

    Full Text Available The results of studies on briquetting activated-carbon-based adsorbent materials, prepared from raw materials from the region of Cuyo, Argentina, are reported in this article. Several steps were carried out to obtain activated-carbon briquettes from Eucalyptus camaldulensis Dehn wood. These steps included carbonization of wood to obtain char; blending of char and a novel binder, i.e., grape must; formation of cylinder-like briquettes by pressure; and activation of the resulting material. The material was activated with steam under different temperatures, activation times, and activating agent flow rates. Impact resistance index, axial compressive strength, tensile strength by diametrical compression, BET area, and pore volume were measured for product characterization. Satisfactory surface areas and mechanical strengths were found in the final products.

  13. Performance Evaluation of the Effect of waste paper on Groundnut Shell Briquette

    Directory of Open Access Journals (Sweden)

    Olatunde A Oyelaran

    2015-07-01

    Full Text Available Current energy shortage and environmental issues resulting from the use of fossil fuels have lead to exploitation of renewable energy resources that includes municipal waste and agricultural residues. These residues are available, indigenous and are environmental friendly but some can not be used directly in combustion process due high moisture content and low volumetric energy unless by briquetting. The study was undertaken to assess the combustion characteristic of binderless briquettes produced from waste paper and groundnut shell. Combustion characteristics investigated were ignition time, burning time, calorific values, burning rate, specific fuel consumption, fuel efficiency and water boiling time. The calorific values of the briquettes ranged from 19.51 - 19.92 MJ/kg, while the thermal efficiency ranges between 13.75 – 21.64%, other results shows that the average burning rate between 0.511 and 1.133 kg/hr and the specific fuel consumption ranges between 0.087 and 0.131 J/g. The recorded boiling time values were between 17.5 and 30.0 minutes for cold start and 15.0 and 20.0 minutes for hot start. The results shows that waste paper and groundnut shell up to 25% in composition composite briquettes were found to have good combustion characteristics which qualify them as alternative to firewood for domestic and industrial energy. However, production of briquettes from waste paper and groundnut shell at mixing ratio of 85:15 was found to comparatively better from all experiment conducted.

  14. Nonattainment Area - Sulfur Dioxide (SO2 - 1971)

    Data.gov (United States)

    Department of Transportation — Non-attainment and maintenance areas for the United States and its territories (NTAD). For more detailed information on this dataset, see the Overview Description in...

  15. Nonattainment Area - Sulfur Dioxide (SO2 - 2010)

    Data.gov (United States)

    Department of Transportation — Non-attainment and maintenance areas for the United States and its territories (NTAD). For more detailed information on this dataset, see the Overview Description in...

  16. Nonattainment Area - Sulfur Dioxide (SO2 - 1978)

    Data.gov (United States)

    Department of Transportation — Non-attainment and maintenance areas for the United States and its territories (NTAD). For more detailed information on this dataset, see the Overview Description in...

  17. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... between 0.1 and 0.3 V. There were no Faradaic reactions in the negative polarization region, and there was an anodic current which was less than 16% of the theoretical value for an exclusively Faradaic SO2 oxidation. Therefore the promotion effects at negative polarization are completely non-Faradaic. All...... the promotion effects have been explained as mainly due to charging of the electric double layer at the gold electrode. The effect at -0.2 V also depends on the V2O5 concentration and is more pronounced at higher V2O5 concentrations. This has been ascribed to a destruction of the vanadium polymeric chains...

  18. Sensitivity of tomato cultivars to sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Howe, T.K.; Woltz, S.S.

    1982-04-01

    The sensitivity of 26 cultivars of tomato (Lycopersicon esculentum Mill.) were compared at 2 concentrations of SO/sub 2/in specially designed exposure greenhouses. Cultivars studied included fresh market, processing, and specialty types. Insensitive and sensitive cultivars were identified by assessment of acute SO/sub 2/-induced foliar necrosis. Cultivars found to be insensitive to SO/sub 2/ included: 'Ace', 'Bonanza', 'Heinz 1350', 'Tarquinia Tondino', and 'VF 145-B 7879'. Cultivars found to be sensitive to SO/sub 2/ included: 'Bellarina', 'Chico III', 'Flora-Dade', 'Red Cherry Large' 'Sub-Arctic Delight', and 'Vetomold. 10 figures, 1 table.

  19. Inhibition of lignifying processes by sulfur dioxide

    International Nuclear Information System (INIS)

    Pfanz, H.; Oppmann, B.

    1991-01-01

    Intercellular washing fluids (IWF) from spruce needles (Picea abies L. Karst.) contain peroxidases 1-2% of total IWF protein. These apoplastic enzymes show the ability to polymerize monophenols or phenylpropanes to form lignin precursors in vitro. In the presence of potentially acidic air pollutants like NO 2 , HF(20 mM of salts in solution), and in the presence of Pb-, Cd- (0.5 mM) or Al-salts (8 mM) no inhibitory effect on the polymerization reactions examined was detectable. In contrast, the anions of SO 2 (sulfite and bisulfite) revealed a strong inhibition on the dimerization of ferulic and caffeic acid (Ki ca. 1 mM), and on the dehydration of syringaldazine (Ki ca. 8 μM). Polymerization of coniferyl alcohol, on the other hand, seemed to be enhanced. Maier-Maercker and Koch (1986) demonstrated that the cell walls of guard cells from undamaged spruce needles are properly lignified, whereas those of damaged needles seem to be affected. It is therefore assumed that cell wall lignification, and concomitantly stomatal regulation of coniferous needles are disturbed in regions with high atmospheric SO 2 pollution (e.g. Ore Mountains in CSFR)

  20. Sulfur dioxide allowances. Trading and technological progress

    International Nuclear Information System (INIS)

    Kumar, Surender; Managi, Shunsuke

    2010-01-01

    The US Clean Air Act Amendments introduce an emissions trading system to regulate SO 2 emissions. This study finds that changes in SO 2 emissions prices are related to innovations induced by these amendments. We find that electricity-generating plants are able to increase electricity output and reduce emissions of SO 2 and NO x from 1995 to 2007 due to the introduction of the allowance trading system. However, compared to the approximate 8% per year of exogenous technological progress, the induced effect is relatively small, and the contribution of the induced effect to overall technological progress is about 1-2%. (author)

  1. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  2. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  3. Material and operating variables affecting the physical quality of biomass briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.; Xin, M. [Shenyang Agricultural Univ., Shenyang (China). College of Engineering; Tumuluru, J.S.; Iroba, K.L.; Tabil, L.G.; Meda, V. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2010-07-01

    Although biomass is an environmentally sound substitute for fossil fuels, its low bulk density makes it very difficult and costly to transport and handle. This challenge can be addressed by densifying the biomass to a high density product like briquettes. Briquetting is influenced by several material properties such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. This paper reported on a study in which briquettes were produced with barley straw, canola straw, oat straw, and wheat straw. The chopped samples were densified using a laboratory hydraulic press briquetting machine at pressure levels of 7.5, 10, and 12.5 MPa and at temperatures of 90, 110 and 130 degrees C. Three moisture content levels and 3 levels of particle size were used. Ten briquettes were manufactured for each treatment combination. The dimensions of all the samples were measured after compression. The samples were then stored in sealed plastic bags in a controlled environment. Durability, dimensional stability, and moisture content tests were conducted after 2 weeks of storage. The study showed that moisture content plays a key role in briquetting.

  4. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate

    Energy Technology Data Exchange (ETDEWEB)

    Guorui Zhi; Conghu Peng; Yingjun Chen; Dongyan Liu; Guoying Sheng; Jiamo Fu [Chinese Academy of Meteorological Sciences, Beijing (China). Key Laboratory for Atmospheric Chemistry

    2009-08-15

    The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that, if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 {+-} 12%, 61 {+-} 10%, and 98 {+-} 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world. 50 refs., 3 figs., 2 tabs.

  5. Dew point of flue gas in the combustion of brown coal briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W

    1977-08-01

    Economical operation of small steam generators can follow two courses, viz. to channel the emitted gases through the plant and reduce waste gas loss. Two possibilities exist to achieve this: firstly a steam generating process with only slight excess air; secondly a reduction of the emitted gas temperature. The lowest waste gas temperature found in sulphur-containing combustion materials is measured by finding the acid dew-point of the waste gas. The following results in the case of brown coal briquettes were found. Measurements of the dew point of flue gas in two steam generators, both of the double flue type, one having a capacity of 12.5 t/h, the other 25 t/h, one using brown coal briquettes with 1% sulphur content, the other with 3%, resulted in the fact that the dew point can be measured. It was shown that a low air ratio leads to a lowering of the dew point. However this process is unfortunately economically unviable in chain grate generators as the waste gas becomes so thin under a high air ratio that the dew point can only be minimally reduced. Further the acid dew point is only slightly influenced by partial operation of the generator and the infusion of briquette residue.

  6. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  7. Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example

    Directory of Open Access Journals (Sweden)

    Anna Brunerová

    2017-12-01

    Full Text Available Within developing countries, there is an appeal to use waste biomass for energy generation in the form of bio-briquettes. This study investigated the potential use of bio-briquettes that are produced from the waste biomass of the following tropical fruits: durian (Durio zibethinus, coconut (Cocos nucifera, coffee (Coffea arabica, cacao (Theobroma cacao, banana (Musa acuminata and rambutan (Nephelium lappaceum. All fruit waste biomass samples exhibited an extremely high level of initial moisture content (78.22% in average. Fruit samples with the highest proportion of fruit waste biomass (of total unprocessed fruit mass were represented by cacao (83.82%, durian (62.56% and coconut (56.83%. Highest energy potentials (calorific value of fruit waste biomass were observed in case of coconut (18.22 MJ∙kg−1, banana (17.79 MJ∙kg−1 and durian (17.60 MJ∙kg−1 fruit samples, whereas fruit waste biomass with the lowest level of ash content originated from the rambutan (3.67%, coconut (4.52%, and durian (5.05% fruit samples. When investigating the energy demands to produce bio-briquettes from such feedstock materials, the best results (lowest amount of required deformation energy in combination with highest level of bio-briquette bulk density were achieved by the rambutan, durian and banana fruit waste biomass samples. Finally, all investigated bio-briquette samples presented satisfactory levels of bulk density (>1050 kg∙m−3. In conclusion, our results indicated the practicability and viability of such bio-briquette fuel production, as well as supporting the fact that bio-briquettes from tropical fruit waste biomass can offer a potentially attractive energy source with many benefits, especially in rural areas.

  8. Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines

    Directory of Open Access Journals (Sweden)

    Aries Roda D. Romallosa

    2017-02-01

    Full Text Available A technical and socio-economic feasibility study of biomass briquette production was performed in Iloilo City, Philippines, by integrating a registered group of the informal sector. The study has shown that the simulated production of biomass briquettes obtained from the municipal waste stream could lead to a feasible on-site fuel production line after determining its usability, quality and applicability to the would-be users. The technology utilized for briquetting is not complicated when operated due to its simple, yet sturdy design with suggestive results in terms of production rate, bulk density and heating value of the briquettes produced. Quality briquettes were created from mixtures of waste paper, sawdust and carbonized rice husk, making these material flows a renewable source of cost-effective fuels. An informal sector that would venture into briquette production can be considered profitable for small business enterprising, as demonstrated in the study. The informal sector from other parts of the world, having similar conditionality with that of the Uswag Calajunan Livelihood Association, Inc. (UCLA, could play a significant role in the recovery of these reusable waste materials from the waste stream and can add value to them as alternative fuels and raw materials (AFR for household energy supply using appropriate technologies.

  9. EAF smelting trials of waste-carbon briquettes at Avesta Works of Outokumpu Stainless AB for recycling oily mill scale sludge from stainless steel production

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qixing; Bjoerkman, Bo [Div. of Process Metallurgy, Lulea Univ. of Tech., Lulea (Sweden); Holmberg, Nils [Raw Materials Handling, Avesta Works, Outokumpu Stainless AB, Avesta (Sweden)

    2009-06-15

    The EAF steel plant of Avesta Works, Outokumpu Stainless AB, has been used to perform smelting reduction trials of briquettes consisting of oily mill scale sludge, carbon and other wastes. A total of 7 briquette smelting trials were performed. The heats were processed smoothly smelting 3 t of briquettes or 3.4 mass-% of metal charges. The quantities of FeSi powder and O{sub 2} gas injected and electric energy supplied were increased to smelt briquettes of 6 t. No impacts were found on the analyses of the crude stainless steel tapped from the EAF during the trials. The results of the briquette smelting have been evaluated by referring to the data from the reference heats and results from earlier laboratory tests. The recovery of Cr, Ni and Fe elements from the briquettes was nearly complete and was found to occur mainly through carbon reduction. The slag masses were not increased in three trials as compared with the reference heats. There were moderate increases in the slag masses in four trial heats. The increases were, nevertheless, lower by 52-69% than the slag masses generated by Si-reduction of the briquette oxides. Afterwards, by referring results from the present trials, waste-carbon briquettes amounting to 1-3 t were smelted very smoothly in many of the EAF heats at Avesta Works to recycle the oily mill scale sludge and other wastes from stainless steel production. (orig.)

  10. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  11. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process. Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting +5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5% bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  12. Effect of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production

    Directory of Open Access Journals (Sweden)

    Niedziółka Ignacy

    2018-01-01

    Full Text Available The paper presents an analysis of the influence of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production. The following types of biomaterials were used in the study: rape, oat and maize straw. Hydraulic piston briquetting machine JUNIOR manufactured by Deta Polska was used for briquetting. During the briquetting process, the working pressures of briquetting machine were 20, 26 and 32 MPa. Depending on the type of biomaterial used and the assumed working pressure of briquetting machine, produced briquettes differed in terms of both their physical characteristics and energy consumption. Based on the analysis of the obtained results, it was found that physical characteristics and energy consumption during briquette production were influenced by such factors as the type of compacted material, its fragmentation as well as granulometric composition and working pressure of the briquetting machine used.

  13. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  14. Effect of torrefaction pre-treatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue

    Directory of Open Access Journals (Sweden)

    Amira Atan Nor

    2018-01-01

    Full Text Available Biomass is an alternative renewable energy sources that can generates energy almost same as fossil fuel. The depletion sources of fossil fuel had increase the potential use of biomass energy. In Malaysia, rice husk and banana residues are abundantly left and not treated with proper disposal method which later may contribute to environment and health problems. Thus the development of biomass composite briquette made from rice husk and banana residue is one of the potential ways to reduce the problems and hence may contribute the better way to treat the waste by recycling the waste into a form of biomass product. The biomass briquettes are used for thermal applications because it can produce a complete combustion as it has a consistent quality and high burning efficiency. However, the quality of the biomass briquette can be added by application of torrefaction pre-treatment method. Torrefaction is a thermal method that can produce more high quality of the briquette with high calorific value, high fixed carbon content, low volatile matter, and low ash content. This study was conducted to assess the physical and combustion characteristic of the biomass briquette from rice husk and banana residue which was produced through torrefaction process. The biomass briquette, were densified by using hot press machine with temperature of 180°C for about 30 minutes. The briquette produce are 150 μm in particle size with varies in mixing ratio of rice husk to banana residue which are 100:0, 80:20 and 60:40. After the briquetting process, the biomass fuel briquettes have been undergoes parameter testing and the data have been analysed. Result showed the best biomass briquette is developed from torrefied rice husk and banana residue mixed at ratio of 60:40. Moreover, SEM image reveal that torrefaction pre-treatment has shrinkage the fibres size which confirming the thermal stability of the briquette.

  15. Effect of Organic Binders on The Quality of Manganese Ore Sinter Fines Briquettes

    International Nuclear Information System (INIS)

    Mohamed, F. M.; Ahmed, Y.M.Z.; Shalabi, M. E. H.

    2004-01-01

    Sinai Manganese Company imports the manganese ore sinter from abroad for ferromanganese alloy production. Large quantities of manganese ore sinter fines are produced in this process. These fines must be agglomerated to a suitable size in order to be reused for charging the electric arc furnace. The aim of this work is studying the briquetting ability of these fines using organic binders such as starch and bitumen. The results showed that, the suitable briquettes were produced with the addition of 5 % of starch and 20% H 2 O under pressure 3 ton/cm 2 or 8 % bitumen under pressure 4 ton/cm 2 and 3 days curing time

  16. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  17. Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

    2008-07-01

    One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

  18. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    International Nuclear Information System (INIS)

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m 3 internal volume, air exchange rate 14 h -1 was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO 2 , and NO x . Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion

  19. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  20. PHOTOPOLYMERIZATION OF METHYL METHACRYLATE USING PIPERAZINE-SULFUR DIOXIDE CHARGE-TRANSFER COMPLEX AS A PHOTOINITIATOR%哌嗪-二氧化硫电荷转移复合物引发的甲基丙烯酸甲酯光聚合

    Institute of Scientific and Technical Information of China (English)

    高青雨; 杜福胜; 李润明; 杨更须; 俞贤达

    2001-01-01

    本文研究了哌嗪(PPZ)与二氧化硫(SO2)电荷转移复合物(CTC)的制备及其作为光引发剂引发甲基丙烯酸甲酯(MMA)的聚合,发现PPZ/SO2摩尔比对聚合速率影响甚大.当PPZ/SO2为1∶2时,形成了具有潜在引发能力的复合物(Ⅰ).Ⅰ引发MMA光聚合的动力学关系式为Rp=Kp[Ⅰ]0.34[MMA]1.06,表观活化能为23.7 kJ/mol.并对引发机理进行了探讨.%Photopolymerization of methyl methacrylate (MMA) was kinetically studied by using piperazine (PPZ)-sulfur dioxide (SO2) charge-transfer complex as a photoinitiator. It was found that the polymerization rate (Rp) was dependent on the molar ratio of piperazine to sulfur dioxide, and the complex(Ⅰ) with a composition of PPZ/SO2=1/2 in molar ratio was the most effective. By using Ⅰ as the photoinitiator, the polymerization kinetics can be expressed as Rp=Kp [Ⅰ]0.34[MMA]1.06, and the apparent activation energy (Ea) value was obtained to be 23.7 kJ/mol. A possible polymerization mechanism was also proposed.

  1. The synergistic effect in coal/biomass blend briquettes combustion on elements behavior in bottom ash using ICP-OES

    Energy Technology Data Exchange (ETDEWEB)

    Lazaroiu, G.; Frentiu, T.; Maescu, L.; Mihaltan, A.; Ponta, M.; Frentiu, M.; Cordos, E. [Universitatea Politehnica din Bucuresti, Bucharest (Romania)

    2009-05-15

    This paper focuses on the study of the synergistic effect in coal/biomass blend briquettes combustion on behavior of Al, As, Ba, Cd, Co. Cr, Cu, Fe, Ga, K, Mn, Mo, Ni, P, Pb, Si, V, W, Zn, Zr and characterization of raw materials and bottom ashes. The manufacturing of coal/biomass briquettes although not commonly used is an attractive approach, as briquettes combustion is more technologically advantageous than the fluidized bed combustion. In the same time this technology is a way to render valuable materials of low calorific power and results in diminishing polluting emission. Raw materials and briquettes from different blends of pitcoal/sawdust were subjected to combustion in a 55 kW-boiler. The total content of elements after digestion in the HNO{sub 3} - HF mixture and the content in water leachate at a solid/liquid ratio of 1:2 were determined both in raw materials and bottom ash by ICP-OES. The total content of elements was higher in pitcoal than in sawdust. The synergistic effect depends both on coal/biomass ratio in blend and element nature. The water leachable fraction of elements from ash decreased along with the increase of sawdust weight excepting macronutrients (K, P) and Si.

  2. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    Energy Technology Data Exchange (ETDEWEB)

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow

  3. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  4. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium

  5. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  6. PENGEMBANGAN TUNGKU BRIKET BATUBARA SKALA RUMAH TANGGA Improvement of a Coal Briquette Stove for Household Scale

    Directory of Open Access Journals (Sweden)

    Tamrin Tamrin

    2012-05-01

    Full Text Available Improving of a coal briquette stove is required in the context of energy diversification for strengthening national energy security. The policy of kerosene conversion to LPG is a short term policy and needs other source of energy alternative.  In idealized sense, all potentials should be used for household cooking, not always depending on a particular energy source. Purpose of this research was to improve a household coal briquette stove to increase stove efficiency and ease in ceasing the ember. Design criteria of the coal briquette stove were based on heat transfer from the burning coal to the heated object, ease in ceasing the ember, and facilitating the exhausting smoke from the kitchen room. Performance test to the designed stove was conducted on analyses of temperature at the bottom of a pan versus time during the firing, heat efficiency, and the time of ceasing ember. The results showed that the cooking temperature (>180 oC was reached after 35-65 minutes. The cooking temperature lasted for 4 hours, heat efficiency of 25.5 % was about optimum, and the time of ember ceasing was 19-33 minutes. ABSTRAK Pengembangan tungku briket batubara sangat diperlukan dalam diversifikasi pemakaian energi bahan bakar agar ketahanan energi nasional  menjadi kuat.  Kebijakan pengalihan bahan bakar minyak tanah ke elpiji merupakan ke- bijakan jangka pendek dan perlu energi alternatif lainnya  Idealnya  semua potensi yang ada dapat digunakan untuk memasak, tidak harus bergantung pada energi tertentu.  Tujuan penelitian ini adalah untuk mengembangkan tungku briket batubara skala rumah tangga untuk meningkatkan efiseinsi dan memudahkan pematian bara api. Tungku briket batubara dibuat didasarkan pada sistem pindah panas dari bara briket ke objek yang dipanaskan, memudahkan pe- matian bara api briket batubara dan menyalurkan asap dari ruang pembakaran keluar dari ruang dapur. Pengujian dilakukan untuk mengetahui perubahan suhu dasar panci selama pembakaran

  7. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  8. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.

    Science.gov (United States)

    Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes

    2017-06-01

    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  10. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  11. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  12. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  13. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  14. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  15. Method of simultaneous recovery of oil and sulfur from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    1919-02-25

    The method consists of means for dry distillation of bituminous shales in furnaces heated from inside to recover simultaneously oil and sulfur, and is characterized by obtaining the sulfur partly in the form of sulfuretted hydrogen as a direct distillation product produced in the upper part of the furnace and partly in the form of free sulfur formed in the reduction zone of the furnace by the reduction of the sulfur dioxide formed in the burning zone. It is also characterized by the recovery of sulfur--in so far as the reduction and formation of sulfur dioxide are concerned--being regulated by means of the corresponding regulation of the proportion of the speed of discharging to the amount of air introduced into the process.

  16. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  17. OPTIMASI PROSES PEMBUATAN BRIKET BIOMASSA MENGGUNAKAN METODE TAGUCHI GUNA MEMENUHI KEBUTUHAN BAHAN BAKAR ALTERNATIF YANG RAMAH LINGKUNGAN (Optimization of Biomass Briquettes Production Process Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Musabbikhah Musabbikhah

    2015-03-01

    Full Text Available ABSTRAK Permasalahan yang dihadapi pembuat dan pengguna briket adalah briket yang dihasilkan kualitasnya rendah ditinjau dari nilai kalor. Tujuan penelitian ini adalah menentukan kualitas briket terbaik dari limbah biomassa dalam memenuhi kebutuhan bahan bakar alternatif rumah tangga yang murah dan ramah lingkungan guna mewujudkan masyarakat mandiri energi. Metode yang digunakan untuk menentukan kualitas briket adalah metode Taguchi. Variabel bebas dalam penelitian ini adalah tekanan pengepressan, waktu penahanan, model cetakan, suhu pengeringan, lama pengeringan dan komposisi bahan, sedangkan variabel terikat adalah nilai kalor briket. Hasil penelitian menunjukkan bahwa kualitas briket terbaik ditinjau dari nilai kalor tertinggi yaitu pada setting parameter A2B1C2D2E2F1, artinya tekanan pengepressan 225 kg/cm2, waktu penahanan 5 menit, model cetakan sarang tawon (kotak, suhu pengeringan 60 °C, lama pengeringan 3 hari, perbandingan limbah jarak pagar : arang sekam : arang tempurung kelapa : perekat adalah 5 : 3: 2 : 1. Rata-rata nilai kalor biobriket yang dihasilkan sebesar 5.323 kal/g. Hal ini menunjukkan bahwa briket mempunyai nilai kalor yang tinggi dan memenuhi SNI, sehingga briket layak untuk memenuhi kebutuhan bahan bakar alternatif yang ramah lingkungan. ABSTRACT Problems that encountered on manufacturers and users of briquettes is low quality of the briquettes in terms of heat value. The aim of this research is to determine the best quality of the briquette which is made from biomass waste. The briquette is expected to be used to fulfill the need of inexpensive and environmentally friendly of alternative household fuel, by which the energy independent community could be realized.The method used to determine the quality of the briquette is Taguchi method. The independent variables involved are compressive strength, holding time, mold model, drying temperature, drying time and material composition. The dependent variable is the highest

  18. Simulated effects of sulfur deposition on nutrient cycling in class I wilderness areas

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Dale W. Johnson; William T. Swank; William Jackson

    2008-01-01

    As a consequence of human land use, population growth, and industrialization, wilderness and other natural areas can be threatened by air pollution, climate change, and exotic diseases or pests. Air pollution in the form of acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from emissions of sulfur dioxide, nitrogen oxides, and ammonia....

  19. Coordinated programme on isotopic tracer-aided studies of the biological side effects of foreign chemical residues in food and agriculture. Study of sulfur dioxide effects on phosphorus metabolism in plants using 32-P as indicator

    International Nuclear Information System (INIS)

    Plesnicar, M.

    1977-07-01

    Exposure of bean plants to low sulphur dioxide concentrations (0.02-0.32 ppm, up to 72 hours) stimulated the incorporation of 32 P into RNA, DNA, phospholipids and the acid soluble fraction, without altering the total phosphorus content. Statistically significant 32 P increases were only observed with RNA. Uptake of 35 SO 2 (14 ppm) by bean leaves was shown to be fairly rapid and the radioactivity was translocated in the roots within 1 to 6 hours following exposure. Subcellular leaf fractions showed that the supernatant contained 60-90% of the absorbed radioactivity. The chloroplasts and microsomes showed higher 35 S content than the mitochondrial fraction. In vitro studies on pea-derived chloroplasts included photosynthetic phosphorylation and electron transport. Phosphorylation was found to be inhibited in presence of SO 2 (I 50 =3.7 mM). The nature of inhibition seems to be of the reversible-competitive type with an apparent inhibitor constant (Ki) of 1.5 mM. The electron transport system remained unaffected. It is maintained that the identification of some lesions in this study would contribute to a better understanding of the nature of the complex interactions between cultivated plants and sulphur dioxide

  20. Determination of sulfur in solids by constant current coulometric titration following combustion

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1986-01-01

    A method for determination of sulfur in solid materials by combustion in induction furnace, followed by constant current coulometric titration of the sulfur dioxide produced, is described. The method is applicable to samples with sulfur contents of 80 ppm to 20,000 ppm. Its feasibility was checked on the NBS and Leco steel samples. The results are in good agreement with the specified values. (author) [pt

  1. Process and device for liquid organic waste processing by sulfuric mineralization

    International Nuclear Information System (INIS)

    Aspart, A.; Gillet, B.; Lours, S.; Guillaume, B.

    1990-01-01

    In a chemical reactor containing sulfuric acid are introduced the liquid waste and nitric acid at a controlled flow rate for carbonization of the waste and oxidation of carbon on sulfur dioxide, formed during carbonization, regenerating simultaneously sulfuric acid. Optical density of the liquid is monitored to stop liquid waste feeding above a set-point. The liquid waste can be an organic solvent such as TBP [fr

  2. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  3. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  4. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette.

    Science.gov (United States)

    Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan

    2018-02-01

    In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. PHOSPHORUS FERTILIZATION AND HARVEST INTERVALS INFLUENCE ENERGETIC AND PHYSICAL PROPERTIES OF BRIQUETTES AND LARGE BRANCHES OF MATE

    Directory of Open Access Journals (Sweden)

    Delmar Santin

    Full Text Available ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.

  6. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes

    Directory of Open Access Journals (Sweden)

    Veronika Chaloupková

    2018-02-01

    Full Text Available Via image-based macroscopic, analysis of a briquettes’ surface structure, particle size, and distribution was determined to better understand the behavioural pattern of input material during agglomeration in the pressing chamber of a briquetting machine. The briquettes, made of miscanthus, industrial hemp and pine sawdust were produced by a hydraulic piston press. Their structure was visualized by a stereomicroscope equipped with a digital camera and software for image analysis and data measurements. In total, 90 images of surface structure were obtained and quantitatively analysed. Using Nikon Instruments Software (NIS-Elements software, the length and area of 900 particles were measured and statistically tested to compare the size of the particles at different surface locations. Results showed statistically significant differences in particles’ size distribution: larger particles were generally on the front side of briquettes and vice versa, smaller particles were on the rear side. As well, larger particles were centred in the middle of cross sections and the smaller particles were centred on the bottom of the briquette.

  7. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  8. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  9. Mechanical Evaluation for the Quality Control of Biomass Pellets and Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Seabra da Rocha, Saulo Henrique [RWTH Aachen Univ. (Germany). KoBrA - Coking, Briquetting and Thermal Waste Treatment Group

    2006-07-15

    Biomass densification through compression machine leads to numerous benefits, such as decreased dust emission, transportation, and maintenance costs. However, if the mechanical strength of the Pellets and briquettes is not high enough, breaks and abrasion lead to low efficiency. Quality evaluation before pelleting or briquetting can avoid these problems. The most common mechanical strength evaluation methods are simple and fast, but their accuracy and precision are limited. In this paper three methods for mechanical strength evaluation are reviewed, tested and statistically compared. Compacted bodies in different dimensions of typical materials, like sawdust, bark and lignite, were produced, and tested with the mentioned methods to get different values of mechanical strength. The correlation coefficient was used to compare the accuracy and precision of those methods. The Point Load Strength method showed a linear variation error and a poor correlation coefficient value (R2 = 0.71-0.78). The Brazilian Test had a reasonably constant result, but the relative standard deviation was 22%, insufficient for a practical process optimization. The best results were produced from the Extended Planar Strength, with an excellent correlation coefficient value (R2 = 0.98). This technique will help to increase efficiency and save energy in the production process.

  10. Water-Sensitivity Characteristics of Briquettes Made from High-Rank Coal

    Directory of Open Access Journals (Sweden)

    Geng Yunguang

    2016-01-01

    Full Text Available In order to study the water sensitivity characteristics of the coalbed methane (CBM reservoir in the southern Qinshui Basin, the scanning electron microscopy, mineral composition and the water sensitivity of main coalbed 3 cores were tested and analyzed. Because CBM reservoirs in this area are characterized by low porosity and low permeability, the common water sensitivity experiment of cores can’t be used, instead, the briquettes were chose for the test to analysis the water sensitivity of CBM reservoirs. Results show that: the degree of water sensitivity in the study area varies from week to moderate. The controlling factors of water sensitivity are clay mineral content and the occurrence type of clay minerals, permeability and liquid flow rate. The water sensitivity damage rate is positively correlated with clay mineral content and liquid flow rate, and is negatively correlated with core permeability. The water sensitivity of CBM reservoir exist two damage mechanisms, including static permeability decline caused by clay mineral hydration dilatation and dynamic permeability decline caused by dispersion/migration of clay minerals.

  11. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration; Durabilite des materiaux de puits petroliers dans le cadre d'une sequestration geologique de dioxyde de carbone et d'hydrogene sulfure

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemet, N

    2006-01-15

    The geological sequestration of carbon dioxide (CO{sub 2}) and hydrogen sulphide (H{sub 2}S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H{sub 2}S-CO{sub 2}, a mixture of brine saturated with H{sub 2}S-CO{sub 2} and of supercritical H{sub 2}S-CO{sub 2} phase, a dry supercritical H{sub 2}S-CO{sub 2} phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO{sub 2} and the steel sulfidation by the H{sub 2}S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H{sub 2}S-CO{sub 2}. But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  12. Torrefaction of briquettes: technical-economic feasibility and perspective in Brazilian market; Briquetes torreficados: viabilidade tecnico-economica e perspectivas no mercado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Felfli, Felix Fonseca; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos; Rocha, Jose Dilcio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico

    2004-07-01

    It is presented an study of the operational impact into a briquettes factory produced by the introduction of a torrefaction process. Through costs analysis it is shown that for a briquettes factory of 1.200 ton/year capacity, it is possible to increase Operational Profits and decrease the Break Even Point in 15.7 % when a torrefaction reactor is introduced into the manufacturing line. So, it is possible to insure that torrefaction increase the overall system efficiency without increasing yearly production since the number of 'biomass fuels' is increased enabling operation in other markets. This study also shows that torrefaction improves briquettes quality allowing access to the comparatively smaller consumer market still unreached by biomass briquets. (author)

  13. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    Science.gov (United States)

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The references considered for inclusion in or cited in the external review draft ISA are available at https://hero.epa.gov/hero/sulfur-oxides. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes an assessment of scientific research from atmospheric sciences, exposure sciences, dosimetry, mode of action, animal and human toxicology, and epidemiology. Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for sulfur oxides (SOx) are included; Annexes provide additional details supporting the ISA. Together, the ISA and Annexes serve to update and revise the last SOx ISA which was published in 2008.

  14. The use of fractionated fly ash of thermal power plants as binder for production of briquettes of coke breeze and dust

    Science.gov (United States)

    Temnikova, E. Yu; Bogomolov, A. R.; Lapin, A. A.

    2017-11-01

    In this paper, we propose to use the slag and ash material of thermal power plants (TPP) operating on pulverized coal fuel. The elemental and chemical composition of fly ash of five Kuzbass thermal power plants differs insignificantly from the composition of the mineral part of coking coal because coke production uses a charge, whose composition defines the main task: obtaining coke with the required parameters for production of iron and steel. These indicators are as follows: CRI reactivity and strength of the coke residue after reaction with CO2 - CSR. The chemical composition of fly ash of thermal power plants and microsilica with bulk density of 0.3-0.6 t/m3 generated at production of ferroalloys was compared. Fly ash and microsilica are the valuable raw material for production of mineral binder in manufacturing coke breeze briquettes (fraction of 2-10 mm) and dust (0-200 μm), generated in large quantities during coking (up to 40wt%). It is shown that this binder is necessary for production of smokeless briquettes with low reactivity, high strength and cost, demanded for production of cupola iron and melting the silicate materials, basaltic rocks in low-shaft furnaces. It is determined that microsilica contains up to 90% of silicon oxide, and fly ash contains up to 60% of silicon oxide and aluminum oxide of up to 20%. On average, the rest of fly ash composition consists of basic oxides. According to calculation by the VUKHIN formula, the basicity index of briquette changes significantly, when fly ash is introduced into briquette raw material component as a binder. The technology of coke briquette production on the basis of the non-magnetic fraction of TPP fly ash in the ratio from 3.5:1 to 4.5:1 (coke breeze : coke dust) with the addition of the binder component to 10% is proposed. The produced briquettes meet the requirements by CRI and require further study on CSR requirements.

  15. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  16. Optimization of the technology of fodder briquettes-licks with the use of a steam compression heat pump

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2017-01-01

    Full Text Available In conditions of industrial maintenance of animals, their health is noticeably weakening, in the majority of the body, profound metabolic disorders are noted, and productivity is reduced. In such conditions it is necessary to use feed additives in the form of briquettes-licks, able to compensate for the lack of micro and macro elements, vitamins and many other substances. Intensification of feed production through the use of new advanced technologies allows to improve the quality of products and reduce losses in its production. The technologies used for briquettes-licks and equipment for their production do not always allow to provide high quality products and achieve the necessary effect when fed. In addition, they are energy-intensive, do not imply the use of secondary energy carriers. Therefore, the creation of a functional product, combining a complex of substances necessary for animal feeding, and the development of an energy-efficient method for its production is topical. The proposed technology makes it possible to obtain feed briquettes with high homogeneity and a specified content of biologically active substances, to ensure a longer-term preservation of the products. The developed line provides for the maximum rapid cooling of the finished product and a reduction in the specific energy consumption for its production as a result of the heat of spent coolants. The high-quality licks produced were homogeneous in their composition, resistant to unfavorable conditions. They are characterized by a higher stability of structural and mechanical properties and stability of storage quality for a long time: after twelve months, the technological properties of the products have not changed, signs of damage associated with increased humidity of the environment have not been noted. On the surface of briquettes, signs of development of microflora were not observed. The values of microbiological quality indicators were within acceptable limits. The

  17. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    Science.gov (United States)

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  18. Reducibility study of Rossetta ilmenite ore briquettes and powder with coke breeze at 800-1100°C

    Directory of Open Access Journals (Sweden)

    Abd el Gawad Hala H.

    2013-01-01

    Full Text Available Ilmenite ore fine and coke breeze as reduced material were briquetted with different amounts of organic materials such as molasses or pitch were studied in this investigation. The produced briquettes at reasonable condition were reduced in nitrogen atmosphere at temperature range 800 - 1100oC to determine the factors controlling the reduction and to determine the controlling mechanism. Also ilmenite ore fine with coke breeze were reduced at the same temperature range in nitrogen atmosphere without briquetting process, for the sake of comparison.

  19. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  20. Influência do dióxido de enxofre e cultivares de videira na formação de alguns compostos voláteis e na qualidade sensorial do destilado de vinho Influence of sulfur dioxide and grape varieties at the formation of some volatile compounds and at the sensory quality of the wine distillate

    Directory of Open Access Journals (Sweden)

    Marco Antonio SALTON

    2000-12-01

    distillates was accomplished by the sensory group of EMBRAPA Uva e Vinho. The results showed that the sulfur dioxide helped the formation of ethanal in the grape varieties studied. It was also observed an increase in the fusel oil fraction due to the sulfur dioxide, except for the distillate of the Isabel grape variety. It was showed also that the Isabel’s distillated had a higher fraction of methanol and lower of 1-propanol, possibly due to the vinification process. The Isabel distillate together with the Couderc 13 distillate, showed a lower fraction of 2-methyl-1-propanol and a lower fraction of 3-methyl-1-butanol and the fusel oil fraction as compared with the other distillates. The distillate of Trebbiano presented a higher fraction of 2-methyl-1-propanol and together with the Herbemont distillate a higher fraction of 1-propanol, 2-methyl-1-butanol and fusel oil. The sensory evaluation showed that the SO2 had an influence in the aroma, taste and in the general quality of the Herbemont and Trebbiano distillates. The Herbemont distillate was characterized by presenting a lower aroma, taste and general quality. It presented, also, negativelly the highest score for undesirable aroma and taste.

  1. Fundamental study on carbon composite iron ore hot briquette used as blast furnace burden

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Man-sheng; Liu, Zheng-gen; Wang, Zhao-cai [Institute of Ferrous Metallurgy, Northeastern University, Shenyang (China); Yagi, Jun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

    2011-05-15

    Carbon composite iron ore hot briquette (CCB) is the product of fine iron ore and fine coal by hot briquetting process, which attracts more and more attention as a new type of ironmaking raw materials aiming to improve the operation efficiency and reduce the coke consumption of blast furnace. This paper is devoted to experimental study on metallurgical properties of CCB and numerical simulation of the BF operation with CCB charging. At first, the metallurgical properties of CCB, including cold crushing strength, RDI, RSI, reducibility, high temperature strength, and softening and dripping are experimentally tested and compared with the common burdens, which revealed that the CCB possesses the required metallurgical properties and is suitable to use as the blast furnace burden. Then, the effects of charging CCB on the dripping properties of comprehensive burdens are elucidated based on the experiments under simulated blast furnace conditions. The results showed that the maximum charging ratio of CCB in the iron burdens is 40%-50% for achieving appropriate dripping properties of the mixed burdens. Finally, a multi-fluid blast furnace model is used to simulate BF operation with CCB charging. According to model simulations, charging CCB will cause the temperature level to decreases in the furnace and the location of the cohesive zone shifts downward. On the other hand, the productivity tends to increase while coke rate and total reducing agent rate decrease, the heat efficiency improves remarkably and the operation performance of BF is effectively enhanced. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Preliminary results of measurements of air pollution caused by sulfur compounds near the Polaniec power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dziewanski, J; Kasina, S; Lewinska, J; Piorek, S

    1976-01-01

    In the past investigations of the negative impact of power stations on the natural environment have been restricted to measuring sulfur dioxide content in the air. A method of determining complex influence of sulfur compounds on the natural environment is proposed. The following indexes are used: content of sulfur dioxide in the air, dust content (determined by means of the West-Gaeke method), content of sulphate ions in precipitation and pH value of precipitation. Methods used to determine each of the indexes are described. Location of measuring stations in the area where the power station is being constructed is evaluated, taking into account prevailing wind direction and atmospheric conditions (15 measuring points out of which 10 stations measure sulfur content in precipitation and pH value of precipitation, and 5 stations measure the mean daily concentration of sulfur dioxide and dust content). Results are presented in 3 maps, 1 table and 2 pictures. Variations in sulfur dioxide content, dust content, and pH value of precipitation depending on direction of wind, atmospheric conditions and season are analyzed. The results of the investigation will be compared with results of investigations carried out when the power station is in operation. (15 refs.)

  3. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1 Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2 Magnesium oxide can obviously improve the sulfur fixation performance of Bayer red mud and up to a maximum sulfur fixation rate of 47 wt% at adding 1 wt% magnesium oxide. (3 Dolomite enhanced the sulfur fixation performances with the sulfur fixation rate of 68 wt% in optimized condition. (4 Vermiculite dust reduced sulfur dioxide during the fixed-sulfur process of modified Bayer red mud, and the desulphurization ration could reach up to a maximum 76 wt% at 950°C. (5 An advanced three-component sulfur fixation agent was investigated, in which the optimized mass ratio of modified Bayer red mud, dolomite, and vermiculite dust was 70 : 28 : 2 in order, and its sulfur fixation efficiency has reached to a maximum 87 wt% under its 20 wt% dosage in the coal.

  4. Optimization of binder addition and particle size for densification of coffee husks briquettes using response surface methodology

    Science.gov (United States)

    Raudah; Zulkifli

    2018-03-01

    The present research focuses on establishing the optimum conditions in converting coffee husk into a densified biomass fuel using starch as a binding agent. A Response Surface Methodology (RSM) approach using Box-Behnken experimental design with three levels (-1, 0, and +1) was employed to obtain the optimum level for each parameter. The briquettes wereproduced by compressing the mixture of coffee husk-starch in a piston and die assembly with the pressure of 2000 psi. Furthermore, starch percentage, pyrolysis time, and particle size were the input parameters for the algorithm. Bomb calorimeter was used to determine the heating value (HHV) of the solid fuel. The result of the study indicated that a combination of 34.71 mesh particle size, 110.93 min pyrolysis time, and 8% starch concentration werethe optimum variables.The HHV and density of the fuel were up to 5644.66 calgr-1 and 0.7069 grcm-3,respectively. The study showed that further research should be conducted to improve the briquette density therefore the coffee husk could be convert into commercialsolid fuel to replace the dependent on fossil fuel.

  5. The design of financial recording system in industrial bio-briquette of Ramie (Boehmeria nivea) decortication waste with design thinking approach

    Science.gov (United States)

    Irianto, R.; Purnomo, D.; Prima, S.; Wulandari, A.

    2017-05-01

    The production process of ramie (boehmeria nivea) fibers generates waste which contents 5.95 to 7.83% ash; 1.88 to 2.87% silicate; 30.67 to 31.08% lignin; 33.81 to 35.99% alpha cellulose; 62.95 to 63.78% holoselulosa; 17.43 to 18.14% pentosan, which can be used as raw material of bio-briquette. Those potential can be used to generate a business opportunity, such as industrial bio-briquette of ramie decortication waste. The purpose of this research is to create accounting information which could present an income statement that is easily applied on industrial bio-briquette of ramie decortication waste. This research use descriptive analysis method with design with design thinking approach to gather the information through depth observation on human being as the object to achieve the purpose. The result in this research is financial recording system of industrial bio-briquette of ramie decortication waste in a desktop application. The system is integrated with production activities according to the needs of accounting information particularly at managerial production. The existing applications creates information in the form of financial operations which can be used as a factor in decision-making.

  6. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  7. Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk

    International Nuclear Information System (INIS)

    Hu, Jianjun; Lei, Tingzhou; Wang, Zhiwei; Yan, Xiaoyu; Shi, Xinguang; Li, Zaifeng; He, Xiaofeng; Zhang, Quanguo

    2014-01-01

    Biomass can be relatively easily stored and transported compared with other types of renewable energy sources. Crop straw can be converted into densified solid biofuel via briquette fuel technology to expand its possible applications and enhance its utilisation efficiency. However, the potential economic, environmental and social impacts of crop straw briquette fuel need to be assessed before its large-scale use. This paper provides a comprehensive evaluation of these impacts for a fully-operating 2 × 10 4 t/a corn stalk briquette fuel plant in China. The results show that with a life time of 15 years, a purchase price of 150 RMB/t for corn stalk and the current sales price of 400 RMB/t for briquette fuel, the plant has a net present value of 9.6 million RMB or 1.5 million USD, an internal rate of return of 36% and a short investment payback period of 4.4 years. The life cycle greenhouse gas emissions are found to be 323 t CO 2 ,e/year or 1 kg CO 2 ,e/GJ, much lower than that of coal. Additionally, the process reduces pollution by decreasing the amount of corn stalk that is discarded or burnt directly in the field. In terms of social impacts, the use of corn stalk briquetting fuel plant is expected to play an important role in increasing local residents' income, improving rural ecological environments, alleviating energy shortages, guaranteeing energy security, and promoting socialism new rural reconstruction. - Highlights: • A fully-operating 2 × 10 4 t/a corn stalk briquette fuel plant in China is analysed. • The plant has net present value of $1.5 million and payback period of 4.4 years. • Life cycle GHG emissions are 323 t CO 2 ,e/year or 1 kg CO 2 ,e/GJ, much lower than coal. • The plant will also have significant social benefits

  8. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  9. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  10. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  11. Optimization of low sulfur jerusalem artichoke juice for fossil fuels biodesulfurization process

    OpenAIRE

    Silva, Tiago P.; Paixão, Susana M.; Roseiro, J. Carlos; Alves, Luís Manuel

    2013-01-01

    Most of the world’s energy is generated from the burning of fossil fuels such as oil and its derivatives. When burnt, these fuels release into the atmosphere volatile organic compounds, sulfur as sulfur dioxide (SO2) and the fine particulate matter of metal sulfates. These are pollutants which can be responsible for bronchial irritation, asthma attacks, cardio-pulmonary diseases and lung cancer mortality, and they also contribute for the occurrence of acid rains and the increase of the hole i...

  12. Analysis of sulfur in dried fruits using NAA

    International Nuclear Information System (INIS)

    Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de

    2011-01-01

    In this study the amount of elemental sulfur in some dried fruits, available commercially, was analyzed using INAA. Apple, apricot and raisin (dried fruits) were investigated due the application of sulfur dioxide for keeping the color and to protect the flavor from oxidation. The samples of dried fruits (apple, apricot and raisin) that are consumed by local population were obtained from the supermarket of Sao Paulo city (SP, Brazil). The sulfur concentration values for apple (0.32 ± 0.04 gkg -1 ) and raisin (0.30 ± 0.08 gkg -1 ) are similar but they are significantly lower when compared with the apricot (1.55 ± 0.12 gkg -1 ). This analysis is important due to an increase in the consumption of dried fruit by Brazilian population and also for its nutritional relevancy. (author)

  13. Analysis of sulfur in dried fruits using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, Cibele B.; Medeiros, Ilca M.M.A., E-mail: czamboni@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Medeiros, Jose A.G. de [Universidade Cidade de Sao Paulo, UNICID, Sao Paulo, SP (Brazil)

    2011-07-01

    In this study the amount of elemental sulfur in some dried fruits, available commercially, was analyzed using INAA. Apple, apricot and raisin (dried fruits) were investigated due the application of sulfur dioxide for keeping the color and to protect the flavor from oxidation. The samples of dried fruits (apple, apricot and raisin) that are consumed by local population were obtained from the supermarket of Sao Paulo city (SP, Brazil). The sulfur concentration values for apple (0.32 {+-} 0.04 gkg{sup -1}) and raisin (0.30 {+-} 0.08 gkg{sup -1}) are similar but they are significantly lower when compared with the apricot (1.55 {+-} 0.12 gkg{sup -1}). This analysis is important due to an increase in the consumption of dried fruit by Brazilian population and also for its nutritional relevancy. (author)

  14. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  15. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  16. Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Benk, Ayse [University of Erciyes, Faculty of Art and Science, Department of Chemistry, 38039, Kayseri (Turkey)

    2010-09-15

    To reduce the cost of the formed coke briquettes which can be used as a substitute fuel to the metallurgical coke for the blast furnace from the coke breeze alternative binders and their blends were used. The high temperature behavior was investigated. The binders tested were: the nitrogen blown, air blown coal tar pitch and the blend of air blown coal tar pitch with the phenolic resins blends. The phenolic resin blends were prepared by mixing equal amount of resole and novalac. From the results, nitrogen blowing resulted in the weakest briquettes. The air blowing procedure should be preferred in place of nitrogen blowing for this purpose. When the air blown coal tar pitch was used alone as a binder, the briquettes must be cured at 200 C for 2 h, then carbonized at a temperature above 670 C. Since it requires higher temperature at carbonization stage, using air blown coal tar pitch alone as a binder was not economical. Therefore, the briquettes were prepared from the blended binder, containing air blown coal tar pitch and phenolic resins blend. The optimum amount of air blown coal tar pitch was found to be 50% w/w in the blended binder. Curing the briquettes at 200 C for 2 h was found to be sufficient for producing strong briquettes with a tensile strength of 50.45 MN/m{sup 2}. When these cured briquettes were carbonized at temperatures 470 C, 670 C and 950 C, their strength were increasing continuously, reaching to 71.85 MN/m{sup 2} at the carbonization temperature of 950 C. These briquettes can be used as a substitute for the metallurgical coke after curing; the process might not require un-economical high temperature carbonization stage. (author)

  17. Electrochemistry of Sulfur Dioxide in Nonaqueous Solutions. Part I.

    Science.gov (United States)

    1981-05-18

    1419-1426. 7Fouchard, D. T., Gardner, C. L., Adams, W. A. and Laman , F. C., "Roman and ISR Spectroscopic Studies of the Ulectroreduction of Sulphur...Untersuchungen an elektrolytisch erzeugtem SO2-," Zeitschrift fur Naturforsch A, Vol. 23, 1968. j Fouchard, D. T., Gardner, C. L., Adams, W. A. and Laman , F. C

  18. Biological scale for the estimation of sulfur dioxide pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, O L

    1970-01-01

    By observing the distribution of lichens and bryophytes in an area where levels of SO/sub 2/ are well known it has been possible to produce a scale from which annual average levels of this pollutant can be estimated. Instructions on how to use the scale are given and its accuracy and possible usefulness are discussed.

  19. Sulfur dioxide poisoning as a cause of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Romanoff, A.

    1939-01-01

    This report discusses 3 cases of asthmatic attack following exposure to SO/sub 2/ from leaking refrigerators. This report speculates that primary effects are inflammatory destructive lesions in upper tract which predispose bronchi to bacterial attack followed by hypersensitivity to bacterial products (complex of bronchial asthma) in certain susceptible individuals. SO/sub 2/, like cold, exercise, or overeating, may be included in the same category of nonspecific precipitating causes. No immunologic case for specificity of SO/sub 2/ was observed.

  20. Conversion of Sulfur-Dioxide in the Atmosphere

    DEFF Research Database (Denmark)

    Flyger, H.; Fenger, J.

    1976-01-01

    Pertinent, previous studies of the oxidation of SO2 in the atmosphere are briefly reviewed. A project dealing with the conversion in the plume from an oil-fired power station is described in greater detail. Measurements were performed from an aircraft and included continuous registration of NOx, ...

  1. Inhibition of spore germination of Alternaria tenuis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.

    1962-08-01

    As a part of a continuing study of SO/sub 2/ fumigation of table grapes, the effect of SO/sub 2/ on spores of an isolate of A. tenuis Auct. causing decay of table grapes was determined. The amount of SO/sub 2/ required to inhibit completely spore germination depended on availability of moisture and the temperature. At 20/sup 0/C, wet spores required 20-min exposure to 100 ppm SO/sub 2/ to prevent germination, but spores equilibrated at 90% relative humidity (RH) required 10-min exposure to 1000 ppm SO/sub 2/. Dry spores at 60% RH were unaffected by a 20-min exposure to 4000 ppm SO/sub 2/. Increasing the temperature in the range 5-20/sup 0/C increased effectiveness of the SO/sub 2/ treatment. A comparison of Alternaria with Botrytis cinerea Fr. (studied earlier) showed that wet spores of these organisms were about equally sensitive to SO/sub 2/, but that dry Alternaria spores were more resistant to SO/sub 2/ than dry Botrytis spores under comparable conditions.

  2. The reaction kinetics of amino radicals with sulfur dioxide

    DEFF Research Database (Denmark)

    Gao, Yide; Glarborg, Peter; Marshall, Paul

    2015-01-01

    Application of the laser photolysis-laser-induced fluorescence method to the reaction NH2+SO2 in argon bath gas yields pressure-dependent, third-order kinetics which may be summarized as k = (1.49 ± 0.15) × 10-31 (T/298 K)-0.83cm6 molecule-2 s-1 over 292-555K, where the uncertainty is the 95......% confidence interval and includes possible systematic errors. The quenching of vibrationally excited NH2 is consistent with a high-pressure limit for NH2+SO2 of (1.62 ± 0.25) × 10-11cm3 molecule-1 s-1 over the temperature range 295-505K, where again the 95% confidence interval is shown. Ab initio analysis...... yields a H2N-SO2 dissociation enthalpy of 73.5 kJ mol-1, and comparison with RRKM theory and the exponential down model for energy transfer yields down = 350 cm-1 for Ar at room temperature....

  3. Fecundability and parental Exposure to Ambient sulfur Dioxide

    Czech Academy of Sciences Publication Activity Database

    Dejmek, Jan; Jelínek, R.; Solanský, I.; Beneš, I.; Šrám, Radim

    2000-01-01

    Roč. 108, č. 7 (2000), s. 647-654 ISSN 0091-6765 R&D Projects: GA MŽP SI/340/2/00 Institutional research plan: CEZ:AV0Z5039906 Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.033, year: 2000

  4. Absorption effects in electron-sulfur-dioxide collisions

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos [Departamento de Fisica, UFSCar, 13565-905 Sao Carlos-SP (Brazil); Lee, M.-T.; Iga, I.; Souza, G. L. C. de [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos-SP (Brazil); Homem, M. G. P.; Michelin, S. E. [Departamento de Fisica, UFSC, 88040-970 Florianopolis-SC (Brazil); Brescansin, L. M. [Instituto de Fisica ' ' Gleb Wataghin' ' , UNICAMP, 13083-970 Campinas-SP (Brazil)

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations. Comparison of the present results is made with the theoretical and experimental results available in the literature.

  5. Higher energy dissociative electron attachment cross sections in sulfur dioxide

    International Nuclear Information System (INIS)

    Kurepa, M.; Pejcev, V.; Cadez, I.

    2000-01-01

    Experimental results of total electron attachment cross sections are presented with, for comparison, two additional sets of data, those of Orient and Srivastava and of Spyrou et al.. Both were normalized to present values of the first attachment peak at 4,6 eV, in order to show more clearly differences in cross section curve shapes. In fact, data of Orient and Srivastava are larger that the present ones for a factor of 2,82; while those of Spyrou et al. are higher only for 3,70 %. Both these sets of data, as well as those by Cadez et al., cover an incident electron energy range 3,40 - 9,40 eV. Electron attachment processes at energies higher that 9,40 eV have been in fact detected and measured in the same set of experiments that led to former publication of lower energy attachment processes by Cadez et al.. At that time in none of experiments, that could distinguished ionic species formed in dissociation attachment processes, was a sign of ions at incident electron energies exceeding 9,40 eV. That caused our ignorance toward processes detected and measured at higher incident electron energies, mainly since they were at least one order of magnitude lower that the two peaks at 4,6 eV and 7,3 eV, respectively. Without additional experiments, that include mass analysis of ionic species formed in dissociative electron attachment processes, it is not possible to give any sound explanation to causes of peaks at energies higher that 8,0 eV

  6. 76 FR 56644 - Sulfur Dioxide; Pesticide Tolerances for Emergency Exemptions

    Science.gov (United States)

    2011-09-14

    ... cause any relevant toxic effects, no quantitative dietary risk assessment is needed. Short-term studies... ingestion of sulfiting agents used as preservatives in food products, beverages, and fresh fruits and... phase of a study now being conducted on figs was submitted with this exemption request. The design of...

  7. Preparation and Optimization of Vanadium Titanomagnetite Carbon Composite Hot Briquette: A New Type of Blast Furnace Burden

    Science.gov (United States)

    Zhao, W.; Wang, H. T.; Liu, Z. G.; Chu, M. S.; Ying, Z. W.; Tang, J.

    2017-10-01

    A new type of blast furnace burden, named VTM-CCB (vanadium titanomagnetite carbon composite hot briquette), is proposed and optimized in this paper. The preparation process of VTM-CCB includes two components, hot briquetting and heat treatment. The hot-briquetting and heat-treatment parameters are systematically optimized based on the Taguchi method and single-factor experiment. The optimized preparation parameters of VTM-CCB include a hot-briquetting temperature of 300°C, a coal particle size of coal-added ratio of 28.52%, a heat-treatment temperature of 500°C and a heat-treatment time of 3 h. The compressive strength of VTM-CCB, based on the optimized parameters, reaches 2450 N, which meets the requirement of blast furnace ironmaking. These integrated parameters provide a theoretical basis for the production and application of a blast furnace smelting VTM-CCB.

  8. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  9. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  10. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  11. Influence of Sulfur Fumigation on the Chemical Constituents and Antioxidant Activity of Buds of Lonicera japonica

    Directory of Open Access Journals (Sweden)

    Ai-Li Guo

    2014-10-01

    Full Text Available Lonicera japonica flos is widely used as a pharmaceutical resource and a commonly-employed ingredient in healthy food, soft beverages and cosmetics in China. Sometimes, sulfur fumigation is used during post-harvest handling. In this study, a comprehensive comparison of the chemical profile between sun-dried and sulfur-fumigated samples was conducted by HPLC fingerprints and simultaneous quantification of nine constituents, including secologanic acid, along with another eight usually-analyzed markers. Secologanic acid was destroyed, and its sulfonates were generated, whereas caffeoylquinic acids were protected from being oxidized. The residual sulfur dioxide in sulfur-fumigated samples was significantly higher than that in sun-dried samples, which might increase the potential incidence of toxicity to humans. Meanwhile, compared with sun-dried samples, sulfur-fumigated samples have significantly stronger antioxidant activity, which could be attributed to the joint effect of protected phenolic acids and flavonoids, as well as newly-generated iridoid sulfonates.

  12. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    Science.gov (United States)

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  13. Determination of sulfur in steels by isotope dilution mass spectrometry after dissolution with sealed tube

    International Nuclear Information System (INIS)

    Watanabe, Kazuo

    1981-01-01

    The scaled tube dissolution technique was studied for the complete conversion of sulfur in steels to sulfate. Isotope dilution mass spectrometry was used for the determination of sulfur in the sulfate. Sample (0.5 g) was dissolved in nitric acid (7 ml) and hydrochloric acid (3 ml) in a scaled borosilicate glass tube on being heated above 180 0 C overnight. Nitrate ions were removed by repeated evaporation with hydrochloric acid. The residue was dissolved in hydrochloric acid. Sulfate was reduced with a mixture of hydrochloric, hydroiodic and hypophosphorous acids; hydrogen sulfide evolved was absorbed in cadmium acetate solution, then converted to silver sulfide, which was burned to sulfur dioxide in pure oxygen at low pressure, for isotopic analysis. Analytical blank in whole procedure was 0.8 μg of sulfur. This technique was applied to the determination of sulfur in NBS low alloy steels. The principal cause of low values obtained by the open beaker dissolution technique was evaporation losses of sulfur as sulfur dioxide during the dissolution. (author)

  14. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  15. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2015-01-01

    Full Text Available The limitations of the availability of energy sources especially fuel oil has become a serious threat for the society. The use of coal for energy source as the replacement of fuel oil, in one hand, is very profitable, but on the other hand, will cause problem which is the coal ash residue. This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk. Also, this observation needs to add binder materials for further processing in order to form briquette. It can be used as alternative fuel, the utilization of bottom ash and biomass will give positive impact to the environment. This observation was conducted by using compositions such as bottom ash, teak leaves, coconut shell, and rice husk. The treatment was using comparison 100%:0% ; 80%:20% ; 60%:40% ; 50%:50% ; 40%:60% ; 20%:80% ; 0%:100%. The result that the best briquette was on the composition of 20% bottom ash : 80% coconut shell. The characteristic values from that composition were moisture content of 3.45%, ash content of 17,32%, calorific value of 7.945,72 Cal/gr, compressive strength of 2,18 kg/cm2, level of CO of 105 mg/m3, and heavy metals Cu of 29,83 µg/g and  Zn 32,99 µg/g. The characteristic value from each briquette composition treatment showed that the increasing usage proportion of biomass as added material for briquette was able to increase its moisture content and calorific value. Besides, it is also able to decrease its ash content and compressive strength

  16. Carbon-based catalytic briquettes for the reduction of NO: Effect of H{sub 2}SO{sub 4} and HNO{sub 3} carbon support treatment

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica CSIC, Zaragoza (Spain)

    2008-08-15

    The influence of treating carbon with sulphuric and nitric acids on the activity of a carbon-based briquette catalyst for NO reduction with NH{sub 3} was examined in a fixed-bed reactor at low temperature (150{sup o}C). The briquette catalysts were prepared from a low-rank coal and a commercial tar pitch. The active phase was impregnated from a suspension of ashes of petroleum coke by means of an equilibrium adsorption method. The catalytic behaviour of NO reduction over acid treated briquettes was found to vary with the surface characteristics of the carbon support. This suggests that the number of oxygen-containing sites as well as vanadium load and dispersion affect the reaction activity. In the presence of oxygen, the SCR activity is enhanced with a nitric acid treatment, activity is promoted by the presence of acidic surface groups such as carboxyl and lactone, which can help not only to create a reservoir of reactants on the catalysts surface but also to improve the dispersion or even increase the amount of vanadium loading. Therefore, the results of this study suggest that the formation of acidic sites on the surface is an important step for NO reduction with NH{sub 3} over carbon-based catalysts. Additional techniques such as XPS and TPD to characterize the oxygen surface and those such as N{sub 2} adsorption to characterize the textural properties were also used in this study. 46 refs., 6 figs., 5 tabs.

  17. Moringa oleifera: a promising agricultural crop and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (biodiesel and briquettes

    Directory of Open Access Journals (Sweden)

    Pereira Francisco Sávio Gomes

    2018-01-01

    Full Text Available This study describes properties of biomasses of Moringa oleifera Lamarck for energetic applications of production of biodiesel and briquettes. The seeds collected of the mature pods were the initial biomasses used of this plant. The seeds were separated into husks and oilseed grains, from which the oils were extracted by mechanical pressing and by solvent extraction. The crude oil mixed (of pressing and by solvent was degummed, neutralized, washed, dried and characterized. The purified oil was converted into methyl biodiesel in homogeneous alkaline transesterification, which was purified and characterized. The residual peels and pies had their calorific powers measured and compared with classic agricultural residues: firewood, sugarcane bagasse and coconut husks. Moringa culture was compared to soybeans in agricultural and biodiesel production perspectives. The analytical results show that the biomasses of the moringa are favorable as renewable biofuels like biodiesel or briquettes due to the good calorific power and simple and accessible productive technology. The production of briquettes starting from the biomasses of the moringa would be recommended with the uses of the pod husks, seed peels and pies (cakes of extraction of the oil. The agricultural management and the simple productive technologies applied to the moringa are favorable for social inclusion by enabling family agriculture.

  18. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    Science.gov (United States)

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  19. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  20. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  1. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  2. Responses of plants to sulfur containing air pollutants (H2S and SO2)

    NARCIS (Netherlands)

    Maas, Franciscus Marie

    1987-01-01

    Effects of air pollution by hydrogen sulfide (H2S) and sulfur dioxide (SO2) were already reported more than half a century ago. The wider range of pollution by SO2 is reflected in the number of publications concerning effects of SO2 on plants. The major part of the reported studies effects of SO2

  3. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  4. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  5. Increasing the efficiency of sulphur dioxide in wine by using of saturated higher fatty acids

    Directory of Open Access Journals (Sweden)

    Petra Bábíková

    2012-01-01

    Full Text Available This work is aimed on stopping of alcoholic fermentation to leave residual sugar and the possibility of sulfur dioxide reduction in wine technology and storage. As a very good opportunity showed mixture of higher saturated fatty acids with a reduced dose of sulfur dioxide. Experiments have confirmed that the concentration of viable yeasts in 1 ml of wine for variants treated with a mixture of fatty acids is significantly lower than in variants treated with sulfur dioxide alone. Then was monitored the influence of fatty acids on stored wine with residual sugar. At this point a dramatically prolongation of interval to secondary fermentation (depreciation of wine in the bottle was confirmed. Finally, attention was paid to influence on the organoleptic characteristics of wine treated this way. In this case, it is possible to consider the recommended concentration of fatty acid below the threshold of susceptibility.

  6. A highly efficient polysulfide mediator for lithium-sulfur batteries

    Science.gov (United States)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  7. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  8. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  9. Assessing historical global sulfur emission patterns for the period 1850--1990

    Energy Technology Data Exchange (ETDEWEB)

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  10. Variables of briquetting process and quality of forestry biomass briquettes Variáveis do processo de briquetagem e qualidade de briquetes de biomassa florestal

    Directory of Open Access Journals (Sweden)

    Thielly Schmidt Furtado

    2010-10-01

    Full Text Available

    In the quest for recovery of waste generated from forest production to the process of industrial transformation of the biomass it was developed the process of briquetting. The cluster of wood particles facilitates the operations of handling of combustible material in addition to concentrating the available energy in terms of volume. The purpose of this study was to evaluate whether the raw material affects the quality of the briquette and verify the effect of pressure applied during the mechanical and energy  characteristics of the final product, and to evaluate the behavior of the material mix (MIX compared to pure materials. The briquettes were produced in a pilot  briquetter, hydraulic piston, 120 °C with a constant pressure of 50 bar for eight minutes and 65, 95 or
    130 bar for two minutes. Six briquettes were used for each treatment. The characteristics evaluated were calorific value (GCV, bulk density and compressive strength. The raw material has a greater influence on the quality of briquettes than the compaction pressure. The low pressure is the most suitable for Pinus sp forest biomass briquettes. In this, MIX submitted satisfactory quality of briquettes with PCS 4,773 kcal kg-1, density 1220 kg m-³ and compressive strength of 167 kgf cm-2.

     

    doi: 10.4336/2010.pfb.30.62.101

    Na busca pelo aproveitamento dos resíduos gerados desde a produção florestal até os processos de transformação industrial da biomassa, desenvolveu-se o processo de briquetagem. A aglomeração de partículas de madeira facilita as operações de  manuseio do material combustível, além de concentrar a energia disponível em termos de volume. O objetivo do presente trabalho foi avaliar se a matéria-prima tem influência na qualidade do briquete e verificar o efeito da pressão aplicada durante o processo nas  características energéticas e mecânicas do produto final, além de avaliar o comportamento da  mistura de materiais

  11. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  12. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    Science.gov (United States)

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  13. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host

    Science.gov (United States)

    Yang, Sihai; Sun, Junliang; Ramirez-Cuesta, Anibal J.; Callear, Samantha K.; David, William I. F.; Anderson, Daniel P.; Newby, Ruth; Blake, Alexander J.; Parker, Julia E.; Tang, Chiu C.; Schröder, Martin

    2012-11-01

    Understanding the mechanism by which porous solids trap harmful gases such as CO2 and SO2 is essential for the design of new materials for their selective removal. Materials functionalized with amine groups dominate this field, largely because of their potential to form carbamates through H2N(δ-)···C(δ+)O2 interactions, thereby trapping CO2 covalently. However, the use of these materials is energy-intensive, with significant environmental impact. Here, we report a non-amine-containing porous solid (NOTT-300) in which hydroxyl groups within pores bind CO2 and SO2 selectively. In situ powder X-ray diffraction and inelastic neutron scattering studies, combined with modelling, reveal that hydroxyl groups bind CO2 and SO2 through the formation of O=C(S)=O(δ-)···H(δ+)-O hydrogen bonds, which are reinforced by weak supramolecular interactions with C-H atoms on the aromatic rings of the framework. This offers the potential for the application of new ‘easy-on/easy-off’ capture systems for CO2 and SO2 that carry fewer economic and environmental penalties.

  14. Optimizaiton study of lime-upright-furnace briquette used as a substitution for coke with orthogonal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Zhou, J.; Deng, S.; Hao, X. [Central South University, Changsha (China)

    2006-12-15

    Test results were processed using the method of multi-factorial total probability formula evaluation. Based on range analysis and variance analysis, the optimal component of the compound binder was obtained, namely 4% magnesium-base curing agent, 1% biomass fiber, 1% activator, 0.12% calcium lignosulfonate. Key parameters of briquetting were determined, namely 20kN briquetting pressure, 17% briquetting water, 10% mixture ratio of bituminous coal. The size-composition of anthracite was: 58% less that 0.5 mm, 14% between 0.5 and 1.00 mm, 17% between 1.0 and 2.0 mm and 11% between 2.0 and 3.0 mm. The bonding mechanism of the compound binder was analyzed and the optimal parameter of briquetting determined. The results show that the lime-upright furnace briquette prepared according to the optimal scheme obtained in this experiment has an excellent cold strength, hot strength and heat stability which satisfies the requirements of the industrial production of lime-upright furnace briquets. 4 refs., 7 tabs.

  15. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  16. Determination of hydrogen sulphide and sulphur dioxide in a mixture

    International Nuclear Information System (INIS)

    Narayanan, S.S.; Rao, V.R.S.

    1989-01-01

    A method is proposed for the determination of hydrogen sulfide and sulfur dioxide in a mixture. The method is based on the quantitative oxidation of sulfide and sulfite with an excess of radiochloramine-T in alkaline medium (0.1N NaOH). The released chloride activity is proportional to the total amount of sulfide and sulfite present. Addition of 1% CdSO 4 solution to the mixture of sulfide and sulfite precipitates sulfide and sulfite in the filtrate determined by the reagent. From the difference in activities, the amount of sulfide can be calculated. This method can be employed for the determination of hydrogen sulfide and sulfur dioxide in air samples. (author) 11 refs.; 3 tabs

  17. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  18. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  19. Iodide-photocatalyzed reduction of carbon dioxide to formic acid with thiols and hydrogen sulfide

    OpenAIRE

    Berton, Mateo Otao; Mello, Rossella C. C.; González Núñez, María Elena

    2016-01-01

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO2 capture coupled with H2S removal may have been relevant as a prebiotic carbon dioxide fixation.

  20. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  1. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  2. Preparation of briquettes on the basis of desintegrated phyto-materials and the admixture of fine-grained coal and coke

    Directory of Open Access Journals (Sweden)

    Jakabský Štefan

    2002-03-01

    Full Text Available The contribution deals with the preparation of small-diameter briquettes on the basis of desintegrated phyto-materials and the admixture of coal and coke. The phyto-materials are classified as a dry biomass that can be, on the one hand, the wastes from wood-working industry,(sawdust, chips, bark, etc. or dried mass from the plant production and, on the other hand, the mass of quick-growing plants cultivated on special plantations. In present time this renewable energy resource attracts attention by its heating value ranging from 10 to 16 MJ.kg-1 (EkoWATT, 2001, a low ash content of 0.5 – 6.5 % and by a low sulphur content in a water free sample of 0.05 –0.12 %.As a phyto-material the spruce sawdusts having a grain size of –2 mm were used. The admixture of brown coal, hard coal and coke with a grain size of 0.040 mm was added to the sawdust and in such way prepared mixtures were subjected to briquetting with the aim to obtain small-diameter briquettes. The influence of admixtures amount on the density, and the suitable briquetting press have been studied. A saleability of briquettes on the basis of phyto-materials is conditioned by their density that must be higher than 1,000 kg.m-3. Thus, an adding of denser material with a relatively high calorific value would enable to attain the required density as well as to retain and/or to improve the main utility properties, i.e. calorific value and ash content.The adding evinces itself in an enhancement of briquetting press, but also density of obtained briquettes is often much higher that required by the market. It was showed that in the case of clear spruce sawdust the density of 1,059 kg.m-3 under the briquetting press of 250 MPa can be attained. According to other results, an admixture of brown coal is not very favourable because briquetting press exceeds the value of 300 MPa. As to hard coal adding, the presses under 250 MPa were achieved at the content of 25 – 30 %. The density of these

  3. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Science.gov (United States)

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  4. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  5. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  6. Analysis of the economic viability of the briquette production in the Brazilian market; Analise da viabilidade economica da producao de briquetes no mercado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/EP/UFRJ), RJ (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica], E-mail: silvioa@gmail.com; Barbosa, Bruno de Luca Lima; Souza, Julia do Rego Mello Fernandes de; Monteiro, Paulo Victor da Conceicao; Gomes, Thiago de Carvalho [Universidade Federal do Rio de Janeiro (DEI/CT/UFRJ), RJ (Brazil). Dept. de Engenharia Industrial], E-mail: brunodeluca@poli.ufrj.br

    2010-07-01

    This paper presents a study of economic viability of a 3 ton/hour briquette industry. For establish of study, premises such as costs, investments, prices at Brazilian and european markets and growing of sector forecast were established according to criteria defined by the authors. Two scenarios were considered: investors which hold all the capital necessary for the business and investors which need of a financing for realization of the enterprise. For the second scenery considering a certain interest rate and a mode of financing. Both scenery revealed profitable for the investor.

  7. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  8. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  9. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  10. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  11. Desulfurisation and sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.; Finn, A.; Scott, L. [Costain Oil, Gas and Process Ltd (United Kingdom)

    2001-09-01

    This article highlights technical issues associated with different sulphur recovery processes in the hydrocarbon processing industry. Details are given of the Stretford process developed by British Gas for the removal of low concentrations of hydrogen sulphide from natural gas and other hydrocarbon gases; the SulFerox process developed by Shell and Dow for removing moderate amounts of sulphur from contaminated gases using a proprietary iron salt for extracting the sulphur; solvent systems for removing moderately high concentrations of hydrogen sulphide in sour gas or liquid petroleum gases (LPG); the simple Claus process involving the partial combustion of hydrogen sulphide forming sulphur dioxide which reacts with hydrogen sulphide to form sulphur; and enhanced Claus processes. Sour water stripping processes for hydrogen sulphide contaminated water from hydrocarbon processing, tail gas treatment of Claus plant offgases, and hydrotreating are also discussed.

  12. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  13. Improving retrieval of volcanic sulphur dioxide from backscattered UV satellite observations

    NARCIS (Netherlands)

    Yang, Kai; Krotkov, N.A.; Krueger, A.J.; Carn, S.A.; Bhartia, P.K.; Levelt, P.F.

    2009-01-01

    Existing algorithms that use satellite measurements of solar backscattered ultraviolet (BUV) radiances to retrieve sulfur dioxide (SO2) vertical columns underestimate the large SO2 amounts encountered in fresh volcanic eruption clouds. To eliminate this underestimation we have developed a new

  14. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  15. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  16. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

  17. Biomass of clone of Eucalyptus grandis x urophylla for producing briquettes; Biomassa de clone de Eucalyptus grandis x Eucalyptus urophylla para producao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eder Aparecido; Oguri, Guilherme [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], e-mail: os_garcias@fca.unesp.br; Lancas, Kleber Pereira [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Guerra, Saulo Philipe Sebastiao [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Gestao e Tecnologia Agroindustrial

    2011-07-01

    The aim of this work was conducted to address forest biomass energy for briquette producing. In an area of dystrophic soil, seedlings of clones of Eucalyptus grandis x E. urophylla were planted in 2008, considering factors spacing and fertilization. The first dosage of fertilizer was 70 g/plant of NPK 6-30-6 and total coverage of 110 g/plant of NPK 20-0-20 with B and Zn. The spacing was 2.8x0.5 m, 2.8x1.0 m, 2.8x1.5 m, 2.8x2.0 m and 2.8x2.5 m. At 18 months, tree samples were collected to evaluate the basic density of wood (BDW), dry biomass of stem, branches and leaves. An assessment of the economic viability of each treatment was based on the sale of briquettes. BDW spacing of 2.8x1.0 m was 0.464 kg/m{sup 3}. The largest biomass of the stem occurred in 2.8x0.5 m spacing, with dosage 3, but economically unviable. The dry biomass of branches was only affected by dosage, reaching 17.68 t/ha in the third dose. Only fertilization was significant for leaf biomass. The highest income in the spacing was 2.8 x1.5 m with dosage 2. (author)

  18. Production and characterization of self-reducing briquettes to be used as metallic charge at Companhia Siderurgica de Tubarao; Producao e caracterizacao de briquetes auto-redutores a serem utilizados como carga metalica na Companhia Siderurgica de Tubarao

    Energy Technology Data Exchange (ETDEWEB)

    Gama Bentes, Marcos A. da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil); Resende, Caio S.; D`Abreu, Jose C. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1996-12-31

    The present work investigates the initial steps for characterization and production of self-reducing briquettes to be manufactured from a mixture of residues, which are generated in the various industrial processes at Companhia Siderurgica de Tubarao. The main development consists of three main stages, encompassing the development and production of self-reducing briquette and the investigation of its reduction in both solid and liquid phases. The produced briquette can be used as an alternative metallic and recarburizing raw material to be charged in the converters, or substituting the cooling scrap added in the steel ladles. Furthermore, this material can be eventually be applied to the new developed technologies for iron and steel production. The results of briquetting agglomeration studies of various mixtures containing iron and carbon rich materials are presented, as well the metallization rates, which were obtained in the gas-solid reduction furnaces for the briquettes of different residue compositions. Finally, the liquid phase experiments to be carried out in a vacuum induction furnace are discussed. (author) 9 refs., 15 figs., 3 tabs.

  19. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    Science.gov (United States)

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  20. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  1. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  2. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  3. Sulfur Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database

    OpenAIRE

    Cofala, J.; Syri, S.

    1998-01-01

    This paper describes the part of the Regional Pollution Information and Simulation (RAINS) model dealing with the potential and costs controlling emissions of sulfur dioxide. The paper describes the selected aggregation level of the emission generating activities and reviews the major options for controlling SO2 emissions. An algorithm for estimating emission control costs is presented. The cost calculation distinguishes 'general'(i.e., valid for all countries) and 'country-specific' paramete...

  4. Biochemical and cytological effects of sulphur dioxide on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, S S; Hocking, D

    1976-01-01

    Biochemical effects of sulfur dioxide arise from its unique ability to act as an oxidizing or a reducing agent. Among some of the important metabolic effects are direct interference with photosynthetic CO/sub 2/ fixation (competitive inhibiton of ribulose diphosphate carbosylase by SO/sub 3/) and with energy metabolism (inhibition of mitochondrial ATP production by SO/sub 3//sup =/). Many indirect effects result from formation of sulfites and organic sulfonates with other cell constituents. These compounds can cause inhibition of a variety of metabolic enzyme systems. All these factors are probably instrumental in the gross disruption of chloroplast and mitochondrial ultrastructure. Injurious effects result when sulfur dioxide is taken up in excess of the capacity of the tissue to incorporate sulfur into the normal metabolic activities. The ubiquitous presence of small amounts of SO/sub 2/ and the subtle and varied nature of its biochemical effects suggest that crop losses to SO/sub 2/ pollution may be more widespread and serious than is generally suspected.

  5. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  6. A MnO2/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Yong; Ye, Daixin; Liu, Wen; Shi, Bin; Guo, Rui; Zhao, Hongbin; Pei, Haijuan; Xu, Jiaqiang; Xie, Jingying

    2016-10-26

    Lithium-sulfur batteries can potentially be used as a chemical power source because of their high energy density. However, the sulfur cathode has several shortcomings, including fast capacity attenuation, poor electrochemical activity, and low Coulombic efficiency. Herein, multi-walled carbon nanotubes (CNTs), graphene oxide (GO), and manganese dioxide are introduced to the sulfur cathode. A MnO 2 /GO/CNTs-S composite with a unique three-dimensional (3D) architecture was synthesized by a one-pot chemical method and heat treatment approach. In this structure, the innermost CNTs work as a conducting additive and backbone to form a conducting network. The MnO 2 /GO nanosheets anchored on the sidewalls of CNTs have a dual-efficient absorption capability for polysulfide intermediates as well as afford adequate space for sulfur loading. The outmost nanosized sulfur particles are well-distributed on the surface of the MnO 2 /GO nanosheets and provide a short transmission path for Li + and the electrons. The sulfur content in the MnO 2 /GO/CNTs-S composite is as high as 80 wt %, and the as-designed MnO 2 /GO/CNTs-S cathode displays excellent comprehensive performance. The initial specific capacities are up to 1500, 1300, 1150, 1048, and 960 mAh g -1 at discharging rates of 0.05, 0.1, 0.2, 0.5, and 1 C, respectively. Moreover, the composite cathode shows a good cycle performance: the specific capacity remains at 963.5 mAh g -1 at 0.2 C after 100 cycles when the area density of sulfur is 2.8 mg cm -2 .

  7. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  8. Evaluation of the potential energy briquettes made with corn stubble (Zea mays) and soybean residue (Glycine max (L.)) combined with waste wood; Avaliacao do potencial energetico de briquetes confeccionados com residuo de milho (Zea mays) e residuo de soja (Glycine max (L.)) combinado com residuo de madeira

    Energy Technology Data Exchange (ETDEWEB)

    Travessini, Rosana; Schutz, Fabiana Costa de Araujo; Oyama, Paulo; Possan, Edna; Bittencourt, Paulo R.S. [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], emails: rosana_travessini@yahoo.com.br, fabianaschutz@utfpr.edu.br, oyama_pt@hotmail.com, epossan@gmail.com, paulob@utfpr.edu.br

    2011-07-01

    The agriculture industry produces a large amount of biomass whose use constitutes an economically viable alternative energy through the compression of the lignocellulosic portion, replacing the wood with an equivalent product. This is possible through the briquette, which is a very efficient way to concentrate the available energy in biomass. This study aimed to evaluate the efficiency of burning briquettes. The making of briquettes was performed in the laboratory of Electro mechanics and burning at the Laboratory of Environmental UTFPR Campus Medianeira / PR. For the analysis, the energy balance of the combinations we used a bomb calorimeter IKA C5000, Laboratory of Biomass Energy (LEB), Federal University of Parana - UFPR. From the results we can conclude that in all aspects of the briquettes made from soybean residues are more efficient and still points to the need for studies to the development of more efficient equipment for these specific applications. (author)

  9. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    Cainey, J.

    2001-01-01

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  10. Model Prebiotic Iron-Sulfur Peptides

    Science.gov (United States)

    Bonfio, C.; Scintilla, S.; Shah, S.; Evans, D. J.; Jin, L.; Szostak, J. W.; Sasselov, D. D.; Sutherland, J. D.; Mansy, S. S.

    2017-07-01

    Iron-sulfur clusters form easily in aqueous solution in the presence of thiolates and iron ions. Polymerization of short, iron-sulfur binding tripeptide sequences leads to ferredoxin-like ligand spacing and activity.

  11. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  12. Sulfur Speciation in Peat: a Time-zero Signature for the " Spruce and Peatland Responses Under Climate and Environmental Change" Experiment

    Science.gov (United States)

    Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.

    2014-12-01

    As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the

  13. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).

    Science.gov (United States)

    Olson, Kenneth R; Gao, Yan; DeLeon, Eric R; Arif, Maaz; Arif, Faihaan; Arora, Nitin; Straub, Karl D

    2017-08-01

    Catalase is well-known as an antioxidant dismutating H 2 O 2 to O 2 and H 2 O. However, catalases evolved when metabolism was largely sulfur-based, long before O 2 and reactive oxygen species (ROS) became abundant, suggesting catalase metabolizes reactive sulfide species (RSS). Here we examine catalase metabolism of H 2 S n , the sulfur analog of H 2 O 2 , hydrogen sulfide (H 2 S) and other sulfur-bearing molecules using H 2 S-specific amperometric electrodes and fluorophores to measure polysulfides (H 2 S n ; SSP4) and ROS (dichlorofluorescein, DCF). Catalase eliminated H 2 S n , but did not anaerobically generate H 2 S, the expected product of dismutation. Instead, catalase concentration- and oxygen-dependently metabolized H 2 S and in so doing acted as a sulfide oxidase with a P 50 of 20mmHg. H 2 O 2 had little effect on catalase-mediated H 2 S metabolism but in the presence of the catalase inhibitor, sodium azide (Az), H 2 O 2 rapidly and efficiently expedited H 2 S metabolism in both normoxia and hypoxia suggesting H 2 O 2 is an effective electron acceptor in this reaction. Unexpectedly, catalase concentration-dependently generated H 2 S from dithiothreitol (DTT) in both normoxia and hypoxia, concomitantly oxidizing H 2 S in the presence of O 2 . H 2 S production from DTT was inhibited by carbon monoxide and augmented by NADPH suggesting that catalase heme-iron is the catalytic site and that NADPH provides reducing equivalents. Catalase also generated H 2 S from garlic oil, diallyltrisulfide, thioredoxin and sulfur dioxide, but not from sulfite, metabisulfite, carbonyl sulfide, cysteine, cystine, glutathione or oxidized glutathione. Oxidase activity was also present in catalase from Aspergillus niger. These results show that catalase can act as either a sulfide oxidase or sulfur reductase and they suggest that these activities likely played a prominent role in sulfur metabolism during evolution and may continue do so in modern cells as well. This also appears

  14. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  15. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  16. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  17. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  18. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  19. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  20. Combustion of Coal-Mule Briquettes / Spalanie Brykietów Z Mułu Węglowego

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka

    2013-09-01

    Combustion technologies coal-mule fuels create a number of new possibilities for organising combustion processes so that they fulfil contemporary requirements (e.g., in terms of the environment protection- related issues). The paper describes the problems of coal-mule fuel combustion that have acquired a wider significance as the quality requirements of coal combustion in power plants have been growing. Coal mines that want to fulfill expectations of power industry workers have been forced to develop and modernize plants of coal wet cleaning. It all results in the growing amount of waste arising in the process of coal wet cleaning which contains smaller and smaller coal undersizes. In this situation the concept of direct combustion of the above mentioned waste and their co-combustion with other fuels, coal and biomass, seems to be attractive. Biomass is one from the most promising sources of renewable energy. The main aim of the paper is to identify the mechanism and kinetics of combustion of coal-mule fuels and their co- -combustion with coal and biomass in the briquettes form based on extensive experimental research in air. Niekorzystny bilans paliwowy naszego kraju powoduje nadmierne obciążenie środowiska, wywołane emisją CO2, NOx, SO2 i pyłów, a także powiększeniem powierzchni koniecznych na składowanie wciąż narastających stałych odpadów paleniskowych. Górnictwo, od którego energetyka oczekuje coraz lepszego paliwa, musi stosować głębsze wzbogacanie węgla. Powoduje to ciągłą produkcję odpadów w postaci mułów poflotacyjnych. Najlepszą metodą utylizacji tych mułów jest ich spalanie w postaci zawiesin, a także ich współspalanie z innymi paliwami, węglem czy biomasą. Biomasa jest bowiem jednym z najbardziej obiecujących źródeł OZE, a jej współspalanie z paliwami węglowymi znajduje w ostatnich latach coraz szersze zastosowanie zarówno w kraju, jak i na świecie. W tej sytuacji istotne jest prowadzenie badań naukowych