WorldWideScience

Sample records for briquette production facilities

  1. Pyrolysis Process and Characteristics of Products from Sawdust Briquettes

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2016-01-01

    Full Text Available The pyrolysis of briquettes made from biomass is an available and economic technological route for the production of briquette charcoal, but by-products (tar and gas cannot be brought into full utilization, leading to the waste of resources and the addition of environmental concerns. Temperature is the most important parameter that affects the distributions and properties of briquette charcoal. This work investigated the three kinds of products of the pyrolysis of sawdust briquette in a fixed bed across a wide temperature range (250 to 950 °C. The purpose of this experiment was to study the pyrolysis process and the properties of the resulting products (briquette charcoal, liquid, and gas of sawdust briquettes and explore the optimum operating temperature to generate good quality briquette charcoal, liquid, and gaseous products simultaneously. According to the results, the optimum pyrolysis temperature range was 450 to 650 °C, for which the briquette charcoal produced within this range had the highest calorific value (2,9.14 to 30.21 MJ/kg. Meanwhile, the liquid product is considered to be useful for liquid fuels or valuable chemical materials, and the low heating value of the gaseous product was 11.79 to 14.85 MJ/Nm3 in this temperature range.

  2. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  3. The Swedish market for wood briquettes - Production and market development

    Energy Technology Data Exchange (ETDEWEB)

    Karlhager, Johan

    2008-02-15

    Wood briquettes have constituted an important input to the Swedish energy system during the last two decades. However, the development of the production and markets for briquettes during the years 2000-2007 has not been studied in detail. The purpose of this study was to elucidate the state of the briquette industry. More specifically, the aims were to map the production of briquettes, describe the development of its markets, describe the production process, describe the producers and to examine the competitive situation for the producers. To collect data regarding the production and the producers, the markets, raw materials and company structures, a questionnaire was sent out to the producers during the fall in the year 2007. The results were then compiled and compared to previous studies. The description of the production process was mainly based on literature studies. The results were analyzed and related to M.E. Porter's Five force model to be able to describe the competitive environment for the briquette producers. The study was limited to production in Sweden and did not intend to cover a possible import of briquettes. Regarding the production process, the most common types of briquetting equipment were described. The results showed that the trend in the briquette industry was neutral, possibly negative. The turnover derived from briquette sales during the year 2006 was roughly a quarter of a billion SEK. The industry was very concentrated, with one producer accounting for 43 % of the aggregate production in the year 2006. Since the year 2000, the production of briquettes among the participating producers increased from some 210 000 tons (980 GWh) (2002) to some 280 000 tons (1 300 GWh) in the year 2006. The planned expansion of the production capacity was 3,8 % within the two years to come. A typical small scale briquette producer was a small saw mill, planing mill or a joinery using their by-products as raw material. 78 % of the briquettes are produced

  4. Influence of Production Variables on Eco-Friendly Briquettes from Coconut and Bambara Nut Shells

    Directory of Open Access Journals (Sweden)

    O. A. Sotannde

    2017-08-01

    Full Text Available This study investigates the influence of production variables on the properties of molasses-induced fuel briquettes from Coconut (Cocos nucifera L. and Bambara nut (Vigna subterranea L. Verdc. shells. The milled samples of both raw materials were mixed with molasses at ratios 100:20, 100:25, 100:30 and 100:35 by weight respectively, and briquetted using a Jack press at an average pressure of 1.2KN/m2. A 3x4 factorial experiment in completely randomized design was used. The briquettes produced were subjected to both physical and combustion tests. The tests revealed that majority of the variations in briquette properties were largely influenced by the type of biomass residues used while molasses’ content also contributed significant effect atp < 0.05. Coconut shell briquettes had higher compressed density though lower in relaxed form (0.80 g·cm-3vs 0.78 g·cm-3 when compared to Bambara nut shell briquettes (0.77 g.cm-3vs0.75 g.cm-3. Both physical and combustion properties were significantly improved when both bio-residue mixtures were used. Briquettes from the mixtures had the highest average fixed carbon and heating values of 85.21% and 32.80 MJ·kg-1 respectively, though it was 83.83% and 32.12 MJ·kg-1for coconut shell briquette and 82.18% and 32.03 MJ·kg-1for Bambara nut shell briquette. Therefore, based on physical and combustion characteristics, the best Bambara nut briquettes and its mixture with coconut shell were produced when molasses content was 30%. In contrast, the best coconut shell briquette was produced when molasses content was 35%. These two level are therefore recommended for production of quality briquettes from these agro-residues.

  5. Use of coffee (Coffea arabica pulp for the production of briquettes and pellets for heat generation

    Directory of Open Access Journals (Sweden)

    Robert Cubero-Abarca

    2014-10-01

    Full Text Available Coffee bean (Coffea arabica processing generates high amount of residues that are sources of environmental pollution. Therefore, an appropriate solution is needed. The objective of this study was to determine the potential of coffee pulp to produce briquettes and pellets. The study included pulp drying (using air, solar and hot air methods; the production of briquettes and pellets; the evaluation of their energy, physical and mechanical properties; and the evaluation of pellet quality using X-ray densitometry. The results showed that the pulp presented an initial moisture content of 90%, resulting in drying times of 699, 308 and 55 hours for air, solar and hot air drying, respectively, and the calorific values of the pellets and briquettes were 12,501 kJ kg-1 and 11,591 kJ kg-1, respectively. The ash content was 8.68% for the briquettes and 6.74% for the pellets. The density of the briquettes was 1,110 kg m-3, compared with 1,300 kg m-3 for the pellets. The apparent densities were 1,000 kg m-3 and 600 kg m-3 for the briquettes and pellets, respectively, and the water absorptions by the briquettes were 7.90% and 8.10% by the pellets. The maximum horizontal compression effort was 26.86 kg cm-2, measured in the pellets, compared with 4.52 kg cm-2 in the briquettes. The maximum horizontal load was 93.24 kg, measured in the briquettes, compared with 33.50 kg in the pellets. The value of the pellet durability test was 75.54%. X-ray densitometry showed that the pellet was uniform and a few cracks were observed on the pellet surface.

  6. Production and quality testing of fuel briquettes made from ...

    Indian Academy of Sciences (India)

    Santhosh Ujjinappa

    2018-04-13

    Apr 13, 2018 ... Thus, this work proved that the blending of PS and TS gives better quality briquettes ... parameters such as compressed density, relaxed density, relaxation ratio ... developed for coal. The test was conducted after two weeks.

  7. Investigation of Mechanical Properties of Briquette Product of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    with the increased in the consumption of fuel wood etc. ... depletion is one of the most crucial issues for many countries. ... emissions since nearly zero net gain CO2 can be achieved when ..... Using cotton plant residue to produce briquettes.

  8. Pyrolysis of biomass briquettes, modelling and experimental verification

    NARCIS (Netherlands)

    van der Aa, B; Lammers, G; Beenackers, AACM; Kopetz, H; Weber, T; Palz, W; Chartier, P; Ferrero, GL

    1998-01-01

    Carbonisation of biomass briquettes was studied using a dedicated single briquette carbonisation reactor. The reactor enabled continuous measurement of the briquette mass and continuous measurement of the radial temperature profile in the briquette. Furthermore pyrolysis gas production and

  9. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  10. Production of Solid Fuel Briquettes from Agricultural and Wood ...

    African Journals Online (AJOL)

    Fibrous agricultural and wood waste materials have been compressed with suitable adhesive into solid fuel briquettes in a compressing machine, which was designed and constructed for this purpose. Nine samples of fibrous waste materials were prepared into different categories:- Category A (100% saw-dust, 100% ...

  11. Studying the dependence of quality of coal fine briquettes on technological parameters of their production

    Directory of Open Access Journals (Sweden)

    Т. Н. Александрова

    2016-08-01

    Full Text Available The study characterizes the role of coal in the fuel and energy balance of the Far East Region and points out the issue of losses of coal fines in the processes of coal mining, transportation and processing. To solve the problem of losses of coal fines, the mined coal is sorted into different size classes and fuel briquettes are produced from coal fines. Physical foundations are presented in short of briquetting solid combustible mineral resources. The dependences and variations of briquette compression strength limit are studied vs. charge humidity and briquetting pressure. Optimal parameters are retrieved for briquetting coal fines. The principal technological scheme is given of the process of briquette production. The developed technological solutions include sorting regular coal and briquetting coal fines, as well as the involvement of technogenic carbon-containing wastes from the hydrolysis production lines, plus residuals from oil refining.

  12. Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste.

    Science.gov (United States)

    Bazargan, Alireza; Rough, Sarah L; McKay, Gordon

    2018-04-01

    Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.

  13. Investigation of mechanical properties of briquette product of ...

    African Journals Online (AJOL)

    This research investigated the relaxed densities of biomass briquettes produced from combination of sawdust and charcoal. Cassava starch gel and orange waste were used as binder for briquetting. Five sizes; 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm and mixing ratios 50:50, 60:40, 70:30, 80:20 and 90:10 of biomass ...

  14. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  15. Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines

    Directory of Open Access Journals (Sweden)

    Aries Roda D. Romallosa

    2017-02-01

    Full Text Available A technical and socio-economic feasibility study of biomass briquette production was performed in Iloilo City, Philippines, by integrating a registered group of the informal sector. The study has shown that the simulated production of biomass briquettes obtained from the municipal waste stream could lead to a feasible on-site fuel production line after determining its usability, quality and applicability to the would-be users. The technology utilized for briquetting is not complicated when operated due to its simple, yet sturdy design with suggestive results in terms of production rate, bulk density and heating value of the briquettes produced. Quality briquettes were created from mixtures of waste paper, sawdust and carbonized rice husk, making these material flows a renewable source of cost-effective fuels. An informal sector that would venture into briquette production can be considered profitable for small business enterprising, as demonstrated in the study. The informal sector from other parts of the world, having similar conditionality with that of the Uswag Calajunan Livelihood Association, Inc. (UCLA, could play a significant role in the recovery of these reusable waste materials from the waste stream and can add value to them as alternative fuels and raw materials (AFR for household energy supply using appropriate technologies.

  16. Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example

    Directory of Open Access Journals (Sweden)

    Anna Brunerová

    2017-12-01

    Full Text Available Within developing countries, there is an appeal to use waste biomass for energy generation in the form of bio-briquettes. This study investigated the potential use of bio-briquettes that are produced from the waste biomass of the following tropical fruits: durian (Durio zibethinus, coconut (Cocos nucifera, coffee (Coffea arabica, cacao (Theobroma cacao, banana (Musa acuminata and rambutan (Nephelium lappaceum. All fruit waste biomass samples exhibited an extremely high level of initial moisture content (78.22% in average. Fruit samples with the highest proportion of fruit waste biomass (of total unprocessed fruit mass were represented by cacao (83.82%, durian (62.56% and coconut (56.83%. Highest energy potentials (calorific value of fruit waste biomass were observed in case of coconut (18.22 MJ∙kg−1, banana (17.79 MJ∙kg−1 and durian (17.60 MJ∙kg−1 fruit samples, whereas fruit waste biomass with the lowest level of ash content originated from the rambutan (3.67%, coconut (4.52%, and durian (5.05% fruit samples. When investigating the energy demands to produce bio-briquettes from such feedstock materials, the best results (lowest amount of required deformation energy in combination with highest level of bio-briquette bulk density were achieved by the rambutan, durian and banana fruit waste biomass samples. Finally, all investigated bio-briquette samples presented satisfactory levels of bulk density (>1050 kg∙m−3. In conclusion, our results indicated the practicability and viability of such bio-briquette fuel production, as well as supporting the fact that bio-briquettes from tropical fruit waste biomass can offer a potentially attractive energy source with many benefits, especially in rural areas.

  17. Effect of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production

    Directory of Open Access Journals (Sweden)

    Niedziółka Ignacy

    2018-01-01

    Full Text Available The paper presents an analysis of the influence of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production. The following types of biomaterials were used in the study: rape, oat and maize straw. Hydraulic piston briquetting machine JUNIOR manufactured by Deta Polska was used for briquetting. During the briquetting process, the working pressures of briquetting machine were 20, 26 and 32 MPa. Depending on the type of biomaterial used and the assumed working pressure of briquetting machine, produced briquettes differed in terms of both their physical characteristics and energy consumption. Based on the analysis of the obtained results, it was found that physical characteristics and energy consumption during briquette production were influenced by such factors as the type of compacted material, its fragmentation as well as granulometric composition and working pressure of the briquetting machine used.

  18. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    International Nuclear Information System (INIS)

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m 3 internal volume, air exchange rate 14 h -1 was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO 2 , and NO x . Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion

  19. EAF smelting trials of waste-carbon briquettes at Avesta Works of Outokumpu Stainless AB for recycling oily mill scale sludge from stainless steel production

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qixing; Bjoerkman, Bo [Div. of Process Metallurgy, Lulea Univ. of Tech., Lulea (Sweden); Holmberg, Nils [Raw Materials Handling, Avesta Works, Outokumpu Stainless AB, Avesta (Sweden)

    2009-06-15

    The EAF steel plant of Avesta Works, Outokumpu Stainless AB, has been used to perform smelting reduction trials of briquettes consisting of oily mill scale sludge, carbon and other wastes. A total of 7 briquette smelting trials were performed. The heats were processed smoothly smelting 3 t of briquettes or 3.4 mass-% of metal charges. The quantities of FeSi powder and O{sub 2} gas injected and electric energy supplied were increased to smelt briquettes of 6 t. No impacts were found on the analyses of the crude stainless steel tapped from the EAF during the trials. The results of the briquette smelting have been evaluated by referring to the data from the reference heats and results from earlier laboratory tests. The recovery of Cr, Ni and Fe elements from the briquettes was nearly complete and was found to occur mainly through carbon reduction. The slag masses were not increased in three trials as compared with the reference heats. There were moderate increases in the slag masses in four trial heats. The increases were, nevertheless, lower by 52-69% than the slag masses generated by Si-reduction of the briquette oxides. Afterwards, by referring results from the present trials, waste-carbon briquettes amounting to 1-3 t were smelted very smoothly in many of the EAF heats at Avesta Works to recycle the oily mill scale sludge and other wastes from stainless steel production. (orig.)

  20. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  1. Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production

    International Nuclear Information System (INIS)

    Rezania, Shahabaldin; Md Din, Mohd Fadhil; Kamaruddin, Siti Fatimah; Taib, Shazwin Mat; Singh, Lakhveer; Yong, Ee Ling; Dahalan, Farrah Aini

    2016-01-01

    In the present study we investigated the fuel properties of bio-briquettes made from a combination of water hyacinth and empty fruit bunch fiber (palm oil mill residue). Water hyacinth (WH) was mixed with empty fruit bunch (EFB) fibers in a ratio of 25, 50, 75, 90, and 100% by weight and cassava starch added as binder. The experimental results showed that the addition of WH had a little effect (p < 0.05) on the physical and combustion properties of the briquettes. The proximate analysis showed that the moisture content, ash content and fixed carbon content were increased with the increase in WH amount from 25 to 100%, while the volatile matter content and calorific value decreased. Combustion test showed that the increase in the WH percentage in bio-briquette resulted in the decreased of O_2 and CO level, whereas, that of CO_2 and NO, NO_2 and SO_2 were increased. Therefore, the results conclude that the WH: EFB biomass bio-briquette could be a great potential as an alternative source to conventional coal to minimize the emission of greenhouse gases. - Highlights: • Fuel briquettes of mixtures of water hyacinth and empty fruit bunches were studied. • Various ratios of WH and EFB were analyzed, burned and the flue gas analyzed. • A ratio of WH 25% and EFB 75% was the optimum mixture. • The mixed content briquettes burn well with coal and can displace some coal.

  2. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette.

    Science.gov (United States)

    Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan

    2018-02-01

    In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    International Nuclear Information System (INIS)

    Habib, M.; Khan, A.U.; Habib, U.; Memon, A.R.

    2013-01-01

    Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA) in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N). Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5) coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time. (author)

  4. Production of high-calorie energy briquettes from bark waste, plastic and oil

    Science.gov (United States)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  5. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  6. The use of fractionated fly ash of thermal power plants as binder for production of briquettes of coke breeze and dust

    Science.gov (United States)

    Temnikova, E. Yu; Bogomolov, A. R.; Lapin, A. A.

    2017-11-01

    In this paper, we propose to use the slag and ash material of thermal power plants (TPP) operating on pulverized coal fuel. The elemental and chemical composition of fly ash of five Kuzbass thermal power plants differs insignificantly from the composition of the mineral part of coking coal because coke production uses a charge, whose composition defines the main task: obtaining coke with the required parameters for production of iron and steel. These indicators are as follows: CRI reactivity and strength of the coke residue after reaction with CO2 - CSR. The chemical composition of fly ash of thermal power plants and microsilica with bulk density of 0.3-0.6 t/m3 generated at production of ferroalloys was compared. Fly ash and microsilica are the valuable raw material for production of mineral binder in manufacturing coke breeze briquettes (fraction of 2-10 mm) and dust (0-200 μm), generated in large quantities during coking (up to 40wt%). It is shown that this binder is necessary for production of smokeless briquettes with low reactivity, high strength and cost, demanded for production of cupola iron and melting the silicate materials, basaltic rocks in low-shaft furnaces. It is determined that microsilica contains up to 90% of silicon oxide, and fly ash contains up to 60% of silicon oxide and aluminum oxide of up to 20%. On average, the rest of fly ash composition consists of basic oxides. According to calculation by the VUKHIN formula, the basicity index of briquette changes significantly, when fly ash is introduced into briquette raw material component as a binder. The technology of coke briquette production on the basis of the non-magnetic fraction of TPP fly ash in the ratio from 3.5:1 to 4.5:1 (coke breeze : coke dust) with the addition of the binder component to 10% is proposed. The produced briquettes meet the requirements by CRI and require further study on CSR requirements.

  7. Fuel briquettes from wood and agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Natividad, R.A.

    1982-01-01

    A short review of the production and uses of briquettes and of machinery available for briquetting fine dry, coarse dry and coarse wet raw materials. The potential of a fuel briquette industry in the Philippines with an estimated annual production of 217 million ton of sawdust, 2.09 billion ton of rice hulls and 2.87 million ton of coconut husks is discussed. Studies at the Forest Products Research and Development Institute (FPRDI) have shown that sawdust, coir dust rice hulls briquettes with 1-2% resin binder have heating values of 6882, 5839 and 3913 cal/g respectively.

  8. Moringa oleifera: a promising agricultural crop and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (biodiesel and briquettes

    Directory of Open Access Journals (Sweden)

    Pereira Francisco Sávio Gomes

    2018-01-01

    Full Text Available This study describes properties of biomasses of Moringa oleifera Lamarck for energetic applications of production of biodiesel and briquettes. The seeds collected of the mature pods were the initial biomasses used of this plant. The seeds were separated into husks and oilseed grains, from which the oils were extracted by mechanical pressing and by solvent extraction. The crude oil mixed (of pressing and by solvent was degummed, neutralized, washed, dried and characterized. The purified oil was converted into methyl biodiesel in homogeneous alkaline transesterification, which was purified and characterized. The residual peels and pies had their calorific powers measured and compared with classic agricultural residues: firewood, sugarcane bagasse and coconut husks. Moringa culture was compared to soybeans in agricultural and biodiesel production perspectives. The analytical results show that the biomasses of the moringa are favorable as renewable biofuels like biodiesel or briquettes due to the good calorific power and simple and accessible productive technology. The production of briquettes starting from the biomasses of the moringa would be recommended with the uses of the pod husks, seed peels and pies (cakes of extraction of the oil. The agricultural management and the simple productive technologies applied to the moringa are favorable for social inclusion by enabling family agriculture.

  9. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  10. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2015-01-01

    Full Text Available The limitations of the availability of energy sources especially fuel oil has become a serious threat for the society. The use of coal for energy source as the replacement of fuel oil, in one hand, is very profitable, but on the other hand, will cause problem which is the coal ash residue. This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk. Also, this observation needs to add binder materials for further processing in order to form briquette. It can be used as alternative fuel, the utilization of bottom ash and biomass will give positive impact to the environment. This observation was conducted by using compositions such as bottom ash, teak leaves, coconut shell, and rice husk. The treatment was using comparison 100%:0% ; 80%:20% ; 60%:40% ; 50%:50% ; 40%:60% ; 20%:80% ; 0%:100%. The result that the best briquette was on the composition of 20% bottom ash : 80% coconut shell. The characteristic values from that composition were moisture content of 3.45%, ash content of 17,32%, calorific value of 7.945,72 Cal/gr, compressive strength of 2,18 kg/cm2, level of CO of 105 mg/m3, and heavy metals Cu of 29,83 µg/g and  Zn 32,99 µg/g. The characteristic value from each briquette composition treatment showed that the increasing usage proportion of biomass as added material for briquette was able to increase its moisture content and calorific value. Besides, it is also able to decrease its ash content and compressive strength

  11. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  12. Uranium briquettes for irradiation target

    International Nuclear Information System (INIS)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo

    2011-01-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl x dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of 235 U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  13. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    Energy Technology Data Exchange (ETDEWEB)

    H. Carrasco; H. Sarper

    2006-06-30

    through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

  14. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  15. Analysis of Calorific Value of Tibarau Cane Briquette

    Science.gov (United States)

    Nurdin, H.; Hasanuddin, H.; Darmawi, D.; Prasetya, F.

    2018-04-01

    The development of product diversification through tibarau cane briquettes as an effort in obtaining alternative fuels. Tibarau cane is one of the potential materials of renewable energy sources that can be processed into briquette. So as to reduce dependence on energy fuel oil, which for the middle to lower class is the main requirement. Efforts and innovations tibarau cane briquettes in producing fuel that has quality and performance can be measured with calorific value. Prior to development of this potential required the existence of test and evaluation stages according to the order of the flow of new material product development. Through process technology of briquette product making with compaction and optimization of composition content on tapioca adhesive and mesh particles suitable to get optimum calorific value. The results obtained in this research are the development of tibarau cane briquette model which is recommended as replacement fuel. Where the calorific value of tibarau cane briquette is 11.221,72 kJ / kg at composition percentage 80: 20 and its density is 0,565 gr/cm3. The comparison of mass tibarau with tapioca, particle size, pressure force (compaction), can affect the calorific value and density of tibarau cane briquette.

  16. Report on investigations in fiscal 2000 on the projects to support introduction of environment friendly coal utilization system. Green helmet project for briquette production plant - Mae Moh coal mine, Thailand; 2000 nendo kankyo chowagata sekitan riyo system donyu shien jigyo chosa hokokusho. Briquette seizo setsubi ni kakawaru green helmet jigyo (Thai koku Mae Moh tanko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This Green Helmet Project is intended to suppress generation of environment polluting substances in association with coal utilization in Thailand by demonstrating and improving the proliferation infrastructure for the clean coal technology to be used widely in Thailand. The project is also intended to serve for stabilized assurance of energies for Japan. The demonstration project related to briquette manufacturing facilities executed as one of the 'Projects to support introduction of environment friendly coal utilization system' is intended to manufacture at low cost a briquette which is low in odor, free of smoke, and suppressed largely of sulfur oxide generation. The briquette is made by adding clayish minerals, sulfur, a fixing agent and a binder into brown coal being a low grade coal. The project implements proliferation of the technology to reduce environmental load associated with coal utilization in developing countries according to the situation and needs of the counterpart countries. The present project has performed the site surveys and guidance of operation and maintenance techniques as follow-up works of the demonstration project having been completed by cooperation between Japan and Thailand. It is considered that what had been intended in the beginning has been achieved sufficiently. (NEDO)

  17. Production and characterization of self-reducing briquettes to be used as metallic charge at Companhia Siderurgica de Tubarao; Producao e caracterizacao de briquetes auto-redutores a serem utilizados como carga metalica na Companhia Siderurgica de Tubarao

    Energy Technology Data Exchange (ETDEWEB)

    Gama Bentes, Marcos A. da [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil); Resende, Caio S.; D`Abreu, Jose C. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1996-12-31

    The present work investigates the initial steps for characterization and production of self-reducing briquettes to be manufactured from a mixture of residues, which are generated in the various industrial processes at Companhia Siderurgica de Tubarao. The main development consists of three main stages, encompassing the development and production of self-reducing briquette and the investigation of its reduction in both solid and liquid phases. The produced briquette can be used as an alternative metallic and recarburizing raw material to be charged in the converters, or substituting the cooling scrap added in the steel ladles. Furthermore, this material can be eventually be applied to the new developed technologies for iron and steel production. The results of briquetting agglomeration studies of various mixtures containing iron and carbon rich materials are presented, as well the metallization rates, which were obtained in the gas-solid reduction furnaces for the briquettes of different residue compositions. Finally, the liquid phase experiments to be carried out in a vacuum induction furnace are discussed. (author) 9 refs., 15 figs., 3 tabs.

  18. Characterization of Briquette Produced from Tannery Solid Waste

    Directory of Open Access Journals (Sweden)

    Olatunde Ajani Oyelaran

    2017-06-01

    Full Text Available Skin processing produces large volumes of wastes, much of which are not utilized but disposed in the landfill. This study explored the possibility of producing briquettes from tannery waste that could be used for heating purposes for cottage factories and domestic cooking. Wastes studied are buffing dust, chrome shavings, fleshing, and hair. The briquette properties tested were moisture content, volatile matter, ash content, fixed carbon content, calorific value, compressive strength, density and durability. The moisture content of the raw materials ranged between 2.04 and 8.37% while the moisture content of the produced briquettes after 19 days of drying ranges between 1.17 and 4.13%. The volatile matter also decreases while the ash content increases after briquetting. The fixed carbon content ranges 73.79 and 93.23%. The heating values of the briquettes also showed a great increased after briquetting of between 19.82 and 21.86 MJ/kg. The compressive strength ranges between 0.17 and 0.21 kN/cm2, the durability ranges between 97.83 and 99.54%. The maximum densities of the briquettes also meet the required specifications of minimum value of 600 kg/m3. The briquettes produced also possess good qualities that make tannery solid waste a materials for production of briquettes for heating and in cottage industries

  19. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    Directory of Open Access Journals (Sweden)

    F. Zannikos

    2013-01-01

    Full Text Available This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET, the behavior in the combustion is steadier because of the increase of oxygen supply. The smoke levels are between the 3rd and 4th grades of the smoke number scale. Measuring the carbon monoxide emission, it was observed that the burning of the plastic in the mixture with biomass increases the carbon monoxide emissions from 10% to 30% as compared to carbon monoxide emission from sawdust biomass emissions which was used as a reference.

  20. Briquetting mechanism and waterproof performance of bio-briquette

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G.; Chen, L.; Cao, J. [Henen Polytechnic University, Jiaozuo (China)

    2008-07-15

    Maize stalk and bio-briquette binder made from it were studied comparatively by FTIR and the microstructure of bio-briquette was observed and analyzed by microscopy. It was found that a large amount of unreacted biomass fibers exist in the binder. These form a multi-level network structure inside the bio-briquette and could make fine coal particles connect together. The multi-level network structure would be still present after the bio-briquettes are immersed in water for 24 hours. On the other hand, stalk materials could be partly degraded after treatment and, with other liquid ingredients in the binder, the degradation products could form a viscous fluid which would work as a bonding ingredient inside the bio-briquette and could improve the waterproofing ability of the binder after solidification. Therefore, the multi-level network structure of the biomaterial and the presence of viscous fluid are very important to the shaping and the improvement of the waterproofing ability of bio-briquettes. 11 refs., 3 figs.

  1. Modification of commercial briquetting machine to produce 35mm diameter briquettes suitable for gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N.; Bhoi, P.R.; Patel, S.R. [Thermo chemical Conversion Division, Sardar Patel Renewable Energy Research Institute (SPRERI), Vallabh Vidyanagar, 388 120 Gujarat (India)

    2007-03-15

    This paper describes an experience on producing 35mm dia briquettes with a modified commercial briquetting machine and the results of studies on the combustion and gasification behavior of briquettes. Study reveals that at 12% (w.b.) moisture content of groundnut shell powder (1180-150{mu}m), good quality briquettes can be made, but it reduces the production rate and increases the power requirement. Combustion as well as gasification studies revealed that biomass briquettes of 35mm diameter do not crumble or disintegrate during the conversion process, therefore these are suitable as feedstock for gasifiers. (author)

  2. Process and device to produce fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Caroe, C J

    1980-10-23

    A two-stage process for the production of briquettes consisting essentially of cellulose (sawdust, peanut shells) is proposed. The fuel material (in case with additives) is molded by high pressure to pellets of the size of a few centimeters. The pellets are mixed with flammable binding agents like paraffin, wax, polyethylene etc. and molded at a lower pressure or extruded in a second step. A suited molding device is described. The wax content could be lowered with respect to known processes.

  3. OPTIMASI PROSES PEMBUATAN BRIKET BIOMASSA MENGGUNAKAN METODE TAGUCHI GUNA MEMENUHI KEBUTUHAN BAHAN BAKAR ALTERNATIF YANG RAMAH LINGKUNGAN (Optimization of Biomass Briquettes Production Process Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Musabbikhah Musabbikhah

    2015-03-01

    Full Text Available ABSTRAK Permasalahan yang dihadapi pembuat dan pengguna briket adalah briket yang dihasilkan kualitasnya rendah ditinjau dari nilai kalor. Tujuan penelitian ini adalah menentukan kualitas briket terbaik dari limbah biomassa dalam memenuhi kebutuhan bahan bakar alternatif rumah tangga yang murah dan ramah lingkungan guna mewujudkan masyarakat mandiri energi. Metode yang digunakan untuk menentukan kualitas briket adalah metode Taguchi. Variabel bebas dalam penelitian ini adalah tekanan pengepressan, waktu penahanan, model cetakan, suhu pengeringan, lama pengeringan dan komposisi bahan, sedangkan variabel terikat adalah nilai kalor briket. Hasil penelitian menunjukkan bahwa kualitas briket terbaik ditinjau dari nilai kalor tertinggi yaitu pada setting parameter A2B1C2D2E2F1, artinya tekanan pengepressan 225 kg/cm2, waktu penahanan 5 menit, model cetakan sarang tawon (kotak, suhu pengeringan 60 °C, lama pengeringan 3 hari, perbandingan limbah jarak pagar : arang sekam : arang tempurung kelapa : perekat adalah 5 : 3: 2 : 1. Rata-rata nilai kalor biobriket yang dihasilkan sebesar 5.323 kal/g. Hal ini menunjukkan bahwa briket mempunyai nilai kalor yang tinggi dan memenuhi SNI, sehingga briket layak untuk memenuhi kebutuhan bahan bakar alternatif yang ramah lingkungan. ABSTRACT Problems that encountered on manufacturers and users of briquettes is low quality of the briquettes in terms of heat value. The aim of this research is to determine the best quality of the briquette which is made from biomass waste. The briquette is expected to be used to fulfill the need of inexpensive and environmentally friendly of alternative household fuel, by which the energy independent community could be realized.The method used to determine the quality of the briquette is Taguchi method. The independent variables involved are compressive strength, holding time, mold model, drying temperature, drying time and material composition. The dependent variable is the highest

  4. Production of biomass in wet peatlands (paludiculture). The EU-AID project 'Wetland energy' in Belarus. Solutions for the substitution of fossil fuels (peat briquettes) by biomass from wet peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Wichtmann, Wendelin [Michael Succow Stiftung fuer den Schutz der Natur, Greifswald (Germany); Haberl, Andreas; Tanneberger, Franziska

    2012-07-01

    In Belarus, a pilot project demonstrating site adapted management of wet peatlands for biomass production have started recently. In cooperation with local stakeholders, the currently environmentally unfriendly peat extraction for energy will be converted into a sustainable land use system. By replacing the peat briquettes with locally produced briquettes using biomass from rewetted peatlands the income situation of remote and rural areas will be improved. In various combustion trials of peatland biomass in Germany and Belarus the suitability of the material for energy production has been demonstrated. The EU-Aid funded project in Belarus is realized by the Michael Succow Foundation in cooperation with the International Sacharov Environmental University (ISEU) and the Institute for Nature Management of the National Academy of Sciences (IfNM). Applied, site-specific management concepts, employing site adapted machinery for reed and sedge vegetation on wet peatlands will not only result in avoidance of environmentally harmful peat extraction, but also in benefits for distinctive biodiversity. This site adapted peatlands management (paludiculture) comprises the reduction of greenhousegas (GHG) emissions by rewetting of drained peatlands and by the replacement of fossil fuels by biomass from these sites. Under favourable conditions additionally CO{sub 2} sequestration by new peat formation reestablished. The biomass will be harvested with site adapted machinery and processed to fuel briquettes. (orig.)

  5. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  6. Fiscal 1998 research report. Improvement project of low-grade coals in Chongqing City, China for CO{sub 2} reduction (Feasibility study on the production business of coal- biomass briquette); 1998 nendo chosa hokokusho. CO{sub 2} sakugen no tame no Chuka Jinmin Kyowakoku Jukei chokkatsushi no teihin'i sekitanshitsu no kaizen project (Bio briquette seizo jigyo no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on the effect of introduction of production technology of coal-biomass briquette (Japanese coal improvement technology) in Chongqing City on reduction of greenhouse effect gases and acid rain causative substances, and sustainable economic growth. The study result on the feasibility of this project and reduction of greenhouse effect gases was summarized. In this feasibility study, Japan-China joint field survey, and both proximate and ultimate analyses of obtained raw materials were carried out. Based on the experimental result in the pilot briquette plant in Chongqing City, study was made on the necessary of the 1 Mtons/y class pilot plant in the pilot area including Nantong coal mine in Chongqing City, and the location, investment, production cost and distribution means of the plant. Based on the evaluation result on CO{sub 2} reduction effect, economical efficiency, environment effect and social effect, its urgency and effectiveness as international cooperation project by yen credit were also confirmed. It is extremely important to promote localization of the plant in the future. (NEDO)

  7. Fiscal 1998 research report. Improvement project of low-grade coals in Chongqing City, China for CO{sub 2} reduction (Feasibility study on the production business of coal- biomass briquette); 1998 nendo chosa hokokusho. CO{sub 2} sakugen no tame no Chuka Jinmin Kyowakoku Jukei chokkatsushi no teihin'i sekitanshitsu no kaizen project (Bio briquette seizo jigyo no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on the effect of introduction of production technology of coal-biomass briquette (Japanese coal improvement technology) in Chongqing City on reduction of greenhouse effect gases and acid rain causative substances, and sustainable economic growth. The study result on the feasibility of this project and reduction of greenhouse effect gases was summarized. In this feasibility study, Japan-China joint field survey, and both proximate and ultimate analyses of obtained raw materials were carried out. Based on the experimental result in the pilot briquette plant in Chongqing City, study was made on the necessary of the 1 Mtons/y class pilot plant in the pilot area including Nantong coal mine in Chongqing City, and the location, investment, production cost and distribution means of the plant. Based on the evaluation result on CO{sub 2} reduction effect, economical efficiency, environment effect and social effect, its urgency and effectiveness as international cooperation project by yen credit were also confirmed. It is extremely important to promote localization of the plant in the future. (NEDO)

  8. Obtention of charcoal briquettes from rice husks using low compaction pressure; Obtencao de briquetes de carvao vegetal de cascas de arroz utilizando baixa pressao de compactacao

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcia R.; Seye, Omar; Freitas, Katrina T. de; Rodrigues, Monica; Santos, Eyde C.S. dos; Souza, Rubem C.R. [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico

    2006-07-01

    This work consists of the preparation of briquette from carbonized rice's husks in low pressure. The results demonstrate are necessary a fine granulation of the rice's husks coal to obtainment of briquettes. The ultimate analysis of the briquette did not detect the presence of nitrogen and sulfur, and that prevents the formation and emission of acid gases that can produce corrosion in the equipment and pollute the atmosphere. The performance of the briquette production was superior to 80%. The briquettes present high heating value (HHV) 17,73 MJ/kg and adequate mechanic resistance for the use in gasifier-engine system. (author)

  9. Development of environmentally friendly briquettes

    International Nuclear Information System (INIS)

    Kleisa, K.; Lehmann, J.; Verfuss, F.; Simon, G.

    1994-01-01

    The DMT has developed an industrial briquette consisting of about 87% hardcoal, 7% molasses pulp and 6% hydration limestone which meets the requirements of the clean air authority as an environmentally friendly fuel for travelling grate boilers. In extensive tests in a 4.4 MW travelling grate boiler these briquettes with molasses and limestone additives proved to be particularly effective in terms of reducing sulphur dioxide emission in the flue gas. They exhibited good ignition and combustion behaviour as well as a considerable reduction in nitrogen oxide emission. In a large-scale test with 1000 t of briquettes in a 46.5 MW travelling grate furnace it proved possible to confirm the good combustion behaviour and the reduced emission of sulphur oxide and nitrogen oxide in the flue gas. (orig.) [de

  10. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda

    International Nuclear Information System (INIS)

    Hakizimana, Jean de Dieu K.; Kim, Hyung-Taek

    2016-01-01

    Commercialization of peat briquetting technology was analyzed to know whether the technology is economically viable or not compared to commercialization of charcoal. The investigation of economic viability was assessed from raw-peat production to briquetting technologies. The briquettes were made by naturally dried of peat from Bisika, Bahimba, Ndongozi and Nyirabirande bogs, through a rotary pulverizer and a briquette press; they were carbonized into furnace at 450 °C to reduce its health effects. The burning rate of peat briquettes made varied from 0.178 kg/hour to 0.222 kg/hour. Ash content varying between 3 and 7.2 percent was also observed. The results showed that peat briquettes can be sold at USD0.18 per unit, with a total NPV of USD17.2 million. However, as the NPV tends to be zero, the selling price would be approximately USD0.155 per briquette. Monthly charcoal expenses were about USD23.20/household compared to a per-household cost of USD16.20/month of peat briquettes consumption; the supplanting of charcoal by peat briquettes would help the average Rwandan household reduce its monthly expenses by 30 percent. Peat briquettes utilization as cooking fuel in Rwanda could save 0.05 percent of CO_2 and more than 99 percent of CH_4 emissions, compared to charcoal emissions. - Highlights: • A technical process for peat production and peat briquetting. • An efficiency test of carbonized briquettes. • Commercialization of peat briquettes is compared to commercialization of charcoal. • Opportunities for greenhouse gas emissions reduction.

  11. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  12. Selected parameters of maize straw briquettes combustion

    Directory of Open Access Journals (Sweden)

    Kraszkiewicz Artur

    2018-01-01

    Full Text Available An analysis of the process of burning briquettes made of maize straw was performed. A number of traits have been evaluated, including physical characteristics of the fuel through parameters describing combustion kinetics as well as products and combustion efficiency. The study was conducted in a grate boiler, during which the differentiating factor was the air velocity flowing to the boiler. It was observed that the obtained values of the considered parameters were different, particularly temperature of the flue gas and the amount of CO and SO2 in the flue gas.

  13. Physical Properties of Biomass Fuel Briquette from Oil Palm ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized ... fossil fuel in the world market is impacting negatively ... useful products that can be applied in many sectors ... at 350 µm, 250 µm and 150 µm with Octagon digital ... formula is one of the models developed to accurately.

  14. Production of charcoal briquettes from cotton stalk in malawi: methodology for feasibility studies using experiences in Sudan

    NARCIS (Netherlands)

    Onaji, P.B.; Siemons, R.V.

    1993-01-01

    The feasibility of charcoal production from cotton stalks in Malawi was studied based on experience from Sudan. The country relies considerably on biomass fuels. Of the total energy consumption in Malawi of 2.376 MTOE in 1989, 92% was met by biomass (fuelwood: 83.6% and charcoal: 8.3% Petroleum

  15. Ramie (Boehmeria nivea) decortication waste bio-briquette business model canvas with design thinking approach

    Science.gov (United States)

    Pahlavi, Ghifari Rezka; Purnomo, Dwi; Bunyamin, Anas; Wulandari, Asri Peni

    2017-03-01

    Ramie (Boehmeria nivea) is a plant that can produce fibers from its stem but in the production process, it still produces waste containing high lignin and cellulose. The high content of these substances can be used as bio-briquette raw material because they can produce carbon and can offer a business opportunity to establish bio-briquette industry. The purpose of this study is to obtain a ramie decortification waste bio-briquette business model because until now there is no bio-briquette has been made from ramie decortication waste as its raw material. This research uses descriptive analysis method with a design thinking approach. The result of this research shows that the business model canvas is designed based on consumer's experience when interacting with the product via customer journey tool in order to get the business model in accordance with customer expectations.

  16. Analysis of the economic viability of the briquette production in the Brazilian market; Analise da viabilidade economica da producao de briquetes no mercado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/EP/UFRJ), RJ (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica], E-mail: silvioa@gmail.com; Barbosa, Bruno de Luca Lima; Souza, Julia do Rego Mello Fernandes de; Monteiro, Paulo Victor da Conceicao; Gomes, Thiago de Carvalho [Universidade Federal do Rio de Janeiro (DEI/CT/UFRJ), RJ (Brazil). Dept. de Engenharia Industrial], E-mail: brunodeluca@poli.ufrj.br

    2010-07-01

    This paper presents a study of economic viability of a 3 ton/hour briquette industry. For establish of study, premises such as costs, investments, prices at Brazilian and european markets and growing of sector forecast were established according to criteria defined by the authors. Two scenarios were considered: investors which hold all the capital necessary for the business and investors which need of a financing for realization of the enterprise. For the second scenery considering a certain interest rate and a mode of financing. Both scenery revealed profitable for the investor.

  17. Production Facility SCADA Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  18. Comparison of tritium production facilities

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2002-01-01

    Detailed investigation and research on the source of tritium, tritium production facilities and their comparison are presented based on the basic information about tritium. The characteristics of three types of proposed tritium production facilities, i.e., fissile type, accelerator production tritium (APT) and fusion type, are presented. APT shows many advantages except its rather high cost; fusion reactors appear to offer improved safety and environmental impacts, in particular, tritium production based on the fusion-based neutron source costs much lower and directly helps the development of fusion energy source

  19. Development of Briquette from Coir Dust and Rice Husk Blend: An Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Md. Hamidul Islam

    2014-05-01

    Full Text Available Biomass is one of the predominant renewable energy sources and the use of biomass for the energy generation has got much attention due to its environmental friendliness. Densification of coir dust into fuel briquette can solve waste disposal problem as well as can serve as an alternative energy source. The objective of this study was to investigate the possibility of producing briquette from coir dust and rice husk blend without binder. During this study, a briquetting experiment was conducted with different coir dust and rice husk blends (i.e. coir dust and rice husk ratio of 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100. Briquetting operation was performed using a die-screw press type briquetting machine. The briquettes were tested to evaluate their density, compressive strength, calorific value, burning rate and water vaporizing capacity and it was found that mixing ratio had a significant effect on the physical, mechanical and combustion properties of the coir dust-rice husk briquettes. Density, compressive strength and calorific value and water vaporizing capacity were increased with increasing mixing ratio while burning rate was decreased. Coir dust-rice husk briquettes with mixing ratio of 20:80 had higher density (1.413 g/cm3, compressive strength (218.4 N/cm2, calorific value (4879 kcal/kg, water vaporizing capacity (0.853 l/kg and low burning rate (0.783 kg/hour followed by the mixing ratio 40:60, 50:50, 60:40 and 0:100. The results indicate that coir dust and rice husk blend briquettes were found to have better overall handling characteristics over rice husk briquette. However, production of briquettes from coir dust and rice husk at mixing ratio of 50:50 was found to be more suitable for commercial application in terms of cost effectiveness.

  20. Physical Properties of Biomass Fuel Briquette from Oil Palm Residues

    African Journals Online (AJOL)

    Palm Kernel Shell (PKS) and Mesocarp Fibre (MF) were used for the production of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized and then sieved into different grain particles of 350 μm, 250 μm and 150 μm, before mixing with MF in the ratios: 90:10, 80:20 and 70:30 ...

  1. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  2. Briquettes of plant remains from the greenhouses of Almeria (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A. J.; Lopez-Martinez, J. A.

    2009-07-01

    Since ancient times, plant biomass has been used as a primary fuel, and today, with the impending depletion of fossil fuels, these vegetal sources constitute a cleaner alternative and furthermore have a multitude of uses. The aim of the present study is to design a method of recycling and reuse of plant wastes from intensive agriculture under plastic, by manufacturing briquettes in an environmentally friendly manner. In Almeria (SE Spain), agriculture generates 769,500 t year{sup -}1 of plant remains from greenhouse-grown horticultural crops, a resource currently used for composting and for producing electricity.With the machinery and procedures of the present study, another potential use has been developed by detoxifying and eliminating the plastic wastes of the original biomass for the fabrication of briquettes for fireplaces. The results were slightly inferior to the commercial briquette from other non-horticultural plant materials (no forestry material), specifically 2512 kJ kg{sup -}1, in the least favourable case. On the contrary, the heating value with respect to the two charcoals was significantly lower, with a difference of 12,142 kJ kg{sup -}1. In conclusion; a procedure, applicable in ecological cultivation without agrochemicals or plastic cords, has been developed and tested to reuse and transform plant materials from intensive cultivation into a stable non-toxic product similar to composite logs, applicable in commercial settings or in residential fireplaces. (Author) 48 refs.

  3. Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Benk, Ayse [University of Erciyes, Faculty of Art and Science, Department of Chemistry, 38039, Kayseri (Turkey)

    2010-09-15

    To reduce the cost of the formed coke briquettes which can be used as a substitute fuel to the metallurgical coke for the blast furnace from the coke breeze alternative binders and their blends were used. The high temperature behavior was investigated. The binders tested were: the nitrogen blown, air blown coal tar pitch and the blend of air blown coal tar pitch with the phenolic resins blends. The phenolic resin blends were prepared by mixing equal amount of resole and novalac. From the results, nitrogen blowing resulted in the weakest briquettes. The air blowing procedure should be preferred in place of nitrogen blowing for this purpose. When the air blown coal tar pitch was used alone as a binder, the briquettes must be cured at 200 C for 2 h, then carbonized at a temperature above 670 C. Since it requires higher temperature at carbonization stage, using air blown coal tar pitch alone as a binder was not economical. Therefore, the briquettes were prepared from the blended binder, containing air blown coal tar pitch and phenolic resins blend. The optimum amount of air blown coal tar pitch was found to be 50% w/w in the blended binder. Curing the briquettes at 200 C for 2 h was found to be sufficient for producing strong briquettes with a tensile strength of 50.45 MN/m{sup 2}. When these cured briquettes were carbonized at temperatures 470 C, 670 C and 950 C, their strength were increasing continuously, reaching to 71.85 MN/m{sup 2} at the carbonization temperature of 950 C. These briquettes can be used as a substitute for the metallurgical coke after curing; the process might not require un-economical high temperature carbonization stage. (author)

  4. 44 CFR 331.5 - Production facilities.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing law...

  5. Implications of Charcoal Briquette Produced by Local Communities on Livelihoods and Environment in Nairobi- Kenya

    Directory of Open Access Journals (Sweden)

    M. Njenga

    2013-02-01

    Full Text Available The residents of Nairobi, Kenya, use 700 tonnes of charcoal per day, producing about88 tonnes of charcoal dust that is found in most of the charcoal retailing stalls that is disposed of inwater drainage systems or in black garbage heaps. The high costs of cooking fuel results in poorhouseholds using unhealthy materials such as plastic waste. Further, poor households are opting tocook foods that take a short time to prepare irrespective of their nutritional value. This articlepresents experiences with community self-help groups producing charcoal fuel briquettes fromcharcoal dust in poorer nieghbourhoods of Nairobi for home use and sale. Households thatproduced charcoal fuel briquettes for own use and those that bought them saved 70% and 30% ofmoney spent on cooking energy respectively. The charcoal fuel briquettes have been found to beenvironmentally beneficial since they produce less smoke and increase total cooking energy bymore than 15%, thereby saving an equivalent volume of trees that would be cut down for charcoal.Charcoal briquette production is a viable opportunity for good quality and affordable cooking fuel.Bioenergy and waste management initiatives should promote recovery of organic by-products forcharcoal briquette production.

  6. Investigation of combustion of coal briquettes in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, Dulce; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel

    1999-07-01

    This paper discusses the results obtained from an experimental combustion work undertaken to investigate the behaviour of multicomponent briquettes, prepared by mixing two different particle sizes of coal and two different types of binder species. single briquettes were burned over a wide range of temperatures in a laboratory scale fluidised bed combustor facility. Nitrogen (NO{sub x}, and N{sub 2}O) and Sulphur (SO{sub 2}) oxides emissions resulting from the combustion of these briquettes were constantly monitored during the time of burning. The levels of O{sub 2}, CO{sub 2} and CO were also recorded during the same period. Experimental results showed that coal particle size influenced burn-out times and emissions levels of some of gaseous species. The hinder type was also found to have a major influence on the emissions of different pollutants.The temperature was observed to significantly influence the extent of the effects of the other operating parameters studied.

  7. comparative analysis of calorific value of briquettes produced

    African Journals Online (AJOL)

    yanky

    4.30% at 40% starch level while Daniella oliveri + Rice husk briquettes at 20% starch level had the ... transportation, handling and storage (Husan et al. 2002). .... Table 1: Combustion Properties of Briquettes at 20% Starch Level. Biomass.

  8. combustion properties of briquettes produced from maize cob

    African Journals Online (AJOL)

    joke

    2014-03-01

    Mar 1, 2014 ... were densified into briquettes using starch as binder. Combustion related ... Keywords: Briquette, maize cob, combustion properties, mesh sizes, binding agent ... smaller space requirement for storage (Yaman et al., 2000 and ...

  9. Particle density determination of pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, Fabienne; Temmerman, Michaeel [Centre wallon de Recherches agronomiques, Departement de Genie rural, CRA-W, Chaussee de Namur, 146, B 5030 Gembloux (Belgium); Boehm, Thorsten; Hartmann, Hans [Technologie und Foerderzentrum fuer Nachwachsende Rohstoffe, TFZ, Schulgasse 18, D 94315 Straubing (Germany); Daugbjerg Jensen, Peter [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK 1958 Frederiksberg C (Denmark); Rathbauer, Josef [Bundesanstalt fuer Landtechnik, BLT, Rottenhauer Strasse,1 A 3250 Wieselburg (Austria); Carrasco, Juan; Fernandez, Miguel [Centro de investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense, 22 E 28040 Madrid (Spain)

    2006-11-15

    Several methods and procedures for the determination of particle density of pellets and briquettes were tested and evaluated. Round robin trials were organized involving five European laboratories, which measured the particle densities of 15 pellet and five briquette types. The test included stereometric methods, methods based on liquid displacement (hydrostatic and buoyancy) applying different procedures and one method based on solid displacement. From the results for both pellets and briquettes, it became clear that the application of a method based on either liquid or solid displacement (only tested on pellet samples) leads to an improved reproducibility compared to a stereometric method. For both, pellets and briquettes, the variability of measurements strongly depends on the fuel type itself. For briquettes, the three methods tested based on liquid displacement lead to similar results. A coating of the samples with paraffin did not improve the repeatability and the reproducibility. Determinations with pellets proved to be most reliable when the buoyancy method was applied using a wetting agent to reduce surface tensions without sample coating. This method gave the best values for repeatability and reproducibility, thus less replications are required to reach a given accuracy level. For wood pellets, the method based on solid displacement gave better values of repeatability, however, this instrument was tested at only one laboratory. (author)

  10. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktur, K.N.; Lawson, G.J.

    1984-09-01

    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lowerrank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy.

  11. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktar, K.N.; Lawson, G.J.

    1984-09-01

    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lower-rank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash yield and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy. 38 references.

  12. Effect of torrefaction pre-treatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue

    Directory of Open Access Journals (Sweden)

    Amira Atan Nor

    2018-01-01

    Full Text Available Biomass is an alternative renewable energy sources that can generates energy almost same as fossil fuel. The depletion sources of fossil fuel had increase the potential use of biomass energy. In Malaysia, rice husk and banana residues are abundantly left and not treated with proper disposal method which later may contribute to environment and health problems. Thus the development of biomass composite briquette made from rice husk and banana residue is one of the potential ways to reduce the problems and hence may contribute the better way to treat the waste by recycling the waste into a form of biomass product. The biomass briquettes are used for thermal applications because it can produce a complete combustion as it has a consistent quality and high burning efficiency. However, the quality of the biomass briquette can be added by application of torrefaction pre-treatment method. Torrefaction is a thermal method that can produce more high quality of the briquette with high calorific value, high fixed carbon content, low volatile matter, and low ash content. This study was conducted to assess the physical and combustion characteristic of the biomass briquette from rice husk and banana residue which was produced through torrefaction process. The biomass briquette, were densified by using hot press machine with temperature of 180°C for about 30 minutes. The briquette produce are 150 μm in particle size with varies in mixing ratio of rice husk to banana residue which are 100:0, 80:20 and 60:40. After the briquetting process, the biomass fuel briquettes have been undergoes parameter testing and the data have been analysed. Result showed the best biomass briquette is developed from torrefied rice husk and banana residue mixed at ratio of 60:40. Moreover, SEM image reveal that torrefaction pre-treatment has shrinkage the fibres size which confirming the thermal stability of the briquette.

  13. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  14. The Effect of Moisture of the Raw Material on the Properties Briquettes for Energy Use

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2016-01-01

    Full Text Available At logging and at the subsequent wood and wood semi-products treatment the fine grained loose waste is arising, e.g. wood dust, saw dust, shavings, chips, bark etc. One of possibilities of its meaningful utilization is the briquetting technology, which product are briquettes determined for energetic utilization (combustion. This report contains the results of tests carried out with the aim to assess the influence of moisture on the briquettes final properties. For the tests the platan tree chips of four moisture levels, namely 5.7 %, 7.7 %, 15.7 % and 23.9 % were used. The basic physical-mechanical properties were the evaluation criteria. Following properties were determined: ash amount, gross calorific value, total moisture content, density, rupture force, length, diameter, weight and mechanical durability. From the results of carried out tests it follows that the best properties were reached at briquettes made from chips of moisture 7.7 %. At higher or lower moisture the briquettes properties were sharply failing (namely rupture force and density.

  15. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages at it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial

  16. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  17. Biomass-derived carbonaceous materials as components in wood briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Stadlbauer, E.A.; Scheer, J. [Univ. of Applied Sciences, THM Campus Giessen, Giessen (Germany); Weber, B. [Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), Coyoacan (Mexico); Strohal, U.; Fey, J. [Strohal Anlagenbau, Staufenberg (Germany)

    2012-11-01

    The present paper describes a briquette composed of a substantial amount of wooden biomass and up to 35% of carbonaceous materials derived from biogenic residues. The cellulosic component may be a mixture of any wooden residue. Suitable substrates for the carbonaceous fraction are vegetation wastes from land management or agriculture. Depending on physical and chemical nature of the substrate, Hydrothermal Carbonisation (HTC) or Low Temperature Conversion (LTC) may be used to produce the carbonaceous part of the briquette. HTC turns wet biomass at temperatures around 200 deg C in an autoclave into lignite whereas LTC treatment at 400 deg C and atmospheric pressure produces black coal. This is manifested by a molar ratio of 0.1 {<=} H/C (LTC) {<=} 0.7; 0.05{<=} O/C (LTC) {<=} 0.4 and 0.7 < H/C (HTC) <1.5 ; 0.2< O/C (HTC) < 0.5. Solid state {sup 13}C-NMR confirms these findings showing a strong absorption band for sp{sup 2}-hybridized carbon atoms at chemical shifts of 100 ppm und 165 ppm for LTC biochar. Depending on the substrate, HTC gives rise to an increase in the specific calorific value (MJ/kg) by a factor of {Psi} {approx} 1.2 - 1.4; LTC by 1.5 - 1.8. In addition ash melting points are significantly increased; in case of wheat straw by about 200 deg C. Compacted products may have a cylindrical or rectangular profile.

  18. Produção e avaliação de briquetes de resíduos lignocelulósicos Production and evaluation of lignocellulosic residue briquettes

    Directory of Open Access Journals (Sweden)

    Luana Elis de Ramos e Paula

    2011-06-01

    Full Text Available

    O objetivo deste trabalho foi produzir e avaliar briquetes de resíduos de biomassa vegetal e testar diferentes tempos e temperaturas de briquetagem para alguns deles. O material utilizado foi resíduos do processamento da madeira (maravalha e serragem; pergaminho do grão e caule do cafeeiro; caule e vagem do feijão; caule e vagem da soja; casca de arroz; folha, caule, palha e sabugo de milho e palha e bagaço de cana-de-açúcar. A briquetagem foi realizada à pressão de 150 Bar. Foram testados diferentes tempos de briquetagem para a serragem da madeira e diferentes temperaturas para a casca do arroz e para o pergaminho do café. Na avaliação da qualidade dos briquetes, determinaram-se a densidade relativa aparente, a resistência à compressão e o índice de combustão. Os resultados indicaram que o tempo e a temperatura de briquetagem interferiram na resistência mecânica dos briquetes. O melhor tempo de prensagem foi de 8 minutos e a temperatura de 125 °C. Os briquetes da casca de arroz apresentaram maior densidade e alta resistência mecânica. O maior índice de combustão foi encontrado para os briquetes da vagem do feijão.

    doi: 10.4336/2011.pfb.31.66.103

    This study aimed to produce and evaluating the briquettes made from residues of plant biomass and test different times and temperatures. The material utilized was composed of wood processing residues (wood shaving and sawdust, coffee bean parchment and coffee tree stem, beam stem and pod, soybean stem and pod, rice husk, corn leaf, stem, straw and cob and sugar cane straw and bagasse. Briquetting was performed at a pressure of 150 Bar. Different times were tested for briquetting sawdust from wood and different temperatures for rice husk and parchment coffee. For evaluation of the briquettes quality, the apparent relative density, compression resistance and combustion index were determined. The results

  19. Appendix E - Sample Production Facility Plan

    Science.gov (United States)

    This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix E is intended to provide examples and illustrations of how a production facility could address a variety of scenarios in its SPCC Plan.

  20. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  1. Use of grape must as a binder to obtain activated carbon briquettes

    Directory of Open Access Journals (Sweden)

    Deiana A. C.

    2004-01-01

    Full Text Available The results of studies on briquetting activated-carbon-based adsorbent materials, prepared from raw materials from the region of Cuyo, Argentina, are reported in this article. Several steps were carried out to obtain activated-carbon briquettes from Eucalyptus camaldulensis Dehn wood. These steps included carbonization of wood to obtain char; blending of char and a novel binder, i.e., grape must; formation of cylinder-like briquettes by pressure; and activation of the resulting material. The material was activated with steam under different temperatures, activation times, and activating agent flow rates. Impact resistance index, axial compressive strength, tensile strength by diametrical compression, BET area, and pore volume were measured for product characterization. Satisfactory surface areas and mechanical strengths were found in the final products.

  2. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  3. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  4. Comparative study of durability test methods for pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Temmerman, Michaeel; Rabier, Fabienne [Centre wallon de Recherches agronomiques (CRA-W), 146, chaussee de Namur, B-5030, Gembloux (Belgium); Jensen, Peter Daugbjerg [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe-TFZ, Schulgasse 18, D-94315 Straubing (Germany)

    2006-11-15

    Different methods for the determination of the mechanical durability (DU) of pellets and briquettes were compared by international round robin tests including different laboratories. The DUs of five briquette and 26 pellet types were determined. For briquettes, different rotation numbers of a prototype tumbler and a calculated DU index are compared. For pellets testing, the study compares two standard methods, a tumbling device according to ASAE S 269.4, the Lignotester according to ONORM M 7135 and a second tumbling method with a prototype tumbler. For the tested methods, the repeatability, the reproducibility and the required minimum number of replications to achieve given accuracy levels were calculated. Additionally, this study evaluates the relation between DU and particle density. The results show for both pellets and briquettes, that the measured DU values and their variability are influenced by the applied method. Moreover, the variability of the results depend on the biofuel itself. For briquettes of DU above 90%, five replications lead to an accuracy of 2%, while 39 replications are needed to achieve an accuracy of 10%, when briquettes of DU below 90% are tested. For pellets, the tumbling device described by the ASAE standard allows to reach acceptable accuracy levels (1%) with a limited number of replications. Finally, for the tested pellets and briquettes no relation between DU and particle density was found. (author)

  5. Far-infrared irradiation drying behavior of typical biomass briquettes

    International Nuclear Information System (INIS)

    Chen, N.N.; Chen, M.Q.; Fu, B.A.; Song, J.J.

    2017-01-01

    Infrared radiation drying behaviors of four typical biomass briquettes (populus tomentosa leaves, cotton stalk, spent coffee grounds and eucalyptus bark) were investigated based on a lab-scale setup. The effect of radiation source temperatures (100–200 °C) on the far-infrared drying kinetics and heat transfer of the samples was addressed. As the temperature went up from 100 °C to 200 °C, the time required for the four biomass briquettes drying decreased by about 59–66%, and the average values of temperature for the four biomass briquettes increased by about 33–39 °C, while the average radiation heat transfer fluxes increased by about 3.3 times (3.7 times only for the leaves). The specific energy consumptions were 0.622–0.849 kW h kg"−"1. The Modified Midilli model had the better representing for the moisture ratio change of the briquettes. The values of the activation energy for the briquettes in the first falling rate stage were between 20.35 and 24.83 kJ mol"−"1, while those in the second falling rate stage were between 17.89 and 21.93 kJ mol"−"1. The activation energy for the eucalyptus bark briquette in two falling rate stages was the least one, and that for the cotton stalk briquette was less than that for the rest two briquettes. - Highlights: • Far infrared drying behaviors of four typical biomass briquettes were addressed. • The effect of radiation source temperatures on IR drying kinetics was stated. • Radiation heat transfer flux between the sample and heater was evaluated. • Midilli model had the better representing for the drying process of the samples.

  6. Performance Evaluation of the Effect of waste paper on Groundnut Shell Briquette

    Directory of Open Access Journals (Sweden)

    Olatunde A Oyelaran

    2015-07-01

    Full Text Available Current energy shortage and environmental issues resulting from the use of fossil fuels have lead to exploitation of renewable energy resources that includes municipal waste and agricultural residues. These residues are available, indigenous and are environmental friendly but some can not be used directly in combustion process due high moisture content and low volumetric energy unless by briquetting. The study was undertaken to assess the combustion characteristic of binderless briquettes produced from waste paper and groundnut shell. Combustion characteristics investigated were ignition time, burning time, calorific values, burning rate, specific fuel consumption, fuel efficiency and water boiling time. The calorific values of the briquettes ranged from 19.51 - 19.92 MJ/kg, while the thermal efficiency ranges between 13.75 – 21.64%, other results shows that the average burning rate between 0.511 and 1.133 kg/hr and the specific fuel consumption ranges between 0.087 and 0.131 J/g. The recorded boiling time values were between 17.5 and 30.0 minutes for cold start and 15.0 and 20.0 minutes for hot start. The results shows that waste paper and groundnut shell up to 25% in composition composite briquettes were found to have good combustion characteristics which qualify them as alternative to firewood for domestic and industrial energy. However, production of briquettes from waste paper and groundnut shell at mixing ratio of 85:15 was found to comparatively better from all experiment conducted.

  7. Material and operating variables affecting the physical quality of biomass briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.; Xin, M. [Shenyang Agricultural Univ., Shenyang (China). College of Engineering; Tumuluru, J.S.; Iroba, K.L.; Tabil, L.G.; Meda, V. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2010-07-01

    Although biomass is an environmentally sound substitute for fossil fuels, its low bulk density makes it very difficult and costly to transport and handle. This challenge can be addressed by densifying the biomass to a high density product like briquettes. Briquetting is influenced by several material properties such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. This paper reported on a study in which briquettes were produced with barley straw, canola straw, oat straw, and wheat straw. The chopped samples were densified using a laboratory hydraulic press briquetting machine at pressure levels of 7.5, 10, and 12.5 MPa and at temperatures of 90, 110 and 130 degrees C. Three moisture content levels and 3 levels of particle size were used. Ten briquettes were manufactured for each treatment combination. The dimensions of all the samples were measured after compression. The samples were then stored in sealed plastic bags in a controlled environment. Durability, dimensional stability, and moisture content tests were conducted after 2 weeks of storage. The study showed that moisture content plays a key role in briquetting.

  8. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate

    Energy Technology Data Exchange (ETDEWEB)

    Guorui Zhi; Conghu Peng; Yingjun Chen; Dongyan Liu; Guoying Sheng; Jiamo Fu [Chinese Academy of Meteorological Sciences, Beijing (China). Key Laboratory for Atmospheric Chemistry

    2009-08-15

    The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that, if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 {+-} 12%, 61 {+-} 10%, and 98 {+-} 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world. 50 refs., 3 figs., 2 tabs.

  9. Development of a Medical Cyclotron Production Facility

    Science.gov (United States)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  10. Development of a Medical Cyclotron Production Facility

    International Nuclear Information System (INIS)

    Allen, Danny R.

    2003-01-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes

  11. Organic matter fuel briquettes as a forest conservation tool in Lake ...

    African Journals Online (AJOL)

    Organic matter fuel briquettes as a forest conservation tool in Lake Malawi National Park: research note. ... Open Access DOWNLOAD FULL TEXT ... towards fuel briquettes, cost is the limiting factor when people choose their fuel source.

  12. Torrefaction of briquettes: technical-economic feasibility and perspective in Brazilian market; Briquetes torreficados: viabilidade tecnico-economica e perspectivas no mercado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Felfli, Felix Fonseca; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos; Rocha, Jose Dilcio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico

    2004-07-01

    It is presented an study of the operational impact into a briquettes factory produced by the introduction of a torrefaction process. Through costs analysis it is shown that for a briquettes factory of 1.200 ton/year capacity, it is possible to increase Operational Profits and decrease the Break Even Point in 15.7 % when a torrefaction reactor is introduced into the manufacturing line. So, it is possible to insure that torrefaction increase the overall system efficiency without increasing yearly production since the number of 'biomass fuels' is increased enabling operation in other markets. This study also shows that torrefaction improves briquettes quality allowing access to the comparatively smaller consumer market still unreached by biomass briquets. (author)

  13. Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge

    Science.gov (United States)

    Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang

    2017-06-01

    The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.

  14. Effect of Organic Binders on The Quality of Manganese Ore Sinter Fines Briquettes

    International Nuclear Information System (INIS)

    Mohamed, F. M.; Ahmed, Y.M.Z.; Shalabi, M. E. H.

    2004-01-01

    Sinai Manganese Company imports the manganese ore sinter from abroad for ferromanganese alloy production. Large quantities of manganese ore sinter fines are produced in this process. These fines must be agglomerated to a suitable size in order to be reused for charging the electric arc furnace. The aim of this work is studying the briquetting ability of these fines using organic binders such as starch and bitumen. The results showed that, the suitable briquettes were produced with the addition of 5 % of starch and 20% H 2 O under pressure 3 ton/cm 2 or 8 % bitumen under pressure 4 ton/cm 2 and 3 days curing time

  15. Pinellas Plant facts. [Products, processes, laboratory facilities

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  16. Computerized radionuclidic analysis in production facilities

    International Nuclear Information System (INIS)

    Gibbs, A.

    1978-03-01

    The Savannah River Plant Laboratories Department has been using a dual computer system to control all radionuclidic pulse height analyses since 1971. This computerized system analyzes 7000 to 8000 samples per month and has allowed the counting room staff to be reduced from three persons to one person. More reliable process information is being returned to the production facilities and for environmental evaluations and being returned faster, even though the sample load has more than tripled. This information is now more easily retrievable for other evaluations. The computer is also used for mass spectrometer data reduction and for quality control data analysis. The basic system is being expanded by interfacing microcomputers which provide data input from all of the laboratory modules for quality assurance programs

  17. Fabrication and characterization of rice husk charcoal bio briquettes

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.

    2018-02-01

    Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.

  18. Fuel Processing Plants - ETHANOL_PRODUCTION_FACILITIES_IN: Ethanol Production Facilities in Indiana (Indiana Geological Survey, Point Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This GIS layer shows the locations of ethanol production facilities in the state of Indiana. Attributes include the name and address of the facility, and information...

  19. PHOSPHORUS FERTILIZATION AND HARVEST INTERVALS INFLUENCE ENERGETIC AND PHYSICAL PROPERTIES OF BRIQUETTES AND LARGE BRANCHES OF MATE

    Directory of Open Access Journals (Sweden)

    Delmar Santin

    Full Text Available ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.

  20. The design of financial recording system in industrial bio-briquette of Ramie (Boehmeria nivea) decortication waste with design thinking approach

    Science.gov (United States)

    Irianto, R.; Purnomo, D.; Prima, S.; Wulandari, A.

    2017-05-01

    The production process of ramie (boehmeria nivea) fibers generates waste which contents 5.95 to 7.83% ash; 1.88 to 2.87% silicate; 30.67 to 31.08% lignin; 33.81 to 35.99% alpha cellulose; 62.95 to 63.78% holoselulosa; 17.43 to 18.14% pentosan, which can be used as raw material of bio-briquette. Those potential can be used to generate a business opportunity, such as industrial bio-briquette of ramie decortication waste. The purpose of this research is to create accounting information which could present an income statement that is easily applied on industrial bio-briquette of ramie decortication waste. This research use descriptive analysis method with design with design thinking approach to gather the information through depth observation on human being as the object to achieve the purpose. The result in this research is financial recording system of industrial bio-briquette of ramie decortication waste in a desktop application. The system is integrated with production activities according to the needs of accounting information particularly at managerial production. The existing applications creates information in the form of financial operations which can be used as a factor in decision-making.

  1. Radiation protection programme for a radioisotope production facility

    International Nuclear Information System (INIS)

    Makgato, Thutu Nelson

    2015-02-01

    The present project reviews reactor based radioisotope production facilities. An overview of techniques and methodologies used as well as laboratory facilities necessary for the production process are discussed. Specific details of reactor based production and processing of more commonly used industrial and pharmaceutical radioisotopes are provided. Ultimately, based on facilities and techniques utilized as well as the associated hazard assessment, a proposed radiation protection programme is discussed. Elements of the radiation protection programme will also consider lessons from recent incidents and accidents encountered in radioisotope production facilities. (au)

  2. Design of GMP compliance radiopharmaceutical production facility in MINT

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Shaharum Ramli; M Rizal Mamat Ibrahim; Rosli Darmawan; Yusof Azuddin Ali; Jusnan Hashim

    2005-01-01

    In 1985, MINT built the only radiopharmaceutical production facility in Malaysia. The facility was designed based on IAEA (International Atomic Energy Agency) standard guidelines which provide radiation safety to the staff and the surrounding environment from radioactive contamination. Since 1999, BPFK (Biro Pengawalan Farmaseutikal Kebangsaan) has used the guidelines from Pharmaceutical Inspection Convention Scheme (PICS) to meet the requirements of the Good Manufacturing Practice (GMP) for Pharmaceutical Products. In the guidelines, the pharmaceutical production facility shall be designed based on clean room environment. In order to design a radiopharmaceutical production facility, it is important to combine the concept of radiation safety and clean room to ensure that both requirements from GMP and IAEA are met. The design requirement is necessary to set up a complete radiopharmaceutical production facility, which is safe, has high production quality and complies with the Malaysian and International standards. (Author)

  3. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... manufacture, preproduction design validation (including a process to assess the performance of a tobacco... about the manufacturing practices and processes unique to your facility and regulated tobacco products... process, package, label, and distribute different types of regulated tobacco products (cigarettes...

  4. Optimization of the technology of fodder briquettes-licks with the use of a steam compression heat pump

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2017-01-01

    Full Text Available In conditions of industrial maintenance of animals, their health is noticeably weakening, in the majority of the body, profound metabolic disorders are noted, and productivity is reduced. In such conditions it is necessary to use feed additives in the form of briquettes-licks, able to compensate for the lack of micro and macro elements, vitamins and many other substances. Intensification of feed production through the use of new advanced technologies allows to improve the quality of products and reduce losses in its production. The technologies used for briquettes-licks and equipment for their production do not always allow to provide high quality products and achieve the necessary effect when fed. In addition, they are energy-intensive, do not imply the use of secondary energy carriers. Therefore, the creation of a functional product, combining a complex of substances necessary for animal feeding, and the development of an energy-efficient method for its production is topical. The proposed technology makes it possible to obtain feed briquettes with high homogeneity and a specified content of biologically active substances, to ensure a longer-term preservation of the products. The developed line provides for the maximum rapid cooling of the finished product and a reduction in the specific energy consumption for its production as a result of the heat of spent coolants. The high-quality licks produced were homogeneous in their composition, resistant to unfavorable conditions. They are characterized by a higher stability of structural and mechanical properties and stability of storage quality for a long time: after twelve months, the technological properties of the products have not changed, signs of damage associated with increased humidity of the environment have not been noted. On the surface of briquettes, signs of development of microflora were not observed. The values of microbiological quality indicators were within acceptable limits. The

  5. Reduced emissions from inexpensive high-sulphur coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W.; Ahmad, N.; Siltain, F.; Raza, M.Z.

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO 2 . In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO 2 , NO x , and RSP. The high peak amounts of CO (100--250 ppm), SO 2 (2--5 ppm), and NO x (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring

  6. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  7. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  8. Evaluation of the potential energy briquettes made with corn stubble (Zea mays) and soybean residue (Glycine max (L.)) combined with waste wood; Avaliacao do potencial energetico de briquetes confeccionados com residuo de milho (Zea mays) e residuo de soja (Glycine max (L.)) combinado com residuo de madeira

    Energy Technology Data Exchange (ETDEWEB)

    Travessini, Rosana; Schutz, Fabiana Costa de Araujo; Oyama, Paulo; Possan, Edna; Bittencourt, Paulo R.S. [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], emails: rosana_travessini@yahoo.com.br, fabianaschutz@utfpr.edu.br, oyama_pt@hotmail.com, epossan@gmail.com, paulob@utfpr.edu.br

    2011-07-01

    The agriculture industry produces a large amount of biomass whose use constitutes an economically viable alternative energy through the compression of the lignocellulosic portion, replacing the wood with an equivalent product. This is possible through the briquette, which is a very efficient way to concentrate the available energy in biomass. This study aimed to evaluate the efficiency of burning briquettes. The making of briquettes was performed in the laboratory of Electro mechanics and burning at the Laboratory of Environmental UTFPR Campus Medianeira / PR. For the analysis, the energy balance of the combinations we used a bomb calorimeter IKA C5000, Laboratory of Biomass Energy (LEB), Federal University of Parana - UFPR. From the results we can conclude that in all aspects of the briquettes made from soybean residues are more efficient and still points to the need for studies to the development of more efficient equipment for these specific applications. (author)

  9. Combustion behavior of briquettes from oil palm's empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Pratoto, A. [Andalas Univ., Padang (Indonesia). Dept. of Mechanical Engineering

    2006-07-01

    Empty fruit bunch (EFB) briquettes from palm plantations are now being considered as a renewable energy source in Indonesia. This paper provided details of a study that investigated the combustion behaviour of an EFB briquette. Thermogravimetry was used to study the briquettes under dynamic conditions at 50 degrees C in a muffle furnace. Thermal decomposition rates and phases were identified, and the effect of the briquette's size on the decomposition rate was evaluated by comparing the combustion behaviour of the briquette to that of loose EFB materials. Rates of devolatilization and char oxidation were also examined. Results of the derivative thermogravimetry (DTG) analysis showed that larger briquettes did not exhibit a sharp peak on the DTG curve. Results suggested that heat transfer was predominant over the kinetic reaction during combustion. The ignition temperature of the briquettes was comparable to typical lignocellulose biomass. Peak combustion temperatures for loose EFB were only slightly lower than other types of biomass. Maximum combustion rates decreased with the size of the fuel. It was concluded that small briquettes are suitable for applications where high rates of heat are required. 16 refs., 1 tab., 6 figs.

  10. Study on the combustion properties of bio-coal briquette blends of ...

    African Journals Online (AJOL)

    This study was carried out to investigate the properties of bio-coal briquette produced from blending cassava stalk and coal. The cassava stalk and coal lumps were carbonized at 160 oC, pulverized and used to produce biocoal briquettes of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %,70 %, 80 %, 90 % and 100 % biomasses.

  11. Biomass Briquette Investigation from Pterocarpus Indicus Leaves Waste as an Alternative Renewable Energy

    Science.gov (United States)

    Anggono, Willyanto; Sutrisno; Suprianto, Fandi D.; Evander, Jovian

    2017-10-01

    Indonesia is a tropical country located in Southeast Asia. Indonesia has a lot of variety of plant species which are very useful for life. Pterocarpus indicus are commonly used as greening and easily found everywhere in Surabaya city because of its characteristics that they have dense leaves and rapid growth. Pterocarpus indicus leaves waste would be a problem for residents of Surabaya and disturbing the cleanliness of the Surabaya city. Therefore, the Pterocarpus indicus leaves waste would be used as biomass briquettes. This research investigated the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the effect of tapioca as an adhesive material to the calorific value of biomass briquettes from the Pterocarpus indicus leaves waste, the optimum composition for Pterocarpus indicus leaves waste biomass briquette as an alternative renewable fuel and the property of the optimum resulted biomass briquette using ultimate analysis and proximate analysis based on the ASTM standard. The calorific value biomass briquettes from the Pterocarpus indicus leaves waste were performed using an oxygen bomb calorimeter at various composition of Pterocarpus indicus from 50% to 90% rising by 10% for each experiment. The experimental results showed that the 90% raw materials (Pterocarpus indicus leaves waste)-10% adhesive materials (tapioca) mixtures is the optimum composition for biomass briquette Pterocarpus indicus leaves waste. The lower the percentage of the mass of tapioca in the biomass briquettes, the higher calorific value generated.

  12. Study on the Combustion Properties of Bio-Coal Briquette Blends of ...

    African Journals Online (AJOL)

    2017-10-09

    Oct 9, 2017 ... This study was carried out to investigate the properties of bio-coal briquette produced from blending cassava stalk and coal. ... solar, gas and kerosene will certainly take a few decades to ..... Physical Properties of. Briquettes ...

  13. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    Science.gov (United States)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  14. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  15. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    Science.gov (United States)

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  16. Energetics of coal substitution by briquettes of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Pallav; Tripathi, Arun Kumar; Kandpal, Tara Chandra [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2006-07-15

    The suitability of using biomass briquettes to substitute coal is debatable, as a substantial amount of energy is required for briquetting of biomass. In the present work, an attempt to evaluate the energetic viability of briquetting of agricultural residues compared with the energy embodied in coal in India has been made. Briquetting of agricultural residues is not found to be an energetically viable option even for locations at a distance of about 1500km from the coal pithead (even if the briquetting unit is located very close to the place of availability of the agricultural residues). A need for transportation of agricultural residues further pushes this critical distance upwards. (author)

  17. Metallization of Extruded Briquettes (BREX in Midrex Process

    Directory of Open Access Journals (Sweden)

    Aitber Bizhanov

    2017-07-01

    Full Text Available The results of the full-scale testing of the Extruded Briquettes (BREX as the charge components of the industrial Midrex reactor are discussed. The influence of the type of binder on the degree of metallization of BREX is analyzed. Magnesium sulfate-based binder helps to reach highest metallization degree of BREX. Mineralogical study shows the difference in the iron-silicate phase’s development as well as in the porosity change during metallization depending on the binder used.

  18. Facilities for the production and processing of radioisotopes

    International Nuclear Information System (INIS)

    Fourie, P.J.

    1980-01-01

    Radioisotopes which are used in South Africa are produced in the nuclear reactor SAFARI 1 of the AEB and the CSIR cyclotron in Pretoria or are being imported from various overseas manufactures. The safe and efficient production and use of radioisotopes is possible when being handled by sufficiently trained personnel using special designed equipment and facilities. The Isotope Production Centre is situated next to the reactor and waste treatment buildings. New production facilities shielded with lead and equipped with remote handling equipment are being erected and will be commissioned early during 1980 [af

  19. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    International Nuclear Information System (INIS)

    Mohanty, M K; Mishra, S; Sarkar, S; Samal, S K; Mishra, B

    2016-01-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results. (paper)

  20. Effect of Briquetting Process Variables on Hygroscopic Property of Water Hyacinth Briquettes

    Directory of Open Access Journals (Sweden)

    R. M. Davies

    2013-01-01

    Full Text Available The knowledge of water resistance capacity of briquettes is important in order to determine how sensitive the produced briquettes are to moisture change during storage. The relative changes in length and diameter of briquettes during immersion in water for 6 hours were investigated. This was conducted to determine hygroscopic property of produced briquettes under process variables levels of binder (10, 20, 30, 40, and 50% by weight of residue, compaction pressure (3.0, 5.0, 7.0, and 9.0 MPa and particle size (0.5, 1.6, and 4 mm of dried and ground water hyacinth. Data was statistically analysed using Analysis of Variance, the Duncan Multiple Range Test, and descriptive statistics. The relative change in length of briquettes with process variables ranged significantly from % to % (binder, % to % (compaction pressure, and % to % (particle size (. Furthermore, the relative change in diameter of briquettes with binder, compaction pressure, and particle size varied significantly from % to %, % to %, and % to %, respectively (. This study suggests optimum process variables required to produce briquettes of high water resistance capacity for humid environments like the Niger Delta, Nigeria, as 50% (binder proportion, 9 MPa (compaction pressure, and 0.5 mm (particle size.

  1. Tunisian Rearing facility a first year production constraints and prospects

    International Nuclear Information System (INIS)

    Guerfali, M.M; Ben Salah, H.; Caceres, C.; Raies, A.

    2005-01-01

    The Tunisian Medfly rearing facility is located in the north of the country in a small city named Sidi Thabet, near the capital. This facility was designed for rearing the Medfly Genetic Sexing strain (GSS). The facility has been started operations in 2003 in order to release sterile males under 6000 hectares in the north east of the country in the Cap Bon Peninsula. This programme is supported by the Tunisian government, IAEA and FAO. Male only production was not stable for the four first months, due to some constraints. The production is stabilising by the time, after the tune fine off all rearing procedures and adjustment of the environmental control system. Quality control procedures (QC) were put for each procedure of the production from eggs to adult following the procedures established in the International FAO/IAEA/USDA Fruit Flies Quality control Manual

  2. Physical and chemical evaluation of furniture waste briquettes.

    Science.gov (United States)

    Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A

    2016-03-01

    Furniture waste is mainly composed of wood and upholstery foam (mostly polyurethane foam). Both of these have a high calorific value, therefore, energy recovery would be an appropriate process to manage these wastes. Nevertheless, the drawback is that the energy content of these wastes is limited due to their low density mainly that of upholstery foam. Densification of separate foam presents difficulties due to its elastic character. The significance of this work lies in obtaining densified material by co-densification of furniture wood waste and polyurethane foam waste. Densification of furniture wood and the co-densification of furniture wood waste with polyurethane foam have been studied. On the one hand, the parameters that have an effect on the quality of the furniture waste briquettes have been analysed, i.e., moisture content, compaction pressure, presence of lignin, etc. The maximum weight percentage of polyurethane foam that can be added with furniture wood waste to obtain durable briquettes and the optimal moisture were determined. On the other hand, some parameters were analysed in order to evaluate the possible effect on the combustion. The chemical composition of waste wood was compared with untreated wood biomass; the higher nitrogen content and the concentration of some metals were the most important differences, with a significant difference of Ti content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reduction disintegration mechanism of cold briquettes from blast furnace dust and sludge

    Directory of Open Access Journals (Sweden)

    Leandro Rocha Lemos

    2015-07-01

    Full Text Available It is important to understand the reduction disintegration mechanism in ferriferous burden that is used in blast furnaces. The behavior of this burden in the granular zone of this metallurgical reactor is important for smooth operation. The objective of this work was to prepare cold self-reducing briquettes using blast furnace dust and sludge and binders and compare the reduction disintegration index (RDI of these agglomerates with conventional ferriferous burdens such as pellets, sinter and iron ore. In the present work, 25 different mixtures were prepared to produce briquettes in two geometries: pillow and cylindrical. The RDI value was determined for the briquettes that passed the tumbling test.

  4. Strength of briquettes made of Cu concentrate and carbon-bearing materials

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the present paper, results of the research on application of residual fine-grained, carbon-bearing materials as coke substitutes in the shaft process of copper matter smelting are discussed. The addition was introduced into the charge as a component of concentrate-made briquettes, then, its effects on properties of the obtained briquettes were analysed for their compressive and drop strengths. The results of investigations confirmed the potential use of proposed alternative fuels (as briquette components in the process of copper matte smelting.

  5. Fuel briquettes from brown coals of Yakutia

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Nikolaeva; V.G. Latyshev; O.N. Burenina [Russian Academy of Sciences, Yakutsk (Russian Federation). Institute of Oil and Gas Problems

    2009-04-15

    Experimental data on the development of technology for the manufacture of briquetted fuel from brown coals with the use of various petroleum binders are presented. The influence of the moisture content, the coal particle-size composition, the binder type and concentration, the compacting pressure, and heat treatment regimes on the mechanical properties of the materials was studied. The optimal compositions and optimal values of the engineering parameters for the production of graded briquetted fuel from brown coals of the Kangalassy deposit in the Republic of Sakha (Yakutia) were established.

  6. Briquettes - time for a second wave

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The successes and failures of various Irish companies who have briquetted wood waste for fuel purposes are discussed. Small scale briquetting, as done in joinery and furniture making is not commerically viable, but does contribute to productive waste management. This is demonstrated by Faber-Castell's use of briquetted sawdust from their pencil manufacturing operations, as boiler fuel during the winter. Large-scale briquetting however would appear to have a commercial future. Callanwood has successfully marketed briquetted sawmills waste as heat logs. The problems associated with briquetting such as materials handling and drying could be rectified with experienced technical and servicing personnel.

  7. Upgrade and Development of Nuclear Data Production Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: (1) upgrade the electron linac, (2) collimators inside the TOF beam pipe, (3) the development and installation of an automatic sample changer, (4) the extension of the TOF beam line, and (5) the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students

  8. Upgrade and development of nuclear data production test facility

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, I. S.; Cho, M. H.; Lee, Y. S.; Kang, H. S. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National Univ., Daegu (Korea, Republic of); Koh, S. K. [Univ. of Ulsan, Ulsan (Korea, Republic of); Ro, T. I. [Donga Univ., Busan (Korea, Republic of); Choi, G. U. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2005-04-15

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: upgrade the electron linac, collimators inside the TOF beam pipe, the development and installation of an automatic sample changer, the extension of the TOF beam line, and the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students.

  9. A Strategic Framework for the Establishment of International Production Facilities

    DEFF Research Database (Denmark)

    Nielsen, A.P.; Riis, Jens Ove

    2000-01-01

    Departing from the empirical observation that there often is a weak link between the corporate internationalisation strategies and the actual establishment of international production facilities. This paper describes a framework to overcome this problem. The basic idea in the framework is the dis...

  10. Combustion quality analysis of briquettes from variety of agricultural waste as source of alternative fuels

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Mulyana, C.

    2017-05-01

    The increasing in world population and the industrial sector led to increased demand for energy sources. To do this by utilizing the agricultural waste as a fuel source of alternative energy in the form of bio briquette. The aim at this study was to obtain data onto the characteristics of a wide variety of biomass briquettes from waste agricultural industry. The basic ingredients used are biomass waste from coconut husks, sawdust, rice husks and coffee husks. Each of these biomass residues are dried, crushed, then mixed with starch adhesives. This mixture is molded and dried using sunlight. Each type of briquettes was characterized and analyzed the physical-chemical properties, including calorific value, water content, fixed carbon content and the results were compared with charcoal and coal that was used as fuel in public. The results showed that bio briquettes from coconut husks get the highest calorific value of 4,451 cal/g.

  11. An experimental study of the combustion characteristics of groundnut shell and waste paper admixture briquettes

    Directory of Open Access Journals (Sweden)

    O. A. Oyelaran

    2015-12-01

    Full Text Available The study was undertaken to assess the heat released of briquettes produced from waste paper and groundnut shell admixture in five mixing ratios (90:10; 80:20; 70:30; 60:40; and 50:50. The briquettes were prepared on an existing motorized briquetting machine. The suitability of briquetted fuel as domestic fuel was studied in terms of flame propagation, afterglow, calorific value, and utilized heat, after sun drying the prepared briquettes for nineteen (19 days. The results of propagation rate and afterglow obtained for all the six compositions are satisfactory they range between 0.13 to 0.14 and 365 to 380 respectively. These energy values obtained for the whole samples are sufficient enough to produce heat required for household cooking and small scale industrial cottage applications. Finally it was observed that composition variation affects the properties of the briquettes.

  12. Heat Energy From Value-Added Sawdust Briquettes Of Albizia Zygia ...

    African Journals Online (AJOL)

    Choice-Academy

    ... physical properties between the sawdust briquettes and the solid wood of the same species were carried out. The results ... kerosene and cooking gas in Nigeria, draw attention to the .... between the physical properties of solid wood used for ...

  13. Enhancing the Properties of Coal Briquette Using Spear Grass (Imperata Cylindrica

    Directory of Open Access Journals (Sweden)

    Adaora Stellamaris OGBUAGU

    2010-12-01

    Full Text Available Studies have been carried out on utilizing agricultural wastes (spear grass to enhance the properties of coal briquette. The proximate analysis of the plant material was carried out alongside with a sample of coal (sub-bituminous coal. Briquettes of different compositions were produced by blending the plant material with the coal at various concentrations: 0%, 10%, 20%, 30%, 40%, 50% and 100%, using cassava starch as a binder and calcium hydroxide (Ca(OH2 as desulfurizing agent. The properties of the briquettes were compared. It was found that the ignition, burning rate and reduction in smoke emission showed improvement with increase in biomass concentration. Compressive strength and cooking efficiency (water boiling time and specific fuel consumption showed initial improvement and rendered to decrease with briquette containing 30% biomass.

  14. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99 Mo is the parent isotope of 99m Tc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  15. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  16. Optimum operation of a small power production facility

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.; Mahoney, J.F.; Sivazlian, B.D.

    1983-09-01

    To help reduce the U.S.A.'s dependence on imported oil for electrical power generation, the 1978 National Energy Act established regulations to promote construction and operation of cogeneration and small power production facilities. Many of these facilities are presently under construction, with a great number planned. This paper examines the operation of a small power production facility with on-site generation and storage, on-site use, and connection to an electric utility grid system for the purpose of both selling excess power and buying power. It is assumed that the buying and selling price of electricity varies frequently during the day and that the relevant price and demand data may be accurately projected into the near future. With this system description, a mathematical model is formulated and solved by linear programming to obtain a series of periodic buy and sell decisions so as to maximize the profit from operating the small power production facility. Results are presented to illustrate the methodology for determining potential profits.

  17. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  18. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  19. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  20. The effects of moderate die pressure on banana-peel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Wilaipon, P. [Khon Kaen Univ., Khon Kaen (Thailand). Faculty of Engineering]|[Narasuan Univ., Phitsanulok (Thailand). Faculty of Engineering; Trirattanasirichai, K.; Tangchaichit, K. [Khon Kaen Univ., Khon Kaen (Thailand). Faculty of Engineering

    2006-07-01

    Bananas are one of the most important crops in Thailand, and are now being considered as a renewable energy source. This study investigated the impacts of moderate die pressure on banana peel briquettes. The pressure range in the study was set at 3-11 MPa. Water resistance characteristics were also analyzed. Four factors were considered: (1) the relaxation in length of the briquettes; (2) impact resistance; (3) relaxation in volume; and (4) water resistance. Experiments were conducted in laboratory conditions with humidity set at between 50 and 60 per cent at 27 degrees C. An impact resistance test was performed 168 hours after the briquetting process. The briquettes were immersed in water in order to conduct the water resistance test. Results of the tests demonstrated a rapid increase in the length of the briquettes. The maximum percentage of elongation occurred within 1 hour after being removed from the die. Results of the strength tests showed that the briquettes had a compaction pressure over 5 MPa. The briquettes showed significant potential as a biomass fuel. 15 refs., 1 tab., 12 figs.

  1. INVESTIGATION ON THE QUALITY OF BRIQUETTES MADE FROM RARELY USED WOOD SPECIES, AGRO-WASTES AND FOREST BIOMASS

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2015-03-01

    Full Text Available Characteristics of briquettes made from various biomass resources (staghorn sumac wood, vineyard and apple tree pruning biomass, pine cones, corn stalk and corn cobs were investigated in the present paper. The moisture content of raw materials was first determined, before compacting them in a hydraulic briquetting machine. Briquettes with diameter of 40mm and various lengths were obtained. Five replicates of each briquette type were selected for the determination of density, compression strength and calorific value. The results were compared to those of beech and pine briquettes obtained under similar conditions. Based on the experimental results, mathematical correlations between density and compression strength and density and calorific value were investigated.

  2. Issues resulting from separation of production and facilities interests

    International Nuclear Information System (INIS)

    Park, J. J.

    1996-01-01

    Traditionally, Canadian oil and gas producers have had full control over the exploration, production, marketing, processing and transportation aspects of their business. The disadvantages and recent changes to this traditional structure were discussed. It was shown how the deregulation of gas markets and prices in the 1980s led to some major changes in the industry. The separation of production interests from the processing and gathering facilities required a new focus by both producers and owners of the facilities. The concerns of both sides (i.e. producers and processors) were outlined. The importance of the Petroleum Joint Venture Agreement (PJVA) in defining obligations in plant expansion and development, and the jurisdictional issues over gathering and processing were described

  3. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  4. Development of the radioisotope production facility for the HANARO

    International Nuclear Information System (INIS)

    Lee, Ji Bok; Wu, J. S.; Baik, S. T.

    1998-06-01

    Hot cell and related facilities were developed in the RI production building of the HANARO. 1. development of concrete H/C and related components 2. development of lead H/C and related components 3. development of the hydraulic transfer system 4. development of radiation monitoring system 5. development of purification system for Co-60 storage pool 6. development of the fire fighting system for H/C 7. development of the experimental equipment. (author). 15 figs

  5. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  6. Manufacturing combustible briquettes from forestry and timber industries` wastes in order to reduce the overexploitation of fuelwood in Central American forests

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, L.; Gonzalez, E. [Renewable Energies Institute, Soria (Spain)

    1993-12-31

    A serious degradation of Central American forest is currently taking place because of uncontrolled fuelwood overexploitation. As an example, in Guatemala over 40% of forest destruction is caused by this reason. In the meanwhile, waste biomass from the sawmills representing 30 to 50% of total wood volume processed, due to low technological level of the facilities, and having an energetic potential equivalent to their thermal and electric needs is destroyed through uncontrolled burning, thus causing important environmental and landscape impact, since the byproducts are incinerated outdoors on the spot the constant smoke together with the noise level produced by the diesel power generators makes working conditions painful for the large labor force usually operating these sawmills because of low wages in these countries. To help solve this increasing problem, it would be possible to use the waste biomass for the production of electric power, through cogeneration, for sawmill selfuse or selling to the public electric lines, or even manufacturing of fuel briquettes which would have a potential market in countries such as Republica Dominicana, Honduras Guatemala, etc. as a substitute for charcoal and fuelwood, thus permitting a considerable reduction of the environmental degradation and predation suffered by forest areas in these countries. For these reasons, we consider it of interest to study briquetting techniques and their intrinsic problems in depth. For such purpose, we have carried out a series of real scale briquetting experiences with different types of lignocelulosic wastes and mixtures of them under different conditions, aiming to optimize procedure methodology and reduce production expenses, thus making offer increase easier. Manufacturing procedure and analytics developed to carry out the experiences are described in the present document. Main results obtained are summarized, and mathematical, energetic, analytical and economic aspects are discussed as well.

  7. Effect of Binder on Combustion Quality on EFB Bio-briquettes

    Science.gov (United States)

    Handra, Nofriady; Hafni

    2017-12-01

    Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.

  8. ALARA implementation in 131I therapeutic capsule production facility

    International Nuclear Information System (INIS)

    Kumawat, Lalit; Swaminathan, N.; Sudheer, T.S.; Sachdev, S.S.; Arora, S.S.; Vairalkar, K.G.

    2005-01-01

    Sodium iodide 131 I solution had been invariably administered to patients for both diagnosis and therapy of thyrotoxicosis. The undue exposure to non-target organs has been over come by introducing NaI ( 131 I) in a gelatin capsule. BRIT has set up experimental facility for the preparation and the production volume has augmented into four fold due to increase in demand and the same facility is being used to cater the need. However, the adequately shielded facility (fume hood) used for (manual) dispensing activity in capsules, capsules and product vial capping, transfer of the vials into lead pots and activity measurement of each vial has resulted in significant increase in the personnel exposure. The sources had been identified and efforts were made to reduce the exposure in these operations. An annular shield was introduced around the dispenser, resulted in the reduction of radiation field at wrist level by a factor of three. Introduction of shielded automated dispenser and usage of longer tools for transfer and capping of vials has effected in two times reduction of collective wrist dose. Currently, the relocated capping station two meters away from the source certainly will bring down further exposure. (author)

  9. Operation status and prospect of radioisotope production facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Minjin; Jung, H.S.

    2012-01-01

    At the RIPF at HANARO, Radioisotopes for industrial and medical purpose are produced and research and development for various radioisotopes are carried out. Major products include Ir-192 for NDT, I-131 for treatment and diagnosis of thyroid cancer, Mo-99/Tc-99m Generator for imaging diagnosis of cancer. Production of radioisotope and radiopharmaceutical is being increased every year. Due to world-wide unstableness in the supply of Mo-99, a technology to produce (n,γ)Mo-99 generator at HANARO had been developed as a short term countermeasure. It will be available by the end of 2012. As a long term countermeasure, we are trying to build a new fully dedicated isotope reactor that will produce Fission Mo-99. At present, utilization of RIPF at HANARO is being increased. However when the construction of a new dedicated isotope reactor is completed in 2016, the role of the existing facility and new facility should be established accordingly so that none of the facilities are idling. In the near future, when the prospect of a utilization plan is completed, we expect an opportunity to present the result. (author)

  10. Variables of briquetting process and quality of forestry biomass briquettes Variáveis do processo de briquetagem e qualidade de briquetes de biomassa florestal

    Directory of Open Access Journals (Sweden)

    Thielly Schmidt Furtado

    2010-10-01

    Full Text Available

    In the quest for recovery of waste generated from forest production to the process of industrial transformation of the biomass it was developed the process of briquetting. The cluster of wood particles facilitates the operations of handling of combustible material in addition to concentrating the available energy in terms of volume. The purpose of this study was to evaluate whether the raw material affects the quality of the briquette and verify the effect of pressure applied during the mechanical and energy  characteristics of the final product, and to evaluate the behavior of the material mix (MIX compared to pure materials. The briquettes were produced in a pilot  briquetter, hydraulic piston, 120 °C with a constant pressure of 50 bar for eight minutes and 65, 95 or
    130 bar for two minutes. Six briquettes were used for each treatment. The characteristics evaluated were calorific value (GCV, bulk density and compressive strength. The raw material has a greater influence on the quality of briquettes than the compaction pressure. The low pressure is the most suitable for Pinus sp forest biomass briquettes. In this, MIX submitted satisfactory quality of briquettes with PCS 4,773 kcal kg-1, density 1220 kg m-³ and compressive strength of 167 kgf cm-2.

     

    doi: 10.4336/2010.pfb.30.62.101

    Na busca pelo aproveitamento dos resíduos gerados desde a produção florestal até os processos de transformação industrial da biomassa, desenvolveu-se o processo de briquetagem. A aglomeração de partículas de madeira facilita as operações de  manuseio do material combustível, além de concentrar a energia disponível em termos de volume. O objetivo do presente trabalho foi avaliar se a matéria-prima tem influência na qualidade do briquete e verificar o efeito da pressão aplicada durante o processo nas  características energéticas e mecânicas do produto final, além de avaliar o comportamento da  mistura de materiais

  11. HUMPF [Heterogeneous Unix Montecarlo Production Facility] users guide

    International Nuclear Information System (INIS)

    Cahill, P.; Edgecock, R.; Fisher, S.M.; Gee, C.N.P.; Gordon, J.C.; Kidd, T.; Leake, J.; Rigby, D.J.; Roberts, J.H.C.

    1992-11-01

    The Heterogenous Unix Monte Carlo Production Facility (HUMPF) simplifies the running of particle physics simulation programs on Unix workstations. Monte Carlo is the largest consumer of IBM (CPU) capacity within the Atlas centre at Rutherford Appleton Laboratory (RAL). It is likely that the future computing requirements of the LEP and HERA experiments cannot be satisfied by the IBM 3090 system. HUMPF adds extra capacity, and can be expanded with minimal effort. Monte Carlo programs are CPU-bound, and make little use of the vector or the input/output capacity of the IBM 3090. Such programs are therefore excellent candidates to use the spare capacity of powerful workstations. The main data storage is still handled centrally by the IBM 3090 and its peripherals. The HUMPF facility is suitable for any program with a similar profile. (author)

  12. Sustainable energy development of bio briquettes based on rice husk blended materials: an alternative energy source

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.

    2018-05-01

    Rice husk as an abundant waste of biomass up to 21 million tons/year, it is unfortunate if it is not utilized. By converting it into bio briquettes, the value of rice husk bio briquettes in some studies before obtaining a relatively low value of 3,221-3,350 cal/g. The purpose of this research is to increase the calorific value of rice husk bio briquettes by mixing with coconut shell charcoal or corncob charcoal at various composition ratios of 50:50 and 80:20, to reach the optimal value that the industrial sector needed. Carbonization process was carried out at a temperature of 250-350 °C for 1.5 hours. From the results of the proximate analysis test using selected carbonization temperature at 300 °C, it can be seen that the best briquette value is made by mixing rice husk and coconut shell charcoal at composition ratio of 50:50, resulting 47.92% fixed carbon, 8.52% moisture content, 23.40% volatile matter and 20.16% ash content. The highest calorific value of 4,886 cal/g at ratio composition of 50:50, is slightly higher than the East Kalimantan coal standard of 4,828 cal/g. Hence, this bio briquettes are suitable for small scale industry application and household community use.

  13. 41 CFR 101-26.4904-416 - DD Form 416: Purchase Request for Coal, Coke, or Briquettes.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true DD Form 416: Purchase Request for Coal, Coke, or Briquettes. 101-26.4904-416 Section 101-26.4904-416 Public Contracts and... DD Form 416: Purchase Request for Coal, Coke, or Briquettes. Note: The form illustrated in § 101-26...

  14. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-01-01

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand

  15. Mechanical Evaluation for the Quality Control of Biomass Pellets and Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Seabra da Rocha, Saulo Henrique [RWTH Aachen Univ. (Germany). KoBrA - Coking, Briquetting and Thermal Waste Treatment Group

    2006-07-15

    Biomass densification through compression machine leads to numerous benefits, such as decreased dust emission, transportation, and maintenance costs. However, if the mechanical strength of the Pellets and briquettes is not high enough, breaks and abrasion lead to low efficiency. Quality evaluation before pelleting or briquetting can avoid these problems. The most common mechanical strength evaluation methods are simple and fast, but their accuracy and precision are limited. In this paper three methods for mechanical strength evaluation are reviewed, tested and statistically compared. Compacted bodies in different dimensions of typical materials, like sawdust, bark and lignite, were produced, and tested with the mentioned methods to get different values of mechanical strength. The correlation coefficient was used to compare the accuracy and precision of those methods. The Point Load Strength method showed a linear variation error and a poor correlation coefficient value (R2 = 0.71-0.78). The Brazilian Test had a reasonably constant result, but the relative standard deviation was 22%, insufficient for a practical process optimization. The best results were produced from the Extended Planar Strength, with an excellent correlation coefficient value (R2 = 0.98). This technique will help to increase efficiency and save energy in the production process.

  16. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  17. Targetry at the LANL 100 MeV isotope production facility: lessons learned from facility commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nortier, F. M. (Francois M.); Fassbender, M. E. (Michael E.); DeJohn, M.; Hamilton, V. T. (Virginia T.); Heaton, R. C. (Richard C.); Jamriska, David J.; Kitten, J. J. (Jason J.); Lenz, J. W.; Lowe, C. E.; Moddrell, C. F.; McCurdy, L. M. (Lisa M.); Peterson, E. J. (Eugene J.); Pitt, L. R. (Lawrence R.); Phillips, D. R. (Dennis R.); Salazar, L. L. (Louie L.); Smith, P. A. (Paul A.); Valdez, Frank O.

    2004-01-01

    The new Isotope Production Facility (IPF) at Los Alamos National Laboratory has been commissioned during the spring of 2004. Commissioning activities focused on the establishment of a radionuclide database, the review and approval of two specific target stack designs, and four trial runs with subsequent chemical processing and data analyses. This paper highlights some aspects of the facility and the targetry of the two approved target stacks used during the commissioning process. Since one niobium encapsulated gallium target developed a blister after the extended irradiation of 4 days, a further evaluation of the gallium targets is required. Beside this gallium target, no other target showed any sign of thermal failure. Considering the uncertainties involved, the production yields obtained for targets irradiated in the same energy slot are consistent for all three 'Prototype' stacks. A careful analysis of the temperature profile in the RbCl targets shows that energy shifts occur in the RbCl and Ga targets. Energy shifts are a result of density variations in the RbCl disk under bombardment. Thickness adjustments of targets in the prototype stack are required to ensure maximum production yields of {sup 82}Sr and {sup 68}Ge in the design energy windows. The {sup 68}Ge yields obtained are still consistently lower than the predicted yield value, which requires further investigation. After recalculation of the energy windows for the RbCl and Ga targets, the measured {sup 82}Sr production yields compare rather well with values predicted on the basis of evaluated experimental excitation function data.

  18. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  19. Demonstration test operation of Feed Materials Production Center Biodenitrification Facility

    International Nuclear Information System (INIS)

    Benear, A.K.; Patton, J.B.

    1987-01-01

    A fluidized-bed biological denitrification (BDN) system was used to treat high-nitrate wastewater streams from a DOE owned uranium processing plant. A two-column system was used to demonstrate BDN operation on a production scale. In a continuous 200 hour rate determination period, the BDN processed over 1.6 million gallons that contained over 4700 kilograms of nitrate and nitrite nitrogen. The BDN removed an average 97% of the incoming nitrate and nitrite. The BDN effluent was discharged to the FMPC sewage treatment plant where it caused increased levels of TOD, TSS and fecal coliforms in the STP discharge. This indicated the BDN effluent will require treatment prior to discharge to the environment. Preliminary chemical consumption rates and associated costs of operation were determined. Several modifications and additions to the system were identified as necessary for the permanent production facility. 3 refs., 11 figs., 2 tabs

  20. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for Value-Added Products (VAPs) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun; (2) progress on existing VAPs; (3) future VAPs that have been recently approved; (4) other work that leads to a VAP; (5) top requested VAPs from the ARM Data Archive; and (6) a summary of VAP and data releases to production and evaluation. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  1. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  2. Model business plan for a sterile insect production facility

    International Nuclear Information System (INIS)

    2008-01-01

    For over 50 years the sterile insect technique (SIT) is a pest control strategy which has been used for eradication, and more recently for suppression, containment and prevention, of unwanted insect pest populations. Examples of successful applications of SIT, almost always applied in conjunction with other control methods in an area-wide integrated approach, are available from around the world. The development and application of SIT has relied overwhelmingly on public or donor initiative and funding throughout its history, although the private sector has always been involved as participants, cooperators or partners in funding. The demand for SIT, and therefore the market for sterile insects, has increased in recent years. This increase coincides with the introduction of new pests through the expansion of global trade and, at the same time, widespread pressure to find alternatives to pesticides. Recent improvements in the technology supporting SIT facilitate its application and suggest lower costs can be achieved. The conditions are therefore met for a greater commercialization of the technique to bring it in line with other pest control approaches that are fully integrated into a market approach. Several challenges arise, however, in pursuing sterile insect production as a commercial venture, ranging from intellectual property protection to pricing of the product. Routine insurance requirements, for instance, are complicated by the biological aspects of the business. This report is aimed at facilitating private sector involvement in the production of sterile insects for use in pest control. It provides guidelines and tools to support the development of specific business plans for a new SIT venture. By providing an international perspective on such issues as initial capital costs and recurring operational expenditures for a sterile insect facility, it may be used to evaluate the feasibility of proceeding with the construction or expansion of a sterile insect

  3. Preparation and Optimization of Vanadium Titanomagnetite Carbon Composite Hot Briquette: A New Type of Blast Furnace Burden

    Science.gov (United States)

    Zhao, W.; Wang, H. T.; Liu, Z. G.; Chu, M. S.; Ying, Z. W.; Tang, J.

    2017-10-01

    A new type of blast furnace burden, named VTM-CCB (vanadium titanomagnetite carbon composite hot briquette), is proposed and optimized in this paper. The preparation process of VTM-CCB includes two components, hot briquetting and heat treatment. The hot-briquetting and heat-treatment parameters are systematically optimized based on the Taguchi method and single-factor experiment. The optimized preparation parameters of VTM-CCB include a hot-briquetting temperature of 300°C, a coal particle size of coal-added ratio of 28.52%, a heat-treatment temperature of 500°C and a heat-treatment time of 3 h. The compressive strength of VTM-CCB, based on the optimized parameters, reaches 2450 N, which meets the requirement of blast furnace ironmaking. These integrated parameters provide a theoretical basis for the production and application of a blast furnace smelting VTM-CCB.

  4. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  5. Ethanol production in small- to medium-size facilities

    Science.gov (United States)

    Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.

    1982-04-01

    In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.

  6. Evaluation of rubber seal products for gamma facilities

    International Nuclear Information System (INIS)

    Sobhy, M.S.; Shafy, M.A.; Shahin, F.

    2005-01-01

    Ageing behavior by employing the prolonged exposures of high-energy radiation such as gamma-rays on the physicomechanical properties of some rubber seal products are studied. The proposed binary-rubber blends, SBR/NBR, EPDM/NBR and EPDM/EPM. have overcome their problem of inhomogeneity and incompatibility between the two rubber phases. Such enhancements are acquired by either the replacement of part of NBR by SBR during mastication, or the incorporation of maleic anhydride. Results show that the EPDM/EPM rubber blend has possessed the radiation resistance property towards the deterioration due to higher gamma-irradiation dose. The SEM images have c early observed the role of the used antioxidant, where a thin film is usually produced, degraded; with the appearance of surface cracks, and repaired with further gamma-irradiation up to high doses. Such enhancement is necessary for the definition of the requirements to be put on rubber seal materials. Finally, these products ought to assure the quality control in production and evaluate their application suitability that may employ in the pneumatic system in gamma facility

  7. Production Facility Prototype Blower 1000 Hour Test Results II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-08

    Long duration tests of the Aerzen GM 12.4 roots style blower in a closed loop configuration provides valuable data and lessons learned for long-term operation at the Mo-99 production facility. The blower was operated in a closed loop configuration with the flow conditions anticipated in plant operation with a Mo-100 target inline. The additional thermal energy generated from beam heating of the Mo-100 disks were not included in these tests. Five 1000 hour tests have been completed since the first test was performed in January of 2016. All five 1000 hour tests have proven successful in exposing preventable issues related to oil and helium leaks. All blower tests to this date have resulted in stable blower performance and consistency. A summary of the results for each test, including a review of the first and second tests, are included in this report.

  8. Compression Characteristics and Energy Requirement of Briquettes Made from a Mixture of Corn Stover and Peanut Shells

    Directory of Open Access Journals (Sweden)

    Chunxiao Gong

    2015-07-01

    Full Text Available Corn stover and peanut shells are both abundantly available biomass feedstocks in China. To determine the compression characteristics and energy requirement of briquettes, mixtures of the corn stover and peanut shells were compressed under three different pressures (30, 60, and 90 MPa with three moisture contents (9%, 14%, and 19%, wet basis and five corn stover-peanut shell mixtures (0%-100%, 25%-75%, 50%-50%, 75%-25%, and 100%-0% by mass. The results showed that applied pressure, moisture content, and the corn stover-peanut shell mixture all significantly affected briquette density and specific energy consumption. The density of the briquette ranged from 646 to 1052 kg/m3 and the specific energy consumption varied from 6.6 to 25.1 MJ/t. A moisture content of 9% was found to be better for the compression of the corn stover and peanut shells mixture. Adding peanut shells to the corn stover improved briquette density and reduced the specific energy consumption. Linear models were developed to describe the briquette density and the specific energy consumption. The briquette durability ranged from 57% to 94% and durable briquettes can be obtained when corn stover and peanut shells are compressed with the mixing ratio of 1:1 (50%-50% at moisture content of 9%.

  9. Fundamental study on carbon composite iron ore hot briquette used as blast furnace burden

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Man-sheng; Liu, Zheng-gen; Wang, Zhao-cai [Institute of Ferrous Metallurgy, Northeastern University, Shenyang (China); Yagi, Jun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

    2011-05-15

    Carbon composite iron ore hot briquette (CCB) is the product of fine iron ore and fine coal by hot briquetting process, which attracts more and more attention as a new type of ironmaking raw materials aiming to improve the operation efficiency and reduce the coke consumption of blast furnace. This paper is devoted to experimental study on metallurgical properties of CCB and numerical simulation of the BF operation with CCB charging. At first, the metallurgical properties of CCB, including cold crushing strength, RDI, RSI, reducibility, high temperature strength, and softening and dripping are experimentally tested and compared with the common burdens, which revealed that the CCB possesses the required metallurgical properties and is suitable to use as the blast furnace burden. Then, the effects of charging CCB on the dripping properties of comprehensive burdens are elucidated based on the experiments under simulated blast furnace conditions. The results showed that the maximum charging ratio of CCB in the iron burdens is 40%-50% for achieving appropriate dripping properties of the mixed burdens. Finally, a multi-fluid blast furnace model is used to simulate BF operation with CCB charging. According to model simulations, charging CCB will cause the temperature level to decreases in the furnace and the location of the cohesive zone shifts downward. On the other hand, the productivity tends to increase while coke rate and total reducing agent rate decrease, the heat efficiency improves remarkably and the operation performance of BF is effectively enhanced. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Sirius-T, a symmetrically illuminated ICF tritium production facility

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.

    1989-01-01

    A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs

  11. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  12. Permeability changes of coal cores and briquettes under tri-axial stress conditions

    Czech Academy of Sciences Publication Activity Database

    Wierzbicki, M.; Konečný, Pavel; Kožušníková, Alena

    2014-01-01

    Roč. 59, č. 4 (2014), s. 1129-1138 ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : coal * gas permeability * tri-axial stress * coal briquettes Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.608, year: 2013 http://mining.archives.pl

  13. Briquettes of rice husk, polyethylene terephthalate (PET), and dried leaves as implementation of wastes recycling

    Science.gov (United States)

    Hariyanto, Sucipto; Usman, Mohammad Nurdianfajar; Citrasari, Nita

    2017-06-01

    This research aim is to determine the best briquettes as implementation of wastes recycle based on scoring method, main component composition, compressive strength, caloric value, water content, vollatile content, and ash content, also the suitability with SNI 01-6235-2000. Main component that used are rice husk, 2mm and 6 mm PET, and dried leaves. Composition variation in this research are marked as K1, K2, K3, K4, and K5 with 2 mm PET plastic and K1, K2, K3, K4, and K5 with 6 mm PET plastic. The total weight of the briquettes is 100 g and divided into 90% main components and 10% tapioca as binder. The compressive strength, caloric value, water content, vollatile content, and ash content were tested according to ASTM D 5865-04, ASTM D 3173-03, ASTM D 3175-02, ASTM D 3174-02. The tested results were used to determine the best briquette by scoring method, and the chosen briquettes is K2 with 6 mm PET plastic. The composition is 70% rice husk, 20% 6 mm PET plastic, and 10% dried leaves with the compressive strength, caloric value, water content, vollatile content, and ash content value is 51,55 kg/cm2; 5123 kal/g; 3,049%; 31,823%, dan 12,869%. The suitable value that meet the criteria according to SNI 01-6235-2000 is compressive strength, caloric value, water content, and ash content.

  14. Impact on indoor air quality during burning of Pakistani coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Ahmad, N.; Sibtain, F.; Raza, M.Z.

    1993-01-01

    A comparison was made of airborne emissions from combustion of new types of Pakistani coal briquettes and traditional fuels. A mud-lined Angethi stove was operated under the standard nominal conditions of burning 200 g charges of fuel inside a 12 m 3 shed with a forced rate of air exchange of 14/hr. Coal was cold briquetted with lime, clay, and oxidant. Traditional fuels were wood, charcoal, and animal dung. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) while dramatically reducing overall SO 2 release. Initial burning was restricted to the outer layers of the briquettes during which time reaction of SO 2 with lime was incomplete and early emissions of SO 2 were substantial. The measurements overall indicated that, with respect to CO, SO 2 , NO x , and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. The traditional fuels and coal briquettes emit elevated peak amounts of CO (100-250μL/L), SO 2 (2-5 μL/L), and NO x (1-5 μL/L) in the early phase of volatiles burning with much reduced emissions in the later char-burning phase. Stove operators can substantially lower exposures by lighting the fuel outside and later moving the stove inside

  15. Preparation of briquettes on the basis of desintegrated phyto-materials and the admixture of fine-grained coal and coke

    Directory of Open Access Journals (Sweden)

    Jakabský Štefan

    2002-03-01

    Full Text Available The contribution deals with the preparation of small-diameter briquettes on the basis of desintegrated phyto-materials and the admixture of coal and coke. The phyto-materials are classified as a dry biomass that can be, on the one hand, the wastes from wood-working industry,(sawdust, chips, bark, etc. or dried mass from the plant production and, on the other hand, the mass of quick-growing plants cultivated on special plantations. In present time this renewable energy resource attracts attention by its heating value ranging from 10 to 16 MJ.kg-1 (EkoWATT, 2001, a low ash content of 0.5 – 6.5 % and by a low sulphur content in a water free sample of 0.05 –0.12 %.As a phyto-material the spruce sawdusts having a grain size of –2 mm were used. The admixture of brown coal, hard coal and coke with a grain size of 0.040 mm was added to the sawdust and in such way prepared mixtures were subjected to briquetting with the aim to obtain small-diameter briquettes. The influence of admixtures amount on the density, and the suitable briquetting press have been studied. A saleability of briquettes on the basis of phyto-materials is conditioned by their density that must be higher than 1,000 kg.m-3. Thus, an adding of denser material with a relatively high calorific value would enable to attain the required density as well as to retain and/or to improve the main utility properties, i.e. calorific value and ash content.The adding evinces itself in an enhancement of briquetting press, but also density of obtained briquettes is often much higher that required by the market. It was showed that in the case of clear spruce sawdust the density of 1,059 kg.m-3 under the briquetting press of 250 MPa can be attained. According to other results, an admixture of brown coal is not very favourable because briquetting press exceeds the value of 300 MPa. As to hard coal adding, the presses under 250 MPa were achieved at the content of 25 – 30 %. The density of these

  16. Effects of coal composition and flotation reagents on the water resistance of binderless briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Motaung, S.R.; Mangena, S.J.; de Korte, G.J. [Syngas & Coal Technology, Sasolburg (South Africa)

    2007-10-15

    The difference in the physical properties, particularly the water resistance or wet strength, of the binderless coal briquettes produced from flotation feed and concentrate was investigated using six bituminous coals from two collieries in the Witbank Coalfield. The coal samples were analyzed for their proximate, petrographic, and mineralogical properties. The presence, in the flotation concentrates, of the reagents used during the froth flotation process was also investigated using gas chromatography. Pillow-shaped binderless briquettes were produced from coal samples at various moisture contents and a pressure of approximately 17 MPA using a Komarek B-100A double-roll press. The briquettes were tested for some physical properties (i.e., dry- and wet-compressive strengths), which were thereafter compared with the properties determined for the coal samples. The binderless briquettes produced from the flotation concentrates were more water-resistant than those produced from the flotation feed. The flotation feed and concentrates of the coals tested were found to have similar petrographic properties. As expected, the ash and kaolinite contents were found to be lower in the flotation concentrates than in the flotation feed. Flotation reagents were detected in the flotation concentrates from both collieries. From the results obtained it is concluded that the increased water resistance of the binderless briquettes produced from flotation concentrates of the coals tested is due to a combination of the fineness of the coal particles, assisted by the amount of reactive macerals (most particularly vitrinite) with the lower ash and kaolinite contents, together with the presence of the flotation reagents, particularly the collector, in the flotation concentrate.

  17. Stabilization and shutdown of Oak Ridge National Laboratory's Radioisotopes Production Facility

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1992-01-01

    The Oak Ridge National Laboratory (ORNL) has been involved in the production and distribution of a variety of radioisotopes for medical, scientific and industrial applications since the late 1940s. Production of these materials was concentrated in a number of facilities primarily built in the 1950s and 1960s. Due to the age and deteriorating condition of these facilities, it was determined in 1989 that it would not be cost effective to upgrade these facilities to bring them into compliance with contemporary environmental, safety and health standards. The US Department of Energy (DOE) instructed ORNL to halt the production of isotopes in these facilities and maintain the facilities in safe standby condition while preparing a stabilization and shutdown plan. The goal was to place the former isotope production facilities in a radiologically and industrially safe condition to allow a 5-year deferral of the initiation of environmental restoration (ER) activities. In response to DOE's instructions, ORNL identified 17 facilities for shutdown, addressed the shutdown requirements for each facility, and prepared and implemented a three-phase, 4-year plan for shutdown of the facilities. The Isotopes Facilities Shutdown Program (IFSP) office was created to execute the stabilization and shutdown plan. The program is entering its third year in which the actual shutdown of the facilities is initiated. Accomplishments to date have included consolidation of all isotopes inventory into one facility, DOE approval of the IFSP Environmental Assessment (EA), and implementation of a detailed management plan for the shutdown of the facilities

  18. Mortality among workers at a nuclear fuels production facility

    International Nuclear Information System (INIS)

    Cragle, D.L.; McLain, R.W.; Qualters, J.R.; Hickey, J.L.; Wilkinson, G.S.; Tankersley, W.G.; Lushbaugh, C.C.

    1988-01-01

    A retrospective cohort mortality study was conducted in a population of workers employed at a facility with the primary task of production of nuclear fuels and other materials. Data for hourly and salaried employees were analyzed separately by time period of first employment and length of employment. The hourly (N = 6687 with 728 deaths) and salaried (N = 2745 with 294 deaths) employees had a mortality experience comparable to that of the United States and, in fact, exhibited significant fewer deaths in many categories of diseases that are traditionally associated with the healthy worker effect. Specifically, fewer deaths were noted in the categories of all causes, all cancers, cancer of the digestive organs, lung cancer, brain cancer (hourly workers only), diabetes, all diseases of the circulatory system, all respiratory diseases, all digestive system diseases, all diseases of the genitourinary system (hourly only), and all external causes of death. A statistically significant, and as yet unexplained increase in leukemia mortality (6 observed vs. 2.18 expected) appeared among a subset of the hourly employees, first hired before 1955, and employed between 5-15 years

  19. Licensing of digital Instrumentation and Control in Radioisotope Production Facility

    International Nuclear Information System (INIS)

    Abdel-Aziz, L.Kh.; Lashin, R.; Mostafa, W.

    2012-01-01

    In spite of the rapid development of digital I and C systems in all major industries, it has for several reasons been slower in nuclear power plants. The most important reason is that only a few new plants have been ordered worldwide during the last ten years. A second reason is connected to the efforts needed in providing adequate evidence that the digital I and C system can be used in safety and safety related applications. This issue is connected to the effort needed in obtaining adequate assurance that the digital I and C will fulfill its intended function and contain no unintended function in all possible operational states during its entire life cycle. This paper presents an acceptance criteria for licensing a digital instrumentation and control system in a Radioisotope Production Facility(1), which is under commissioning. The acceptance criteria ensure that the I and C systems are designed to reach the highest degree of reliability with respect to the function they perform, operators will have clear and accessible availability to data on every plant parameter, and also ensure that the safety objectives have been covered

  20. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  1. Activation of air and concrete in medical isotope production facilities

    Science.gov (United States)

    Dodd, Adam C.; Shackelton, R. J.; Carr, D. A.; Ismail, A.

    2017-05-01

    Medical isotope facilities operating in the 10 to 25 MeV proton energy range have long been used to generate radioisotopes for medical diagnostic imaging. In the last few years the beam currents available in commercially available cyclotrons have increased dramatically, and so the activation of the materials within cyclotron vaults may now pose more serious radiological hazards. This will impact the regulatory oversight of cyclotron operations, cyclotron servicing and future decommissioning activities. Air activation could pose a hazard to cyclotron staff. With the increased cyclotron beam currents it was necessary to examine the issue more carefully. Therefore the ways in which radioactivity may be induced in air by neutron reactions and neutron captures were considered and it was found that the dominant mechanism is neutron capture on Ar-40. A study of the activation of the air by neutron capture on Ar-40 within a cyclotron vault was performed using the MCNP Monte Carlo code. The neutron source energy spectrum used was from the production of the widely used F-18 PET isotope. The results showed that the activation of the air within a cyclotron vault does not pose a significant radiological hazard at the beam intensities currently in use and shows how ventilation affects the results. A second MCNP study on the activation of ordinary concrete in cyclotron vaults by neutron capture was made with a view to determining the optimum thickness of borated polyethylene to reduce neutron activation on both the inner surfaces of the vault and around production targets. This is of importance in decommissioning cyclotrons and therefore in the design of new cyclotron vaults. The distribution of activation on the walls as a function of the source position was also studied. Results are presented for both borated and regular polyethylene, and F-18 and Tc-99 neutron spectra.

  2. Energy from briquettes produced from remains of urban solid residues and wood of Eucalyptus grandis; Energia de briquetes produzidos com rejeitos de residuos solidos urbanos e madeira de Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Jose E.; Leao, Alcides L. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Dept. de Ciencias Ambientais], emails: evaristo@fca.unesp.br, alcidesleao@fca.unesp.br; Sartori, Maria M.P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Dept. de Engenharia de Producao], email: msartori@btu.flash.tv.br

    2009-07-01

    The incentive for consumption and production in large quantity in modern society generates enormous amounts of urban solid residues in the form of municipal solid waste (MSW). With the intention of reducing these residues of the municipal waste tips and to generate energy, briquettes with mixtures of MSW and residues of Eucalyptus grandis were produced. The briquettes were manufactured with 0, 5, 10, 15, 20 and 25% of MSW in the mixture with wood waste and 12% of moisture content. The analyzed parameters used to choose the best treatments were combustion analysis versus ash content, mechanical strength and energy content. The briquettes up to 10% of MSW showed low resistance, and above 15% showed large increase in ash content. Therefore, the treatment that fulfilled the requirements for combustion versus ash content and mechanical resistance was of at least 15% of MSW, since the source of the ash is unidentified. Considering the net energy content, the best treatment was 25% of MSW, with 17,175 kJ kg{sup -1}. Nevertheless, it is strongly advised that further studies related to gas emissions are necessary. (author)

  3. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  4. Fluorine-fixing efficiency on calcium-based briquette: pilot experiment, demonstration and promotion.

    Science.gov (United States)

    Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo

    2010-02-05

    The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant

  5. A cyclotron isotope production facility designed to maximize production and minimize radiation dose

    International Nuclear Information System (INIS)

    Dickie, W.J.; Stevenson, N.R.; Szlavik, F.F.

    1993-01-01

    Continuing increases in requirements from the nuclear medicine industry for cyclotron isotopes is increasing the demands being put on an aging stock of machines. In addition, with the 1990 recommendations of the ICRP publication in place, strict dose limits will be required and this will have an effect on the way these machines are being operated. Recent advances in cyclotron design combined with lessons learned from two decades of commercial production mean that new facilities can result in a substantial charge on target, low personnel dose, and minimal residual activation. An optimal facility would utilize a well engineered variable energy/high current H - cyclotron design, multiple beam extraction, and individual target caves. Materials would be selected to minimize activation and absorb neutrons. Equipment would be designed to minimize maintenance activities performed in high radiation fields. (orig.)

  6. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  7. Study on Reduction Kinetics of Briquettes of Hematite Fines with Boiler Grade Coal and Coke Dust in Two Different Forms: Intermixing and Multilayered

    Science.gov (United States)

    Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib

    2017-10-01

    An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.

  8. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    Science.gov (United States)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.

  9. Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Blesa; J.L. Miranda; M.T. Izquierdo; R. Moliner; A. Arenillas; F. Rubiera [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2003-04-01

    The effect of curing temperature on smokeless fuel briquettes has been studied by Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS), and temperature programmed decomposition (TPD). These techniques help to predict the final properties of these briquettes which were prepared with a low-rank coal, sawdust, and olive stone as biomasses and humates as binder. The best mechanical properties are reached with both the mildest thermal curing at 95{sup o}C and the cocarbonized at 600{sup o}C of Maria coal (M2) and sawdust (S) due to the fibrous texture of sawdust. The temperature of curing causes the release of a certain amount of oxygenate structures and the decrease of the mechanical resistance. 15 refs., 7 figs., 3 tabs.

  10. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    The aim of this study was to test fuel blends of briquettes and chopped reed canary grass in three existing heating plants (50 kW - 500 kW) and elucidate the requirements for good performance and low emissions. In addition, the study investigated production of reed canary grass briquettes using a Polish screw press developed for straw. Some tests with a bale shredder were also undertaken. The screw press technique is of interest for reed canary grass because it is a simple technique, easy to handle, developed for small scale production, and for straw. The test with reed canary grass in this study showed that the technique worked well but that further adjustments and a longer test period are needed in order to achieve higher bulk density and mechanical strength. The test with chopped reed canary grass shows that a system with a forage harvester is slightly more effective than baling and cutting in a bale shredder. The study concluded that few existing heating plants of size 50 kW-1 MW that currently use wood fuels will be able to use reed canary grass without adjustment, conversion or replacement of the combustion equipment. Reed canary grass has 15-20 times higher ash content than wood briquettes and 2-3 times higher ash content than forest residue; the combustion equipment must be able to handle these properties. The boiler must be equipped with a continuously operating ashing system and it must be possible to move the ash bed mechanically. There is a risk of high content of unburned matter if the residence time in the boiler is too short, due to the structure and low bulk density of the reed canary grass ash. Using a blend of wood briquettes and reed canary briquettes results in lower ash content, but also affects the ash chemistry and tends to lower the initial ash fusion temperature compared to using 100 % reed canary grass. Blending chopped reed canary grass and wood chips in an existing small scale heating plant also requires measures to achieve an even fuel

  11. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  12. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  13. Dew point of flue gas in the combustion of brown coal briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W

    1977-08-01

    Economical operation of small steam generators can follow two courses, viz. to channel the emitted gases through the plant and reduce waste gas loss. Two possibilities exist to achieve this: firstly a steam generating process with only slight excess air; secondly a reduction of the emitted gas temperature. The lowest waste gas temperature found in sulphur-containing combustion materials is measured by finding the acid dew-point of the waste gas. The following results in the case of brown coal briquettes were found. Measurements of the dew point of flue gas in two steam generators, both of the double flue type, one having a capacity of 12.5 t/h, the other 25 t/h, one using brown coal briquettes with 1% sulphur content, the other with 3%, resulted in the fact that the dew point can be measured. It was shown that a low air ratio leads to a lowering of the dew point. However this process is unfortunately economically unviable in chain grate generators as the waste gas becomes so thin under a high air ratio that the dew point can only be minimally reduced. Further the acid dew point is only slightly influenced by partial operation of the generator and the infusion of briquette residue.

  14. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  15. Do facilities matter? : The influence of facility satisfaction on perceived labour productivity of office employee

    NARCIS (Netherlands)

    Batenburg, RS; van der Voordt, Theo

    2008-01-01

    Purpose: Companies spend a lot of money to provide facilities such as a nice, effective and efficient building, well designed ergonomic furniture, sophisticated IT, cleaning services, catering, and safety services. Both from a theoretical perspective as well as from a managerial point of view, it is

  16. Calculation of displacement and helium production at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) irradiation facility

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Davidson, D.R.; Greenwood, L.R.; Sommer, W.F.

    1984-01-01

    CT: Differential and total displacement and helium production rates are calculated for copper irradiated by spallation neutrons and 760 MeV protons at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF). The calculations are performed using the SPECTER and VNMTC computer codes, the latter being specially designed for spallation radiation damage calculations. For comparison, similar SPECTER calculations are also described for irradiation of copper in EBR-II and RTNS-II. The results indicate substantial contributions to the displacement and helium production rates due to neutrons in the high-energy tail (above 20 MeV) of the LAMPF spallation neutron spectrum. Still higher production rates are calculated for irradiations in the direct proton beam. These results will provide useful background information for research to be conducted at a new irradiation facility at LAMPF

  17. Operating a production facility without a CO and O agreement

    International Nuclear Information System (INIS)

    Smith, M. R.

    2000-01-01

    Issues that arise when an oil or natural gas facility is operated without a specific construction, ownership and operating (CO and O) agreement was explored. The lack of such an agreement may be due to the parties' inability to reach agreement, reliance on the land operating agreement, or the lack of diligent follow-up on the drafting, revision and execution of operating agreements. The paper examines the nature of ownership interests that obtain in the absence of a CO and O, the common situation in respect to CO and O agreements where the document has been circulated but has not been signed by the owners. A number of actual cases were cited to illustrate the effects of such an omission. It was concluded that ideally, a fully executed CO and O for each facility which deals specifically with the owners involved with the particular facility is the best of all worlds. However given the nature of some facilities, the expense, time and effort required to prepare and execute a separate CO and O, it is frequently omitted; in such situations it is convenient to fall back on the 1990 Operating Procedure of CAPL, which while general in nature and cannot adequately deal with every situation, deals with many common problems associated with the operation of facilities. It is recommended that even if a complete CO and O agreement cannot be executed, interim binding agreements should be used to avoid uncertainty until such time as a complete agreement can be finalized. A clause-by-clause comparison of the 1990 CAPL Operating Procedure and a 1996 model CO and O agreement, prepared by the Petroleum Joint Venture Association (PJVA), is appended

  18. Optimizaiton study of lime-upright-furnace briquette used as a substitution for coke with orthogonal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Zhou, J.; Deng, S.; Hao, X. [Central South University, Changsha (China)

    2006-12-15

    Test results were processed using the method of multi-factorial total probability formula evaluation. Based on range analysis and variance analysis, the optimal component of the compound binder was obtained, namely 4% magnesium-base curing agent, 1% biomass fiber, 1% activator, 0.12% calcium lignosulfonate. Key parameters of briquetting were determined, namely 20kN briquetting pressure, 17% briquetting water, 10% mixture ratio of bituminous coal. The size-composition of anthracite was: 58% less that 0.5 mm, 14% between 0.5 and 1.00 mm, 17% between 1.0 and 2.0 mm and 11% between 2.0 and 3.0 mm. The bonding mechanism of the compound binder was analyzed and the optimal parameter of briquetting determined. The results show that the lime-upright furnace briquette prepared according to the optimal scheme obtained in this experiment has an excellent cold strength, hot strength and heat stability which satisfies the requirements of the industrial production of lime-upright furnace briquets. 4 refs., 7 tabs.

  19. Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Shelton, J.D.

    1998-01-01

    The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report

  20. Evaluation of a Low-Cost Salmon Production Facility; 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hill, James M.; Olson, Todd

    1989-05-01

    This fiscal year 1988 study sponsored by the Bonneville Power Administration evaluates an existing, small-scale salmon production facility operated and maintained by the Clatsop County Economic Development Committee's Fisheries Project.

  1. Lean coding machine. Facilities target productivity and job satisfaction with coding automation.

    Science.gov (United States)

    Rollins, Genna

    2010-07-01

    Facilities are turning to coding automation to help manage the volume of electronic documentation, streamlining workflow, boosting productivity, and increasing job satisfaction. As EHR adoption increases, computer-assisted coding may become a necessity, not an option.

  2. Experimental monitoring of ozone production in a PET cyclotron facility

    International Nuclear Information System (INIS)

    Zanibellato, L.; Cicoria, G.; Pancaldi, D.; Boschi, S.; Mostacci, D.; Marengo, M.

    2010-01-01

    Ozone produced from radiolytic processes was investigated as a possible health hazard in the working environment at the University Hospital 'S.Orsola-Malpighi' PET facility. Intense radiation fields can generate ozone, known to be the most toxic gas produced by ionizing radiation around a particle accelerator. To evaluate ozone concentration in air, two different measurement campaigns were conducted with passive diffusion detectors. Comparison of the results with the concentration limits recommended by American Conference of Governmental Industrial Hygienists (ACGIH) demonstrated that ozone poses no health hazard to workers around a biomedical cyclotron.

  3. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  4. ESOL facility for the generation and radiochemical separation of short half-life fission products

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Meikrantz, D.H.; Baker, J.D.; Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1988-01-01

    A facility has been developed at the Idaho National Engineering Laboratory (INEL) for the generation and rapid radiochemical separation of short half-life mixed fission products. This facility, referred to as the Idaho Elemental Separation On Line (ESOL), consists of electro-plated sources of spontaneously fissioning 252 Cf with a helium jet transport arrangement to continuously deliver short half-life, mixed fission products to the radiochemistry laboratory for rapid, computer controlled, radiochemical separations. 18 refs., 13 figs

  5. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Science.gov (United States)

    2010-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  6. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  7. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process. Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting +5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5% bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  8. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  9. Resource-recovery facilities: Production and cost functions, and debt-financing issues

    International Nuclear Information System (INIS)

    Simonsen, W.S.

    1991-01-01

    Some of the fiscal questions relating to resource-recovery, or trash-burning, facilities are addressed. Production and cost functions for resource-recovery facilities are estimated using regression analysis. Whether or not there are returns to scale are addressed using the production and cost-function framework. Production functions are also estimated using data envelopment analysis (DEA), and results are compared to the regression results. DEA is a linear-program-based technique that can provide information about the production process. The data used to estimate the production and cost functions were collected from the Resource Recovery Yearbook. Once the decision is made to construct a resource-recovery facility, it needs to be financed. The high cost of these facilities usually prohibits financing construction out of regular operating revenues. Therefore, the issues a government faces when debt is used to finance a resource-recovery facility are analyzed. The most important public policy finding is that increasing economies of scale do not seem to be present for resource-recovery facilities

  10. Control of Listeria species food safety at a poultry food production facility.

    Science.gov (United States)

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  12. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  13. Facility design consideration for continuous mix production of class 1.3 propellant

    Science.gov (United States)

    Williamson, K. L.; Schirk, P. G.

    1994-01-01

    In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.

  14. White source gamma-ray production spectral measurement facilities in the USA

    International Nuclear Information System (INIS)

    Larson, D.C.; Dickens, J.K.; Nelson, R.O.; Wender, S.A.

    1991-01-01

    The two primary neutron sources for measuring gamma-ray production (GRP) cross sections for basic and applied work in the USA are the Oak Ridge Electron Linear Accelerator (ORELA) located at the Oak Ridge National Laboratory (ORNL) and the Weapons Neutron Research (WNR) facility located at the Los Alamos National Laboratory (LANL). ORELA is based on a 180-MeV electron linear accelerator, while the WNR facility uses the Los Alamos Meson Physics Facility 800 MeV proton beam to produce neutrons. The facilities collectively cover the neutron-energy range from thermal to over 700 MeV. The paper describes the present capabilities for GRP measurements at each facility. 18 refs

  15. Analysis of hydrogen sulfide releases in heavy water production facilities

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Dumitrescu, Maria; Preda, Irina; Lazar, Roxana

    1996-01-01

    Safety analyses conducted at ICIS concern primarily the heavy water production installations. The quantitative risk assessment needs the frequency calculation of accident sequences and consequences. In heavy water plants which obtain primary isotopic concentration of water by H 2 O - H 2 S exchange, large amounts of hydrogen sulfide which is a toxic, inflammable and explosive gas, are circulated. The first stage in calculating the consequences consists in potential analysis of H 2 S release. This work presents a study of this types of releases for pilot installations of the heavy water production at ICIS (Plant 'G' at Rm. Valcea). The installations which contain and maneuver large quantities of H 2 S and the mathematical models for different types of releases are presented. The accidents analyzed are: catastrophic column, container, spy-hole failures or gas-duct rupture and wall cracks in the installation. The main results are given as tables while the time variations of the flow rate and quantities of H 2 O released by stack disposal are plotted

  16. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  17. Radiological aspects in a monazite based rare earth production facility

    International Nuclear Information System (INIS)

    Harikumar, M.; Sujata, R.; Chinnaesakki, S.; Tripathi, R.M.; Puranik, V.D.; Nair, N.N.G.

    2011-01-01

    One of the largest reserves of monazite in the world is present in the Indian subcontinent. Monazite ore has around 8-9% thorium oxide and nearly 60% Rare earth oxides. Selective acid extraction is used to separate the composite rare earths. The main radiological hazard arises from the presence of thorium and its daughter products. Monitoring of the radiation field and air activity in the rare earths plant is done routinely to reduce the radiation exposure to plant personnel. The separation of uranium and rare earths from Thorium concentrate separated from Monazite is being done as a part of the THRUST (Thorium Retrieval, Recovery of Uranium and Re-storage of Thorium) project from 2004 at Indian Rare Earths Limited, Udyogamandal. The radiological aspect for this extraction of uranium and rare earths was studied. The general radiation field in the rare earth production plant was 0.3-5.0 μGyh -1 and the average short lived air activity was 46 ± 7 mWL. The long lived air activity arising from 232 Th is very insignificant radiologically. The occupational radiation exposure for the rare earths separation plant is only 6 % of the total dose and the estimated average individual dose is 1.6 mSv per year. Studies were also done to estimate the residual radioactivity in the separated rare earth compounds using gamma spectrometry and the results showed significant presence of 227 Ac arising due to the protactinium fraction in the thorium concentrate. This activity is not detectable in a freshly separated rare earth compound but can buildup with time. (author)

  18. Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

    2008-07-01

    One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

  19. Development of post-irradiation test facility for domestic production of 99Mo

    International Nuclear Information System (INIS)

    Taguchi, Taketoshi; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Nishikata, Kaori; Ishida, Takuya; Kawamata, Kazuo

    2013-01-01

    JMTR focus on the activation method. By carrying out the preliminary tests using irradiation facilities existing, and verification tests using the irradiation facility that has developed in the cutting-edge research and development strategic strengthening business, as irradiation tests towards the production of 99 Mo, we have been conducting research and development that can contribute to supply about 25% for 99 Mo demand in Japan and the stable supply of radiopharmaceutical. This report describes a summary of the status of the preliminary tests for the production of 99 Mo: Maintenance of test equipment in the facility in JMTR hot laboratory in preparation for research and development for the production of 99 Mo in JMTR and using MoO 3 pellet irradiated at Kyoto University Research Reactor Institute (KUR). (author)

  20. The synergistic effect in coal/biomass blend briquettes combustion on elements behavior in bottom ash using ICP-OES

    Energy Technology Data Exchange (ETDEWEB)

    Lazaroiu, G.; Frentiu, T.; Maescu, L.; Mihaltan, A.; Ponta, M.; Frentiu, M.; Cordos, E. [Universitatea Politehnica din Bucuresti, Bucharest (Romania)

    2009-05-15

    This paper focuses on the study of the synergistic effect in coal/biomass blend briquettes combustion on behavior of Al, As, Ba, Cd, Co. Cr, Cu, Fe, Ga, K, Mn, Mo, Ni, P, Pb, Si, V, W, Zn, Zr and characterization of raw materials and bottom ashes. The manufacturing of coal/biomass briquettes although not commonly used is an attractive approach, as briquettes combustion is more technologically advantageous than the fluidized bed combustion. In the same time this technology is a way to render valuable materials of low calorific power and results in diminishing polluting emission. Raw materials and briquettes from different blends of pitcoal/sawdust were subjected to combustion in a 55 kW-boiler. The total content of elements after digestion in the HNO{sub 3} - HF mixture and the content in water leachate at a solid/liquid ratio of 1:2 were determined both in raw materials and bottom ash by ICP-OES. The total content of elements was higher in pitcoal than in sawdust. The synergistic effect depends both on coal/biomass ratio in blend and element nature. The water leachable fraction of elements from ash decreased along with the increase of sawdust weight excepting macronutrients (K, P) and Si.

  1. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  2. Preliminary design of a production automation framework for a pyroprocessing facility

    Directory of Open Access Journals (Sweden)

    Moonsoo Shin

    2018-04-01

    Full Text Available Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided. Keywords: Manufacturing Execution System, Material-handling, Production Automation, Production Planning and Control, Pyroprocessing, Pyroprocessing Execution System

  3. HTTR hydrogen production system. Structure and main specifications of mock-up test facility (Contract research)

    International Nuclear Information System (INIS)

    Kato, Michio; Aita, Hideki; Inagaki, Yoshiyuki; Hayashi, Koji; Ohashi, Hirofumi; Sato, Hiroyuki; Iwatsuki, Jin; Takada, Shoji; Inaba, Yoshitomo

    2007-03-01

    The mock-up test facility was fabricated to investigate performance of the steam generator for mitigation of the temperature fluctuation of helium gas and transient behavior of the hydrogen production system for HTTR and to obtain experimental data for verification of a dynamic analysis code. The test facility has an approximate hydrogen production capacity of 120Nm 3 /h and the steam reforming process of methane; CH 4 +H 2 O=3H 2 +CO, was used for hydrogen production of the test facility. An electric heater was used as a heat source instead of the reactor in order to heat helium gas up to 880degC (4MPa) at the chemical reactor inlet which is the same temperature as the HTTR hydrogen production system. Fabrication of the test facility was completed in February in 2002, and seven cycle operations were carried out from March in 2002 to December in 2004. This report describes the structure and main specifications of the test facility. (author)

  4. Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [18F]Fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    2012-01-01

    Positron emission tomography (PET) has advanced rapidly in recent years and is becoming an indispensable imaging modality for the evaluation and staging of cancer patients. A key component of the successful operation of a PET centre is the on-demand availability of radiotracers (radiopharmaceuticals) labelled with suitable positron emitting radioisotopes. Of the hundreds of positron labelled radiotracers, 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG) is the most successful and widely used imaging agent in PET today. While FDG is utilized largely in oncology for the management of cancer patients, its applications in neurology and cardiology are also steadily growing. A large number of PET facilities have been established in Member States over the past few years, and more are being planned. The design and operation of a facility for the production of FDG requires attention to detail, in particular the application of good manufacturing practices (GMP) guidelines and quality assurance. The product must conform to the required quality specifications and must be safe for human use. This book is intended to be a resource manual with practical information for planning and operating an FDG production facility, including design and implementation of the laboratories, facility layout, equipment, personnel and FDG quality assessment. GMP and quality management are discussed only briefly, since these topics are covered extensively in the IAEA publication Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility (Technical Reports Series No. 471). It should be noted that manufacturing processes and quality specifications for FDG are not currently globally harmonized, and these do vary to some extent. However, there is no disagreement over the need to ensure that the product is manufactured in a controlled manner, that it conforms to applicable quality specifications and that it is safe for human use. Administrators, managers, radiopharmaceutical scientists, production

  5. Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of [{sup 18}F]Fluorodeoxyglucose (FDG)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Positron emission tomography (PET) has advanced rapidly in recent years and is becoming an indispensable imaging modality for the evaluation and staging of cancer patients. A key component of the successful operation of a PET centre is the on-demand availability of radiotracers (radiopharmaceuticals) labelled with suitable positron emitting radioisotopes. Of the hundreds of positron labelled radiotracers, 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) is the most successful and widely used imaging agent in PET today. While FDG is utilized largely in oncology for the management of cancer patients, its applications in neurology and cardiology are also steadily growing. A large number of PET facilities have been established in Member States over the past few years, and more are being planned. The design and operation of a facility for the production of FDG requires attention to detail, in particular the application of good manufacturing practices (GMP) guidelines and quality assurance. The product must conform to the required quality specifications and must be safe for human use. This book is intended to be a resource manual with practical information for planning and operating an FDG production facility, including design and implementation of the laboratories, facility layout, equipment, personnel and FDG quality assessment. GMP and quality management are discussed only briefly, since these topics are covered extensively in the IAEA publication Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility (Technical Reports Series No. 471). It should be noted that manufacturing processes and quality specifications for FDG are not currently globally harmonized, and these do vary to some extent. However, there is no disagreement over the need to ensure that the product is manufactured in a controlled manner, that it conforms to applicable quality specifications and that it is safe for human use. Administrators, managers, radiopharmaceutical scientists

  6. Engineering and technology in the deconstruction of nuclear materials production facilities

    International Nuclear Information System (INIS)

    Kingsley, R.S.; Reynolds, W.E.; Heffner, D.C.

    1996-01-01

    Technology and equipment exist to support nuclear facility deactivation, decontamination, and decommissioning. In reality, this statement is not surprising because the nuclear industry has been decontaminating and decommissioning production plants for decades as new generations of production technology were introduced. Since the 1950s, the Babcock and Wilcox Company (B ampersand W) has operated a number of nuclear materials processing facilities to manufacture nuclear fuel for the commercial power industry and the U.S. Navy. These manufacturing facilities included a mixed oxide (PuO 2 -UO 2 ) nuclear fuel manufacturing plant, low- and high-enriched uranium (HEU/LEU) chemical and fuel plants, and fuel assembly plants. In addition, B ampersand W designed and build a major nuclear research center in Lynchburg, Virginia, to support these nuclear fuel manufacturing activities and to conduct nuclear power research. These nuclear research facilities included two research reactors, a hot-cell complex for nuclear materials research, four critical experiment facilities, and a plutonium fuels research and development facility. This article describes the B ampersand W deactivation, decomtanimation, and decommisioning program

  7. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  8. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  9. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  10. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. PENGEMBANGAN TUNGKU BRIKET BATUBARA SKALA RUMAH TANGGA Improvement of a Coal Briquette Stove for Household Scale

    Directory of Open Access Journals (Sweden)

    Tamrin Tamrin

    2012-05-01

    Full Text Available Improving of a coal briquette stove is required in the context of energy diversification for strengthening national energy security. The policy of kerosene conversion to LPG is a short term policy and needs other source of energy alternative.  In idealized sense, all potentials should be used for household cooking, not always depending on a particular energy source. Purpose of this research was to improve a household coal briquette stove to increase stove efficiency and ease in ceasing the ember. Design criteria of the coal briquette stove were based on heat transfer from the burning coal to the heated object, ease in ceasing the ember, and facilitating the exhausting smoke from the kitchen room. Performance test to the designed stove was conducted on analyses of temperature at the bottom of a pan versus time during the firing, heat efficiency, and the time of ceasing ember. The results showed that the cooking temperature (>180 oC was reached after 35-65 minutes. The cooking temperature lasted for 4 hours, heat efficiency of 25.5 % was about optimum, and the time of ember ceasing was 19-33 minutes. ABSTRAK Pengembangan tungku briket batubara sangat diperlukan dalam diversifikasi pemakaian energi bahan bakar agar ketahanan energi nasional  menjadi kuat.  Kebijakan pengalihan bahan bakar minyak tanah ke elpiji merupakan ke- bijakan jangka pendek dan perlu energi alternatif lainnya  Idealnya  semua potensi yang ada dapat digunakan untuk memasak, tidak harus bergantung pada energi tertentu.  Tujuan penelitian ini adalah untuk mengembangkan tungku briket batubara skala rumah tangga untuk meningkatkan efiseinsi dan memudahkan pematian bara api. Tungku briket batubara dibuat didasarkan pada sistem pindah panas dari bara briket ke objek yang dipanaskan, memudahkan pe- matian bara api briket batubara dan menyalurkan asap dari ruang pembakaran keluar dari ruang dapur. Pengujian dilakukan untuk mengetahui perubahan suhu dasar panci selama pembakaran

  12. Production facility site selection factors for Texas value-added wood producers

    Science.gov (United States)

    Judd H. Michael; Joanna Teitel; James E. Granskog

    1998-01-01

    Value-added wood products manufacturers serve an important role in the economies of many U.S. regions and are therefore sought after by entities such as economic development agencies. The reasons why certain locations for a prospective prodution facility would be more attractive to secondary wood industry producers are not clearly understood. Therefore, this research...

  13. Design and selection criteria of a commercial irradiation facility for spices and dry products

    International Nuclear Information System (INIS)

    Aggarwal, K.S.

    1990-01-01

    Apart from cost considerations, various factors which should be taken into consideration in design of a commercial irradiation facility for spices and dry products and the factors which a user should consider for selecting a food irradiator are discussed in brief. (author)

  14. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  15. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Scott, S.W.

    1997-01-01

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients

  16. A Tool for the Design of Facilities for the Sustainable Production of Knowledge

    NARCIS (Netherlands)

    Wu, J.

    2005-01-01

    The aim of the study is to develop a ‘design tool’, that is a method to enhance the design and planning of facilities for the sustainable production of new knowledge. More precisely, the objective is to identify a method to support the conception of building complexes related to the long-term

  17. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  18. Agriculture products as source of radionuclides and some monitoring principles of agriculture near nuclear facilities

    International Nuclear Information System (INIS)

    Aleksakhin, R.M.; Korneev, N.A.; Panteleev, L.I.; Shukhovtsev, B.I.

    1985-01-01

    Migration of radionuclides into agriculture products in regions adjoining the nuclear facilities depends on a large number of factors. Among them is the complex of ecological conditions: meteorological factors, type of soils etc., as well as biological peculiarities of agriculture plants and animals. It is possible to control the radionuclide content administered to man's organism with agriculture products changing large branches of agriculture and varying within the range of seprate branches of industry, taking into account the most effective ways of radionuclide pathways

  19. 7 CFR Appendix C to Subpart E of... - Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities

    Science.gov (United States)

    2010-01-01

    ... beverage purposes, is manufactured from biomass. (2) The alcohol production facility includes all... studies are very important and required and will be prepared by competent and knowledgeable independent...

  20. Analysis of federal and state policies and environmental issues for bioethanol production facilities.

    Science.gov (United States)

    McGee, Chandra; Chan Hilton, Amy B

    2011-03-01

    The purpose of this work was to investigate incentives and barriers to fuel ethanol production from biomass in the U.S. during the past decade (2000-2010). In particular, we examine the results of policies and economic conditions during this period by way of cellulosic ethanol activity in four selected states with the potential to produce different types of feedstocks (i.e., sugar, starch, and cellulosic crops) for ethanol production (Florida, California, Hawaii, and Iowa). Two of the four states, Iowa and California, currently have commercial ethanol production facilities in operation using corn feedstocks. While several companies have proposed commercial scale facilities in Florida and Hawaii, none are operating to date. Federal and state policies and incentives, potential for feedstock production and conversion to ethanol and associated potential environmental impacts, and environmental regulatory conditions among the states were investigated. Additionally, an analysis of proposed and operational ethanol production facilities provided evidence that a combination of these policies and incentives along with the ability to address environmental issues and regulatory environment and positive economic conditions all impact ethanol production. The 2000-2010 decade saw the rise of the promise of cellulosic ethanol. Federal and state policies were enacted to increase ethanol production. Since the initial push for development, expansion of cellulosic ethanol production has not happened as quickly as predicted. Government and private funding supported the development of ethanol production facilities, which peaked and then declined by the end of the decade. Although there are technical issues that remain to be solved to more efficiently convert cellulosic material to ethanol while reducing environmental impacts, the largest barriers to increasing ethanol production appear to be related to government policies, economics, and logistical issues. The numerous federal and state

  1. Breathing new life into your production irradiator the case for reinvesting in your facility

    International Nuclear Information System (INIS)

    Aube, Robert; Wynnyk, Mike

    2002-01-01

    This paper focuses on one of the important technology issues facing the gamma processing industry today: that of strategically planning for extending the useful life of a production irradiator. Production irradiator owners are typically faced with the difficult question of whether or not to significantly reinvest in their facilities after 15-20 years of service. At this point in time the irradiator has likely provided many years of safe, reliable service and has paid for itself many times over. As the equipment ages, it may become less reliable, due to wear and maintenance practices, and more costly to operate. The cost of refurbishing the equipment may be significant and the downtime required to complete the refurbishment is also likely to be a challenge. This makes it essential to present a clear and rational justification for reinvesting in the facility. There has been a growing trend in recent years for irradiator owners to refurbish or upgrade their facilities. This trend is driven by the need to keep the facilities operating efficiently and safely as well as by the desire to take advantage of advancements that have occurred in the technology over the years. These advancements can enhance equipment efficiency, improve operational effectiveness and maintain or exceed quality assurance requirements. This paper illustrates the value of reinvesting in irradiator facilities, and highlights the significant benefits derived

  2. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  3. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.

    Science.gov (United States)

    Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes

    2017-06-01

    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impacts of facility size and location decisions on ethanol production cost

    International Nuclear Information System (INIS)

    Kocoloski, Matt; Michael Griffin, W.; Scott Matthews, H.

    2011-01-01

    Cellulosic ethanol has been identified as a promising alternative to fossil fuels to provide energy for the transportation sector. One of the obstacles cellulosic ethanol must overcome in order to contribute to transportation energy demand is the infrastructure required to produce and distribute the fuel. Given a nascent cellulosic ethanol industry, locating cellulosic ethanol refineries and creating the accompanying infrastructure is essentially a greenfield problem that may benefit greatly from quantitative analysis. This study models cellulosic ethanol infrastructure investment using a mixed integer program (MIP) that locates ethanol refineries and connects these refineries to the biomass supplies and ethanol demands in a way that minimizes the total cost. For the single- and multi-state regions examined in this study, larger facilities can decrease ethanol costs by $0.20-0.30 per gallon, and placing these facilities in locations that minimize feedstock and product transportation costs can decrease ethanol costs by up to $0.25 per gallon compared to uninformed placement that could result from influences such as local subsidies to encourage economic development. To best benefit society, policies should allow for incentives that encourage these low-cost production scenarios and avoid politically motivated siting of plants. - Research highlights: → Mixed-integer programming can be used to model ethanol infrastructure investment. → Large cellulosic ethanol facilities can decrease production cost by $0.20/gallon. → Optimized facility placement can save $0.25/gallon.

  5. Thermodynamic Evaluation of Floating Production Storage and Offloading Facilities with Liquefaction Processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing.They have gained interest because they are more flexible than conventional plants and can be used for producingoil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remotelocations. The present work investigates the possibility of integrating liquefaction processes on such facilities, consideringfour possible petroleum compositions, which differ in their contents of carbon dioxide, light and heavy hydrocarbons.The performance...

  6. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  7. Team engineering for successful reuse and mission enhancement of a former DOE Weapons Material Production Facility

    International Nuclear Information System (INIS)

    Blackford, L.T.; Mizner, J.H. Jr.

    1994-11-01

    This paper describes the team engineering approach used to resolve issues associated with converting a 50-year-old fuel processing facility into a decontamination facility. In only nine months, the multi-disciplinary team formed for this task has made significant progress toward both long-term and short-term goals, including conceptual design of two decontamination modules. The team's accomplishments are even more notable in light of frequent changes in scope and mission. Today, the team serves as a venue for troubleshooting operational issues, sharing vendor information, developing long-range strategies, and addressing integration issues within the facility's organizational structure. The team's approach could serve as a useful model to address the many issues surrounding the transition of the U.S. Department of Energy (DOE) and commercial complexes from a production and supply role to one of cleanup and environmental remediation

  8. A conversion development program to LEU targets for medical isotope production in the MAPLE Facilities

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2000-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). The molybdenum extraction process from the HEU targets provided predictable, consistent yields for our high-volume molybdenum production process. A reliable supply of HEU for the NRU research reactor targets has enabled MDS Nordion to develop a secure chain of medical isotope supply for the international nuclear medicine community. Each link of the isotope supply chain, from isotope production to patient application, has been established on a proven method of HEU target irradiation and processing. To ensure a continued reliable and timely supply of medical isotopes, the design of the MAPLE facilities was based on our established process - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a program to convert the MAPLE facilities to LEU targets. An initial feasibility study was initiated to identify the technical issues to convert the MAPLE targets from HEU to LEU. This paper will present the results of the feasibility study. It will also describe future challenges and opportunities in converting the MAPLE facilities to LEU targets for large scale, commercial medical isotope production. (author)

  9. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Science.gov (United States)

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... the Federal Power Act, at which non-Federal hydroelectric development is permissible; or (2) An...

  10. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Alcohol Production Facilities Planning, Performing... of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control (I..., without recourse to the Government, for the settlement and satisfaction of all contractual and...

  11. 77 FR 64999 - Guidance for Industry: Necessity of the Use of Food Product Categories in Food Facility...

    Science.gov (United States)

    2012-10-24

    ...] Guidance for Industry: Necessity of the Use of Food Product Categories in Food Facility Registrations and... industry entitled ``Necessity of the Use of Food Product Categories in Food Facility Registrations and... made available a draft guidance entitled ``Guidance for Industry: Necessity of the Use of Food [[Page...

  12. 10 CFR 170.21 - Schedule of fees for production and utilization facilities, review of standard referenced design...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Schedule of fees for production and utilization facilities, review of standard referenced design approvals, special projects, inspections and import and export... AMENDED Schedule of Fees § 170.21 Schedule of fees for production and utilization facilities, review of...

  13. Plant Design for the Production of DUAGG

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    2003-01-01

    DUAGG production scale, (3) estimate the facility's capital and operating costs, and (4) perform a parametric sensitivity analysis on those elements of cost that most affect the total operating expenses. Because the study does not include preoperational, decontamination, decommissioning, and closure costs, it cannot be considered a complete life-cycle cost analysis. However, the purpose of this analysis is to establish the potential viability of the DUAGG process as a private commercial venture to meet a market demand for advanced spent nuclear fuel (SNF) storage and transport casks

  14. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  15. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Silva, Teógenes A. da; Guimarães, Margarete C.; Meireles, Leonardo S.; Teles, Luciana L.D.; Lacerda, Marco Aurélio S.

    2016-01-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent H_p(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility. - Highlights: • New regulatory statement was issued concerning eye lens radiation protection. • The calibration procedure of dosimeters for measuring H_p(3) was studied on a slab and cylindrical phantoms. • H_p(3) measurements in workers in a radiopharmaceutical production facility were done.

  16. FFTF [Fast Flux Test Facility] performance measurements for safety, productivity and control

    International Nuclear Information System (INIS)

    Newland, D.J.; Praetorius, P.R.; Tomaszewski, T.A.

    1987-05-01

    A useful set of performance measurements for Safety, Productivity and Control has evolved at the Fast Flux Test Facility (FFTF). In response to declining budgets and the resulting need to safely manage a manpower rampdown, an ''Early Warning System'' was developed in 1984. Its purpose was to monitor the effects of the staffing rampdown such that appropriate remedial action could be taken to correct adverse trends before a significant problem occurred. 1 tab

  17. Fuel elements and fuel element materials. Experimental facilities for fission products lift-off tests

    International Nuclear Information System (INIS)

    Blanchard, R.J.; Veyrat, J.F.

    1978-01-01

    One of the hypothetical accidents on the HTGR primary cooling circuits is the failure of a circuit resulting in a depressurization in the primary loops of the reactor. There is a risk of release of fission products in relation to the size of the failure. Experimental facilities for HTGR tests were developed: an in pile helium loop Comedie and an out of pile helium loop

  18. Study on application of radiation and radioisotopes -Development of the radioisotope production facilities for the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Bok; Woo, Jong Sub; Kang, Byung Woi; Baek, Sam Tae; Jeong, Un Soo; Park, Yong Chul; Jeon, Young Keon; Chang, Chun Ik; Lee, Bong Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    Development and construction of the lead hot cell for radioisotope production and related facility. 1. Fabrication and installation of the lead H/C system. 2. Development and installation of the hydraulic transfer system. 3. Development of the radiation monitoring system. 4. Fabrication and installation of the fire extinguishing system in the H/C. 5. Fabrication and installation of the fume hood. 4 tabs.,10 figs. (Author).

  19. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  20. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  1. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  2. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain

    DEFF Research Database (Denmark)

    Jakociune, D.; Bisgaard, M.; Pedersen, Karl

    2014-01-01

    Aims: The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility......, members of the persistent clone were weak producers of H2S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. Conclusions: It was concluded that the contamination was caused by a persistent strain...... in the production facility and that this strain apparently had adapted to grow in the relevant egg product. Significance and Impact of the Study: S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility...

  3. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  4. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  5. Performance and first results of fission product release and transport provided by the VERDON facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallais-During, A., E-mail: annelise.gallais-during@cea.fr [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Bonnin, J.; Malgouyres, P.-P. [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Morin, S. [IRSN, F-13108 Saint-Paul-lez-Durance (France); Bernard, S.; Gleizes, B.; Pontillon, Y.; Hanus, E.; Ducros, G. [CEA, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-01

    Highlights: • A new facility to perform experimental LWR severe accidents sequences is evaluated. • In the furnace a fuel sample is heated up to 2600 °C under a controlled gas atmosphere. • Innovative thermal gradient tubes are used to study fission product transport. • The new VERDON facility shows an excellent consistency with results from VERCORS. • Fission product re-vapourization results confirm the correct functioning of the gradient tubes. - Abstract: One of the most important areas of research concerning a hypothetical severe accident in a light water reactor (LWR) is determining the source term, i.e. quantifying the nature, release kinetics and global released fraction of the fission products (FPs) and other radioactive materials. In line with the former VERCORS programme to improve source term estimates, the new VERDON laboratory has recently been implemented at the CEA Cadarache Centre in the LECA-STAR facility. The present paper deals with the evaluation of the experimental equipment of this new VERDON laboratory (furnace, release and transport loops) and demonstrates its capability to perform experimental sequences representative of LWR severe accidents and to supply the databases necessary for source term assessments and FP behaviour modelling.

  6. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes

    Directory of Open Access Journals (Sweden)

    Veronika Chaloupková

    2018-02-01

    Full Text Available Via image-based macroscopic, analysis of a briquettes’ surface structure, particle size, and distribution was determined to better understand the behavioural pattern of input material during agglomeration in the pressing chamber of a briquetting machine. The briquettes, made of miscanthus, industrial hemp and pine sawdust were produced by a hydraulic piston press. Their structure was visualized by a stereomicroscope equipped with a digital camera and software for image analysis and data measurements. In total, 90 images of surface structure were obtained and quantitatively analysed. Using Nikon Instruments Software (NIS-Elements software, the length and area of 900 particles were measured and statistically tested to compare the size of the particles at different surface locations. Results showed statistically significant differences in particles’ size distribution: larger particles were generally on the front side of briquettes and vice versa, smaller particles were on the rear side. As well, larger particles were centred in the middle of cross sections and the smaller particles were centred on the bottom of the briquette.

  7. Design features of isotope production facility at Inshas cyclotron complex. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Comsan, M N [Nuclear Research Center, Atomic Energy Aurhority, Cairo, (Egypt)

    1996-03-01

    The nuclear research center, AEA, Egypt is erecting at its Inshas campus cyclotron complex for multidisciplinary use for research and application. The complex is to utilize a russian made AVF cyclotron accelerator of the type MGC-20 with MeV protons. Among its applications, the accelerator will be used for the production of short lived cyclotron isotopes. This article presents a concise description of the design features of isotope production facility to be annexed to the complex layout, schemes for radio waste, ventilation, and air conditioning systems. 2 figs., 2 tabs.

  8. New electron beam facility for R and D and production at acsion industries

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, V.J.; Barnard, J.W.; Saunders, C.B.; Stepanik, T.M. E-mail: stepanik@acsion.com

    2003-08-01

    Since its incorporation in 1998, Acsion Industries Inc. has been working with clients to develop industrial uses of electron processing for improving products and manufacturing processes. Acsion has promoted this technology for sterilizing medical devices and pharmaceuticals, for treating wood pulp in the viscose/rayon process, for reducing pathogens in food and animal feed, and for curing advanced composites for the aerospace industry. As a result of significant developments in its composite curing programs, Acsion has recently made major modifications to its facility to increase its production and R and D capabilities. These modifications are described in this paper.

  9. New electron beam facility for R&D and production at acsion industries

    Science.gov (United States)

    Lopata, V. J.; Barnard, J. W.; Saunders, C. B.; Stepanik, T. M.

    2003-08-01

    Since its incorporation in 1998, Acsion Industries Inc. has been working with clients to develop industrial uses of electron processing for improving products and manufacturing processes. Acsion has promoted this technology for sterilizing medical devices and pharmaceuticals, for treating wood pulp in the viscose/rayon process, for reducing pathogens in food and animal feed, and for curing advanced composites for the aerospace industry. As a result of significant developments in its composite curing programs, Acsion has recently made major modifications to its facility to increase its production and R&D capabilities. These modifications are described in this paper.

  10. The simulation of stationary and non-stationary regime operation of heavy water production facilities

    International Nuclear Information System (INIS)

    Peculea, M.; Beca, T.; Constantinescu, D.M.; Dumitrescu, M.; Dimulescu, A.; Isbasescu, G.; Stefanescu, I.; Mihai, M.; Dogaru, C.; Marinescu, M.; Olariu, S.; Constantin, T.; Necula, A.

    1995-01-01

    This paper refers to testing procedures of the production capacity of heavy water production pilot, industrial scale plants and of heavy water reconcentration facilities. Simulation codes taking into account the mass and heat transfers inside the exchange columns were developed. These codes provided valuable insight about the isotope build-up of the installation which allowed estimating the time of reaching the stationary regime. Also transient regimes following perturbations in the operating parameters (i.e. temperature, pressure, fluid rates) of the installation were simulated and an optimal rate of routine inspections and adjustments was thus established

  11. An approach for prediction of petroleum production facility performance considering Arctic influence factors

    International Nuclear Information System (INIS)

    Gao Xueli; Barabady, Javad; Markeset, Tore

    2010-01-01

    As the oil and gas (O and G) industry is increasing the focus on petroleum exploration and development in the Arctic region, it is becoming increasingly important to design exploration and production facilities to suit the local operating conditions. The cold and harsh climate, the long distance from customer and suppliers' markets, and the sensitive environment may have considerable influence on the choice of design solutions and production performance characteristics such as throughput capacity, reliability, availability, maintainability, and supportability (RAMS) as well as operational and maintenance activities. Due to this, data and information collected for similar systems used in a normal climate may not be suitable. Hence, it is important to study and develop methods for prediction of the production performance characteristics during the design and operation phases. The aim of this paper is to present an approach for prediction of the production performance for oil and gas production facilities considering influencing factors in Arctic conditions. The proportional repair model (PRM) is developed in order to predict repair rate in Arctic conditions. The model is based on the proportional hazard model (PHM). A simple case study is used to demonstrate how the proposed approach can be applied.

  12. On-line tritium production and heat deposition rate measurements at the Lotus facility

    International Nuclear Information System (INIS)

    Joneja, O.P.; Scherrer, P.; Anand, R.P.

    1994-01-01

    Integral tritium production and heat deposition measurement in a prototype fusion blanket would enable verification of the computational codes and the data based employed for the calculations. A large number of tritium production rate measurements have been reported for different type of blankets, whereas the direct heat deposition due to the mixed radiation field in the fusion environment, is still in its infancy. In order to ascertain the kerma factors and the photon production libraries, suitable techniques must be developed to directly measure the nuclear heat deposition rates in the materials required for the fusion systems. In this context, at the Lotus facility, we have developed an extremely efficient double ionizing chamber, for the on-line tritium production measurements and employed a pure graphite calorimeter to measure the nuclear heat deposition due to the mixed radiation field of the 14 MeV, Haefely neutron generator. This paper presents both systems and some of the recent measurements. (authors). 8 refs., 13 figs

  13. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  14. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  15. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  16. One year's experience of the WA medical cyclotron and radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    DeRoach, J.; Tuchyna, T.; Jones, C.; Price, R.

    2004-01-01

    Full text: The WA PET Centre Medical Cyclotron, a facility novel in Western Australia, produced its first bolus of FDG for patient injection for PET scanning in August 2003. This paper describes the methodology and practices employed during the past 12 months for ensuring that reliable routine provision of FDG is maintained, in parallel with facilitating the development and production of achievable new radiopharmaceuticals. An FDG production team of six staff and, a maintenance and development team of 4 staff were created from the 3.4 staff specifically recruited for this service and from incumbent staff. Teams were also set up to carry out development projects related to the service. Training procedures were created under the department's ISO9001:2000 accreditation system for the certification of production and maintenance staff. Practices and documentation systems were put in place in anticipation of a pending cGMP audit. Several unplanned major changes to equipment and infrastructure were necessary post commissioning. These changes included purchase of a different FDG synthesis module from that originally supplied, and modifications to engineering services, including changes to air conditioning, changes to supply of vacuum and upgrading of drainage in the laboratory area. A device for the measurement of end of bombardment yield was built, so that the efficiencies of the various synthesis modules could be accurately determined. Strict radiation protection procedures were put in place. All staff were provided with luxels and finger TLDs for monthly reporting of their radiation levels, as well as electronic monitors for real-time monitoring. From August 2003 to June 2004 (11 months) 2229 FDG patient doses were produced and dispensed by this facility. An average of 8.0 patient doses per available working day were dispensed during the 2003 period, rising to 11.1 patient doses per day in 2004. Several 11 NH3 doses were also delivered. The cyclotron was unavailable for

  17. Guidelines for Risk-Based Changeover of Biopharma Multi-Product Facilities.

    Science.gov (United States)

    Lynch, Rob; Barabani, David; Bellorado, Kathy; Canisius, Peter; Heathcote, Doug; Johnson, Alan; Wyman, Ned; Parry, Derek Willison

    2018-01-01

    In multi-product biopharma facilities, the protection from product contamination due to the manufacture of multiple products simultaneously is paramount to assure product quality. To that end, the use of traditional changeover methods (elastomer change-out, full sampling, etc.) have been widely used within the industry and have been accepted by regulatory agencies. However, with the endorsement of Quality Risk Management (1), the use of risk-based approaches may be applied to assess and continuously improve established changeover processes. All processes, including changeover, can be improved with investment (money/resources), parallel activities, equipment design improvements, and standardization. However, processes can also be improved by eliminating waste. For product changeover, waste is any activity not needed for the new process or that does not provide added assurance of the quality of the subsequent product. The application of a risk-based approach to changeover aligns with the principles of Quality Risk Management. Through the use of risk assessments, the appropriate changeover controls can be identified and controlled to assure product quality is maintained. Likewise, the use of risk assessments and risk-based approaches may be used to improve operational efficiency, reduce waste, and permit concurrent manufacturing of products. © PDA, Inc. 2018.

  18. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  19. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  20. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  1. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  2. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  3. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    Science.gov (United States)

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model. © 2014 American Institute of Chemical Engineers.

  4. Gamma and X-rays Production for Experiments at ELSA Facility

    CERN Document Server

    Lemaire, J

    2004-01-01

    The ELSA facility is a high brightness 18 MeV electron source dedicated to electron radiation, gamma-rays and picosecond hard and soft X-rays. It consists of a 144 MHz RF photoinjector producing short bunches which are further accelerated to a final energy varying from 2 to 18 MeV thanks to three 433 MHz RF cavities. Former beam compression design used a half turn magnet compressor system. It has been recently replaced by a double alpha magnet compressor. Electron beams are now delivered to a new experimental room. We present the new panel of interests offered by this facility in term of gamma-ray and X-ray production.

  5. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  6. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  7. Calculation of displacement and helium production at the LAMPF irradiation facility

    International Nuclear Information System (INIS)

    Davidson, D.R.; Greenwood, L.R.; Sommer, W.F.; Wechsler, M.S.

    1984-01-01

    Differential and total displacement and helium production rates are calculated for copper irradiated by spallation neutrons and 760 MeV protons at LAMPF. The calculations are performed using the SPECTER and VNMTC computer codes, the latter being specially designed for spallation radiation damage calculations. For comparison, similar SPECTER calculations are also described for irradiation of copper in EBR-II and RTNS-II. The results indicate substantial contributions to the displacement and helium production rates due to neutrons in the high-energy tail (above 40 MeV) of the LAMPF spallation neutron spectrum. Still higher production rates are calculated for irradiations in the direct proton beam. These results will provide useful background information for research to be conducted at a new irradiation facility at LAMPF

  8. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  9. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  10. Study on control characteristics for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

    2005-01-01

    The Japan Atomic Energy Research Institute has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High-Temperature Engineering Test Reactor (HTTR). Prior to the coupling of a hydrogen production plant with the HTTR, simulation tests with a mock-up test facility of the HTTR hydrogen production system (HTTR-H2) is underway. The test facility is a 1/30-scale of the HTTR-H2 and simulates key components downstream from an intermediate heat exchanger of the HTTR. The main objective of the simulation tests is the establishment and demonstration of control technology, focusing on the mitigation of a thermal disturbance to the reactor by a steam generator (SG) and on the controllability of the pressure difference between the helium and process gases at the reaction tube in a steam reformer (SR). It was confirmed that the fluctuation of the outlet helium gas temperature at the SG and the pressure difference in the SR can be controlled within the allowable range for the HTTR-H2 in the case of the system controllability test for the fluctuation of chemical reaction. In addition, a dynamic simulation code for the HTTR-H2 was verified with the obtained test data

  11. Water-Sensitivity Characteristics of Briquettes Made from High-Rank Coal

    Directory of Open Access Journals (Sweden)

    Geng Yunguang

    2016-01-01

    Full Text Available In order to study the water sensitivity characteristics of the coalbed methane (CBM reservoir in the southern Qinshui Basin, the scanning electron microscopy, mineral composition and the water sensitivity of main coalbed 3 cores were tested and analyzed. Because CBM reservoirs in this area are characterized by low porosity and low permeability, the common water sensitivity experiment of cores can’t be used, instead, the briquettes were chose for the test to analysis the water sensitivity of CBM reservoirs. Results show that: the degree of water sensitivity in the study area varies from week to moderate. The controlling factors of water sensitivity are clay mineral content and the occurrence type of clay minerals, permeability and liquid flow rate. The water sensitivity damage rate is positively correlated with clay mineral content and liquid flow rate, and is negatively correlated with core permeability. The water sensitivity of CBM reservoir exist two damage mechanisms, including static permeability decline caused by clay mineral hydration dilatation and dynamic permeability decline caused by dispersion/migration of clay minerals.

  12. Measurements of nuclear data and possibility to construct the nuclear data production facility based on electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Won; Ko, In Soo; Cho, Moo Hyun; Kim, Gui Nyun; Lee, Young Seok; Kang, Heung Sik [Pohang University of Science and Technology, Pohang(Korea)

    2001-04-01

    In order to construct an infrastructure to produce nuclear data, we studied three main items; (1) Study on the possibility to construct a facility for nuclear data production, (2) Production of nuclear data for nuclear power plant, and (3) Pulsed neutron source based on a 100-MeV electron linac at Pohang Accelerator Laboratory (PAL). We confirmed the possibility to build a nuclear data production facility utilizing a 100-MeV electron linac at PAL and manpower who wanted to participate the nuclear data production experiments. In order to measure the nuclear data for nuclear power plant, we used several nuclear data production facilities in abroad. We measured total cross sections and neutron caprure cross sections for {sup nat}Dy and {sup nat}Hf using the pulsed neutron facility in the Research Reactor Institute, Kyoto University (KURRI). The neutron capture cross sections for {sup 161,162,163,164}Dy were measured at KURRI in the neutron energy region between 0.001 eV and several tens keV, and at the fast neutron facility in Tokyo Institute of Technology in the neutron energy region between 10 keV and 100 keV. We also measured the neutron capture cross sections and gamma multiplicity of {sup 232}Th at the IBR30 in Dubna, Russia. We have construct a pulsed neutron source using a 100-MeV electron linac at PAL. We measured neutron time-of-flight (TOF) spectra in order to check the characteristics of the pulsed neutron source. We also measured a neutron total cross sections of W and Cu. The pulsed neutron facility can be utilized in the education facility for nuclear data production and the test facility for the R and D purpose of the nuclear data production facility. 29 refs., 57 figs., 22 tabs. (Author)

  13. Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility

    DEFF Research Database (Denmark)

    Gittel, Antje; Kofoed, Michael; Sørensen, Ketil B

    2012-01-01

    , Denmark) and aimed to assess their potential in souring control. Nitrate addition to deoxygenated seawater shifted the low-biomass seawater community dominated by Gammaproteobacteria closely affiliated with the genus Colwellia to a high-biomass community with significantly higher species richness....... Epsilonproteobacteria accounted for less than 1% of the total bacterial community in the nitrate-amended injection water and were most likely outcompeted by putative nitrate-reducing, methylotrophic Gammaproteobacteria of the genus Methylophaga. Reservoir passage and recovery of the oil resulted in a significant change...... abundance of Epsilonproteobacteria throughout the production facility suggested that the Deferribacteres play a major role in nitrate-induced souring control at high temperatures....

  14. Production planning and control for semiconductor wafer fabrication facilities modeling, analysis, and systems

    CERN Document Server

    Mönch, Lars; Mason, Scott J

    2012-01-01

    Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems

  15. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    Science.gov (United States)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  16. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities

    Directory of Open Access Journals (Sweden)

    Jessica A. Gray

    2018-04-01

    Full Text Available High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol

  17. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  18. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities.

    Science.gov (United States)

    Gray, Jessica A; Chandry, P Scott; Kaur, Mandeep; Kocharunchitt, Chawalit; Bowman, John P; Fox, Edward M

    2018-01-01

    High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs) due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol methods and their

  19. Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities

    Science.gov (United States)

    Gray, Jessica A.; Chandry, P. Scott; Kaur, Mandeep; Kocharunchitt, Chawalit; Bowman, John P.; Fox, Edward M.

    2018-01-01

    High mortality and hospitalization rates have seen Listeria monocytogenes as a foodborne pathogen of public health importance for many years and of particular concern for high-risk population groups. Food manufactures face an ongoing challenge in preventing the entry of L. monocytogenes into food production environments (FPEs) due to its ubiquitous nature. In addition to this, the capacity of L. monocytogenes strains to colonize FPEs can lead to repeated identification of L. monocytogenes in FPE surveillance. The contamination of food products requiring product recall presents large economic burden to industry and is further exacerbated by damage to the brand. Poor equipment design, facility layout, and worn or damaged equipment can result in Listeria hotspots and biofilms where traditional cleaning and disinfecting procedures may be inadequate. Novel biocontrol methods may offer FPEs effective means to help improve control of L. monocytogenes and decrease cross contamination of food. Bacteriophages have been used as a medical treatment for many years for their ability to infect and lyse specific bacteria. Endolysins, the hydrolytic enzymes of bacteriophages responsible for breaking the cell wall of Gram-positive bacteria, are being explored as a biocontrol method for food preservation and in nanotechnology and medical applications. Antibacterial proteins known as bacteriocins have been used as alternatives to antibiotics for biopreservation and food product shelf life extension. Essential oils are natural antimicrobials formed by plants and have been used as food additives and preservatives for many years and more recently as a method to prevent food spoilage by microorganisms. Competitive exclusion occurs naturally among bacteria in the environment. However, intentionally selecting and applying bacteria to effect competitive exclusion of food borne pathogens has potential as a biocontrol application. This review discusses these novel biocontrol methods and their

  20. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  1. Calibrating the radiation detector of the ventilation of a PET radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Lacerda, Marco Aurelio de Sousa; Tavares, Jose Carlos Freitas; Silva, Juliana Batista da

    2011-01-01

    The aim of this work is to demonstrate a new methodology of estimating the calibration factor of the ventilation duct of a PET radiopharmaceutical facility. The proposed methodology was studied to minimize contamination risks for the workers, as well as the uncertainties attributed to the gas sampling. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. It was performed 3 consecutive irradiations with normal water (H 2 16 O) for production of nitrogen-13 to estimate the calibration factor of the detector located in the chimney of the facility. The readings of the detector were registered by the online radiation monitoring system (MEDISMARTS) during the transfer of the irradiated liquid until the count rate decreased for the background (BG) levels. The remaining activity of the water from the vial was measured and the decay corrected to the beginning of the transfer of the activity. The mean calibration factor estimated was (3.6 +- 0.5) kBq . m -3 . cps -1 . The maximum activities registered in the three irradiations were, respectively, 278 s, 370 s and 366 s after transferring of the activity to the hot cell. The conservative assumptions adopted and the values found for the calibration factor, which were close to the manufacturer published data, permit to estimate, safely, the discharges of radioactive gases in the installation. (author)

  2. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    Energy Technology Data Exchange (ETDEWEB)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  3. RAMI modeling of plant systems for proposed tritium production and extraction facilities

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    The control of life-cycle cost is a primary concern during the development, construction, operation, and decommissioning of DOE systems and facilities. An effective tool that can be used to control these costs, beginning with the design stage, is called a reliability, availability, maintainability, and inspectability analysis or, simply, RAMI for short. In 1997, RAMI technology was introduced to the Savannah River Site with applications at the conceptual design stage beginning with the Accelerator Production of Tritium (APT) Project and later extended to the Commercial Light Water Reactor (CLWR) Tritium Extraction Facility (TEF) Project. More recently it has been applied to the as-build Water Treatment Facilities designed for ground water environmental restoration. This new technology and database was applied to the assessment of balance-of-plant systems for the APT Conceptual Design Report. Initial results from the Heat Removal System Assessment revealed that the system conceptual design would cause the APT to fall short of its annual production goal. Using RAM technology to immediately assess this situation, it was demonstrated that the product loss could be gained back by upgrading the system's chiller unit capacity at a cost of less than $1.3 million. The reclaimed production is worth approximately $100 million. The RAM technology has now been extended to assess the conceptual design for the CLWR-TEF Project. More specifically, this technology and database is being used to translate high level availability goals into lower level system design requirements that will ensure the TEF meets its production goal. Results, from the limited number of system assessments performed to date, have already been used to modify the conceptual design for a remote handling system, improving its availability to the point that a redundant system, with its associated costs of installation and operation may no longer be required. RAMI results were also used to justify the elimination

  4. Production facility for ATLAS new small wheel drift panels at JGU Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Duedder, Andreas; Lin, Tai-Hua; Schott, Matthias [Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    The ATLAS Phase-I Upgrade in 2018 includes the replacement of the ATLAS Muon Small Wheel by the so-called New Small Wheel (NSW). Large-scale Micromegas detectors will serve as tracking detectors in the NSW. Parts of these detectors will be constructed at the Johannes Gutenberg University Mainz (JGU). In order to fulfill the requirements of the envisioned detector performance, a high precision detector construction is crucial. Especially the surface planarity of the produced detector panels has to better than 30 μm over an area of 2 m{sup 2}. Methods for the quality control of the raw material and the constructed parts have been developed and implemented. This talk gives an overview of the production facility at JGU Mainz which is used during the mass production of NSW components in coming years.

  5. SENSITIVITY OF MOLDS ISOLATED FROM WAREHOUSES OF FOOD PRODUCTION FACILITY ON SELECTED ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    Łukasz Kręcidło

    2015-07-01

    Full Text Available Storage of raw materials is one of steps in food production chain. The aim of this study was to estimate the influence of selected essential oils on the growth of four fungal strains: Trichoderma viride, Rhizomucor miehei, Penicillium chrysogenum, Penicillium janthinellum. Strains were isolated from warehouses of the food production facility. Selected essential oils: thyme oil, rosewood oil and rosemary oil were used to assess antifungal activity. Chemical composition of essential oils was determined by Gas Chromatography-Mass Spectroscopy (GC-MS. Antifungal activity of essential oils was estimated in relative to peracetic acid (PAA and sterile water with Tween 80 (0,5%. The influence of essential oils on fungal growth was carried by medium poisoning method. Increment of fungal mycelium was measured every day by 10 days. The thyme essential oils totally inhibited fungal growth in the lowest concentration of 1 mm3·cm-3. The most resistant strain was Penicillium janthinellum.

  6. Fluidized column biodenitrification demonstration facility at the FMPC [Feed Materials Production Center

    International Nuclear Information System (INIS)

    Patton, J.B.

    1987-02-01

    The mission of the Fernald Ohio Feed Materials Production Center, owned by DOE and operated by Westinghouse Materials Company of Ohio, is to produce uranium metal primarily for fuel in production reactors at Hanford, Washington, and Savannah River, South Carolina. Several waste streams result from production that are combined in the plant general sump and processed through settling basins prior to discharge. Individual streams have varying nitrate concentrations which, when combined, may range up to about 10,000 milligrams/liter. A fluidized-bed technology has been operated to demonstrate nitrate reduction by bacteriological denitrification on production scale. The system consists of two columns operating in series. The demonstration run will be considering: rate of biodenitrification; methyl alcohol consumption (bacterial substrate); sulfuric acid requirement (pH adjustment); accommodation of the biomass by the plant sewage treatment facility; flexibility of the system to receive a waste stream which varies in both volume and nitrate concentration; and modification and/or additions needed in the system to function as a permanent production operation. 8 figs

  7. Sustainable data policy for a data production facility: a work in (continual) progress

    Science.gov (United States)

    Ketcham, R. A.

    2017-12-01

    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default

  8. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    International Nuclear Information System (INIS)

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-01-01

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility

  9. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    Science.gov (United States)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  10. Characterization of VOCs Emissions from Industrial Facilities and Natural Gas Production Sites: A Mobile Sensing Approach

    Science.gov (United States)

    Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.

    2017-12-01

    With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.

  11. Reducibility study of Rossetta ilmenite ore briquettes and powder with coke breeze at 800-1100°C

    Directory of Open Access Journals (Sweden)

    Abd el Gawad Hala H.

    2013-01-01

    Full Text Available Ilmenite ore fine and coke breeze as reduced material were briquetted with different amounts of organic materials such as molasses or pitch were studied in this investigation. The produced briquettes at reasonable condition were reduced in nitrogen atmosphere at temperature range 800 - 1100oC to determine the factors controlling the reduction and to determine the controlling mechanism. Also ilmenite ore fine with coke breeze were reduced at the same temperature range in nitrogen atmosphere without briquetting process, for the sake of comparison.

  12. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  13. Application of an experimental irradiation facility type K-120 for the radiation treatment of agricultural products in large quantity

    International Nuclear Information System (INIS)

    Stenger, V.; Foeldiak, G.; Horvath, I.; Hargittai, P.; Bartfai, Cs.

    1979-01-01

    During experimental and pilot irradiation carried out by the 60 Co irradiation facility type K-120 of the Institute of Isotopes of the Hungarian Academy of Sciences an irradiation technology for the treatment of agricultural and food products of considerable density has been developed. Applying transport containers of commercial size the intermittent radiation treatment of great quantity products was made possible with homogeneous dose distribution. The radiation technical characteristics, the utilization coefficient and the capacity of the facility for every agricultural product were calculated. (author)

  14. Development of control technology for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  15. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    Science.gov (United States)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  16. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Revyakin, V.; Borisov, L.M. [All Russian Scientific and Research Institute of Non-Organic Materials, Moscow (Russian Federation)

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the help of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.

  17. The MOX Demonstration Facility - the stepping stone to commercial MOX production

    International Nuclear Information System (INIS)

    Macdonald, A.G.

    1994-01-01

    The paper provides an insight into MOX fuel and the economic benefits of its use in pressurized water reactors (PWRs). BNFL and AEA are collaborating in the design, construction and operation of a thermal MOX Demonstration Facility (MDF) on the AEA Windscale site in Cumbria. The process flowsheet and equipment employed in MDF are discussed and the special precautions required to handle plutonium bearing materials are highlighted. The process flowsheet includes the short binderless route which has been specially developed for use in MDF and results in fuel pellets with an homogeneous structure. MDF is the forerunner to the design and construction of a larger scale Sellafield MOX Plant and hence is the stepping-stone to commercial MOX production. (author)

  18. Systems work for Plutonium Fuel Production Facility (PFPF) near-real-time accounting

    International Nuclear Information System (INIS)

    Picard, R.R.; Hafer, J.F.; Pillay, K.K.S.; Takahashi, S.; Ohtani, T.; Eguchi, K.; Seya, M.

    1990-01-01

    A joint effort by the Los Alamos National Laboratory and the Power Reactor and Nuclear Fuel Development Corporation of Japan examines materials accounting for the Plutonium Fuel Production Facility. A unique feature of the systems work is a sophisticated data generator. This software follows individual items throughout the process, creating detailed data files for variance propagation. The data generator deals with user-specified process operations and handles related accounting problems, such as the tracking of individual measurements through numerous blending and splitting procedure, frequent decay correction (important for large inventories), scrap recovery, and automated determination of static inventory. There is no need to rely on simplified assumptions regarding process operation and material measurement. Also, the joint study applies recent theoretical work on stratified inspection of nonhomogeneous inventories and sequential analysis of MUF -- D. 4 refs

  19. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain.

    Science.gov (United States)

    Jakočiūnė, D; Bisgaard, M; Pedersen, K; Olsen, J E

    2014-08-01

    The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility and to characterize the persistent strains. Seventy-three S. Tennessee isolates collected from products over a 3-year period with intermittent contamination, and 15 control strains were compared by pulsed field gel electrophoresis (PFGE) using two enzymes. Forty-five case isolates distributed throughout the full period were shown to belong to one profile type. Isolates representing different PFGE profiles were all assigned to ST 319 by multilocus sequence typing (MLST). The case isolates did not show a higher ability to form biofilm on a plastic surface than noncase isolates. Characteristically, members of the persistent clone were weak producers of H2 S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. It was concluded that the contamination was caused by a persistent strain in the production facility and that this strain apparently had adapted to grow in the relevant egg product. S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility with this serovar. © 2014 The Society for Applied Microbiology.

  20. Incidence of Listeria monocytogenes and Listeria spp. in a small-scale mushroom production facility.

    Science.gov (United States)

    Viswanath, Prema; Murugesan, Latha; Knabel, Stephen J; Verghese, Bindhu; Chikthimmah, Naveen; Laborde, Luke F

    2013-04-01

    Listeria monocytogenes is a foodborne pathogen of significant concern to the agricultural and food processing industry because of its ability to grow and persist in cool and moist environments and its association with listeriosis, a disease with a very high mortality rate. Although there have been no listeriosis outbreaks attributed to fresh mushrooms in the United States, retail surveys and recalls are evidence that L. monocytogenes contamination of mushrooms (Agaricus bisporus) can occur. The objective of this study was to determine the prevalence of Listeria spp., including L. monocytogenes, in a small-scale mushroom production facility on the campus of the Pennsylvania State University in the United States. Of 184 samples taken from five production zones within the facility, 29 (15.8%) samples were positive for Listeria spp. Among the Listeria spp. isolates, L. innocua was most prevalent (10.3%) followed by L. welshimeri (3.3%), L. monocytogenes (1.6%), and L. grayi (0.5%). L. monocytogenes was recovered only from the phase I raw material composting area. Isolates of L. monocytogenes were confirmed and serotyped by multiplex PCR. The epidemiological relatedness of the three L. monocytogenes isolates to those serotypes or lineages frequently encountered in listeriosis infections was determined by multi-virulence-locus sequence typing using six virulence genes, namely, prfA, inlB, inlC, dal, clpP, and lisR. The phylogenetic positions of the three isolates in the dendrogram prepared with data from other isolates of L. monocytogenes showed that all isolates were grouped with serotype 4a, lineage IIIA. To date, this serotype has rarely been reported in foodborne disease outbreaks.

  1. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  2. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  3. Optimization of binder addition and particle size for densification of coffee husks briquettes using response surface methodology

    Science.gov (United States)

    Raudah; Zulkifli

    2018-03-01

    The present research focuses on establishing the optimum conditions in converting coffee husk into a densified biomass fuel using starch as a binding agent. A Response Surface Methodology (RSM) approach using Box-Behnken experimental design with three levels (-1, 0, and +1) was employed to obtain the optimum level for each parameter. The briquettes wereproduced by compressing the mixture of coffee husk-starch in a piston and die assembly with the pressure of 2000 psi. Furthermore, starch percentage, pyrolysis time, and particle size were the input parameters for the algorithm. Bomb calorimeter was used to determine the heating value (HHV) of the solid fuel. The result of the study indicated that a combination of 34.71 mesh particle size, 110.93 min pyrolysis time, and 8% starch concentration werethe optimum variables.The HHV and density of the fuel were up to 5644.66 calgr-1 and 0.7069 grcm-3,respectively. The study showed that further research should be conducted to improve the briquette density therefore the coffee husk could be convert into commercialsolid fuel to replace the dependent on fossil fuel.

  4. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    Science.gov (United States)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  5. Occupational radiological aspects related to the presence of natural radionuclides at extraction and production petroleum facilities

    International Nuclear Information System (INIS)

    Matta, Luiz Ernesto Santos de Carvalho

    2001-01-01

    This work presents an evaluation of exposure to natural radiation, after samples collected at the Campos Basin region, incurred to workers involved in the actions of exploration and production of petroleum, E and P, may be submitted to. It also evaluates the national standards of controlling and registration of practices involving radioactive and nuclear material, leading to the conclusion that it is not possible to classify the practice of exploration and production of petroleum, following the controlling criteria proposed by the standards. An occupational radiological protection program is made available to be immediately applied to E and P facilities. This program intends that in spite of the high values of activity of mass unity obtained from the samples, it is possible to maintain the occupational doses to levels lower than those proposed by the Safety Series 115. Moreover, it adds that the workers must be considered as occupationally exposed and not as member of the public. A proposal of standard so that the regulatory authority may classify and control a practice of E and P petroleum is also done. (author)

  6. Corrosion product behaviour in the primary circuit of the KNK nuclear reactor facility

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1976-01-01

    During nuclear operation of the KNK facility from 1972 until September 1974 the composition and behaviour of radionuclides occuring in the primary circuit were investigated. Besides traces of 140 Ba/ 140 La, no fission product activity was detectable in the KNK primary circuit. The fuel element purification from sodium deposits (prior to transport to the reprocessing plant) did not yield any indication of a fuel element failure during KNK-I operation. The activity inventory of the primary loop was exclusively made up of activated corrosion products and 22 Na. The main activity was due to 65 Zn, followed by 54 Mn, 22 Na, sup(110m)Ag, 182 Ta, 60 Co and 124 Sb. It was found that the sorption of 65 Zn and 54 Mn on crucibles made from nickel was condiserably higher than on vessels made from other materials. This observation was confirmed both in tests with material samples from the primary circuit and for disks of gate valves of the primary circuit. sup(110m)Ag did hardly exhibit any sorption effects and had been dissolved largely homogeneously in the hot primary coolant. In the first primary cold trap which was removed from the circuit after some 20,000 hours of operation, only 65 Zn and 54 Mn were detected in addition to traces of 60 Co and 182 Ta. (author)

  7. Surfactant-enhanced recovery of dissolved hydrocarbons at petroleum production facilities

    International Nuclear Information System (INIS)

    Freeman, J.T.; Mayes, M.; Wassmuth, F.; Taylor, K.; Rae, W.; Kuipers, F.

    1997-01-01

    The feasibility and cost effectiveness of surfactant-enhanced pumping to reduce source concentrations of petroleum hydrocarbons from contaminated soils was discussed. Light non-aqueous phase liquids (LNAPL) hydrocarbons are present beneath many petroleum production processing facilities in western Canada. Complete removal of LNAPLs from geologic materials is difficult and expensive. Treatment technologies include costly ex-situ methods such as excavation and in-situ methods such as physical extraction by soil venting and pumping, bioremediation, and combination methods such as bioventing, bioslurping or air sparging. Surfactant-aided pumping can reduce source hydrocarbon concentrations when used in conjunction with traditional pump and treat, or deep well injection. This study involved the selection of an appropriate surfactant from a wide variety of commercially available products. A site contaminated by hydrocarbons in Turner Valley, Alberta, was used for field scale testing. One of the major problems was quantifying the increase in the dissolved hydrocarbon concentrations in the recovered water once a surfactant was added. From the 30 surfactants screened in a series of washing and oil solubilization tests, two surfactants, Brij 97 and Tween 80, were selected for further evaluation. Increased hydrocarbon recovery was observed within 10 days of the introduction of the first surfactant. 2 refs., 7 figs

  8. Validation of the cleaning and sanitization method for radiopharmaceutical production facilities

    International Nuclear Information System (INIS)

    Robles, Anita; Morote, Mario; Moore, Mariel; Castro, Delcy; Paragulla, Wilson; Novoa, Carlos; Otero, Manuel; Miranda, Jesus; Herrera, Jorge; Gonzales, Luis

    2014-01-01

    A protocol for the cleaning and sanitization method for radiopharmaceutical production facilities has been designed and developed for the inner surface of the hot cells for the production of Sodium Pertechnetate Tc-99m and Sm-153 EDTMP, considering an extreme situation for each hot cell. Cleaning is performed with double-distilled water and sanitation with two disinfectant solutions, 70 % isopropyl alcohol and 3 % hydrogen peroxide in alternate weeks. Microbiological analysis of sanitized surfaces were made after 20 minutes and 48 hours for the hot cell of Tc-99m and 72 hours for the hot cell of EDTMP Sm-153 in 3 consecutive tests by the method of direct contact with plates containing culture medium, made for each sampling point (6 in the first and five in the second). The results showed that the microbial load on surfaces sanitized was below acceptable limits and that the lifetime of cleaning and sanitization is 48 hours for the hot cell of Tc-99m and 72 hours for the one of EDTMP-Sm-153. As a conclusion, the method of cleaning and sanitization is effective to reduce or eliminate microbial contamination therefore, the process is validated. (authors).

  9. Study of the pyritized surfaces of the carbon steel components in heavy water production facilities

    International Nuclear Information System (INIS)

    Radulescu, Maria; Parvan, Ioana; Lucan, Dumitra; Fulger, Manuela; Dinu, Alice; Blanatui, A.

    1998-01-01

    The components used in the Girldler Sulfide (GS) process of heavy water production are made of carbon steel covered by iron sulfide layers of different compositions (mackinawite, troilite, pyrrhotite or pyrite) of variable thicknesses. The most protective layers which provide an acceptable corrosion resistance of the subjacent metal are the mixtures of pyrrhotite and pyrite. In the present work, the corrosion resistance of carbon steel samples covered by different types of sulfides was investigated by the following methods: X ray diffraction, metallography and electrochemical methods (potential-dynamical and electrochemical impedance). In order to carry out the electrochemical measurements in the same conditions as those of the operation of carbon steel components in D 2 O production facilities, the experiments were performed with Na 2 S solutions, at pH=4 - 13 and S 2- concentration value between 1 and 1000 mg/l. The dependence of corrosion rate kinetics on pH and S 2- concentration of the testing solution was investigated for sulfide covered samples comparatively with the uncovered ones. Corrosion rates determined gravimetrically were compared with those determined by electrochemical measurements. The uniformity and thickness of the sulfide layers were checked by metallographic methods. The composition of the sulfides formed in various environment conditions was established by X-ray diffraction. Reaction mechanisms specific for sulfide formation environments have been proposed. (authors)

  10. The external beam facility used to characterize corrosion products in metallic statuettes

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Tabacniks, M.H.; Added, N.; Barbosa, M.D.L.; Curado, J.F.; Santos, W.A.; Lima, S.C.; Melo, H.G.; Neiva, A.C.

    2005-01-01

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts

  11. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  12. System reliability as perceived by maintenance personnel on petroleum production facilities

    International Nuclear Information System (INIS)

    Antonovsky, A.; Pollock, C.; Straker, L.

    2016-01-01

    The aim of this research was to understand the relationship between maintenance staff perceptions of organisational effectiveness and operational reliability in petroleum operations. Engineering measures exist that assess the effectiveness of maintenance and reliability of equipment. These measures are typically retrospective and may not provide insight into what impedes system reliability. Perceptions of organisational effectiveness by the workforce may provide a predictive measure that could improve our understanding of the human factors that influence system reliability. Maintenance personnel (n=133) from nine petroleum production facilities completed a survey as part of a study of human factors and maintenance reliability. 69 respondents (51.9%) provided comments to an open-ended question in the survey, and these data were analysed using Interpretive Phenomenological Analysis to extract themes. Four super-ordinate themes were identified from the analysis: 1) Communication and access to information, 2) Efficiency of current work systems, 3) Need for better workgroup support, and 4) Management impacts on the workplace. We found a significant relationship between the frequency of the four super-ordinate themes and the facility reliability level as measured by ‘Mean Time Between Failures’: χ"2(6,N=158)=16.2, p=.013. These results demonstrated that operational effectiveness might be differentiated on the basis of survey-derived perceptions of maintenance personnel. - Highlights: • Thematic analysis of survey comments provided insights into workplace reliability • Worker’s comments on reliability related to technical data on time between failures • Management decision-making was the main theme in the lower reliability workplaces • Improving efficiency was the main theme in the higher reliability workplaces • Communication and better workgroup support were themes at all reliability levels

  13. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  14. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  15. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  16. Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk

    International Nuclear Information System (INIS)

    Hu, Jianjun; Lei, Tingzhou; Wang, Zhiwei; Yan, Xiaoyu; Shi, Xinguang; Li, Zaifeng; He, Xiaofeng; Zhang, Quanguo

    2014-01-01

    Biomass can be relatively easily stored and transported compared with other types of renewable energy sources. Crop straw can be converted into densified solid biofuel via briquette fuel technology to expand its possible applications and enhance its utilisation efficiency. However, the potential economic, environmental and social impacts of crop straw briquette fuel need to be assessed before its large-scale use. This paper provides a comprehensive evaluation of these impacts for a fully-operating 2 × 10 4 t/a corn stalk briquette fuel plant in China. The results show that with a life time of 15 years, a purchase price of 150 RMB/t for corn stalk and the current sales price of 400 RMB/t for briquette fuel, the plant has a net present value of 9.6 million RMB or 1.5 million USD, an internal rate of return of 36% and a short investment payback period of 4.4 years. The life cycle greenhouse gas emissions are found to be 323 t CO 2 ,e/year or 1 kg CO 2 ,e/GJ, much lower than that of coal. Additionally, the process reduces pollution by decreasing the amount of corn stalk that is discarded or burnt directly in the field. In terms of social impacts, the use of corn stalk briquetting fuel plant is expected to play an important role in increasing local residents' income, improving rural ecological environments, alleviating energy shortages, guaranteeing energy security, and promoting socialism new rural reconstruction. - Highlights: • A fully-operating 2 × 10 4 t/a corn stalk briquette fuel plant in China is analysed. • The plant has net present value of $1.5 million and payback period of 4.4 years. • Life cycle GHG emissions are 323 t CO 2 ,e/year or 1 kg CO 2 ,e/GJ, much lower than coal. • The plant will also have significant social benefits

  17. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities.

    Science.gov (United States)

    Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E

    2012-11-20

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.

  18. Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness

    International Nuclear Information System (INIS)

    Stephen, James D.; Mabee, Warren E.; Saddler, Jack N.

    2013-01-01

    Just as temperate region pulp and paper companies need to compete with Brazilian eucalyptus pulp producers, lignocellulosic biofuel producers in North America and Europe, in the absence of protectionist trade policies, will need to be competitive with tropical and sub-tropical biofuel producers. This work sought to determine the impact of lignocellulosic ethanol biorefinery siting on economic performance and minimum ethanol selling price (MESP) for both east and west coast North American fuel markets. Facility sites included the pine-dominated Pacific Northwest Interior, the mixed deciduous forest of Ontario and New York, and the Brazilian state of Espírito Santo. Feedstock scenarios included both plantation (poplar, willow, and eucalyptus, respectively) and managed forest harvest. Site specific variables in the techno-economic model included delivered feedstock cost, ethanol delivery cost, cost of capital, construction cost, labour cost, electricity revenues (and co-product credits), and taxes, insurance, and permits. Despite the long shipping distance from Brazil to North American east and west coast markets, the MESP for Brazilian-produced eucalyptus lignocellulosic ethanol, modelled at $0.74 L −1 , was notably lower than that of all North American-produced cases at $0.83–1.02 L −1 . - Highlights: • Lignocellulosic ethanol production costs vary notably by region. • Feedstock cost is the primary site-specific production cost variable. • Woody feedstocks in North America have a higher cost than those in Brazil. • Use of Brazilian eucalyptus resulted in the lowest MESP for considered feedstocks. • MESP ranged from −1 to >$1.00 L −1

  19. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  20. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  1. Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Tiantian Sheng

    2014-01-01

    Full Text Available The adsorptive removal of As(V from aqueous solutions using iron-coated honeycomb briquette cinder (Fe-HBC is presented. Low cost mechanical granulation process was integrated with surface amendment technology to prepare iron-oxide modified granular adsorbent for clean water production. Detailed characterizations were performed using FTIR, XRD, EDS and SEM techniques. Operating parameters including initial As(V concentration, pH, contact time, adsorbent dose, iron leaching and the effects of competing ions on As(V removal were evaluated. Results demonstrated that high amount of arsenate (961.5 μg g−1 was adsorbed at pH 7.5 in 14 h contact time. Langmuir, Freundlich and Temkin isotherm models were used to analyze the adsorption data, whereas Langmuir model was found to best represent the data with a correlation co-efficient (R2 = 0.999. Thus, As(V sorption on Fe-HBC surface suggested monolayer adsorption and indicated surface homogeneity. Moreover, the dimensionless parameter (RL value calculated to be about 0.118 that reiterated the process is favorable and spontaneous. The influences of competing ions on As(V removal decreased in the following order:PO43−>HCO3−>F−>Cl−. The profound inhibition effects ofPO43− revealed a high affinity toward iron(oxy hydroxide. Life-cycle assessment confirmed that spent HBC is non-hazardous and can be used as a promising sorbent for arsenic removal.

  2. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  3. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  4. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  5. Diffusione e dispersione produttiva in Veneto Production facilities sprawl: the Veneto's case

    Directory of Open Access Journals (Sweden)

    Pasqualino Boschetto

    2012-04-01

    Full Text Available Il tema della dispersione urbana e territoriale è particolarmente evidente nel Nord-Est italiano e nel Veneto in particolare.
    All’interno dello sprawl insediativo generale, quello della frammentazione del sistema produttivo, rappresenta una caratterizzazione ancor più evidente e stringente, di indubitabile valenza socio-culturale in quanto alla base della continua sedimentazione storico-insediativa e quindi elemento fortemente radicato. Una continuità storica del processo insediativo che nel tempo ha saputo mantenere quasi intatti i suoi prodromi costitutivi e funzionali, con processi (apparentemente semplici di continuo adattamento alle diverse esigenze pratiche del tempo in divenire.
    Si vuole in questa sede illustrare l’approccio metodologico ed alcuni dei risultati ottenuti dal gruppo di lavoro del Dipartimento di Architettura, Urbanistica e Rilevamento – DAUR – Università di Padova, attualmente confluito nel Dipartimento di Ingegneria Civile, Edile ed Ambientale – DICEA all’interno della fasi di elaborazione del nuovo Piano Territoriale Regionale di Coordinamento - PTRC del Veneto.

    The issue of urban sprawl is particularly evident in the Italian North-East and particularly in the Veneto.

    Within the general settlement sprawl, the spreading and fragmentation of the production system is the result of a distinctive mode of transformations induced by the economical processes. The production facilities sprawl is a process characterized by considerable

  6. An enhanced aerobic bioremediation system at a central production facility -- system design and data analysis

    International Nuclear Information System (INIS)

    Chiang, C.; Petkovsky, P.; Beltz, M.; Rouse, S.; Boyd, T.; Newell, C.; McHugh, T.

    1993-01-01

    A successful field demonstration of the enhanced in-situ aerobic bioremediation with remarkable results took place during the period of August 1, 1991 through year-end 1992 at a central production facility in Michigan. The in-situ soil logging and groundwater sampling by the cone penetrometer/porous probe system provided a real-time definition of the groundwater flow ''channel'' and a clear delineation of the plume extent. That facilitated the design of the closed-loop bioremediation system, consisting of two downgradient pumping wells to completely capture the plume and two pairs of bi-level injection wells located upgradient of the plume. The purged groundwater from the two pumping wells after amending with dissolved oxygen is directly reinjected to the two pairs of upgradient bi-level injection wells. In addition, the performance of the system is monitored by 17 multilevel piezometers. Each piezometer consists of four vertical sampling levels, providing a total of 68 sampling points to fully define the three-dimensional characteristics of the BTEX and DO plumes. Based on a hydrograph analysis of the groundwater data, the closed-loop bioremediation system has been operating properly. In addition, a particle tracking analysis showed groundwater flowlines converge to the pumping wells demonstrating the effectiveness of the plume capture. The trend analysis showed a consistent decline of BTEX concentrations at all of the 68 sampling points

  7. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  8. Sustainability analysis in petroleum production facilities; Analise de sustentabilidade em instalacoes de producao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Jose Marcos Leite [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Santos, Adriano [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Fernandes Junior, Wilaci Eutropio [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    The global sustainability aspects are discussed and a method for sustainability analysis in oil and gas production surface facilities is presented. The proposed method requires a multidisciplinary viewpoint and considers social, economic and environmental sustainability aspects during the early design programming and planning phases. Traditionally, Feasibility (Technical and Economical), Environmental Impact Assessment (EIA) and risk (Hazop) analysis are performed separately. On the other hand, the proposed methodology merges economical, environmental and social sustainability analysis; which allows deciding the most globally sustainable scenario. A checklist containing global sustainability aspects (Economical, Social, Environmental, Health, Safety, etc.) and a qualitative analysis of these aspects is suggested. The first step for applying the proposed method consists in checking the aspects and the corresponding suggestions for improving the global sustainability. Secondly, the impact of each aspect on sustainability is verified. Finally, the most important aspects are selected and different scenarios are simulated allowing choosing the most sustainable scenario. The results and conclusions are then presented in a Global Sustainability Report. The proposed analysis was applied to study the sustainability of a small offshore platform design. In this case study, several aspects that could potentially improve sustainability were identified. The simulated scenarios showed that some critical aspects contributed decisively to the global sustainability. These critical aspects are not easily identified if only the traditional economical, environmental and risk analysis are applied. (author)

  9. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  10. Ultra-compact photoionization analyzers. Ecological monitoring application at hazardous production facilities

    Science.gov (United States)

    Mustafaev, Alexander; Rastvorova, Iuliia; Arslanova, Fatima

    2017-10-01

    It is generally recognized that careful implementation of ecological monitoring should be provided at hazardous production facilities continuously to protect the surrounding environment as well as health and safety of employees. However, the existing devices may not be able to control the environmental situation uninterruptedly due to their technical characteristics or measurement methods. Developed by The Mining University Plasma Research Group ultra-compact photoionization analyzer is proposed as innovative equipment which creates the basis for a new measuring approach. The general operating principle is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at the atmospheric pressure, the vacuum ultraviolet (VUV) photoionization sensor measures the energy of electrons produced by means of ionization with the resonance photons whose wavelength is situated in the VUV. A special software tool was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the characteristic electrons energy spectra. The portable analyzer with a unique set of parameters such as small size (10*10*1 mm), low cost, a wide range of recognizable molecules, great measurement accuracy at the atmospheric pressure can be effectively used both for rapid testing of air pollution load and the study of noxious factors that influence oil and gas industry employees. Dr. Sci., Ph.D, Principal Scientist, Professor.

  11. A visual ergonomics intervention in mail sorting facilities: effects on eyes, muscles and productivity.

    Science.gov (United States)

    Hemphälä, Hillevi; Eklund, Jörgen

    2012-01-01

    Visual requirements are high when sorting mail. The purpose of this visual ergonomics intervention study was to evaluate the visual environment in mail sorting facilities and to explore opportunities for improving the work situation by reducing visual strain, improving the visual work environment and reducing mail sorting time. Twenty-seven postmen/women participated in a pre-intervention study, which included questionnaires on their experiences of light, visual ergonomics, health, and musculoskeletal symptoms. Measurements of lighting conditions and productivity were also performed along with eye examinations of the postmen/women. The results from the pre-intervention study showed that the postmen/women who suffered from eyestrain had a higher prevalence of musculoskeletal disorders (MSD) and sorted slower, than those without eyestrain. Illuminance and illuminance uniformity improved as a result of the intervention. The two post-intervention follow-ups showed a higher prevalence of MSD among the postmen/women with eyestrain than among those without. The previous differences in sorting time for employees with and without eyestrain disappeared. After the intervention, the postmen/women felt better in general, experienced less work induced stress, and considered that the total general lighting had improved. The most pronounced decreases in eyestrain, MSD, and mail sorting time were seen among the younger participants of the group. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Tsai, Yu-Ting

    2009-06-01

    We investigated the occurrence and distribution of pharmaceuticals (including antibiotics, estrogens, non-steroidal anti-inflammatory drugs (NSAIDs), beta-blockers, and lipid regulators) in three rivers and in the waste streams of six hospitals and four pharmaceutical production facilities in Taiwan. The most frequently detected pharmaceuticals were acetaminophen, erythromycin-H(2)O, sulfamethoxazole, and gemfibrozil. NSAIDs were the next most-often detected compounds, with a detection frequency >60%. The other analytes were not detected or were seen in only a few samples at trace concentrations. The present study demonstrates a significant discharge of human medications from hospital and drug production facilities into surface waters in the Taipei district. The high concentrations of pharmaceuticals found in the Sindian and Dahan rivers demonstrate the alarming degree to which they have been impacted by urban drainage (waste effluents from hospitals, households, and pharmaceutical production facilities). The ubiquitous occurrence at extremely high concentrations of acetaminophen and erythromycin-H(2)O in both rivers (up to 15.7 and 75.5 microg/L) and in wastewater from hospitals and pharmaceutical production facilities (up to 417.5 and 7.84 microg/L) was unique. This finding, in combination with acetaminophen's status as the drug most often prescribed by Taiwan's dominant clinical institute, suggests the potential use of acetaminophen as a molecular indicator of contamination of Taiwan's aqueous environments with untreated urban drainage.

  13. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Science.gov (United States)

    2010-07-01

    ... NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123.25). 122.24 Section 122.24 Protection of...

  14. The Influence of Older Age Groups to Sustainable Product Design Research of Urban Public Facilities

    Science.gov (United States)

    Wen-juan, Zhang; Hou-peng, Song

    2017-01-01

    Through summarize the status quo of public facilities design to older age groups in China and a variety of factors what influence on them, the essay, from different perspective, is designed to put forward basic principle to sustainable design of public facilities for the aged in the city, and thus further promote and popularize the necessity of sustainable design applications in the future design of public facilities for elderly people.

  15. Fiscal 1997 survey report. Basic survey on trends of waste use type production facilities and waste fuel production facilities; 1997 nendo chosa hokokusho. Haikibutsu riyogata seizo shisetsu oyobi haikibutsu nenryo seizo shisetsu doko kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey was made to obtain the basic data for future spread and promotion of No.6 type (waste use type production facilities) and No.7 type (waste fuel production facilities) which were added to the objects having been subsidized since fiscal 1997 under `the environmental harmony type energy community project.` In the former, the kiln in the cement industry and the blast furnace in the steel industry can be extremely large places to receive waste plastic since the facilities are distributed in every area and the treatment capacity is large. However, the effective collection, transportation and sorting of large quantity of waste plastic, especially the problem of removal of vinyl chloride, is a big bottleneck. As to the use of waste plastic using gasification technology, there are no actual results on the commercial basis. That is, however, appropriate for treatment of the waste difficult in treatment, and can be expected of the usage in the chemical industry. In the latter, in the facilities using industrial waste raw materials as fuel, solidification and liquefaction are both operated on a commercial basis. In relation to the solidification and use as fuel of general waste, the treatment of combustion ash is preventing the expansion of use of waste in the industrial field because of a large quantity of chlorine included in the products. 92 refs., 54 figs., 35 tabs.

  16. Production of U3O8 by uranyl formate precipitation and calcination in a full-scale pilot facility

    International Nuclear Information System (INIS)

    Kendrick, L.S.; Wilson, W.A.; Mosley, W.C.

    1984-08-01

    The uranyl formate process for the production of U 3 O 8 with a controlled particle size has been extensively studied on a laboratory scale. Based on this study, a pilot-scale facility (the Uranyl Formate Facility) was built to investigate the key steps of the process on a larger scale. These steps were the precipitation of a uranyl formate monohydrate salt and the calcination of this salt to U 3 O 8 . Tests of the facility and process were conducted at conditions recommended by the laboratory-scale studies for a full-scale production facility. These tests demonstrated that U 3 O 8 of the required particle size for the PM process can be produced on a plant scale by the calcination of uranyl formate crystals. The performance of the U 3 O 8 produced by the uranyl formate process in fuel tube fabrication was also investigated. Small-scale extrusion tests of U 3 O 8 -Al cores which used the U 3 O 8 produced in the Uranyl Formate Facility were conducted. These tests demonstrated that the U 3 O 8 quality was satisfactory for the PM process

  17. PNRI Pioneering the Establishment and Operation of the Tc-99m Generator Production Facility for Nuclear Medicine Applications

    International Nuclear Information System (INIS)

    Bulos, Adelina DM.; Borras, Ma. Teresa L.; Ciocson, Gregory R.; Mascariñas, Rommel D.C.; Nuñez, Ivy Angelica A.; Dela Rosa, Alumanda M.

    2015-01-01

    In response to the increasing demand in the nuclear medicine sector in the Philippines, the Philippine Nuclear Research Institute (PNRI) initiated the establishment of a radioisotope production facility. To date, the most commonly used radioisotope in nuclear medicine, Technetium-99m or Tc-99m has been successfully produced in the new laboratory, the PNRI facility has already obtained a license to operate from the Philippine FDA. The new facility is envisioned to meet the country’s requirements for all the major medical radioisotope starting with the local production of Tc-99m and the most commonly used Tc-99m radiopharmaceuticals. At present, all radioisotope supplies in the country are sourced overseas at price that varies accordingly. With the establishment of the PNRI’s laboratories, we now have a GMP-grade Tc-99m generator facility capable of producing 50 Tc-99m generators per batch. Instead of Tc-99m being imported, it will be the parent Mo-99m that will be transferred to PNRI facility from Mo-99 processing facilities overseas, contained in specialized transport containers and via airfreight arrangements so it can be processed locally to make Tc-99m generators. But, to make radiopharmaceuticals, the other non-radioactive components are needed to be sourced from abroad. Thus, it has become imperative to also locally produce these non-radioactive components. All of these components, radioactive and non-radioactive, from the radiopharmaceutical finished products which are utilized in nuclear medicine caters for the diagnosis and detection of critical and non-critical human illnesses. The completion of this program is foreseen as another concrete validation on the capacity of the Philippine as a country that is at par with advanced nations on competency and expertise in the research and development of nuclear medicine application for better healthcare delivery and management. (author)

  18. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    Science.gov (United States)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  19. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  20. GEO-ECOLOGICAL PECULIARITIES OF ENVIRONMENTAL POLLUTION WITH OIL PRODUCTS EMITTED BY RAILROAD FACILITIES

    Directory of Open Access Journals (Sweden)

    Senyushchenkova Irina Mikhaylovna

    2012-10-01

    Full Text Available Linear railroad facilities have been producing an adverse impact on the environment by polluting it with oil products for an extensive period of time. The authors of the article consider several mechanisms of contamination and the pattern of its spread into soils. Currently, areas that used to be unsuitable for development as urban lands for geological or environmental reasons are now being intensively developed. The study is exemplified by a city outstretched onto the complex terrain. Complex topography contemplates geological, tectonics-related, hydrological conditions, exogenous processes and anthropogenic factors. In this connection, the main purpose of the study is to analyze the geo-ecological factors that impact urban lands in complex geo-morphological conditions with a view to their functional use against minimal environmental risks to assure the most favorable conditions for humans. Towards this end, the authors have applied the following theoretical and practical methods of research, including a pilot study, namely (1 the geomorphological analysis of urban lands, (2 the monitoring and analysis of the anthropogenic impact produced onto various constituents of the environment, and (3 development of methods of functional use of urban lands in complex geomorphological conditions. The authors have monitored contaminated lands to develop their recommendations for their development in complex geomorphological conditions, namely: 1. Urban development planning should be performed with consideration for the geomorphological elements taken as a whole, as they are closely connected to one another. 2. Selection of methods of rehabilitation of urban lands must be preceded by the zoning of the territory based on its geological and environmental properties.

  1. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  2. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  3. Production and setting of fractional elution facility for recovery of useful rare metals from seawater

    International Nuclear Information System (INIS)

    Seko, Noriaki; Kasai, Noboru; Tamada, Masao; Hasegawa, Shin; Katakai, Akio

    2005-01-01

    In September 1999, we have soaked 200 kg of fibrous amidoxime absorbents, synthesized by radiation-induced graft polymerization, into seawater to evaluate their performance. Fractional elution facility was set effectively to elute the rare metals on adsorbents in Mutsu-Establishment. This facility consists of two parts of pre-washing and elution. The present report dealt with planning, manufacture and setting of fractional facility. Marine organism and slime on adsorbent cassette (290 x 295 x 160 mm) were washed out and every 72 cassettes were set in elution unit (1210 x 1210 x H1460 mm) with nonwoven materials as a packing to avoid elution loss. In the elution process alkaline and alkaline earth metals were eluted with low concentration hydrochloric acid (0.01M) and rare metals were eluted with high concentration (0.5 M) after the packing of elution unit into fractional elution facility. Adsorbent cassettes were regenerated with alkaline solution after elution procedure. (author)

  4. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa, E-mail: jcft@cdtn.b, E-mail: masl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da, E-mail: ltcn@cdtn.b, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Secao de Producao de Radiofarmacos

    2011-07-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[{sup 18}F]fluoro-2- deoxy-D-glucose ({sup 18}FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of {sup 18}FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  5. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da

    2011-01-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[ 18 F]fluoro-2- deoxy-D-glucose ( 18 FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of 18 FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  6. Tailoring the Glasgow University diagnostic aid for the product storage facilities at TRP

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.; Miller, E

    2001-02-01

    This report concludes the work carried out under Task D2(d)/UK D00912: Development of Anomaly Diagnosis Algorithms for a Plutonium Tank Monitoring System, which was the companion to Task D2(c)/UK D00913: Analysis and Diagnosis of Anomalies at Bulk-Handling Nuclear Materials Facilities: Benchmarking and Optimisation. Between them these tasks produced a computer software package that could diagnose anomalies in plant data pertaining to solutions of nuclear materials stored and transported around reprocessing plants. The final goal of Task UK D00912 was to demonstrate to the Agency that the software could be applied to the product storage area at the Tokai Reprocessing Plant in Japan. The University of Glasgow does not produce software to any recognisable standard, so this was not an acceptance trial, but a demonstration. It was recognised that further software development would be required before the package could be accepted as a safeguards tool. Being the final report, the report focuses on the issues that are still outstanding so those who choose to continue with this work have a clear understanding of the status of the software. It is taken for granted that the reader appreciates that the package should be able to explain relatively small anomalies (> 0.1 SQ) and has numerous features to estimate evaporation rates, pipe hold-up and so on. Here the focus is on the minor gremlins that are still to be resolved. The report first explains how the software package would be tailored so that it could be implemented at TRP. Of key importance is the fact that the plant uses scanivalves, which multiplex pressure lines from various dip-tubes onto the same pressure transducer. Although suitable for the measurement of a number of signals that are always steady, these devices are less suited to situations where tanks are frequently sparged and where the anomalies of interest inherently relate to changes in data and hence to non-steady operation. This affects the way the data

  7. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    Science.gov (United States)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  8. Control strategy for viral diseases of salmonid fish, flounders and shrimp at hatchery and seed production facility in Japan

    OpenAIRE

    Yoshimizu, Mamoru

    2009-01-01

    Salmonid fish are important species for hatchery reared and released fish. Flounders and shrimp are also important species for seed production and sea-farming in Japan. Viral disease is one of the limitations of successful propagation of these species. Methods currently used to control viral diseases are 1) hygiene and sanitation in facilities, 2) disinfection of rearing and waste water using U. V. irradiation, ozonization and electrolyzation, 3) selection of pathogen-free brood stock by cell...

  9. Carbon-based catalytic briquettes for the reduction of NO: Effect of H{sub 2}SO{sub 4} and HNO{sub 3} carbon support treatment

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica CSIC, Zaragoza (Spain)

    2008-08-15

    The influence of treating carbon with sulphuric and nitric acids on the activity of a carbon-based briquette catalyst for NO reduction with NH{sub 3} was examined in a fixed-bed reactor at low temperature (150{sup o}C). The briquette catalysts were prepared from a low-rank coal and a commercial tar pitch. The active phase was impregnated from a suspension of ashes of petroleum coke by means of an equilibrium adsorption method. The catalytic behaviour of NO reduction over acid treated briquettes was found to vary with the surface characteristics of the carbon support. This suggests that the number of oxygen-containing sites as well as vanadium load and dispersion affect the reaction activity. In the presence of oxygen, the SCR activity is enhanced with a nitric acid treatment, activity is promoted by the presence of acidic surface groups such as carboxyl and lactone, which can help not only to create a reservoir of reactants on the catalysts surface but also to improve the dispersion or even increase the amount of vanadium loading. Therefore, the results of this study suggest that the formation of acidic sites on the surface is an important step for NO reduction with NH{sub 3} over carbon-based catalysts. Additional techniques such as XPS and TPD to characterize the oxygen surface and those such as N{sub 2} adsorption to characterize the textural properties were also used in this study. 46 refs., 6 figs., 5 tabs.

  10. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    Science.gov (United States)

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  11. Lambdastation: a forwarding and admission control service to interface production network facilities with advanced research network paths

    Energy Technology Data Exchange (ETDEWEB)

    DeMar, Philip; Petravick, Don; /Fermilab

    2004-12-01

    Over the past several years, there has been a great deal of research effort and funding put into the deployment of optical-based, advanced technology wide-area networks. Fermilab and CalTech have initiated a project to enable our production network facilities to exploit these advanced research network facilities. Our objective is to forward designated data transfers across these advanced wide area networks on a per-flow basis, making use our capacious production-use storage systems connected to the local campus network. To accomplish this, we intend to develop a dynamically provisioned forwarding service that would provide alternate path forwarding onto available wide area advanced research networks. The service would dynamically reconfigure forwarding of specific flows within our local production-use network facilities, as well as provide an interface to enable applications to utilize the service. We call this service LambdaStation. If one envisions wide area optical network paths as high bandwidth data railways, then LambdaStation would functionally be the railroad terminal that regulates which flows at the local site get directed onto the high bandwidth data railways. LambdaStation is a DOE-funded SciDac research project in its very early stage of development.

  12. Naturally occurring radioactive materials (NORM) in the oil and gas processing and production facilities

    International Nuclear Information System (INIS)

    Najera F, J.

    1994-01-01

    NORM contamination is produced by concentration in petroleum facilities of naturally occurring radioactive materials. The presence of NORM in petroleum reservoirs and in the oil and gas industry has been widely recognized. It's not a critical technical problem if you proceed timely to solve it. NORM is a great but controllable hazard to the human health and the environment, and represents a severe waste management problem. We suggest to the latino american oil companies to conduct studies to detect NORM contamination in their facilities an use to them to plan the appropriate actions to control the situation. (author). 15 refs

  13. United Nuclear Industries, Inc. reactor and fuel production facilities 1975 environmental release report

    International Nuclear Information System (INIS)

    Cucchiara, A.L.

    1976-01-01

    During calendar year 1975, an estimated total of 3,000,000 pounds of waste materials and approximately 150 curies of radionuclides were discharged to the environs in liquid effluent streams emanating from United Nuclear Industries, Inc., operated facilities. During the same period, approximately 1,700,000 pounds of reported waste materials, including 34,000 curies of reported radionuclides, were discharged to the atmosphere from United Nuclear Industries, Inc., operated facilities. Superscript numbers reference explanatory notes contained at the end of the report

  14. Energia de briquetes produzidos com rejeitos de resíduos sólidos urbanos e madeira de Eucalyptus grandis Energy from briquettes produced from remains of urban solid residues and wood of Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    José E. Gonçalves

    2009-10-01

    Full Text Available O incentivo ao consumo e à produção em grande quantidade na sociedade atual gera, exageros de resíduos sólidos urbanos que, em alguns casos, podem ser utilizados para a geração de energia. Neste sentido e visando reduzir os resíduos dos aterros municipais e gerar energia, buscou-se produzir briquetes com mistura de rejeitos de resíduos sólidos urbanos (RRSU e resíduos de madeira de Eucalyptus grandis. Os briquetes foram fabricados com 0, 5, 10, 15, 20 e 25% de RRSU na mistura com resíduos madeireiros contendo 12% de umidade. Os parâmetros analisados para a escolha da melhor mistura, foram: análise de combustibilidade x cinzas, resistência e energia utilizável. Os briquetes com até 10% de RRSU se mostraram com baixa resistência e os acima de 15% apresentaram grande aumento no teor de cinzas; portanto, os que melhor atenderam aos requisitos combustibilidade x cinzas e resistência mecânica, foram aqueles com 15% de RRSU, pois não se conhece a procedência das cinzas. Considerando-se a energia utilizável, o briquete com 25% de RRSU é o que apresenta maior poder calorífico útil na ordem de 17.175 kJ kg-1 motivo pelo qual se indica a produção de briquetes com adição RRSU; ressalta-se, porém, a necessidade de estudos sobre a emissão de gases.The incentive for consumption and production in large quantity in modern society generates enormous amounts of urban solid residues in the form of municipal solid waste (MSW. With the intention of reducing these residues of the municipal waste tips and to generate energy, briquettes with mixtures of MSW and residues of Eucalyptus grandis were produced. The briquettes were manufactured with 0, 5, 10, 15, 20 and 25% of MSW in the mixture with wood waste and 12% of moisture content. The analyzed parameters used to choose the best treatments were combustion analysis versus ash content, mechanical strength and energy content. The briquettes up to 10% of MSW showed low resistance, and above

  15. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  16. UNC Nuclear Industries reactor and fuels production facilities. 1984 effluent release report

    International Nuclear Information System (INIS)

    Rokkan, D.J.

    1985-01-01

    This document has been prepared to fulfill the annual reporting requirements of DOE 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements.'' Radioanalyses performed on routine samples of liquid and airborne streams were evaluated using UNC's Environmental Release Summary computer program. All identified significant discharges from UNC facilities to the environment during CY 1984 are reported in this document

  17. UNC Nuclear Industries reactor and fuels production facilities 1985 effluent release report

    International Nuclear Information System (INIS)

    Rokkan, D.J.

    1986-01-01

    Analyses of routine samples from radioactive liquid and airborne streams were performed using UNC's Radioanalytical Laboratory and the analytical services of US Testing Company. All significant effluent discharges from UNC facilities to the environment during CY 1985 are reported in this document

  18. 18 CFR 292.204 - Criteria for qualifying small power production facilities.

    Science.gov (United States)

    2010-04-01

    ... shall be measured from the electrical generating equipment of a facility. (3) Waiver. The Commission may... sources. (ii) Any primary energy source which, on the basis of its energy content, is 50 percent or more... adding paragraph (a)(4), effective June 1, 2010. For the convenience of the user, the added and revised...

  19. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Pareja, R.; Hernandez, M.T.; Jimenez-Rey, D.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, M.; Ibarra, A.

    2011-01-01

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  20. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  1. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  2. Commissioning of indigenous microwave test facility for development and pilot production of 2 MW S-band magnetrons

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.; Prasad, Sharda

    2005-01-01

    To have self reliance in the field of microwave devices and to have consistent supply of pulsed magnetrons for the Indian accelerator programme. CAT initiated development of 2 MW S-Band pulsed magnetrons in collaboration with CEERI, Pilani. The design, development and testing of the microwave test facilities for ageing. conditioning and performance testing of Indian magnetrons, was successfully done by CAT indigenously. After the rigorous testing. the test facility was shifted, installed and commissioned at CEERI, Pilani by CAT. Over a period of 10 years, nine prototypes were aged and tested, two magnetrons were life tested and five magnetrons under production programme have been successfully conditioned and tested. Testing of more numbers is underway. The system details. commissioning aspects are discussed, results are shown. (author)

  3. Irradiation facilities for the production of radioisotopes for medical purposes and for industry at the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Hieronymus, W.

    2007-01-01

    In 1955, the Government of the German Democratic Republic initiated radioisotope production. With that decision, the following plants received their go ahead: - Research reactor with its user facilities; - Cyclotron with its specific facilities; - Institute for radiochemistry; - Library, lecture hall, workshops and administration buildings supporting the necessary scientific and administrative environment. The Zentralinstitut fuer Kerntechnik (ZfK), also known as the Central Institute for Nuclear Technology, was founded at Rossendorf near Dresden, Germany, to house all those plants. The Rossendorf Research Reactor (RFR) was constructed in 1956-1957. That endeavour was enabled by the technological support of the former USSR under a bilateral agreement which included the delivery of a 2 MW research reactor of the WWR-S design

  4. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  5. Current status of facilities dedicated to the production of synchrotron radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The use of synchrotron radiation has undergone a rapid growth in many areas of science during the past five years. Unforeseen fields have emerged, creating new opplortunities. In addition, there is a growing impact on many technological areas that will increase further on the emergence of new sources and experimental stations. The growth in the use of synchrotron radition has been so great that all existing experimental stations will be fully utilized when all current facilities in the United States begin full-time operation for users. Development of te remaining potential experimental stations at existing facilities will satisfy predicted demand until 1985. Insertion devices (wigglers and undulators) provide orders-of-magnitude brighter sources of radiation than bending magnets and are making possible new experiments not feasible, or even conceived, a few years ago

  6. Preliminary scoping safety analyses of the limiting design basis protected accidents for the Fast Flux Test Facility tritium production core

    International Nuclear Information System (INIS)

    Heard, F.J.

    1997-01-01

    The SAS4A/SASSYS-l computer code is used to perform a series of analyses for the limiting protected design basis transient events given a representative tritium and medical isotope production core design proposed for the Fast Flux Test Facility. The FFTF tritium and isotope production mission will require a different core loading which features higher enrichment fuel, tritium targets, and medical isotope production assemblies. Changes in several key core parameters, such as the Doppler coefficient and delayed neutron fraction will affect the transient response of the reactor. Both reactivity insertion and reduction of heat removal events were analyzed. The analysis methods and modeling assumptions are described. Results of the analyses and comparison against fuel pin performance criteria are presented to provide quantification that the plant protection system is adequate to maintain the necessary safety margins and assure cladding integrity

  7. Completion of UO2 pellets production and fuel rods load for the RA-8 critical facility

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Perez, Lidia E.; Thern, Gerardo G.; Altamirano, Jorge S.; Benitez, Ana M.; Cardenas, Hugo R.; Becerra, Fabian A.; Perez, Aldo E.; Fuente, Mariano de la

    1999-01-01

    The Advanced Fuels Division produced fuel pellets of 235 U with 1.8% and 3.6% enrichment and Zry-4 cladding loads for the RA-8 reactor at Pilcaniyeu Technological Unit. For economical and availability reasons, the powder acquired was initially UO 2 with 3.4% enrichment in 235 U, therefore the 235 U powder with 1.8% enrichment was produced by mechanical mixture. The production of fuel pellets for both enrichments was carried out by cold pressing and sintering processes in reducing atmosphere. The load of Zry-4 claddings was performed manually. The production stages can be divided into setup, qualification and production. This production allows not only to fulfill satisfactorily the new fuel rods supply for the RA-8 reactor but also to count with a new equipment and skilled personnel as well as to meet quality and assurance control methods for future pilot-scale production and even new fuel elements production. (author)

  8. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  9. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility

    International Nuclear Information System (INIS)

    Harun, Razif; Davidson, Michael; Doyle, Mark; Gopiraj, Rajprathab; Danquah, Michael; Forde, Gareth

    2011-01-01

    As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels. (author)

  10. Lessons learned: the effect of increased production rate on operation and maintenance of OPG's Western Used Fuel Dry Storage Facility

    International Nuclear Information System (INIS)

    Morton, L.; Smith, N.

    2011-01-01

    In 2010, the Western Used Fuel Dry Storage Facility (WUFDSF) located at Ontario Power Generation's (OPG's) Western Waste Management Facility in Tiverton, ON, transferred, processed and stored a record-high number of Dry Storage Containers (DSC's) from Bruce Power's nuclear generating stations. The WUFDSF has been in operation since 2002. The facility transfers, processes, and stores the used fuel from the Bruce Power generating stations located in Tiverton, Ontario. As per a contractual agreement between OPG and Bruce Power, an annual DSC production and transfer schedule is agreed to between the two parties. In 2010, an increased annual production rate of 130 DSC's was agreed to between OPG and Bruce Power. Throughout 2007, 2008 and 2009, several facility modifications had been completed in anticipation of the increased production rate. These modifications included: Installation and commissioning of a second set of welding consoles; Addition of a second vacuum drying system; Procurement of a second transfer vehicle; and, Installation of a bulk gas system for welding cover gas. In 2010, the increased production rate of 130 DSC's/year came into effect. Throughout 2010, significant lessons learned were gained related to the impact of such a high production rate on the operation and maintenance of the facility. This paper presents the challenges and successes of that operation. The facility successfully achieved its production target with no safety incidents. This high rate of production is planned to continue for several years at the facility. Some challenges continue and these are being assessed and incorporated into the facility's business plan. In order to continue being successful, the facility must look to the future for opportunities for improvement and efficiencies to be gained. (author)

  11. Lessons learned: the effect of increased production rate on operation and maintenance of OPG's Western Used Fuel Dry Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morton, L.; Smith, N. [Ontario Power Generation, Tiverton, ON (Canada)

    2011-07-01

    In 2010, the Western Used Fuel Dry Storage Facility (WUFDSF) located at Ontario Power Generation's (OPG's) Western Waste Management Facility in Tiverton, ON, transferred, processed and stored a record-high number of Dry Storage Containers (DSC's) from Bruce Power's nuclear generating stations. The WUFDSF has been in operation since 2002. The facility transfers, processes, and stores the used fuel from the Bruce Power generating stations located in Tiverton, Ontario. As per a contractual agreement between OPG and Bruce Power, an annual DSC production and transfer schedule is agreed to between the two parties. In 2010, an increased annual production rate of 130 DSC's was agreed to between OPG and Bruce Power. Throughout 2007, 2008 and 2009, several facility modifications had been completed in anticipation of the increased production rate. These modifications included: Installation and commissioning of a second set of welding consoles; Addition of a second vacuum drying system; Procurement of a second transfer vehicle; and, Installation of a bulk gas system for welding cover gas. In 2010, the increased production rate of 130 DSC's/year came into effect. Throughout 2010, significant lessons learned were gained related to the impact of such a high production rate on the operation and maintenance of the facility. This paper presents the challenges and successes of that operation. The facility successfully achieved its production target with no safety incidents. This high rate of production is planned to continue for several years at the facility. Some challenges continue and these are being assessed and incorporated into the facility's business plan. In order to continue being successful, the facility must look to the future for opportunities for improvement and efficiencies to be gained. (author)

  12. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  13. Uranium ore mining in Spain with a focus on the closure and remediation measures in former production facilities

    International Nuclear Information System (INIS)

    Koch, H.; Blunck, S.; Lopez Romero, A.R.

    2004-01-01

    In early 2000, the uranium ore mining activities in Spain ceased. Since the middle of the last century, Spain had pushed ahead its own production of uranium concentrate with the formation of several companies (ENUSA, J.E.N.). In that period, Spain produced around 6000 t of uranium. With the completion of the operations at Andujar, La Haba and Elephante as well as Quercus at Saelices el Chico, the corporate tasks have shifted from building-up of a strategic uranium reserve to remediation and subsequent use of the locations. The operations have reached different remediation phases. While at Saelices el Chico remediation is still proceeding, the Andujar and La Haba locations are undergoing a monitoring phase as agreed for all former operating facilities. The estimated closure and remediation costs for the three operating facilities described amount to approx. 85 mio. Euro. In all three cases dealt with, however, these limited financial resources have been sufficient to successfully implement a closure and remediation concept that minimizes the risks from the facilities of uranium ore mining and processing with regard to the environment. (orig.)

  14. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  15. Life cycle assessment of solid waste management strategies in a chlor-alkali production facility.

    Science.gov (United States)

    Muñoz, Edmundo; Navia, Rodrigo

    2011-06-01

    The waste management of a chlor-alkali and calcium chloride industrial facility from southern Chile was the object of this study. The main solid waste materials generated in these processes are brine sediments and calcium chloride sediments, respectively. Both residues are mixed in the liquid phase and filtered in a press filter, obtaining a final low humidity solid waste, called 'mixed sediments', which is disposed of in an industrial landfill as non-hazardous waste. The aim of the present study was to compare by means of LCA, the current waste management option of the studied chlor-alkali facility, namely landfill disposal, with two new possible options: the reuse of the mixed sediments as mineral additive in compost and the use of brine sediments as an unconventional sorbent for the removal of heavy metals from wastewater. The functional unit was defined as 1 tonne of waste being managed. To perform this evaluation, software SimaPro 7.0 was used, selecting the Ecoindicator 99 and CML 2000 methodologies for impact evaluation. The obtained results indicate that the use of brine sediments as a novel material for the removal of heavy metals from wastewater (scenario 3) presented environmental benefits when compared with the waste management option of sediments landfilling (scenario 1). The avoided environmental loads, generated by the substitution of activated granular carbon and the removal of Cu and Zn from wastewater in the treatment process generated positive environmental impacts, enhancing the environmental performance of scenario 3.

  16. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S., E-mail: gupta@becker-technologies.com [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Schmidt, E.; Laufenberg, B. von; Freitag, M.; Poss, G. [Becker Technologies GmbH, Koelner Strasse 6, 65760 Eschborn (Germany); Funke, F. [AREVA GmbH, P.O. Box 1109, 91001 Erlangen (Germany); Weber, G. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Forschungszentrum, Boltzmannstraße 14, 85748 Garching (Germany)

    2015-12-01

    hydraulics, gas distribution) and ISP-49 (hydrogen combustion), EU-SARNET/SARNET2 code-benchmark exercises involving THAI data on iodine/surface interactions, iodine mass transfer, passive autocatalytic recombiner performance, iodine oxide behaviour and iodine transport in multi-compartment behaviour. The present paper provides an overview of the THAI experiments related to hydrogen and fission products issues performed in the frame of national and international projects. From the comprehensive THAI experimental database, a selection of typical results is presented to illustrate the multi-functionality of the THAI facility and the broad variety of the experimental investigations.

  17. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  18. 9 CFR 314.3 - Disposition of condemned products at official establishments having no tanking facilities.

    Science.gov (United States)

    2010-01-01

    ... MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION HANDLING AND DISPOSAL... agent is applied, except that, in the case of dead animals that have not been dressed, the denaturant...

  19. Laboratory facility for production of cryogenic targets for hot plasma experiments

    International Nuclear Information System (INIS)

    Sadowski, M.; Szydlowski, A.; Jakubowski, L.; Cwiek, E.

    1990-10-01

    Results of preliminary operational tests of the cryogenic stand designed for the production of small droplets of liquid hydrogen or deuterium are presented. Such cryogenic micro-targets are needed for nuclear and thermonuclear experiments. (author)

  20. The Gateway Garden — A Prototype Food Production Facility for Deep Space Exploration

    Science.gov (United States)

    Fritsche, R. F.; Romeyn, M. W.; Massa, G.

    2018-02-01

    CIS-lunar space provides a unique opportunity to perform deep space microgravity crop science research while also addressing and advancing food production technologies that will be deployed on the Deep Space Transport.

  1. Measurement of 230Pa and 186Re Production Cross Sections Induced by Deuterons at Arronax Facility

    Science.gov (United States)

    Duchemin, Charlotte; Guertin, Arnaud; Metivier, Vincent; Haddad, Ferid; Michel, Nathalie

    2014-02-01

    A dedicated program has been launched on production of innovative radionuclides for PET imaging and for β- and α targeted radiotherapy using proton or α particles at the ARRONAX cyclotron. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Two isotopes dedicated to targeted therapy have been considered: 226Th, a decay product of 230Pa, and 186Re. The production cross sections of 230Pa and 186Re, as well as those of the contaminants created during the irradiation, have been determined by the stacked-foil technique using deuteron beams. Experimental values have been quantified using a referenced cross section. The measured cross sections have been used to determine expected production yields and compared with the calculated values obtained using the Talys code with default parameters.

  2. Design of a Fluorine-18 Production System at ORNL Cyclotron Facility. Part 2

    International Nuclear Information System (INIS)

    Chu, Y.E.; Engstrom, S.D.; Sundberg, D.G.

    1977-01-01

    A fluorine-18 recovery system using an anion-exchange side-stream column was designed for the H 2 18 O target at the ORNL 86-inch cyclotron. The extent of radiolysis was determined and a catalyst vessel, containing a palladium catalyst, was incorporated to recombine the radiolysis product gases. The preliminary design of an externally bombarded gas target for the production of 18 F 2 from 18 O 2 was also completed

  3. The Precipitation Products Generation Chain for the EUMETSAT Hydrological Satellite Application Facility at C.N.M.C.A.

    Science.gov (United States)

    Zauli, Francesco; Biron, Daniele; Melfi, Davide

    2009-11-01

    The EUMETSA T Satellite Application Facility in support to Hydrology (H-SAF) focuses on the development of new geophysical products on precipitation, soil moisture and snow parameters and the utilisation of these parameters in hydrological models, NWP models and water management. The development phase of the H-SAF started in September 2005 under the leadership of Italian Meteorological Service.The Centro Nazionale di Meteorologia e Climatologia Aeronautica (C.N.M.C.A.), the Italian National Weather Centre, that physically hosts the generation chain of precipitation products, developed activities to reach the final target: development of algorithms, validation of results, implementation of operative procedure to supply the service and to monitor the service performances.The paper shows the recent architectural review of H- SAF precipitation group, stressing components of operation for high sustainability, full redundancy, absolute continuity of service.

  4. Production facility layout by comparing moment displacement using BLOCPLAN and ALDEP Algorithms

    Science.gov (United States)

    Tambunan, M.; Ginting, E.; Sari, R. M.

    2018-02-01

    Production floor layout settings include the organizing of machinery, materials, and all the equipments used in the production process in the available area. PT. XYZ is a company that manufactures rubber and rubber compounds for retreading tire threaded with hot and cold cooking system. In the production of PT. XYZ is divided into three interrelated parts, namely Masterbatch Department, Department Compound, and Procured Thread Line Department. PT. XYZ has a production process with material flow is irregular and the arrangement of machine is complicated and need to be redesigned. The purpose of this study is comparing movement displacement using BLOCPLAN and ALDEP algorithm in order to redesign existing layout. Redesigning the layout of the production floor is done by applying algorithms of BLOCPLAN and ALDEP. The algorithm used to find the best layout design by comparing the moment displacement and the flow pattern. Moment displacement on the floor layout of the company’s production currently amounts to 2,090,578.5 meters per year and material flow pattern is irregular. Based on the calculation, the moment displacement for the BLOCPLAN is 1,551,344.82 meter per year and ALDEP is 1,600,179 meter per year. Flow Material resulted is in the form of straight the line.

  5. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  6. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    Science.gov (United States)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  7. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  8. Radiation protection for the antiproton production at the FAIR facility; Strahlenschutz fuer die Antiprotonenproduktion bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, I.; Gostischev, V.; Helmecke, M.; Kissel, R.; Knie, K.; Lang, R.; Zieser, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Fehrenbacher, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); FAIR - Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt (Germany)

    2016-07-01

    FAIR (Facility for Antiproton and Ion Research) is an international accelerator centre, which will be constructed at the site of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. Antiprotons are produced in a metal cylinder bombarded with high-energy protons (up to 29 GeV). In addition to antiprotons, this interaction creates other secondary particles such as neutrons, pions, muons and gamma rays. The shielding of this radiation field sets high demands on the building design. Necessary radiation protection measures are based on Monte Carlo simulations of the distribution of the spatial dose rate. Furthermore the activation of components, i.e. the transformation of stable nuclei into radioactive isotopes following irradiation, must be considered. The resulting activities of up to 10{sup 11} Bq require a special concept for the handling and transport of affected elements.

  9. A facile production of microporous carbon spheres and their electrochemical performance in EDLC

    Science.gov (United States)

    Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede

    2012-03-01

    In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.

  10. Soil characteristics as criteria for cathodic protection of a nuclear fuel production facility

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Corbett, R.A.

    1987-01-01

    The fact that buried metallic structures corrode is well documented. It has been postulated that the extent and rate of attack is controlled predominantly by the characteristics of the surrounding soil. Therefore, prior to constructing a new facility designed to process accumulated nuclear waste, consideration was given to protecting its underground pipelines against corrosion. Leak frequency curves from other nearby plantsites, extensive soil resistivity surveys, and geochemical analyses, were used to evaluate the onsite soil characteristics for corrosion susceptibility. Analysis of the data collected over a three-year period indicated that although the soil is not overly aggressive, substantial heterogeneity existed so as to establish galvanic cells along pipe lengths passing through the soil. To limit the extent of corrosion on underground piping, the application of an impressed current cathodic protection system was recommended to supplement a high integrity, corrosion resistant coating and wrap system

  11. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    Science.gov (United States)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  12. The commercial use of gamma facilities in North and South America for agriculture product processing

    Science.gov (United States)

    Butterweck, Joseph S.

    1993-07-01

    The treatment of agriculture and food products with ionizing radiation has been proven to be safe, effective, economical, and according to consumer surveys, the end product is better. However, commercial implementation of food irradiation has been slow because the following: 1. The lack of profit incentives 2. The failure of the political system to deal with antinuclear groups 3. The failure of public health authorities to actively support this technologyFood irradiation cannot be considered successfully implemented until the commercial industry is making a profit by the use of this technology. Use of this technology will: (1) reduce food borne infections (FBI); (2) decrease the hazards of the use of antibiotics in livestock and poultry production; (3) reduce the need for agriculture quarantine procedures; and (4) increase shelf-life of perishable foods. However, only (1) and (3) are being considered as economic alternative by the present day's food industry. Previously, agriculture has focused on technology that would increase production and reduce costs. Today this is rapidly changing to implementing technology that markets a product the consumer wants and is perceived as being safer and environmental responsible.

  13. The commercial use of gamma facilities in North and South America for agricultural product processing

    International Nuclear Information System (INIS)

    Butterweck, J.S.

    1993-01-01

    The treatment of agriculture and food products with ionizing radiation has been proven to be safe, effective, economical, and according to consumer surveys, the end product is better. However, commercial implementation of food irradiation has been slow because of the following: the lack of profit incentives; the failure of the political system to deal with antinuclear groups; the failure of public health authorities to actively support this technology. Food irradiation cannot be considered successfully implemented until the commercial industry is making a profit by the use of this technology. Use of this technology will: (1) reduce food borne infections (FBI); (2) decrease the hazards of the use of antibiotics in livestock and poultry production; (3) reduce the need for agriculture quarantine procedures; and (4) increase shelf-life of perishable foods. However, only (1) and (3) are being considered as economic alternatives by the present day's food industry. Previously, agriculture has focused on technology that would increase production and reduce costs. Today this is rapidly changing to implementing technology that markets a product the consumer wants and is perceived as being safer and environmentally responsible. (author)

  14. The use of modern engineered polymer coatings and products in decommissioning of nuclear facilities and plant

    International Nuclear Information System (INIS)

    Christie, K.; Harris, C.W.; Morris, O.P.; Atkinson, P.

    2014-01-01

    During decommissioning of nuclear plant, problems can arise whereby leaks and cracks appear which may require repair or remediation. Following clean-up processes radionuclides may be exposed in concrete or structures such ponds which require sealing to prevent atmospheric release and to obtain a reduction in operator dose. There are a number of polymer based products on the market which with care and skillful selection can be utilised to aid decommissioning and to add reassurance to regulators that radionuclide release cannot occur. Choosing between them is difficult due to the fact that the standard coating tests cannot reliably distinguish between the various products since these modern polymers are all significantly tougher than previous generations of coating technologies. There is therefore a need to develop new bespoke tests which replicate the likely failure modes of the plant and which demonstrate which products are likely to perform well in real life situations. (authors)

  15. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    Science.gov (United States)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  16. Fission product release measured during fuel damage tests at the Power Burst Facility

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Vinjamuri, K.; Cronenberg, A.W.

    1985-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid quench and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations are offered for the probable reasons for the observed differences and recommendations for further studies are given

  17. Mapping value added positions in facilities management by using a product-process matrix

    DEFF Research Database (Denmark)

    Katchamart, Akarapong

    2013-01-01

    Purpose – The purpose of this exploratory research paper is to present a product-process matrix that assists FM organizations and their stakeholders to map their value added position in their organizations. Using this matrix, FM practitioners are able to assess the existing value added delivering...... of the matrix are an FM product structure and an FM process structure. The supporting empirical data were collected through semi-structured interviews from selected FM organizations supplemented by relevant documents. Findings – Based on a product-process matrix, a typology of FM value added positions...... greater values to the client’s core business. Meanwhile, misaligning dilutes the value delivery. Research limitations/implications – This normative matrix can be used as a decision-making tool for a client to assess its FM performances and activities, and to determine the needs of FM provision...

  18. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  19. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  20. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    International Nuclear Information System (INIS)

    Fassbender, M.; Nortier, F.M.; Phillips, D.R.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Kitten, J.J.; Pitt, L.R.; Salazar, L.L.; Valdez, F.O.; Peterson, E.J.

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides 68 Ge, 82 Sr, 109 Cd and 88 Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40 MBq to 75 GBq. (orig.)

  1. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4

  2. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  3. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  4. 3H, 14C, 85Kr and 129I production in nuclear facilities

    International Nuclear Information System (INIS)

    Castellani, F.; Ocone, R.

    1984-01-01

    The production of 3 H, 14 C, 85 Kr and 129 I in nuclear power plants is evaluated. In particular the plant components where these radioisotopes can be formed and the formation processes, with corresponding cross sections, are considered. Furthermare their release in the plants and the fraction transfered to the reprocessing are examined

  5. Study of optimum propellant production facilities for launch of space shuttle vehicles

    Science.gov (United States)

    Laclair, L. M.

    1970-01-01

    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  6. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  7. A national study of efficiency for dialysis centers: an examination of market competition and facility characteristics for production of multiple dialysis outputs.

    Science.gov (United States)

    Ozgen, Hacer; Ozcan, Yasar A

    2002-06-01

    To examine market competition and facility characteristics that can be related to technical efficiency in the production of multiple dialysis outputs from the perspective of the industrial organization model. Freestanding dialysis facilities that operated in 1997 submitted cost report fonns to the Health Care Financing Administration (HCFA), and offered all three outputs--outpatient dialysis, dialysis training, and home program dialysis. The Independent Renal Facility Cost Report Data file (IRFCRD) from HCFA was utilized to obtain information on output and input variables and market and facility features for 791 multiple-output facilities. Information regarding population characteristics was obtained from the Area Resources File. Cross-sectional data for the year 1997 were utilized to obtain facility-specific technical efficiency scores estimated through Data Envelopment Analysis (DEA). A binary variable of efficiency status was then regressed against its market and facility characteristics and control factors in a multivariate logistic regression analysis. The majority of the facilities in the sample are functioning technically inefficiently. Neither the intensity of market competition nor a policy of dialyzer reuse has a significant effect on the facilities' efficiency. Technical efficiency is significantly associated, however, with type of ownership, with the interaction between the market concentration of for-profits and ownership type, and with affiliations with chains of different sizes. Nonprofit and government-owned Facilities are more likely than their for-profit counterparts to become inefficient producers of renal dialysis outputs. On the other hand, that relationship between ownership form and efficiency is reversed as the market concentration of for-profits in a given market increases. Facilities that are members of large chains are more likely to be technically inefficient. Facilities do not appear to benefit from joint production of a variety of

  8. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R. Q.; Taulbee, D.; Parekh, B. K.; Tao, D.

    2005-12-05

    The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the monetary value of the energy disposed in the form of sawdust is approximately $490,000 annually. Since the two industries are typically in close proximity, one promising avenue is to selectively recover and dewater the fine-coal particles and then briquette them with sawdust to produce a high-value fuel. The benefits are i) a premium fuel product that is low in moisture and can be handled, transported, and utilized in existing infrastructure, thereby avoiding significant additional capital investment and ii) a reduction in the amount of fine-waste material produced by the two industries that must now be disposed at a significant financial and environmental price. As such, the goal of this project was to evaluate the feasibility of producing a premium fuel with a heating value greater than 10,000 Btu/lb from waste materials generated by the coal and timber industries. Laboratory and pilot-scale testing of the briquetting process indicated that the goal was successfully achieved. Low-ash briquettes containing 5% to 10% sawdust were produced with energy values that were well in excess of 12,000 Btu/lb. A major economic hurdle associated with commercially briquetting coal is binder cost. Approximately fifty binder formulations, both with and without lime, were subjected to an extensive laboratory evaluation to assess their relative technical and economical effectiveness as binding

  9. Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities

    International Nuclear Information System (INIS)

    Borge-Diez, David; Colmenar-Santos, Antonio; Pérez-Molina, Clara; López-Rey, África

    2015-01-01

    In Europe energy services are underutilized in terms of their potential to improve energy efficiency and reduce external energy dependence. Agricultural and stockbreeding sectors have high potential to improve their energy efficiency. This paper presents an energy model for geothermal source heat pumps in stockbreeding facilities and an analysis of an energy services business case. The proposed solution combines both energy cost reduction and productivity increases and improves energy services company financing scheme. CO 2 emissions drop by 89%, reducing carbon footprint and improving added value for the product. For the two different evaluated scenarios, one including winter heating and one including heating and cooling, high IRR (internal return rate) values are obtained. A sensitivity analysis reveals that the IRR ranges from 10.25% to 22.02%, making the investment attractive. To make the research highly extensible, a sensitivity analysis for different locations and climatic conditions is presented, showing a direct relationship between financial parameters and climatic conditions. A Monte Carlo simulation is performed showing that initial fuel cost and initial investment are the most decisive in the financial results. This work proves that energy services based on geothermal energy can be profitable in these sectors and can increase sustainability, reduce CO 2 emissions and improve carbon footprint. - Highlights: • Geothermal heat pumps are studied to promote industrial energy services. • Geothermal energy in farming facilities improves global competitiveness. • Research shows profitability of low enthalpy geothermal energy services. • Climatic conditions sensitivity analysis reveals IRR ranges from 10.25% to 22.02%. • Added market value for the product as carbon footprint reduction, are achieved

  10. Grading of Requirements for Radioactive Waste Activities in Nuclear Research Reactors: Radioisotope Production Facilities

    International Nuclear Information System (INIS)

    Tawfik, Y.E.

    2017-01-01

    A graded approach is applicable in all stages of the life time of a research reactor. During the life time of a research reactor, any grading performed should not, in any manner, affect safety functions and operational limits and conditions are preserved, so that there are no undue radiological hazards to workers, public or environment. The grading of activities should be based on safety analyses, and regulatory requirements. Other elements to be considered in grading are the complexity and the maturity of the technology, operating experience associated with the activities and the stage in the life time of the facility. In order to ensure that proper and a de quate provision is made for the safety implications associated with the management and disposal of radioactive waste, the waste is characterized and classified. The general scheme for classifying radioactive waste as presented in the current study is based on considerations of long term safety, and thus, by implication, disposal of the waste. This classification provides a starting point for the grading of activities associated with the packaging and disposal of radioactive waste

  11. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    International Nuclear Information System (INIS)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs

  12. Calculation of displacement and helium production at the LAMPF irradiation facility

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Davidson, D.R.; Sommer, W.F.; Greenwood, L.R.

    1985-01-01

    Differential and total displacement and helium-production rates are calculated for copper irradiated by spallation neutrons and 760-MeV protons at LAMPF. The calculations are performed using the SPECTOR and VNMTC computer codes, the latter being specially designed for spallation radiation-damage calculations. For comparison, similar SPECTER calculations are also described for irradiation of copper in the experimental breeder reactor (EBR-II) at the Argonne National Laboratory-West in Idaho, and in the rotating target neutron source (RTNS-II) at Lawrence Livermore Laboratory. The neutron energy spectra for LAMPF, EBR-II, and RTNS-II and the displacement and helium-production cross sections are shown

  13. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  14. Safety assessment for the IS process in a hydrogen production facility

    International Nuclear Information System (INIS)

    Cho, Nam Chul

    2005-08-01

    A substitute energy development have been required due to the dry up of the fossil fuel and an environmental problem. Consequently, among substitute energy to be discussed, producing hydrogen from water which does not release carbon is a very promising technology. Also, Iodine-Sulfur(IS) thermochemical water decomposition is one of the promising process which is used to produce hydrogen efficiently using the high temperature gas-cooled reactor(HTGR) as an energy source that is possible to supply heat over 1000 .deg. C. In this study, to make a safety assessment of the hydrogen production using the IS process, an initiating events analysis and an accident scenario modeling considering the relief system were carried out. A method for initiating event identification used the Master Logic Diagram(MLD) that is logical and deductive. As a result, 9 initiating events that cause a leakage of the chemical material were identified. 6 accident scenario based on the initiating event are identified and quantified to the event trees. The frequency of the chemical material leakage produced by IS process is estimated relatively high to the value of 1.22x10 -4 /y. Therefore, it requires more effort on safety of the hydrogen production which can be considered as a part of the nuclear system and safety management research to increase social acceptability. Moreover, these methods will be helpful to the safety assessment of the hydrogen production system of the IS process in general

  15. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  16. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  17. Organic carbon movement through two SWRO facilities from source water to pretreatment to product with relevance to membrane biofouling

    KAUST Repository

    Alshahri, Abdullah Hassan Mohammed

    2016-12-29

    The presence of algae, bacteria, various fractions of natural organic matter (NOM), and transparent exopolymer particles (TEP) in the raw water, after each pretreatment process and in the permeate and concentrate streams, were measured at two SWRO plants to assess biofouling potential. It was found that the most significant process controlling the concentration of algae, bacteria, and the biopolymer and humic substances was the intake type with the subsurface intake discharge showing significant reductions. The mixed media filtration process was marginally useful in removing some TOC and NOM, but had little effect on TEP removal. Some bacterial regrowth may be occurring in the cartridge filters, but the evidence is inconsistent. Significant quantities of the biopolymer and humic substance concentrations were found to be retained in the membranes, but the concentrations were significantly greater in the facility using an open-ocean intake. Bacteria and TEP were found in the permeate stream, which may document bacterial regrowth and TEP production downstream of the membrane process. Measurements of the organic carbon passage through SWRO facilities can be successfully used to evaluate pretreatment process effectiveness and to make SWRO plant operational improvements.

  18. Effects of agricultural credit facility on the agricultural production and rural development

    Directory of Open Access Journals (Sweden)

    GE Ekwere

    2014-05-01

    Full Text Available Lack of capital has been identified as one of the constraints that faced by small scale farmers. The aim of this research was to examine the effect of agricultural credit on the agriculture production, and calculate the inputs and outputs among small scale farmers. Structured questionnaires were distributed to 136 farmers, who had been selected using the stratified random sampling technique, and the data obtained were summarized into percentages. Regression analysis was adopted to assess the impacts of socio-economic factors on loan size among farmers, while Cobb-Douglas Production Function Analysis (CDPFA was used to test the relationship between key independent variables such as loan amount, farm size, inputs and farm output as dependent variable. The analysis revealed a significantly high value of coefficient of determination (R2= 0.922 that reflected a high relationship between the dependent variable and the independent variables; gender, age, education, family size, farm size, farming experience. The Adjusted (R2 coefficient (R2 = 0.918 revealed that 91.8 % of variation in loam size explained by the changes in variables. The results showed a significance in F-test in size of loan. The hypothesis two, exhibited that the independent variables; loan size, farm size, and inputs explained the variation in the total value of farmers output. The study therefore showed that to achieve the positive agricultural credit impacts on agricultural production, The Government and the private sector should regularly and timely facilitate the credit to the small scale farmers. DOI: http://dx.doi.org/10.3126/ije.v3i2.10529 International Journal of the Environment Vol.3(2 2014: 192-204

  19. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  20. Outlooks for the development of ozone-safe refrigerant production at the Minatom facilities

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Orekhov, V.T.; Dedov, A.S.; Zakharov, V.Yu.; Golubev, A.N.; Tsarev, V.A.

    2001-01-01

    Results of activities undertaken at the All-Russian Research Institute of Chemical Technology since 1988, which were aimed at search of new methods of synthesis of ozone-safe refrigerants, using depleted uranium hexafluoride waste formed at gas-diffusion plants as fluorinating agent, are considered. It is pointed out that major advantages of the flowsheets making use of UF 6 versus traditional method consist in the fact that the processes are conducted in gas phase under normal pressure and moderate temperatures with UF 6 transfer into a more environmentally friendly form. Outlooks for expansion of production of ozone-safe refrigerants by the method described are discussed [ru

  1. Analysis and results of a hydrogen-moderated isotope production assembly in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Wootan, D.W.; Rawlins, J.A.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1989-01-01

    This paper reports on a cobalt test assembly containing yttrium hydride pins for neutron moderation irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce 60 Co and a set of four pins with europium oxide to produce 153 Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the 60 Co production to be predictable to an accuracy of ∼ 5%. The measured 60 Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average 60 Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes 152 Eu and 154 Eu to an absolute accuracy of ≅ 10%. The measured europium radioisotope and 153 Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly

  2. Crisis management and recovery from the damage to the laboratory animal production facility due to the Great East Japan Earthquake.

    Science.gov (United States)

    Ikeda, Takuya

    2012-01-01

    Charles River Laboratories Japan produces laboratory animals, mainly mice and rats. In its history, we have experienced many crises such as mass food poisoning of staff and contamination of animals. However, we overcame these crises, accomplishing our corporate missions to secure steady supply of healthy animals. Under such circumstances, in 2008, we faced an unprecedented crisis involving a novel influenza possibly becoming pandemic. Therefore, we prepared a Crisis Management Plan (CMP) and Business Continuity Plan (BCP) to avoid the worst case scenario. Fortunately, the novel influenza did not develop into a pandemic and no major problems occurred in production of our laboratory animals. In March 2011, our Tsukuba Breeding Center was struck by the Great East Japan Earthquake. Many cages fell from racks, and consequently, 14,000 mice and rats were euthanized. Moreover, this animal production facility experienced not only blackouts and water outage but also various maintenance problems. After triage of the animals, almost half of the animals kept were eventually lost. However, we recovered and resumed shipment of animals two weeks after the disaster by utilizing the CMP and BCP we initially created as a countermeasure against novel influenza. After two months, our production volume returned to normal except for two strains. I sincerely hope this review, which highlights our experience and related issues, will be a useful resource in regard to crisis management for people who are engaged in laboratory animal care and use.

  3. Production and quality assurance in the SIT Africa Mediterranean fruit fly (Diptera: Tephritidae) rearing facility in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B [Plant Protection Division, ARC Infruitec-Nietvoorbij Fruit, Vine and Wine Institute, Stellenbosch, 7599 (South Africa); Rosenberg, S; Arnolds, L; Johnson, J [SIT Africa (Pty) Ltd., Stellenbosch, 7599 (South Africa)

    2007-03-15

    A mass-rearing facility for Mediterranean fruit fly Ceratitis capitata (Wiedemann) was commissioned in Stellenbosch in 1999 to produce sterile male fruit flies for a sterile insect technique (SIT) project in commercial fruit orchards and vineyards in the Western Cape province of South Africa. The mass-rearing procedure was largely based on systems developed by the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria. A number of genetic sexing strains were used to produce only males for release. Initial cramped rearing and quality management conditions were alleviated in 2001 with the construction of a new adult rearing room and quality control laboratory. In 2002 a comprehensive Quality Management System was implemented, and in 2003 an improved genetic sexing strain, VIENNA 8, was supplied by the FAO/IAEA Laboratory in Seibersdorf. For most of the first 3 years the facility was unable to supply the required number of sterile male Mediterranean fruit flies for the SIT program without importing sterile male pupae from another facility. From mid-2002, after the quality management system was implemented, both production and quality improved but remained below optimum. After the introduction of the VIENNA 8 genetic sexing strain, and together with an improvement in the climate control equipment, production stability, and quality assurance parameters improved substantially. The critical factors influencing production and quality were an inadequate rearing infrastructure, problems with the quality of the larval diet, and the initial absence of a quality management system. The results highlight the importance of effective quality management, the value of a stable and productive genetic sexing strain, and the necessity for a sound funding base for the mass-rearing facility. (author) [Spanish] La facilidad para criar en masa la mosca mediterranea de la fruta, Ceratitis capitata (Wiedemann) fue comisionada en Stellenbosch en 1999 para producir machos

  4. The U.S. DOE new production reactor/heavy water reactor facility pollution prevention/waste minimization program

    International Nuclear Information System (INIS)

    Kaczmarsky, Myron M.; Tsang, Irving; Stepien, Walter P.

    1992-01-01

    A Pollution Prevention/Waste Minimization Program was established during the early design phase of the U.S. DOE's New Production Reactor/Heavy Water Reactor Facility (NPR/HWRF) to encompass design, construction, operation and decommissioning. The primary emphasis of the program was given to waste elimination, source reduction and/or recycling to minimize the quantity and toxicity of material before it enters the waste stream for treatment or disposal. The paper discusses the regulatory and programmatic background as it applies to the NPR/HWRF and the waste assessment program developed as a phased approach to pollution prevention/waste minimization for the NPR/HWRF. Implementation of the program will be based on various factors including life cycle cost analysis, which will include costs associated with personnel, record keeping, transportation, pollution control equipment, treatment, storage, disposal, liability, compliance and oversight. (author)

  5. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    Science.gov (United States)

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  6. SUPPLY-SIDE EFFECT OF HEALTH CARE FACILITIES ON PRODUCTIVITY AMONG THE FEMALE WORKER IN THE READYMADE GERMENT SECTOR

    Directory of Open Access Journals (Sweden)

    Md Aminul Haque

    2008-01-01

    Full Text Available This study was conducted in 4 selected garment factories within Dhaka city. The objectives of this study were to find out health care access (Supply-side effect in the garments factory for the women workers and their relation to the productivity. A total of 300 women garment workers were included in this study. Most (60.0% of the respondents were adolescents, unmarried and having only primary level education (5 years of school education. Their average take home monthly salary was 1791.7 taka which was spent mostly on food. They passed a tight work schedule from 6 AM to 11.30 PM without any rest. Hundred percent of female workers had no previous idea about garments nor had any formal training, but they produced on an average 1016 garment pieces a day. They did not get any vaccine, health education or health related knowledge from the garments factory. There was no provision of health care centre or doctor, treatment for fire burn (other than gas, medicine and support in chronic, severe illness for themselves or their family members. More than half (63.0% of the respondents mentioned about loss of time due to illness. There was a strong correlation (r=0.858 between sickness and production loss, between hour loss and production loss (r=0.9283, between production loss and percentage loss (r=0.871. Though there was loss due to illness, no health access or facility for women workers in the garments factory was available. To overcome the situation and improve the productivity, owners have to provide health access and women workers have to come forward for their rights. Ibrahim Med. Coll. J. 2008; 2(1: 4-8

  7. Safety Assessments for the IS Process in a Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo; Cho, Nam Chul; Jae, Moo Sung

    2006-01-01

    The thermochemical water decomposition cycle is one of the methods for the hydrogen production process from water. The successful continuous operation of the IS-process was demonstrated and this process is one of the thermochemical processes, which is the closest to be industrialized. Currently, Korea has also started a research about the IS process and the construction of the IS process system is planned. In this study, for risk analysis of the IS process, initiating events of the IS process are identified by using the Master Logic Diagram (MLD) which is the method for initiating the event identification. Also, 6 events were identified among 9 initiating events above and performed quantification of events using event tree analysis

  8. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  9. Solid targets and irradiation facilities for production of diagnostic and therapeutic radionuclides at the Debrecen cyclotron

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ando, L.; Szucs, Z.; Mahunka, I.; Kovacs, Z.

    2000-01-01

    The MGC-20E (NIIEFA, Leningrad, USSR) variable energy compact cyclotron (k=20) was installed in ATOMKI (Debrecen, Hungary) in 1985. Protons, deuterons, 3 He- and α-particles can be accelerated with currents up to 300 μA for internal irradiation and up to 50 μA for external beams. The establishment of the Cyclotron Laboratory was partly supported by the International Atomic Energy Agency. The application of the cyclotron is multipurpose: basic nuclear research, application of activation technique for analytical and wear studies, application of intense fast neutron source for agro-biological, bio-medical application and for radiation damage test of electronic components, and finally radioisotope production for medical diagnostics and for other scientific and applied fields. The cyclotron laboratory has six target rooms, a radiochemistry laboratory and a medical unit equipped with PET

  10. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

  11. Biomass of clone of Eucalyptus grandis x urophylla for producing briquettes; Biomassa de clone de Eucalyptus grandis x Eucalyptus urophylla para producao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eder Aparecido; Oguri, Guilherme [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], e-mail: os_garcias@fca.unesp.br; Lancas, Kleber Pereira [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Guerra, Saulo Philipe Sebastiao [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Gestao e Tecnologia Agroindustrial

    2011-07-01

    The aim of this work was conducted to address forest biomass energy for briquette producing. In an area of dystrophic soil, seedlings of clones of Eucalyptus grandis x E. urophylla were planted in 2008, considering factors spacing and fertilization. The first dosage of fertilizer was 70 g/plant of NPK 6-30-6 and total coverage of 110 g/plant of NPK 20-0-20 with B and Zn. The spacing was 2.8x0.5 m, 2.8x1.0 m, 2.8x1.5 m, 2.8x2.0 m and 2.8x2.5 m. At 18 months, tree samples were collected to evaluate the basic density of wood (BDW), dry biomass of stem, branches and leaves. An assessment of the economic viability of each treatment was based on the sale of briquettes. BDW spacing of 2.8x1.0 m was 0.464 kg/m{sup 3}. The largest biomass of the stem occurred in 2.8x0.5 m spacing, with dosage 3, but economically unviable. The dry biomass of branches was only affected by dosage, reaching 17.68 t/ha in the third dose. Only fertilization was significant for leaf biomass. The highest income in the spacing was 2.8 x1.5 m with dosage 2. (author)

  12. Assessment of the radiological control at the IPEN radioisotope production facility

    International Nuclear Information System (INIS)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Rodrigues, Demerval L.; Campos, Daniela; Nogueira, Paulo R.; Damato, Sandra R.; Pecequilo, Brigitte R.

    2014-01-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Instituto de Pesquisas Energeticas e Nucleares, IPEN/SP, and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in charcoal and paper filters) at the workplace during radioisotope production were 131 I, 99m Tc and 99 Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m 3 ), the activities concentrations also remained below the maximum permissible values, excepting to 125 I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y -1 , below the ICRP 103 recommended limit of 20 mSv.y -1 for workers. (author)

  13. Development of a biofiltration system to remove hydrogen sulphide from small oil and gas production facilities

    International Nuclear Information System (INIS)

    Dombroski, E.C.; Gaudet, I. D.; Coleman, R. N.

    1997-01-01

    Environmental regulations require sulphur separation in any processing operation that produces more than one tonne of sulphur per day. This leaves about 50 small operations in Alberta where the daily production of sulphur is less than one tonne. In these cases, the extracted acid gases are usually flared. Since flares are often inefficient and do not completely oxidize the hydrogen sulfide, an alternate, cost-effective technology that could replace flaring and eliminate atmospheric discharge would be of considerable interest. Biofiltration is known to be capable of oxidizing hydrogen sulfide in an air stream to non-volatile sulphate. The objective of this paper was to investigate the effectiveness of this technology in controlling H 2 S and SO 2 emissions from sour gas plants. Results of this laboratory-scale experiment were encouraging, justifying further studies on a demonstration-scale to determine if a full-scale biofilter could provide a practical, cost-effective technology for sulfur emission control from gas plants. 9 refs., 7 figs

  14. Survey of potential health and safety hazards of commercial-scale ethanol production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Smith, J.G.; Elmore, J.L.

    1982-04-01

    Generic safety and health aspects of commercial-scale (60 to 600 million L/y) anhydrous ethanol production were identified. Several common feedstocks (grains, roots and fibers, and sugarcane) and fuels (coal, natural gas, wood, and bagasse) were evaluated throughout each step of generic plant operation, from initial milling and sizing through saccharification, fermentation, distillation, and stillage disposal. The fermentation, digestion, or combustion phases are not particularly hazardous, although the strong acids and bases used for hydrolysis and pH adjustment should be handled with the same precautions that every industrial solvent deserves. The most serious safety hazard is that of explosion from grain dust or ethanol fume ignition and boiler/steam line overpressurization. Inhalation of ethanol and carbon dioxide vapors may cause intoxication or asphyxiation in unventilated areas, which could be particularly hazardous near equipment controls and agitating vats. Contact with low-pressure process steam would produce scalding burns. Benzene, used in stripping water from ethanol in the final distillation column, is a suspected leukemogen. Substitution of this fluid by alternative liquids is addressed.

  15. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    Energy Technology Data Exchange (ETDEWEB)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

  16. Assessment of the radiological control at the IPEN radioisotope production facility

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.C.G.G.; Sanches, M.P.; Rodrigues, D.L.; Campos, D.; Nogueira, P.R.; Damatto, S.R.; Pecequilo, B.R.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Nuclear and Energy Research Institute, IPEN/SP, Brazil and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in activated carbon cartridges and filter paper) at the workplace during radioisotope production were {sup 131}I, {sup 99m}Tc and {sup 99}Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m{sup 3} ), the activities concentrations also remained below the maximum admissible values, excepting to {sup 125}I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y{sup -1} , below the ICRP 103 recommended limit of 20 mSv.y{sup -1} for workers. (author)

  17. The Study on Policy Options for Siting Hazardous Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Oh [Korea Energy Economics Institute, Euiwang (Korea)

    2000-10-01

    The problem of site allocation on locally unwanted land uses related to energy utilities that extended most recently is becoming a new energy policy issue due to the improvement of national standard of living and livelihood quality. Residents do not generally agree on establishing the construction of public energy utilities in their village due to NIMBY syndrome while they basically agree to have them. These circumstances made a big problem against mass production of industry society and the improvement of the national welfare. Locally unwanted land use related to energy utilities includes waste incineration system, nuclear power plant, coal fired power plant, oil and Gas storage tank, briquette manufacturing plant and etc. Opportunity for SOC projects carried out by central and local government is lost because of the regional egoism. The site dispute between government and residents obstructs optimal energy supply to be necessary for industry growth and the national welfare. The main objective of this study is to propose the policy option for finding a solution after surveying theory and background of site troubles and dispute factors. Final results of this study propose a solution on structural and institutional dispute. The former introduces three kinds of approaches such as tradition, compensation and negotiation. The transition of an environmentally sound energy consumption pattern and the improvement of energy efficiency could be carried out by traditional approaches. To claim the damage and offer the accommodation facilities could be settled by compensational approaches. The establishment of regional decentralization on NIMBY facilities could be settled by negotiatory approaches through fair share criteria. The latter proposes 1) 'polluter pays principle', 2) internalization of social cost and benefit on air or water pollution, 3) the behind - the - scene negotiation in a bid to settle a site dispute, 4) and supporting system for peripheral areas

  18. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    Directory of Open Access Journals (Sweden)

    Tengku Hanidza T.I.

    2010-01-01

    Full Text Available There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA. There were 180 employees, 156 workers worked in the production line, which constitutes six work units Tube fin pressed, Brazing, Welding, Final assembly, Piping and Kit II. From the chemical risk evaluation for each work unit, 26 chemical compounds were used. Most of the chemicals were irritants (eye and skin and some were asphyxiants and sensitizers. Based on the work assignment, 93 out of 180 (51.67% of the workers were exposed to chemicals. The highest numbers of workers exposed to chemicals were from the Brazing section (22.22% while the Final Assembly section was the lowest (1.67%. Health survey among the workers showed occurrence of eye irritation, skin irritation, and respiratory irritation, symptoms usually associated with chemical exposure. Using a risk rating matrix, several work process were identified as having ‘significant risk’. For these areas, the workers are at risk of adverse health effects since chemical exposure is not adequately controlled. This study recommends corrective actions be taken in order to control the level of exposure and to provide a safe work environment for workers.

  19. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  20. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  1. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility

    International Nuclear Information System (INIS)

    Eveloy, Valérie; Rodgers, Peter; Qiu, Linyue

    2015-01-01

    Highlights: • Seawater reverse osmosis driven by hybrid gas turbine–organic Rankine power cycle. • High ambient air and seawater temperatures, and high seawater salinity. • Energy–exergy analysis of power and desalination systems for six organic fluids. • Economic viability of waste heat recovery in subsidized utility pricing context. - Abstract: Despite water scarcity, the use of industrial waste heat for seawater desalination has been limited in the Middle East to date. This study evaluates the technical and economic feasibility of integrating on-site gas turbine power generation and reverse osmosis equipment for the production of both electricity and fresh water in a coastal hydrocarbon production facility. Gas turbine exhaust gas waste heat is recovered using an intermediate heat transfer fluid and fed to an organic Rankine cycle evaporator, to generate mechanical power to drive the reverse osmosis high pressure pump. Six candidate organic working fluids are evaluated, namely toluene, benzene, cyclohexane, cyclopentane, n-pentane and R245fa. Thermodynamic and desalination performance are assessed in the harsh climatic and salinity conditions of the Arabian Gulf. The performance metrics considered incorporate electric power and permeate production, thermal and exergy efficiency, specific energy consumption, system size, and permeate quality. Using toluene in the bottoming power cycle, a gain in power generation efficiency of approximately 12% is achieved relative to the existing gas turbine cycle, with an annual average of 2260 m"3/h of fresh water produced. Depending upon the projected evolution of local water prices, the investment becomes profitable after two to four years, with an end-of-life net present value of 220–380 million USD, and internal rate of return of 26–48%.

  3. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) - Part 1: Algorithms, product contents and analysis

    Science.gov (United States)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Mullen, R.

    2015-06-01

    Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP) that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point) at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP information

  4. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  5. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  6. The Copernicus S5P Mission Performance Centre / Validation Data Analysis Facility for TROPOMI operational atmospheric data products

    Science.gov (United States)

    Compernolle, Steven; Lambert, Jean-Christopher; Langerock, Bavo; Granville, José; Hubert, Daan; Keppens, Arno; Rasson, Olivier; De Mazière, Martine; Fjæraa, Ann Mari; Niemeijer, Sander

    2017-04-01

    Sentinel-5 Precursor (S5P), to be launched in 2017 as the first atmospheric composition satellite of the Copernicus programme, carries as payload the TROPOspheric Monitoring Instrument (TROPOMI) developed by The Netherlands in close cooperation with ESA. Designed to measure Earth radiance and solar irradiance in the ultraviolet, visible and near infrared, TROPOMI will provide Copernicus with observational data on atmospheric composition at unprecedented geographical resolution. The S5P Mission Performance Center (MPC) provides an operational service-based solution for various QA/QC tasks, including the validation of S5P Level-2 data products and the support to algorithm evolution. Those two tasks are to be accomplished by the MPC Validation Data Analysis Facility (VDAF), one MPC component developed and operated at BIRA-IASB with support from S[&]T and NILU. The routine validation to be ensured by VDAF is complemented by a list of validation AO projects carried out by ESA's S5P Validation Team (S5PVT), with whom interaction is essential. Here we will introduce the general architecture of VDAF, its relation to the other MPC components, the generic and specific validation strategies applied for each of the official TROPOMI data products, and the expected output of the system. The S5P data products to be validated by VDAF are diverse: O3 (vertical profile, total column, tropospheric column), NO2 (total and tropospheric column), HCHO (tropospheric column), SO2 (column), CO (column), CH4 (column), aerosol layer height and clouds (fractional cover, cloud-top pressure and optical thickness). Starting from a generic validation protocol meeting community-agreed standards, a set of specific validation settings is associated with each data product, as well as the appropriate set of Fiducial Reference Measurements (FRM) to which it will be compared. VDAF collects FRMs from ESA's Validation Data Centre (EVDC) and from other sources (e.g., WMO's GAW, NDACC and TCCON). Data

  7. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  8. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  9. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    Science.gov (United States)

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  10. Facile and Green Production of Impurity-Free Aqueous Solutions of WS2 Nanosheets by Direct Exfoliation in Water.

    Science.gov (United States)

    Pan, Long; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying

    2016-12-01

    To obtain 2D materials with large quantity, low cost, and little pollution, liquid-phase exfoliation of their bulk form in water is a particularly fascinating concept. However, the current strategies for water-borne exfoliation exclusively employ stabilizers, such as surfactants, polymers, or inorganic salts, to minimize the extremely high surface energy of these nanosheets and stabilize them by steric repulsion. It is worth noting, however, that the remaining impurities inevitably bring about adverse effects to the ultimate performances of 2D materials. Here, a facile and green route to large-scale production of impurity-free aqueous solutions of WS 2 nanosheets is reported by direct exfoliation in water. Crucial parameters such as initial concentration, sonication time, centrifugation speed, and centrifugation time are systematically evaluated to screen out an optimized condition for scaling up. Statistics based on morphological characterization prove that substantial fraction (66%) of the obtained WS 2 nanosheets are one to five layers. X-ray diffraction and Raman characterizations reveal a high quality with few, if any, structural distortions. The water-borne exfoliation route opens up new opportunities for easy, clean processing of WS 2 -based film devices that may shine in the fields of, e.g., energy storage and functional nanocomposites owing to their excellent electrochemical, mechanical, and thermal properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  12. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  13. Delegation of Authority to Review Leases of Property at Department of Energy Weapon Production Facilities Under the Department of Energy Organization Act

    Science.gov (United States)

    The purpose of this memorandum is to request that the Human Resources Staff for OSWER and OECA start the Green Border review process for the attached draft delegation of authority, which delegates the authority of the Administrator to review leases of property at Department of Energy (DOE) weapon production facilities to the Assistant Administrator for OSWER and Regional Administrators.

  14. Future technological and economic performance of IGCC and FT production facilities with and without CO2 capture: Combining component based learning curve and bottom-up analysis

    NARCIS (Netherlands)

    Knoope, M.M.J.; Meerman, J.C.; Ramirez, C.A.; Faaij, A.P.C.

    2013-01-01

    This study aims to investigate the technological and economic prospects of integrated gasification facilities for power (IGCC) and Fischer–Tropsch (FT) liquid production with and without CCS over time. For this purpose, a component based experience curve was constructed and applied to identify the

  15. Evaluation of the Potential for the Production of Lignocellulosic Based Ethanol at Existing Corn Ethanol Facilities: Final Subcontract Report, 2 March 2000 - 30 March 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-07-01

    Subcontract report on opportunities to explore the business potential provided by converting biomass to products such as ethanol. The goals of this study were: (1) To provide the opportunity to explore the business potential provided by converting biomass to products such as ethanol. (2) To take advantage of the grain-processing infrastructure by investigating the co-location of additional biomass conversion facilities at an existing plant site.

  16. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  17. Alternative coke production from unconventional feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  18. Combustion of Coal-Mule Briquettes / Spalanie Brykietów Z Mułu Węglowego

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka

    2013-09-01

    Combustion technologies coal-mule fuels create a number of new possibilities for organising combustion processes so that they fulfil contemporary requirements (e.g., in terms of the environment protection- related issues). The paper describes the problems of coal-mule fuel combustion that have acquired a wider significance as the quality requirements of coal combustion in power plants have been growing. Coal mines that want to fulfill expectations of power industry workers have been forced to develop and modernize plants of coal wet cleaning. It all results in the growing amount of waste arising in the process of coal wet cleaning which contains smaller and smaller coal undersizes. In this situation the concept of direct combustion of the above mentioned waste and their co-combustion with other fuels, coal and biomass, seems to be attractive. Biomass is one from the most promising sources of renewable energy. The main aim of the paper is to identify the mechanism and kinetics of combustion of coal-mule fuels and their co- -combustion with coal and biomass in the briquettes form based on extensive experimental research in air. Niekorzystny bilans paliwowy naszego kraju powoduje nadmierne obciążenie środowiska, wywołane emisją CO2, NOx, SO2 i pyłów, a także powiększeniem powierzchni koniecznych na składowanie wciąż narastających stałych odpadów paleniskowych. Górnictwo, od którego energetyka oczekuje coraz lepszego paliwa, musi stosować głębsze wzbogacanie węgla. Powoduje to ciągłą produkcję odpadów w postaci mułów poflotacyjnych. Najlepszą metodą utylizacji tych mułów jest ich spalanie w postaci zawiesin, a także ich współspalanie z innymi paliwami, węglem czy biomasą. Biomasa jest bowiem jednym z najbardziej obiecujących źródeł OZE, a jej współspalanie z paliwami węglowymi znajduje w ostatnich latach coraz szersze zastosowanie zarówno w kraju, jak i na świecie. W tej sytuacji istotne jest prowadzenie badań naukowych

  19. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  20. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  1. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  2. Emulation and Control of Slugging Flows in a Gas-Lifted Offshore Oil Production Well Through a Lab-sized Facility

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian

    2013-01-01

    flow and pressures in the production well system, which is referred to as the slugging flow problem. This instability is mainly due to the casing-heading mechanism. This work investigates the possibility to use a feedback control for stabilizing the production operation without sacrificing...... the production capability. A labsized production well system is constructed in an economic manner. Afterwards, a simple nonlinear model is derived according to physical principles and then verified with the experimental facility. A observer-based state feedback control is designed to handle the potential...... slugging problem. The developed controller manipulates the openness degree of the production choke based on feedback a number of pressure measurements. The current simulation results showed satisfactory control performances by stabilizing the system operation at some relatively large production rate which...

  3. Coeur d'Alene Tribal Production Facility, Volume II of III, 2002-2003 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Paul

    2003-01-01

    This appendices covers the following reports: (1) Previous ISRP Reviews (Project 199004400) Implement Fisheries Enhancement Opportunities-Coeur d'Alene Reservation; (2) Step 1 review of the hatchery master plan (Memorandum from Mark Fritsch, Fish Production Coordinator, Draft version March 10, 2000); (3) Coeur d'Alene Tribe response to ISRP comments on Project No. 199004402; includes attachment A Water Quantity Report. This is an incomplete document Analysis of Well Yield Potential for a Portion of the Coeur d'Alene Reservation near Worley, Idaho, February 2001; (4) Coeur d'Alene Tribe Fisheries Program, Rainbow Trout Feasibility Report on the Coeur d'Alene Indian Reservation prepared by Ronald L. Peters, February 2001; (5) Coeur d'Alene Tribe response letter pursuant to the questions raised in the Step 1 review of the Coeur d'Alene Tribe Trout Production Facility from Ronald L. Peters, March 27, 2001 ; includes attachments Water quantity report (this is the complete report), Appendix A Logs for Test Wells and 1999 Worley West Park Well, letters from Ralston, Appendix B Cost of Rainbow Purchase Alternative; (6) NPPC response (memorandum from Mark Fritsch, March 28, 2001); (7) Response to NPPC (letter to Frank Cassidy, Jr., Chair, from Ernest L. Stensgar, April 18, 2001); (8) Final ISRP review (ISRP 2001-4: Mountain Columbia Final Report); (9) Response to ISRP comment (letter to Mark Walker, Director of Public Affairs, from Ronald Peters, May 7, 2001); (10) Final comments to the Fish 4 committee; (11) Scope of Work/Budget FY 2001-2004; (12) Letter from City of Worley concerning water service; (13) Letter to BPA regarding status of Step 1 package; (14) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1990 annual report; (15) Fisheries Habitat Evaluation on Tributaries of the Coeur d'Alene Indian Reservation, 1991 annual report; and (16) Fisheries Habitat Evaluation on Tributaries of the

  4. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  5. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  6. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  7. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    Science.gov (United States)

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  8. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15O and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.

  9. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Science.gov (United States)

    Rakhno, I. L.; Hylen, J.; Kasper, P.; Mokhov, N. V.; Quinn, M.; Striganov, S. I.; Vaziri, K.

    2018-01-01

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - 11C, 13N, 15O and 41Ar - are in a good agreement with those calculated with the improved MARS15 code.

  10. Improvement works report on mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Sakaki, Akihiro; Kato, Michio; Hayashi, Koji; Fujisaki, Katsuo; Aita, Hideki; Ohashi, Hirofumi; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Maeda, Yukimasa; Sato, Hiroyuki; Hanawa, Hiromi; Yonekawa, Hideo; Inagaki, Yoshiyuki

    2005-04-01

    In order to establish the system integration technology to connect a hydrogen production system to a high temperature gas cooled reactor; the mock-up test facility with a full-scale reaction tube for the steam reforming HTTR hydrogen production system was constructed in fiscal year 2001 and its functional test operation was performed in the year. Seven experimental test operations were performed from fiscal year 2001 to 2004. On a period of each test operation, there happened some troubles. For each trouble, the cause was investigated and the countermeasures and the improvement works were performed to succeed the experiments. The tests were successfully achieved according to plan. This report describes the improvement works on the test facility performed from fiscal year 2001 to 2004. (author)

  11. Screening Study for Utilizing Feedstocks Grown on CRP Lands in a Biomass to Ethanol Production Facility: Final Subcontract Report; July 1998

    Energy Technology Data Exchange (ETDEWEB)

    American Coalition for Ethanol; Wu, L.

    2004-02-01

    Feasibility study for a cellulosic ethanol plant using grasses grown on Conservation Reserve Program lands in three counties of South Dakota, with several subcomponent appendices. In 1994, there were over 1.8 million acres of CRP lands in South Dakota. This represented approximately 5 percent of the total U.S. cropland enrolled in the CRP. Nearly 200,000 acres of CRP lands were concentrated in three northeastern South Dakota counties: Brown, Marshall and Day. Most of the acreage was planted in Brohm Grass and Western Switchgrass. Technology under development at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), and at other institutions, is directed towards the economical production of fuel-grade ethanol from these grasses. The objective of this study is to identify and evaluate a site in northeastern South Dakota which would have the greatest potential for long-term operation of a financially attractive biomass-to-ethanol production facility. The effort shall focus on ethanol marketing issues which would provide for long-term viability of the facility, feedstock production and delivery systems (and possible alternatives), and preliminary engineering considerations for the facility, as well as developing financial pro-formas for a proposed biomass-to-ethanol production facility in northeastern South Dakota. This Final Report summarizes what was learned in the tasks of this project, pulling out the most important aspects of each of the tasks done as part of this study. For greater detail on each area it is advised that the reader refer to the entire reports which are included as appendixes.

  12. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  13. Field experiences using acrolein (2-propenal) for control of SRB and MIC in an offshore production flowline and onshore production facility in Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Shield, M.; Charlesworth, M.; Paakkonen, S.

    2006-03-15

    Acrolein, 2-propenal, was evaluated as a microbiocide for control of sulphate-reducing bacteria (SRB) in a sub-sea pipeline and an onshore process plant operated by ChevronTexaco Australia Pty Ltd (CVX) in the North West Shelf (NWS) of Australia. An initial trial compared the efficacy of acrolein with that of a glutaraldehyde, quaternary amine blend (GQB) for control of SRB implicated in microbiologically induced corrosion (MIC) of the sub-sea pipeline. Based on improved performance, acrolein subsequently replaced the GQB for routine microbiocide treatment of the pipeline. In addition, a plant trial assessed the impact of acrolein supplementation of the existing tetrakishydroxy-methyl phosphonium sulphate (THPS) microbiocide programme for control of SRB in process plant operations. This paper overviews both the pipeline and plant trials as well as the programme implementation of acrolein microbiocide for routine pipeline treatment. In addition to an improved performance and safety profile, complete conversion of the microbiocide programme to acrolein is projected to result in direct savings of 40%, with further potential for secondary operational cost savings. on behalf of Ampol and Caltex; and, in 1964, the company discovered oil in commercial quantities on Barrow Island (BWI) off the North West Shelf of Australia. Today, CVX continues hydrocarbon production operations on BWI with over 300 million barrels produced since inception. BWI volumes have been augmented since 1989 through hydrocarbon recovery operations near Thevenard Island (TVI), a small island located 25 km north-north west of Onslow. To date, more than 146 million barrels have been processed through facilities on TVI. With the process plant covering only a small corner of the island, the majority of land mass on TVI is classified as a nature reserve for the protection of plants and animals. Important wildlife found on the island include green and flatback turtles that nest on the islands beaches. In

  14. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Battersby, C.; Dickson, R.; Jennings, R.; Kimmons, J.; Kozlowski, M. R.; Maricle, S.; Mouser, R.; Runkel, M.; Schwartz, S.; Sheehan, L. M.; Weinzapfel, C.

    1998-01-01

    The Laser Program at LLNL has developed automated facilities for damage testing optics up to 1 meter in diameter. The systems were developed to characterize the statistical distribution of localized damage performance across large-aperture National Ignition Facility optics. Full aperture testing is a key component of the quality assurance program for several of the optical components. The primary damage testing methods used are R:1 mapping and raster scanning. Automation of these test methods was required to meet the optics manufacturing schedule. The automated activities include control and diagnosis of the damage-test laser beam as well as detection and characterization of damage events

  15. Use of the by-products of the biodiesel productive chain; Aproveitamento dos subprodutos da cadeia produtiva do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, Fernando; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/EP/UFRJ), RJ (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica], Emails: f_moebus@polis.ufrj.br, silvioa@gmail.com

    2010-07-01

    This paper performs an economical analysis of the incomes obtained with the using of byproducts of productive chain of bio diesel. Two technologies will be studied as follows: the commercialization of the residues (peels, cake) in the form of briquettes, and glycerin. A cost spreadsheet was developed for quantification the costs for obtain the biodiesel from the different raw-materials in a process of batch. Besides the cost of raw material and others inputs (catalyst and methanol), it will be analysed the main factors that influences the final costs of product a the generated incomes with commercialization of by-products.

  16. Improving agricultural straw preparation logistics stream in bio-methane production: experimental studies and application analysis.

    Science.gov (United States)

    Tao, Luo; Junting, Pan; Xi, Meng; Hailong, Huang; Yan, Long; Xia, Xiong; Ruyi, Huang; Zili, Mei

    2017-10-01

    Long-term production in commercial straw biogas plants has been rare in China due to inefficiencies in the logistics stream. Biomass densification could be a potential solution to this issue. Therefore, we conducted a study to evaluate whether biomass densification is a more efficient and sustainable option. We performed methane production experiments to investigate fermentation characteristics of briquettes (with a new pretreatment, model II) and rubs (with a common pretreatment, model I). A 3000-m 3 biogas plant was used to conduct a comparative analysis with solar eMergy joules. Results showed that the methane yield of briquettes of corn stover was 66.74% higher than that of rubs, and the briquettes had better digestion performance in terms of CH 4 content, VFA, and alcohol. The two models required almost the same eMergy investment input, while model II obtained a greater quantity of net eMergy (16.5% higher) in comparison with model I. The net eMergy yield ratio (EYR) (biogas only) of model I and model II was 0.99 and 1.67, respectively, showing less market competitiveness for commercial operations with model I. Meanwhile, the logistic costs of model II could be reduced to approximately US $34,514 annually.

  17. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  18. Industrial irradiators for the processing of agro-alimentary products: the criteriom for the choice of an irradiation facility

    International Nuclear Information System (INIS)

    Laizier, J.

    1984-01-01

    The various available technologies for the processing of foods by ionizing radiation are described and discussed, both from the technical and economical point of view. The analysis allows to select the criterions and to give a methodology of the choice of an industrial facility [fr

  19. Production of recombinant antigens and antibodies in Nicotiana benthamiana using 'magnifection' technology: GMP-compliant facilities for small- and large-scale manufacturing.

    Science.gov (United States)

    Klimyuk, Victor; Pogue, Gregory; Herz, Stefan; Butler, John; Haydon, Hugh

    2014-01-01

    This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.

  20. Measurements of 36Cl production rates from Cl, K, and Ca in concrete at the 500-MeV neutron irradiation facility of KENS

    International Nuclear Information System (INIS)

    Aze, T.; Fujimura, M.; Matsumura, H.; Masumoto, K.; Nakao, N.; Kawai, M.; Matsuzaki, H.; Nagai, H.

    2005-01-01

    In high-energy accelerator facilities, concrete components around beam lines are exposed to secondary neutrons having various energies during machine operation. The neutrons produce the various long half-life radionuclides, such as 3 H, 36 Cl, 60 Co, and 152 Eu, in the concrete. Most of the nuclides mainly produced by thermal neutron-capture reactions and their specific activities are important from the viewpoint of accelerator clearance. In previous work, the specific activities of the 36 Cl in the concretes at the various accelerator facilities have been measured and it was suggested that the 36 Cl in the concrete is useful as an indicator for thermal neutron fluence because of a characteristic of very long half life (301 kyr). However, in the concretes of the accelerator facilities over several hundreds of MeV, the 36 Cl are considerably produced by spallation from other concrete components, such as K and Ca, in addition to the thermal neutron capture of 35 Cl. The contribution of the 36 Cl productions from the spallation is unclear due to the lack of the cross sections for the neutron-induced reactions. In this work, therefore, we measured the 36 Cl production rates in concrete from Cl, K, and Ca targets in irradiation with secondary neutrons, which were produced by a bombardment of primary 500-MeV protons with W targets, at high-energy neutron-irradiation course of KENS. Samples of NaCl, K2CO 3 , and CaCO 3 were set into 7. irradiation spaces located on the depth raging from O to 320 cm from the concrete surface and irradiated for approximately one week. After the irradiation, separations of Cl from the samples were carried out radiochemically and the production rates of 36 Cl were determined by the AMS. The production rates from Cl, K, and Ca exponentially decreased with an increase of the depth from the concrete surface, and the profiles were very similar each other. Although the production rates from Cl were two orders higher than those from Ca in the same