Sample records for brightness aberration correction

  1. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)


    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  2. Phase and birefringence aberration correction (United States)

    Bowers, M.; Hankla, A.


    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  3. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)


    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  4. Aberration corrected Lorentz scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McVitie, S., E-mail:; McGrouther, D.; McFadzean, S.; MacLaren, D.A.; O’Shea, K.J.; Benitez, M.J.


    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples.

  5. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail:


    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  6. The correction of electron lens aberrations. (United States)

    Hawkes, P W


    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Binocular visual performance and summation after correcting higher order aberrations. (United States)

    Sabesan, Ramkumar; Zheleznyak, Len; Yoon, Geunyoung


    Although the ocular higher order aberrations degrade the retinal image substantially, most studies have investigated their effect on vision only under monocular conditions. Here, we have investigated the impact of binocular higher order aberration correction on visual performance and binocular summation by constructing a binocular adaptive optics (AO) vision simulator. Binocular monochromatic aberration correction using AO improved visual acuity and contrast sensitivity significantly. The improvement however, differed from that achieved under monocular viewing. At high spatial frequency (24 c/deg), the monocular benefit in contrast sensitivity was significantly larger than the benefit achieved binocularly. In addition, binocular summation for higher spatial frequencies was the largest in the presence of subject's native higher order aberrations and was reduced when these aberrations were corrected. This study thus demonstrates the vast potential of binocular AO vision testing in understanding the impact of ocular optics on habitual binocular vision.

  8. Aberration-corrected STEM: current performance and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Nellist, P D [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland); Chisholm, M F [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Lupini, A R [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Borisevich, A [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Jr, W H Sides [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Dellby, N [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Keyse, R [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Krivanek, O L [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Murfitt, M F [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Szilagyi, Z S [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States)


    Through the correction of spherical aberration in the scanning transmission electron microscope (STEM), the resolving of a 78 pm atomic column spacing has been demonstrated along with information transfer to 61 pm. The achievement of this resolution required careful control of microscope instabilities, parasitic aberrations and the compensation of uncorrected, higher order aberrations. Many of these issues are improved in a next generation STEM fitted with a new design of aberration corrector, and an initial result demonstrating aberration correction to a convergence semi-angle of 40 mrad is shown. The improved spatial resolution and beam convergence allowed for by such correction has implications for the way in which experiments are performed and how STEM data should be interpreted.

  9. Numerical correction of aberrations via phase retrieval with speckle illumination

    DEFF Research Database (Denmark)

    Almoro, Percival; Gundu, Phanindra Narayan; Hanson, Steen Grüner


    What we believe to be a novel technique for wavefront aberration measurement using speckle patterns is presented. The aberration correction is done numerically. A tilted lens is illuminated with a partially developed speckle field, and the transmitted light intensity is sampled at axially displaced...

  10. Prospects for electron beam aberration correction using sculpted phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail:; Remez, Roei; Arie, Ady


    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.

  11. Generalized Alvarez lens for correction of laser aberrations

    Energy Technology Data Exchange (ETDEWEB)

    LaFortune, K N


    The Alvarez lens (US Patent No. 3,305,294 [1]) is a compact aberration corrector. The original design emphasized in the patent consists of a pair of adjacent optical elements that provide a variable focus. A lens system with a variable effective focal length is nothing new. Such systems are widely used in cameras, for example. It is the compactness and simplicity of operation that is the key advantage of the Alvarez lens. All of the complexity is folded into the design and fabrication of the optical elements. As mentioned in the Alvarez patent [1] and elaborated upon in Palusinski et al. [2], if one is willing to fold even more complexity into the optical elements, it is possible to correct higher-order aberrations as well. There is no theoretical limit to the number or degree of wavefront distortions that can be corrected. The only limitation is that there must be a fixed relative magnitude of the aberrations. Independent correction of each component of the higher-order aberrations can not be performed without additional elements and degrees of freedom [3]. Under some circumstances, coupling may be observed between different aberrations. This can be mitigated with the appropriate choice of design parameters. New methods are available today that increase the practicality of making higher-order aberration correctors [4,5,6].

  12. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng


    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  13. An electron microscope for the aberration-corrected era. (United States)

    Krivanek, O L; Corbin, G J; Dellby, N; Elston, B F; Keyse, R J; Murfitt, M F; Own, C S; Szilagyi, Z S; Woodruff, J W


    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  14. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail:; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)


    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  15. Sub-ångstrom resolution using aberration corrected electron optics. (United States)

    Batson, P E; Dellby, N; Krivanek, O L


    Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous "animalcules" in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1 A. This performance, about 20 times the electron wavelength at 120 keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer 'rafts' of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

  16. Prospects for electron beam aberration correction using sculpted phase masks. (United States)

    Shiloh, Roy; Remez, Roei; Arie, Ady


    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20-30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Conformal dome aberration correction by designing the inner surface (United States)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang


    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  18. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng


    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  19. Aberration correction for time-domain ultrasound diffraction tomography (United States)

    Mast, T. Douglas


    Extensions of a time-domain diffraction tomography method, which reconstructs spatially dependent sound speed variations from far-field time-domain acoustic scattering measurements, are presented and analyzed. The resulting reconstructions are quantitative images with applications including ultrasonic mammography, and can also be considered candidate solutions to the time-domain inverse scattering problem. Here, the linearized time-domain inverse scattering problem is shown to have no general solution for finite signal bandwidth. However, an approximate solution to the linearized problem is constructed using a simple delay-and-sum method analogous to "gold standard" ultrasonic beamforming. The form of this solution suggests that the full nonlinear inverse scattering problem can be approximated by applying appropriate angle- and space-dependent time shifts to the time-domain scattering data; this analogy leads to a general approach to aberration correction. Two related methods for aberration correction are presented: one in which delays are computed from estimates of the medium using an efficient straight-ray approximation, and one in which delays are applied directly to a time-dependent linearized reconstruction. Numerical results indicate that these correction methods achieve substantial quality improvements for imaging of large scatterers. The parametric range of applicability for the time-domain diffraction tomography method is increased by about a factor of 2 by aberration correction. copyright 2002 Acoustical Society of America.

  20. Harmonic source wavefront aberration correction for ultrasound imaging (United States)

    Dianis, Scott W.; von Ramm, Olaf T.


    A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images. PMID:21303031

  1. Joint denoising, demosaicing, and chromatic aberration correction for UHD video (United States)

    Jovanov, Ljubomir; Philips, Wilfried; Damstra, Klaas Jan; Ellenbroek, Frank


    High-resolution video capture is crucial for numerous applications such as surveillance, security, industrial inspection, medical imaging and digital entertainment. In the last two decades, we are witnessing a dramatic increase of the spatial resolution and the maximal frame rate of video capturing devices. In order to achieve further resolution increase, numerous challenges will be facing us. Due to the reduced size of the pixel, the amount of light also reduces, leading to the increased noise level. Moreover, the reduced pixel size makes the lens imprecisions more pronounced, which especially applies to chromatic aberrations. Even in the case when high quality lenses are used some chromatic aberration artefacts will remain. Next, noise level additionally increases due to the higher frame rates. To reduce the complexity and the price of the camera, one sensor captures all three colors, by relying on Color Filter Arrays. In order to obtain full resolution color image, missing color components have to be interpolated, i.e. demosaicked, which is more challenging than in the case of lower resolution, due to the increased noise and aberrations. In this paper, we propose a new method, which jointly performs chromatic aberration correction, denoising and demosaicking. By jointly performing the reduction of all artefacts, we are reducing the overall complexity of the system and the introduction of new artefacts. In order to reduce possible flicker we also perform temporal video enhancement. We evaluate the proposed method on a number of publicly available UHD sequences and on sequences recorded in our studio.

  2. Effective object planes for aberration-corrected transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R., E-mail: [Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lentzen, M. [Institute of Solid State Research and Ernst Ruska Centre, Research Centre Juelich, 52425 Juelich (Germany); Zhu, J. [Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)


    In aberration-corrected transmission electron microscopy, the image contrast depends sensitively on the focus value. With the point resolution extended to an information limit of below 0.1 nm, even a focus change of as small as one nanometer could give a significant change in image contrast. Therefore, it is necessary to consider in detail the optimum focus condition in order to take full advantage of aberration-correction. In this study, the thickness dependence of the minimum contrast focus has been investigated by dynamical image simulations for amorphous model structures of carbon, germanium, and tungsten, which were constructed by molecular dynamics simulations. The calculation results show that the minimum contrast focus varies with the object thickness, supporting the use of an effective object plane close to the midplane instead of the exit plane of a sample, as suggested by Bonhomme and Beorchia [J. Phys. D: Appl. Phys. 16, 705 (1983)] and Lentzen [Microscopy and Microanalysis 12, 191 (2006)]. Thus supported particles and wedge-shaped crystals with symmetrical top and bottom surfaces could be imaged at a focus condition independent of the uneven bottom face. Image simulations of crystalline samples as a function of focus and thickness show: for an object thickness of less than 10 nm, the optimum focus condition is matched better if the midplane of the object, instead of the exit plane, is chosen as reference plane. -- Highlights: Black-Right-Pointing-Pointer Stringent focus condition is required for aberration-corrected TEM. Black-Right-Pointing-Pointer Optimum focus should be set with respect to the midplane of a sample. Black-Right-Pointing-Pointer The focus condition could be independent of the lateral position on a wedged sample.

  3. Transcranial phase aberration correction using beam simulations and MR-ARFI

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Urvi, E-mail:; Kaye, Elena; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States)


    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  4. Correction method of wavefront aberration on signal quality in holographic memory (United States)

    Kimura, Eri; Nakajima, Akihito; Akieda, Kensuke; Ohori, Tomohiro; Katakura, Kiyoto; Kondo, Yo; Yamamoto, Manabu


    One of the problems that affects the practical use of holographic memory is deterioration of the reproduced images due to aberration in the optical system. The medium must be interchangeable, and hence it is necessary to clarify the influence of aberration in the optical system on the signal quality and perform aberration correction for drive compatibility. In this study, aberration is introduced in the reference light beam during image reproduction, and the deterioration of the reproduced image signal is examined. In addition, for a basic study of aberration correction, the correction technique using a two-dimensional signal processing is studied.

  5. Studying atomic structures by aberration-corrected transmission electron microscopy. (United States)

    Urban, Knut W


    Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy-loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli-electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.

  6. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)


    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  7. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study. (United States)

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita


    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  8. Transcranial phase aberration correction using beam simulations and MR-ARFI (United States)

    Vyas, Urvi; Kaye, Elena; Pauly, Kim Butts


    In this paper, we propose a technique to achieve phase aberration correction for transcranial MR-guided Focused Ultrasound Surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Impulse (MR-ARFI) imaging to correct skull caused phase aberrations. This technique resulted in a 10% improvement of the focal intensity using only one MR-ARFI image.

  9. Criteria for correction of quadratic field-dependent aberrations. (United States)

    Zhao, Chunyu; Burge, James H


    Aberrations of imaging systems can be described by using a polynomial expansion of the dependence on field position, or the off-axis distance of a point object. On-axis, or zero-order, aberrations can be calculated directly. It is well-known that aberrations with linear field dependence can be calculated and controlled by using the Abbe sine condition, which evaluates only on-axis behavior. We present a new set of relationships that fully describe the aberrations that depend on the second power of the field. A simple set of equations is derived by using Hamilton's characteristic functions and simplified by evaluating astigmatism in the pupil. The equations, which we call the pupil astigmatism criteria, use on-axis behavior to evaluate and control all aberrations with quadratic dependence on the field and arbitrary dependence on the pupil. These relations are explained and are validated by using several specific optical designs.

  10. Brief history of the Cambridge STEM aberration correction project and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L. Michael [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Batson, Philip E. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Department of Materials Science, Rutgers University, Piscataway, NJ 08854 (United States); Dellby, Niklas [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Krivanek, Ondrej L. [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)


    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope.

  11. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses. (United States)

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria; Kahnt, Maik; Seyrich, Martin; Schropp, Andreas; Wagner, Ulrich; Rau, Christoph; Garrevoet, Jan; Falkenberg, Gerald; Schroer, Christian G


    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with \\bar{\\sigma} = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without prior lens characterization but simply based on the derived lens deformation. The performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.

  12. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    National Research Council Canada - National Science Library

    Albina Y. Borisevich; Andrew R. Lupini; Stephen J. Pennycook


    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition...

  13. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction

    National Research Council Canada - National Science Library

    Robert J. Zawadzki; Barry Cense; Yan Zhang; Stacey S. Choi; Donald T. Miller; John S. Werner


    .... Critical to the instrument's resolution is a customized achromatizing lens that corrects for the eye's longitudinal chromatic aberration and an ultra broadband light source (Δλ=112nm λ_0=~836 nm...

  14. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Chang, L-Y; Hetherington, CJD


    Picture perfect: Information about the local topologies of active sites on commercial nanoparticles can be gained with atomic resolution through spherical-aberration-corrected transmission electron microscopy (TEM). A powder of Pt nanoparticles on carbon black was examined with two advanced TEM...... techniques based on recent developments in hardware (aberration correction) and computation (exit wavefunction restoration). (Figure Presented). © 2007 Wiley-VCH Verlag GmbH & Co. KGaA....

  15. Magnetic fluid based deformable mirror for aberration correction of liquid telescope (United States)

    Wu, Jun-qiu; Wu, Zhi-zheng; Kong, Xiang-hui; Zhang, Zhu; Liu, Mei


    A magnetic fluid based deformable mirror (MFDM) that could produce a large stroke more than 100 μm is designed and demonstrated experimentally with respect to the characteristics of the aberration of the liquid telescope. Its aberration correction performance is verified by the co-simulation using COMSOL and MATLAB. Furthermore, the stroke performance of the MFDM and the decentralized linear quadratic Gaussian (LQG) mirror surface control approach are experimentally evaluated with a prototype of MFDM in an adaptive optics system to show its potential application for the large aberration correction of liquid telescopes.

  16. Deep Tissue Wavefront Estimation for Sensorless Aberration Correction

    Directory of Open Access Journals (Sweden)

    Ibrahimovic Emina


    Full Text Available The multiple light scattering in biological tissues limits the measurement depth for traditional wavefront sensor. The attenuated ballistic light and the background noise caused by the diffuse light give low signal to noise ratio for wavefront measurement. To overcome this issue, we introduced a wavefront estimation method based on a ray tracing algorithm to overcome this issue. With the knowledge of the refractive index of the medium, the wavefront is estimated by calculating optical path length of rays from the target inside of the samples. This method can provide not only the information of spherical aberration from the refractive-index mismatch between the medium and biological sample but also other aberrations caused by the irregular interface between them. Simulations based on different configurations are demonstrated in this paper.

  17. Membrane-based aberration-corrected tunable micro-lenses (United States)

    Waibel, Philipp; Ermantraut, Eugen; Mader, Daniel; Zappe, Hans; Seifert, Andreas


    We present measurements and simulations of membrane-based micro-lens stacks, tunable in focal length in the range of 10mm to 50mm without chromatic aberration. The pressure-actuated, liquid-filled, membrane-based micro-lenses are fabricated by an all-silicone molding approach and consist of three chambers separated by two highly flexible silicone-membranes. Based on the idea of the classical achromatic Fraunhofer doublet, two different liquids with suitable optical properties are used. Pressure-dependent surface topologies are measured by profilometry for determining the correlation between refraction and applied pressure. The profiles are fit to polynomials; the coefficients of the polynomials are pressure-dependent and fit to empirically determined functions which are then used as an input for optical ray-tracing. Using this approach, the focal length is tunable while compensating for chromatic aberration by suitably applied pressures.

  18. CLASSICAL AREAS OF PHENOMENOLOGY: Correcting dynamic residual aberrations of conformal optical systems using AO technology (United States)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin


    This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.

  19. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope. (United States)

    Jones, L; Nellist, P D


    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  20. Advanced semiconductor characterization with aberration corrected electron microscopes (United States)

    Rouvière, J. L.; Prestat, E.; Bayle-Guillemaud, P.; Den Hertog, M.; Bougerol, C.; Cooper, D.; Zuo, J.


    Spherical aberration (Cs) correctors were demonstrated in the last years of the twentieth century and became commercially available a few years later. In Grenoble, we received our first probe corrector on a TEM/STEM machine in 2006. Cs-correctors have allowed us to improve the spatial resolution and the contrast of high resolution images both in TEM and STEM. The aim of the article is not to give a detailed description of Cs-correctors or a thorough analysis of their pros and cons but to illustrate what the benefits of the Cs-correctors have been in four areas: (i) atomic structure determination, (ii) polarity measurement, (iii) strain determination and (iv) interface analysis. Emphasis is put on the probe corrector although some comments on image correctors are given as well.

  1. Targeted Lesion Generation Through the Skull Without Aberration Correction Using Histotripsy. (United States)

    Sukovich, Jonathan; Xu, Zhen; Kim, Yohan; Cao, Hui; Nguyen, Thai-Son; Pandey, Aditya; Hall, Timothy; Cain, Charles


    This study demonstrates the ability of histotripsy to generate targeted lesions through the skullcap without using aberration correction. Histotripsy therapy was delivered using a 500 kHz, 256-element hemispherical transducer with an aperture diameter of 30 cm and a focal distance of 15 cm fabricated in our lab. This transducer is theoretically capable of producing peak rarefactional pressures, based on linear estimation, (p-)LE, in the free field in excess of 200MPa with pulse durations 2 acoustic cycles. Three excised human skullcaps were used displaying attenuations of 73-81% of the acoustic pressure without aberration correction. Through all three skullcaps, compact lesions with radii less than 1mm were generated in red blood cell (RBC) agarose tissue phantoms without aberration correction, using estimated (p-)LE of 28-39MPa, a pulse repetition frequency of 1Hz, and a total number of 300 pulses. Lesion generation was consistently observed at the geometric focus of the transducer as the position of the skullcap with respect to the transducer was varied, and multiple patterned lesions were generated transcranially by mechanically adjusting the position of the skullcap with respect to the transducer to target different regions within. These results show that compact, targeted lesions with sharp boundaries can be generated through intact skullcaps using histotripsy with very short pulses without using aberration correction. Such capability has the potential to greatly simplify transcranial ultrasound therapy for non-invasive transcranial applications, as current ultrasound transcranial therapy techniques all require sophisticated aberration correction.

  2. Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: concept validation. (United States)

    Gao, Qiong; Jiang, Zongfu; Yi, Shihe; Xie, Wenke; Liao, Tianhe


    We describe an adaptive optics (AO) system for correcting the aero-optical aberration of the supersonic mixing layer and test its performance with numerical simulations. The AO system is based on the measurement of distributed Strehl ratios and the stochastic parallel gradient descent (SPGD) algorithm. The aero-optical aberration is computed by the direct numerical simulation of a two-dimensional supersonic mixing layer. When the SPGD algorithm is applied directly, the AO cannot give effective corrections. This paper suggests two strategies to improve the performance of the SPGD algorithm for use in aero-optics. The first one is using an iteration process keeping finite memory, and the second is based on the frozen hypothesis. With these modifications, the performance of AO is improved and the aero-optical aberration can be corrected to some noticeable extent. The possibility of experimental implementation is also discussed.

  3. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S


    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  4. Brief history of the Cambridge STEM aberration correction project and its progeny. (United States)

    Brown, L Michael; Batson, Philip E; Dellby, Niklas; Krivanek, Ondrej L


    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper "In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday", recently published in Ultramicroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder


    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  6. Digital aberration correction of fluorescent images with coherent holographic image reconstruction by phase transfer (CHIRPT) (United States)

    Field, Jeffrey J.; Bartels, Randy A.


    Coherent holographic image reconstruction by phase transfer (CHIRPT) is an imaging method that permits digital holographic propagation of fluorescent light. The image formation process in CHIRPT is based on illuminating the specimen with a precisely controlled spatio-temporally varying intensity pattern. This pattern is formed by focusing a spatially coherent illumination beam to a line focus on a spinning modulation mask, and image relaying the mask plane to the focal plane of an objective lens. Deviations from the designed spatio-temporal illumination pattern due to imperfect mounting of the circular modulation mask onto the rotation motor induce aberrations in the recovered image. Here we show that these aberrations can be measured and removed non-iteratively by measuring the disk aberration phase externally. We also demonstrate measurement and correction of systematic optical aberrations in the CHIRPT microscope.

  7. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. (United States)

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael


    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized noninvasively through direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows determination of the precise estimation of the phase and amplitude aberrations, and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2pi). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from sigma = 1.89 radian before correction to sigma = 0.53 radian following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be -7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of -0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus

  8. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields (United States)

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael


    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This

  9. Aberration-corrected STEM for atomic-resolution imaging and analysis. (United States)

    Krivanek, O L; Lovejoy, T C; Dellby, N


    Aberration-corrected scanning transmission electron microscopes are able to form electron beams smaller than 100 pm, which is about half the size of an average atom. Probing materials with such beams leads to atomic-resolution images, electron energy loss and energy-dispersive X-ray spectra obtained from single atomic columns and even single atoms, and atomic-resolution elemental maps. We review briefly how such electron beams came about, and show examples of applications. We also summarize recent developments that are propelling aberration-corrected scanning transmission electron microscopes in new directions, such as complete control of geometric aberration up to fifth order, and ultra-high-energy resolution EELS that is allowing vibrational spectroscopy to be carried out in the electron microscope. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Dynamic aberration correction for conformal optics using model-based wavefront sensorless adaptive optics (United States)

    Han, Xinli; Dong, Bing; Li, Yan; Wang, Rui; Hu, Bin


    For missiles and airplanes with high Mach number, traditional spherical or flat window can cause a lot of air drag. Conformal window that follow the general contour of surrounding surface can substantially decrease air drag and extend operational range. However, the local shape of conformal window changes across the Field Of Regard (FOR), leading to time-varying FOR-dependent wavefront aberration and degraded image. So the correction of dynamic aberration is necessary. In this paper, model-based Wavefront Sensorless Adaptive Optics (WSAO) algorithm is investigated both by simulation and experiment for central-obscured pupil. The algorithm is proved to be effective and the correction accuracy of using DM modes is higher than Lukosz modes. For dynamic aberration in our system, the SR can be better than 0.8 when the change of looking angle is less than 2° after t seconds which is the time delay of the control system.

  11. Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye. (United States)

    Lundström, Linda; Manzanera, Silvestre; Prieto, Pedro M; Ayala, Diego B; Gorceix, Nicolas; Gustafsson, Jörgen; Unsbo, Peter; Artal, Pablo


    Retinal sampling poses a fundamental limit to resolution acuity in the periphery. However, reduced image quality from optical aberrations may also influence peripheral resolution. In this study, we investigate the impact of different degrees of optical correction on acuity in the periphery. We used an adaptive optics system to measure and modify the off-axis aberrations of the right eye of six normal subjects at 20 degrees eccentricity. The system consists of a Hartmann-Shack sensor, a deformable mirror, and a channel for visual testing. Four different optical corrections were tested, ranging from foveal sphero-cylindrical correction to full correction of eccentric low- and high-order monochromatic aberrations. High-contrast visual acuity was measured in green light using a forced choice procedure with Landolt C's, viewed via the deformable mirror through a 4.8-mm artificial pupil. The Zernike terms mainly induced by eccentricity were defocus and with- and against-the-rule astigmatism and each correction condition was successfully implemented. On average, resolution decimal visual acuity improved from 0.057 to 0.061 as the total root-mean-square wavefront error changed from 1.01 mum to 0.05 mum. However, this small tendency of improvement in visual acuity with correction was not significant. The results suggest that for our experimental conditions and subjects, the resolution acuity in the periphery cannot be improved with optical correction.

  12. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope. (United States)

    Sulai, Yusufu N; Dubra, Alfredo


    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  13. Device and method for creating Gaussian aberration-corrected electron beams (United States)

    McMorran, Benjamin; Linck, Martin


    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  14. Octopole correction of geometric aberrations for high-current heavy-ion fusion beams

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.D.M.; Haber, I.; Crandall, K.R.; Brandon, S.T.


    The success of heavy-ion fusion depends critically on the ability to focus heavy-ion beams to millimeter-size spots. Third-order geometric aberrations caused by fringe fields of the final focusing quadrupoles can significantly distort the focal spot size calculated by first-order theory. We present a method to calculate the locations and strengths of the octopoles that are needed to correct these aberrations. Calculation indicates that the strengths of the octopoles are substantially less than that of the final focusing quadrupoles. 9 refs., 1 fig.

  15. CD error caused by aberration and its possible compensation by optical proximity correction in extreme-ultraviolet lithography (United States)

    Hwang, Jeong-Gu; Kim, In-Seon; Kim, Guk-Jin; No, Hee-Ra; Kim, Byung-Hun; Oh, Hye-Keun


    There has been reports of EUV scanner aberration effects to the patterns down to 18 nm half-pitch (hp). Maximum aberration of the latest EUV scanner is reported as 25 mλ. We believe that the first EUV mass production will be applied to the devices of 16 nm hp, so that we checked the aberration effects on 16 nm periodic line and space patterns and nonperiodic double and five-bar patterns. Coma aberrations of Z7, Z8, Z14 and Z15 Zernike polynomials (ZP) seems to be the dominant ones that make pattern distortion. Non-negligible critical dimension (CD) variation and position shift are obtained with the reported maximum 25 mλ of coma aberration. Optical proximity correction (OPC) is tried to see if this aberration effects can be minimized, so that we can make the desired patterns even though there is a non-correctable scanner aberration.

  16. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations. (United States)

    Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M


    The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail:

  17. Real-time aberration correction simulation of multimode beam by SPGD algorithm (United States)

    Zhou, Qiong; Liu, Wenguang; Yan, Baozhu; Sun, Quan; Du, Shaojun


    In this paper, the physical properties of multimode beam are analysed by using the theory of partially coherent light. Based on the spatial coherence measurement results of a multimode fiber laser, we provide a theoretical basis for aberration correction for multimode beams. To improve the beam quality of multimode lasers, phase correction of multimode laser based on a dual-phase-only liquid-crystal spatial light modulator is presented which is used as aberration correction device. The phase distribution was optimized by the stochastic parallel gradient descent algorithm. In this paper the power in the bucket of the far field was used as the evaluation function and the multimode beam included multiple higher order Laguerre-Gaussian beam modes. The real-time aberration correction of Multimode beam by stochastic parallel gradient descent Algorithm is simulated studied and experimental analysed respectively. According to the results the parameters of stochastic parallel gradient descent algorithm can be adjusted and the efficiency and practicability of the algorithm are determined.

  18. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound. (United States)

    Ziksari, Mahsa Sotoodeh; Asl, Babak Mohammadzadeh


    In recent years, applying adaptive beamforming to ultrasound imaging improves image quality in terms of resolution and contrast. One of the best adaptive beamformers in this field is the minimum variance (MV) beamformer which presents better resolution and edge definition compared to the traditional delay-and-sum (DAS) beamformer. However, in real situations, sound-velocity inhomogeneities cause phase aberration which leads to ambiguity in targets' location and degradation in resolution. This effect is a fundamental obstacle to utilize advantages of MV beamformer, although, in aberrating medium MV beamformer results in better performance compared to DAS. In this paper, two different levels of phase screens have been applied to simulate aberrator layers located close to the transducer. Also, prior to beamforming process, a conventional correction technique based on phase screen model is used. Simulations are performed in majority resolution of MV which has the lowest robustness. The results demonstrate that applying this correction method can retrieve the efficiency of the MV beamformer. Moreover, the method improves the performance of the MV in both terms of resolution and contrast. As corrected MV achieved at least 22% improvement in sidelobe reduction and 24% increase in contrast to noise ratio (CNR) with respect to the DAS corrected data. Also, according to experimental dataset 17% enhancement in CNR is yielded by MV. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces (United States)

    Brown, Shannon; Misra, Sidharth


    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  20. Automated computational aberration correction method for OCT and OCM (Conference Presentation) (United States)

    Liu, Yuan-Zhi; Pande, Paritosh; South, Fredrick A.; Boppart, Stephen A.


    Aberrations in an optical system cause a reduction in imaging resolution and poor image contrast, and limit the imaging depth when imaging biological samples. Computational adaptive optics (CAO) provides an inexpensive and simpler alternative to the traditionally used hardware-based adaptive optics (HAO) techniques. In this paper, we present an automated computational aberration correction method for broadband interferometric imaging techniques, e.g. optical coherence tomography (OCT) and optical coherence microscopy (OCM). In the proposed method, the process of aberration correction is modeled as a filtering operation on the aberrant image using a phase filter in the Fourier domain. The phase filter is expressed as a linear combination of Zernike polynomials with unknown coefficients, which are estimated through an iterative optimization scheme based on maximizing an image sharpness metric. The Resilient backpropagation (Rprop) algorithm, which was originally proposed as an alternative to the gradient-descent-based backpropagation algorithm for training the weights in a multilayer feedforward neural network, is employed to optimize the Zernike polynomial coefficients because of its simplicity and the robust performance to the choice of various parameters. Stochastic selection of the number and type of Zernike modes is introduced at each optimization step to explore different trajectories to enable search for multiple optima in the multivariate search space. The method was validated on various tissue samples and shows robust performance for samples with different scattering properties, e.g. a phantom with subresolution particles, an ex vivo rabbit adipose tissue, and an in vivo photoreceptor layer of the human retina.

  1. Experimental setup for energy-filtered scanning confocal electron microscopy (EFSCEM) in a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; Behan, G; Kirkland, A I; Nellist, P D, E-mail: [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)


    Scanning confocal electron microscopy (SCEM) is a new imaging mode in electron microscopy. Spherical aberration corrected electron microscope instruments fitted with two aberration correctors can be used in this mode which provides improved depth resolution and selectivity compared to optical sectioning in a conventional scanning transmission geometry. In this article, we consider a confocal optical configuration for SCEM using inelastically scattered electrons. We lay out the necessary steps for achieving this new operational mode in a double aberration-corrected instrument with uncorrected chromatic aberration and present preliminary experimental results in such mode.

  2. Medical imaging correction: a comparative study of five contrast and brightness matching methods. (United States)

    Matsopoulos, G K


    Contrast and brightness matching are often required in many medical imaging applications, especially when comparing medical data acquired over different time periods, due to dissimilarities in the acquisition process. Numerous methods have been proposed in this field, ranging from simple correction filters to more complicated recursive techniques. This paper presents a comprehensive comparison of five methods for matching the contrast and brightness of medical image pairs, namely, Contrast Stretching, Ruttimann's Robust Film Correction, Boxcar Filtering, Least-Squares Approximation and Histogram Registration. The five methods were applied to a total of 100 image pairs, divided into five sets, in order to evaluate the performance of the compared methods on images with different levels of contrast, brightness and combinational contrast and brightness variations. Qualitative evaluation was performed by means of visual assessment on the corrected images as well as on digitally subtracted images, in order to estimate the deviations relative to the reference data. Quantitative evaluation was performed by pair-wise statistical evaluation on all image pairs in terms of specific features of merit based on widely used metrics. Following qualitative and quantitative analysis, it was deduced that the Histogram Registration method systematically outperformed the other four methods in comparison in most cases on average. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Depth sectioning with the aberration-corrected scanning transmission electron microscope (United States)

    Borisevich, Albina Y.; Lupini, Andrew R.; Pennycook, Stephen J.


    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed. PMID:16492746

  4. Aberration correction in photoemission microscopy and applications in photonics and plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Koenenkamp, Rolf [Portland State Univ., Portland, OR (United States)


    We report on the design, assembly, operation and application of an aberration-corrected photoemission electron microscope. The instrument used novel hyperbolic mirror-correctors with two and three electrodes that allowed simultaneous correction of spherical and chromatic aberrations. A spatial resolution of 5.4nm was obtained with this instrument in 2009, and 4.7nm in subsequent years. New imaging methodology was introduced involving interferometric imaging of light diffraction. This methodology was applied in nano-photonics and in the characterization of surface-plasmon polaritons. Photonic crystals and waveguides, optical antennas and new plasmonic devices such as routers, localizers and filters were designed and demonstrated using the new capabilities offered by the microscope.

  5. Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S.J.; Pantelides, S.T. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Physics and Astronomy, Vanderbilt Univ., Nashville, TN (United States); Lupini, A.R.; Wang, L.G. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Kadavanich, A. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Chemistry, Vanderbilt Univ., Nashville, TN (United States); McBride, J.R. [Dept. of Chemistry, Vanderbilt Univ., Nashville, TN (United States); Rosenthal, S.J. [Dept. of Physics and Astronomy, Vanderbilt Univ., Nashville, TN (United States); Puetter, R.C.; Yahil, A. [Pixon LLC, Stony Brook, NY (United States); Krivanek, O.L.; Dellby, N.; Nellist, P.D.L. [Nion Co., Kirkland, WA (United States); Duscher, G. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Materials Science and Engineering, North Carolina State Univ., Raleigh, NC (United States)


    The sub-Aangstroem probe of an aberration-corrected scanning transmission electron microscope will enable imaging and analysis of nanostructures and interfaces with unprecedented resolution and sensitivity. In conjunction with first-principles theory, new insights are anticipated into the atomistic processes of growth and the subtle link between structure and functionality. We present initial results from the aberration-corrected microscopes at Oak Ridge National Laboratory that indicate the kinds of studies that will become feasible in the near future. Examples include (1) the three-dimensional location and identification of individual dopant and impurity atoms in semiconductor interfaces, and their effect on local electronic structure; (2) the accurate reconstruction of surface atomic and electronic structure on nanocrystals, and the effect on optical properties; and (3) the ability to distinguish which configurations of catalyst atoms are active, and why. (orig.)

  6. Adaptive optical versus spherical aberration corrections for in vivo brain imaging. (United States)

    Turcotte, Raphaël; Liang, Yajie; Ji, Na


    Adjusting the objective correction collar is a widely used approach to correct spherical aberrations (SA) in optical microscopy. In this work, we characterized and compared its performance with adaptive optics in the context of in vivo brain imaging with two-photon fluorescence microscopy. We found that the presence of sample tilt had a deleterious effect on the performance of SA-only correction. At large tilt angles, adjusting the correction collar even worsened image quality. In contrast, adaptive optical correction always recovered optimal imaging performance regardless of sample tilt. The extent of improvement with adaptive optics was dependent on object size, with smaller objects having larger relative gains in signal intensity and image sharpness. These observations translate into a superior performance of adaptive optics for structural and functional brain imaging applications in vivo, as we confirmed experimentally.

  7. Effects of higher-order aberration correction on stereopsis at different viewing durations (United States)

    Kang, Jian; Xiao, Fei; Zhao, Junlei; Zhao, Haoxin; Hu, Yiyun; Tang, Guomao; Dai, Yun; Zhang, Yudong


    To better understand how the eye's optics affects stereopsis, we measured stereoacuity before and after higher-order aberration (HOA) correction with a binocular adaptive optics visual simulator. The HOAs were corrected either binocularly or monocularly in the better eye (the eye with better contrast sensitivity). A two-line stereo pattern served as the visual stimulus. Stereo thresholds at different viewing durations were obtained with the psychophysical method of constant stimuli. Binocular HOA correction led to significant improvement in stereoacuity. However, better eye HOA correction could bring either a bad degradation or a slight improvement in stereoacuity. As viewing duration increased, the stereo benefit approached the level of 1.0 for both binocular and better eye correction, suggesting that long viewing durations might weaken the effects of the eye's optical quality on stereopsis.

  8. Low-dose aberration corrected cryo-electron microscopy of organic specimens. (United States)

    Evans, James E; Hetherington, Crispin; Kirkland, Angus; Chang, Lan-Yun; Stahlberg, Henning; Browning, Nigel


    Spherical aberration (C(s)) correction in the transmission electron microscope has enabled sub-angstrom resolution imaging of inorganic materials. To achieve similar resolution for radiation-sensitive organic materials requires the microscope to be operated under hybrid conditions: low electron dose illumination of the specimen at liquid nitrogen temperature and low defocus values. Initial images from standard inorganic and organic test specimens have indicated that under these conditions C(s)-correction can provide a significant improvement in resolution (to less than 0.16nm) for direct imaging of organic samples.

  9. Correction of 157-nm lens based on phase ring aberration extraction method (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa


    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  10. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation. (United States)

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe


    We investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupil plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.

  11. A Monochromatic, Aberration-Corrected, Dual-Beam Low Energy Electron Microscope (United States)

    Mankos, Marian; Shadman, Khashayar


    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. PMID:23582636

  12. Imaging Individual Molecules and Atoms by Aberration-Corrected Transmission Electron Microscopy (United States)

    Sato, Yuta; Suenaga, Kazutomo

    Spherical aberration correctors recently developed for transmission electron microscopes (TEM) and scanning TEM (STEM) have enabled direct imaging of single molecules and atoms at low electron acceleration voltages. Here, we review some recent studies on carbon nanotubes (CNTs) and fullerene nanopeapods using aberration-corrected TEM/STEM operated at 120 kV or lower voltages. Local structures of individual CNTs are visualized in details including various defects such as atomic vacancies and so-called Stone-Wales defects. Atomic-level structures of fullerene molecules inside CNTs are unambiguously visualized. Single atoms of lanthanides and calcium in nanopeapods are identified by using STEM-EELS operated at 60 kV.

  13. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J


    is in the UV region of the spectrum. Thus, one has to deal with chromatic aberration and low signal-to-noise ratio. We developed a method to correct for chromatic aberration between the UV channel and the red/green channel in multicolor imaging of DHE compared with the lipid droplet marker Nile Red in living...... macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon...... and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport....

  14. Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2D-objects. (United States)

    Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute


    Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe₂ resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC). (United States)

    Kim, Taehyun; Plona, Kathleen; Wynshaw-Boris, Anthony


    Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed "chromosome therapy".

  16. Sub-Angstrom Low Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope (United States)

    Bell, David C.; Russo, Christopher J.; Benner, Gerd


    Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements, and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: 1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; 2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; 3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science. PMID:20598206

  17. Perfect X-ray focusing via fitting corrective glasses to aberrated optics. (United States)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G


    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  18. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. (United States)

    Muller, D A; Kourkoutis, L Fitting; Murfitt, M; Song, J H; Hwang, H Y; Silcox, J; Dellby, N; Krivanek, O L


    Using a fifth-order aberration-corrected scanning transmission electron microscope, which provides a factor of 100 increase in signal over an uncorrected instrument, we demonstrated two-dimensional elemental and valence-sensitive imaging at atomic resolution by means of electron energy-loss spectroscopy, with acquisition times of well under a minute (for a 4096-pixel image). Applying this method to the study of a La(0.7)Sr(0.3)MnO3/SrTiO3 multilayer, we found an asymmetry between the chemical intermixing on the manganese-titanium and lanthanum-strontium sublattices. The measured changes in the titanium bonding as the local environment changed allowed us to distinguish chemical interdiffusion from imaging artifacts.

  19. A 45-element continuous facesheet surface micromachined deformable mirror for optical aberration correction

    Directory of Open Access Journals (Sweden)

    Weimin Wang


    Full Text Available A 45-element continuous facesheet surface micromachined deformable mirror (DM is presented and is fabricated using the PolyMUMPs multi-user micro-electro-mechanical system processes. The effects of the structural parameters on the characteristics of the DM, such as its stroke, frequency and actuator coupling, are analyzed. In addition, the DM design has also been verified through experimental testing. This DM prototype has a surface figure of 0.5 μm and a fill factor of 95%. The DM can provide a 0.6 μm stroke with 5.9% actuator coupling. A static aberration correction based on this DM is also demonstrated, which acts as a reference for the potential adaptive optics (AO applications of the device.

  20. High-resolution characterization of multiferroic heterojunction using aberration-corrected scanning transmission electron microscopy (United States)

    Yuan, Zhoushen; Ruan, Jieji; Xie, Lin; Pan, Xiaoqing; Wu, Di; Wang, Peng


    Multiferroic tunnel junctions have been considered as potential candidates for nonvolatile memory devices. Understanding the atomic structure at the interface is crucial for optimizing the performances in such oxide electronics. Spatially resolved electron energy loss spectroscopy (EELS) combined with aberration-corrected scanning transmission electron microscopy is employed to measure the compositional profiles across the interfaces of different layers with atomic resolution. Two-dimensional elemental imaging with atomic resolution is demonstrated, and the influences of the interface sharpness, the terminal layer, and cation intermixing are investigated. An asymmetric sublattice intermixing at the Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 interface is observed, which can affect the local Mn valence and coupling. The reduction in the Mn valence at the interface is further studied using EELS near-edge fine structures.

  1. Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Schryvers, D., E-mail: [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Salje, E.K.H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); De Backer, A. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve (Belgium); Van Aert, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)


    The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. - Highlights: • Quantification of picometer displacements at ferroelastic twin boundary in CaTiO{sub 3.} • Quantification of kinks in meandering ferroelectric domain wall in LiNbO{sub 3}. • Quantification of column occupation in anti-phase boundary in Co-Pt. • Quantification of atom displacements at twin boundary in Ni-Ti B19′ martensite.

  2. Low-Beta insertions inducing chromatic aberrations in storage rings and their local and global correction

    CERN Document Server

    Fartoukh, S


    The chromatic aberrations induced by low-β insertions can seriously limit the performance of circular colliders. The impact is twofold: (1) a substantial off-momentum beta-beating wave traveling around the ring and leading to a net reduction of the mechanical aperture of the lowbeta quadrupoles but also impacting on the hierarchy of the collimator and protection devices of the machine, (2) a huge non-linear chromaticity which, when combined with the magnetic imperfections of the machine, could substantially reduce the momentum acceptance of the ring by pushing slightly off-momentum particles towards non-linear resonances. These effects will be analyzed and illustrated in the framework of the LHC insertions upgrade Phase I [1] and a strategy for correction will be developed, requiring a deep modification of the LHC overall optics.

  3. TOPICAL REVIEW: Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials

    Directory of Open Access Journals (Sweden)

    Nobuo Tanaka


    Full Text Available The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-order spherical aberration and the chromatic aberration in combination with the development of a monochromator below an electron gun for smaller point-to-point resolution in optics. Another fundamental area of interest is the limitation of TEM and STEM resolution from the viewpoint of the scattering of electrons in crystals. The minimum size of the exit-wave function below samples undergoing TEM imaging is determined from the calculation of scattering around related atomic columns in the crystals. STEM does not have this limitation because the resolution is, in principle, determined by the probe size. One of the future prospects of Cs-corrected TEM/STEM is the possibility of extending the space around the sample holder by correcting the chromatic and spherical aberrations. This wider space will contribute to the ease of performing in situ experiments and various combinations of TEM and other analysis methods. High-resolution, in situ dynamic and 3D observations/analysis are the most important keywords in the next decade of high-resolution electron microscopy.

  4. Space active optics: in flight aberrations correction for the next generation of large space telescopes (United States)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.


    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully

  5. Aberration-corrected electron microscopy of MnAs and As nanocrystals and voids in annealed (Ga,Mn)As

    DEFF Research Database (Denmark)

    Kovács, András; Kasama, Takeshi; Sadowski, J.


    Aberration-corrected transmission electron microscopy is used to study voids and nano-crystalline MnAs and As phases formed during the annealing of Mn-doped GaAs. The effects of defocus and inner annular dark-field detector semi-angle on contrast of the nanocrystals are discussed....

  6. Research on testing instrument and method for correction of the uniformity of image intensifier fluorescence screen brightness (United States)

    Qiu, YaFeng; Chang, BenKang; Qian, YunSheng; Fu, RongGuo


    To test the parameters of image intensifier screen is the precondition for researching and developing the third generation image intensifier. The picture of brightness uniformity of tested fluorescence screen shows bright in middle and dark at edge. It is not so direct to evaluate the performance of fluorescence screen. We analyze the energy and density distribution of the electrons, After correction, the image in computer is very uniform. So the uniformity of fluorescence screen brightness can be judged directly. It also shows the correction method is reasonable and close to ideal image. When the uniformity of image intensifier fluorescence screen brightness is corrected, the testing instrument is developed. In a vacuum environment of better than 1×10-4Pa, area source electron gun emits electrons. Going through the electric field to be accelerated, the high speed electrons bombard the screen and the screen luminize. By using testing equipment such as imaging luminance meter, fast storage photometer, optical power meter, current meter and photosensitive detectors, the screen brightness, the uniformity, light-emitting efficiency and afterglow can be tested respectively. System performance are explained. Testing method is established; Test results are given.

  7. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction (United States)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang


    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  8. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K; Boyes, E D; Gai, P L [York JEOL Nanocentre (United Kingdom); Shiju, N R; Brown, D R, E-mail: [Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)


    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 A = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  9. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol (United States)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.


    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  10. Multi-focus microscopy for aberration-corrected multi-color three-dimensional imaging (United States)

    Abrahamsson, Sara

    Due to the classical conflict between spatial and temporal resolution, microscopy studies of fast events in living samples are often performed in 2D even when 3D imaging would be desirable and could provide new insights to biological function. This dissertation describes an instant 3D imaging system - a multi-focus microscope (MFM) - which provides high- resolution, aberration-corrected, multi-color fluorescence images of multiple focal planes simultaneously. Forming an instant focal series eliminates the need for multiple camera exposures and mechanical refocusing, allowing 3D imaging limited only by sample signal strength and the camera read-out rate for a single frame. A module containing the MFM optical components can easily be appended to the camera port of a commercial wide-field microscope. The excellent resolution and sensitivity of MFM is demonstrated on two different 3D biological imaging problems; neuronal imaging in the entire C.elegans embryo and mRNA imaging in cultured mammalian cells.

  11. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail:


    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  12. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing (United States)

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya


    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  13. In-situ heating studies of gold nanoparticles in an aberration corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, M J; Gai, P L; Boyes, E D [Department of Physics, University of York, Nanocentre, York, YO10 5DD (United Kingdom); Yoshida, K, E-mail: [Department of Chemistry, University of York, Nanocentre, York, YO10 5DD (United Kingdom)


    Gold nanoparticles have a high catalytic activity for CO oxidation at low temperatures providing they remain less than 5nm in diameter. Their structure and stability and the growth processes that occur during heating have been investigated using Angstrom resolution in-situ double aberration corrected transmission electron microscopy with a JEOL JEM-2200FS. Colloidal Au nanoparticles suspended in water, with mean diameters of 2nm and 5.6nm, have been deposited onto 3.5nm thin carbon supported on holey carbon grids and onto Si{sub 3}N{sub 4} membranes. Dynamic in-situ high resolution AC-TEM images show competitive sintering processes on the different supports. Whilst the 5.6nm particles were observed to be very stable on the carbon, the 2nm particles showed sintering predominantly through particle migration and coalescence, with particle migration occurring as early as {approx}200{sup 0}C, peaking at {approx}500{sup 0}C. In contrast Au nanoparticles on Si{sub 3}N{sub 4} membranes were observed to coalesce at {approx}180{sup 0}C, before Ostwald Ripening became the dominant growth process at higher temperatures. It is believed that atoms and small clusters migrate away from their original particle before becoming trapped on the Si{sub 3}N{sub 4} substrate. These trapped clusters then build up to form the small particles observed, before having sufficient energy to continue to migrate and join another larger particle at {approx}500{sup 0}C.

  14. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. (United States)

    Jesacher, Alexander; Booth, Martin J


    We propose a hologram design process which aims at reducing aberrations in parallel three-dimensional direct laser writing applications. One principle of the approach is to minimise the diffractive power of holograms while retaining the degree of parallelisation. This reduces focal distortion caused by chromatic aberration. We address associated problems such as the zero diffraction order and aberrations induced by a potential refractive index mismatch between the immersion medium of the microscope objective and the fabrication substrate. Results from fabrication in diamond, fused silica and lithium niobate are presented.

  15. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail:; Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); Müller, Heiko; Haider, Maximilian [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany); Tonomura, Akira [Central Research Laboratory, Hitachi, Ltd., Hatoyama 350-0395 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)


    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  16. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.


    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr...

  17. Increase of penetration depth in real-time clinical epi-optoacoustic imaging: clutter reduction and aberration correction (United States)

    Jaeger, Michael; Gashi, Kujtim; Peeters, Sara; Held, Gerrit; Preisser, Stefan; Gruenig, Michael; Frenz, Martin


    Optoacoustic (OA) imaging will experience broadest clinical application if implemented in epi-style with the irradiation optics and the acoustic probe integrated in a single probe. This will allow most flexible imaging of the human body in a combined system together with echo ultrasound (US). In such a multimodal combination, the OA signal could provide functional information within the anatomical context shown in the US image, similar to what is already done with colour flow imaging. Up to date, successful deep epi-OA imaging was difficult to achieve, owing to clutter and acoustic aberrations. Clutter signals arise from strong optical absorption in the region of tissue irradiation and strongly reduce contrast and imaging depth. Acoustic aberrations are caused by the inhomogeneous speed of sound and degrade the spatial resolution of deep tissue structures, further reducing contrast and thus imaging depth. In past years we have developed displacement-compensated averaging (DCA) for clutter reduction based on the clutter decorrelation that occurs when palpating the tissue using the ultrasound probe. We have now implemented real-time DCA on a research ultrasound system to evaluate its clutter reduction performance in freehand scanning of human volunteers. Our results confirm that DCA significantly improves image contrast and imaging depth, making clutter reduction a basic requirement for a clinically successful combination of epi-OA and US imaging. In addition we propose a novel technique which allows automatic full aberration correction of OA images, based on measuring the effect of aberration spatially resolved using echo US. Phantom results demonstrate that this technique allows spatially invariant diffraction-limited resolution in presence of a strong aberrator.

  18. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging (United States)

    Jones, Ryan M.; Hynynen, Kullervo


    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  19. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT. (United States)

    Parish, Chad M; Miller, Michael K


    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, that are resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized cavities such as helium bubbles from the Ti-Y-O rich nanoclusters (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging, have been used for such a purpose. Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs. MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  20. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao


    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  1. 3D printing of microlenses for aberration correction in GRIN microendoscopes

    KAUST Repository

    Antonini, Andrea


    Two-photon fluorescence microscopy provides high resolution information on the anatomy and function of cellular structures located several hundreds of microns deep within biological tissues. However, light scattering poses a fundamental limit to imaging of deeper areas (> 1.5 mm). Implantable microendoscopic probes based on graded index (GRIN) lenses are widely used tools to perform two-photon fluorescence microscopy in otherwise inaccessible regions[1], but the optical performances of with these probes are limited by intrinsic aberrations.

  2. [Analysis of tongue color under natural daylight based on chromatic aberration correction]. (United States)

    Xu, Jia-tuo; Zhang, Zhi-feng; Yan, Zhu-juan; Tu, Li-ping; Lu, Lu-ming; Shi, Mei-yu; Zhu, Feng-lan


    To establish an analytical method for tongue image acquisition under natural daylight based on L*a*b* error correction, and to observe the classification rules of tongue color using color error correction. The tongue images in 413 cases were collected under natural indoor daylight by using Nikon D70 digital SLR camera, and then the color error was adjusted by using Nikon Capture NX software correction according to Kodak Q-13 grey card. The classification and quantitative analysis of the tongue color after software correction was carried out depending on L*a*b* color space. The software correction method had good effects in adjusting the tongue color image error. The L* values of light red, deep red and cyanosis tongues decreased as compared with that of light white tongue (PL*a*b* error correction is accurate in color restoration and feasible to operate.

  3. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction. (United States)

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J


    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens (United States)

    Wong, Alexander; Kazemzadeh, Farnoud; Jin, Chao; Wang, Xiao Yu


    Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ~25% over the standard method, and improvements in SNR of 2.3 dB and 3.8 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively.

  5. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junko, E-mail: [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Yoshida, Kenta [Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Nanostructures Research Laboratory, The Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Sasaki, Yukichi [Nanostructures Research Laboratory, The Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Uchiyama, Naoki [ATSUMITEC CO., LTD., Ubumi 7111, Yuto-cho, Nishi-ku, Hamamatsu 431-0192 (Japan); Akiba, Etsuo [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)


    In situ transmission electron microscopy (TEM) was performed to observe the hydrogenation of Mg-Ni films in a hydrogen atmosphere of 80–100 Pa. An aberration-corrected environmental TEM with a differential pumping system allows us to reveal the Angstrom-scale structure of the films in the initial stage of hydrogenation: first, nucleation and growth of Mg{sub 2}NiH{sub 4} crystals with a lattice spacing of 0.22 nm in an Mg-rich amorphous matrix of the film occurs within 20 s after the start of the high-resolution observation, then crystallization of MgH{sub 2} with a smaller spacing of 0.15 nm happens after approximately 1 min. Our in situ TEM method is also applicable to the analysis of other hydrogen-related materials.

  6. Atomic-scale observation of migration and coalescence of Au nanoclusters on YSZ surface by aberration-corrected STEM. (United States)

    Li, Junjie; Wang, Zhongchang; Chen, Chunlin; Huang, Sumei


    Unraveling structural dynamics of noble metal nanoclusters on oxide supports is critical to understanding reaction process and origin of catalytic activity in heterogeneous catalysts. Here, we show that aberration-corrected scanning transmission electron microscopy can provide direct atomic-resolution imaging of surface migration, coalescence, and atomic rearrangement of Au clusters on an Y:ZrO₂ (YSZ) support. The high resolution enables us to reveal migration and coalescence process of Au clusters at the atomic scale, and to demonstrate that the coalesced clusters undergo a cooperative atomic rearrangement, which transforms the coherent into incoherent Au/YSZ interface. This approach can help to elucidate atomistic mechanism of catalytic activities and to develop novel catalysts with enhanced functionality.

  7. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. (United States)

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S


    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  8. Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Varela del Arco, Maria [ORNL; Gazquez Alabart, Jaume [ORNL; Lupini, Andrew R [ORNL; Luck, Julia T [ORNL; Torija, Maria [University of Minnesota; Sharma, M [University of Minnesota; Leighton, chris [University of Minnesota; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Murfitt, Matt [Nion Co; Dellby, Niklas [ORNL; Krivanek, Ondrej [ORNL; Pennycook, Stephen J [ORNL


    Aberration correction in the scanning transmission electron microscope allows spatial resolutions of the order of one ngstr m to be routinely achieved. When combined with electron energy loss spectroscopy, it is possible to simultaneously map the structure, the chemistry and even the electronic properties of materials in one single experiment. Here we will apply these techniques to the characterization of thin films and interfaces based on complex oxides with the perovskite structure. The relatively large lattice parameter of these materials combined with the fact that most of them have absorption edges within the reach of the spectrometer optics makes these materials ideal for these experiments. We will show how it is possible to map the chemistry of interfaces atomic plane by atomic plane, including light element imaging such as O. Applications to cobaltite and titanate thin films will be described.

  9. Compositional Analysis With Atomic Column Spatial Resolution by 5th Order Aberration-corrected Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, David [Universidad de Cadiz, Spain; Herrera, Miriam [Universidad de Cadiz, Spain; Alonso-Gonzalez, Pablo [Instituto de Microelectronica de Madrid (CNM, CSIC); Gonzalez, Yolanda [Instituto de Microelectronica de Madrid (CNM, CSIC); Gonzalez, Luisa [Instituto de Microelectronica de Madrid (CNM, CSIC); Gazquez Alabart, Jaume [ORNL; Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL; Guerrero, M. P. [Universidad de Cadiz, Spain; Pizarro, Joaquin [Universidad de Cadiz, Spain; Galindo, Pedro [Universidad de Cadiz, Spain; Molina, S. I. [Universidad de Cadiz, Spain


    We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an In{sub x}Ga{sub 1-x}As multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. (1992)]. Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantums wells.

  10. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides (United States)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu


    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  11. Opto-Mechanical Model of Arcuates for Astigmatism Correction. Low and High Order Aberrations


    Navarro, Rafael; Palos, Fernando; Lanchares, Elena; Calvo, Begoña; Cristóbal, José Angel


    To develop a realistic model of the opto-mechanical behaviour of the cornea after curved relaxing incisions, and compare the astigmatism correction predicted by the model with that of the Lindstrom's nomogram. Methods: A three-dimensional finite element model of the anterior hemisphere of the ocular surface was generated, considering three parts: cornea, limbus and sclera. The corneal tissue was modeled as a quasiincompressible, anisotropic hyperelastic constitutive behaviour s...

  12. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics. (United States)

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo


    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  13. Canopy induced aberration correction in airborne electro-optical imaging systems (United States)

    Harder, James A.; Sprague, Michaelene W.


    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  14. Correção das aberrações oculares nos retratamentos de LASIK personalizado e convencional Correction of ocular aberrations in custom and standard LASIK retreatments

    Directory of Open Access Journals (Sweden)

    Andréia Peltier Urbano


    Full Text Available OBJETIVO: Comparar a correção das aberrações oculares nos retratamentos de LASIK personalizado e convencional. MÉTODOS: Foi realizado um estudo prospectivo, randomizado, de 74 olhos de 37 pacientes submetidos ao retratamento de LASIK para correção de miopia e astigmatismo. Cada paciente foi submetido ao retratamento de LASIK personalizado Zyoptix (Bausch & Lomb em um olho e convencional Planoscan (Bausch & Lomb no olho contralateral. Foi comparada a correção das aberrações oculares nos retratamentos personalizado e convencional. RESULTADOS: No sexto mês pós-operatório, os olhos submetidos ao retratamento Zyoptix apresentaram diminuição estatisticamente significativa do defocus, astigmatismo, coma, aberração esférica, segunda ordem, terceira ordem, alta ordem e aberrações totais. Os olhos submetidos ao retratamento Planoscan apresentaram diminuição estatisticamente significativa do defocus, segunda ordem e aberrações totais. CONCLUSÕES: O retratamento personalizado foi superior ao retratamento convencional para a correção das aberrações oculares de baixa e alta ordens.PURPOSE: To compare the correction of ocular aberrations between custom and standard LASIK retreatment. METHODS: Prospective, randomized trial with paired eye control of 74 eyes from 37 patients who underwent LASIK retreatment. Each patient underwent retreatment using Zyoptix LASIK (Bausch & Lomb in 1 eye and Planoscan LASIK (Bausch & Lomb in the fellow eye. Correction of ocular aberrations was compared between custom and standard LASIK retreatments. RESULTS: At 6 months, there was a statistically significant reduction in defocus, astigmatism, coma, spherical aberration, second, third, higher-order and total aberration in Zyoptix eyes. There was a statistically significant reduction in defocus, second-order and total aberration in Planoscan eyes. CONCLUSIONS: Custom retreatment was statistically superior than standard retreatment for correction of lower

  15. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. (United States)

    Sawada, Hidetaka; Tanishiro, Yasumasa; Ohashi, Nobuhiro; Tomita, Takeshi; Hosokawa, Fumio; Kaneyama, Toshikatsu; Kondo, Yukihito; Takayanagi, Kunio


    A spherical aberration-corrected electron microscope has been developed recently, which is equipped with a 300-kV cold field emission gun and an objective lens of a small chromatic aberration coefficient. A dumbbell image of 47 pm spacing, corresponding to a pair of atomic columns of germanium aligned along the [114] direction, is resolved in high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) with a 0.4-eV energy spread of the electron beam. The observed image was compared with a simulated image obtained by dynamical calculation.

  16. Active mirrors warped using Zernike polynomials for correcting off-axis aberrations of fixed primary mirrors. II. Optical testing and performance evaluation. (United States)

    Moretto, G.; Lemaitre, G. R.; Bactivelane, T.; Wang, M.; Ferrari, M.; Mazzanti, S.; di Biagio, B.; Borra, E. F.


    We investigate the aspherization of an active mirror for correcting third and fifth-order aberrations. We use a stainless steel AISI 420 mirror with a controlled pressure load, two series of 12-punctual radial positions of force application distributed symmetrically in two concentric rings around the mirror. We obtain the wavefronts for Cv1, Sph3, Coma3, Astm3, Comatri, Astm5 as well as those of the added wavefronts. Although this active prototype mirror has general uses, our goal is to compensate the aberrations of a liquid mirror observing at large angles from the zenith.

  17. Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An Aberration-Corrected STEM Study

    Directory of Open Access Journals (Sweden)

    Yubiao Niu


    Full Text Available Molybdenum disulphide (MoS2 is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source with a lateral time-of-flight mass selector. Most of the deposited MoS2 nanoclusters, analysed by an aberration-corrected scanning transmission electron microscope (STEM in high-angle annular dark field (HAADF mode, showed poorly ordered layer structures with an average diameter of 5.5 nm. By annealing and the addition of sulphur to the clusters (by sublimation in the cluster source, the clusters were transformed into larger, crystalline structures. Annealing alone did not lead to crystallization, only to a cluster size increase by decomposition and coalescence of the primary clusters. Sulphur addition alone led to a partially crystalline structure without a significant change in the size. Thus, both annealing and sulphur addition processes were needed to obtain highly crystalline MoS2 nanoclusters.

  18. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myung-Geun, E-mail: [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Garlow, Joseph A. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States); Marshall, Matthew S.J.; Tiano, Amanda L. [Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Wong, Stanislaus S. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854 (United States); Walker, Frederick J.; Ahn, Charles H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520 (United States); Zhu, Yimei [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States)


    Highlights: • Electron-beam-induced-current (EBIC) and active secondary-electron voltage-contrast (SE-VC) are demonstrated in STEM mode combined with in situ electrical biasing in a TEM. • Electrostatic potential maps in ferroelectric thin films, multiferroic nanowires, and single crystals obtained by off-axis electron holography were compared with EBIC and SE-VC data. • Simultaneous EBIC and active SE-VC performed with atomic resolution STEM are demonstrated. - Abstract: The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fields and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.

  19. Atomic resolution imaging of YAlO{sub 3}: Ce in the chromatic and spherical aberration corrected PICO electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Lei [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Barthel, Juri [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen (Germany); Jia, Chun-Lin [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Urban, Knut W., E-mail: [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich-Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, 52425 Jülich, (Germany); School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)


    Highlights: • First time resolution of 57 pm atom separations by HRTEM with 200 keV electrons. • Quantification of the image spread by absolute matching of experiment and simulation. • An information limit of 52 pm is deduced from the determined image spread. • Substantial deviations from the bulk structure are observed for the ultra-thin sample. - Abstract: The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200 kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

  20. Green's function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging. (United States)

    Robert, Jean-Luc; Fink, Mathias


    The FDORT method (French acronym for decomposition of the time reversal operator using focused beams) is a time reversal based method that can detect point scatterers in a heterogeneous medium and extract their Green's function. It is particularly useful when focusing in a heterogeneous medium. This paper generalizes the theory of the FDORT method to random media (speckle), and shows that it is possible to extract Green's functions from the speckle signal using this method. Therefore it is possible to achieve a good focusing even if no point scatterers are present. Moreover, a link is made between FDORT and the Van Cittert-Zernike theorem. It is deduced from this interpretation that the normalized first eigenvalue of the focused time reversal operator is a well-known focusing criterion. The concept of an equivalent virtual object is introduced that allows the random problem to be replaced by an equivalent deterministic problem and leads to an intuitive understanding of FDORT in speckle. Applications to aberration correction are presented. The reduction of the variance of the Green's function estimate is discussed. Finally, it is shown that the method works well in the presence of strong interfering scatterers.

  1. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM. (United States)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E


    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  2. Atomic resolved phase map of monolayer MoS2 retrieved by spherical aberration-corrected transport of intensity equation. (United States)

    Zhang, Xiaobin; Oshima, Yoshifumi


    An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail:

  3. Improving imaging of the air-liquid interface in living mice by aberration-corrected optical coherence tomography (mOCT) (Conference Presentation) (United States)

    Schulz-Hildebrandt, Hinnerk; Sauer, Benjamin; Reinholz, Fred; Pieper, Mario; Mall, Markus; König, Peter; Huettmann, Gereon


    Failure in mucociliary clearance is responsible for severe diseases like cystic fibroses, primary ciliary dyskinesia or asthma. Visualizing the mucous transport in-vivo will help to understanding transport mechanisms as well as developing and validating new therapeutic intervention. However, in-vivo imaging is complicated by the need of high spatial and temporal resolution. Recently, we developed microscopy optical coherence tomography (mOCT) for non-invasive imaging of the liquid-air interface in intact murine trachea from its outside. Whereas axial resolution of 1.5 µm is achieved by the spectral width of supercontinuum light source, lateral resolution is limited by aberrations caused by the cylindric shape of the trachea and optical inhomogenities of the tissue. Therefore, we extended our mOCT by a deformable mirror for compensation of the probe induced aberrations. Instead of using a wavefront sensor for measuring aberrations, we harnessed optimization of the image quality to determine the correction parameter. With the aberration corrected mOCT ciliary function and mucus transport was measured in wild type and βENaC overexpressing mice, which served as a model for cystic fibrosis.

  4. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)


    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  5. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping


    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  6. Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system. (United States)

    Zheleznyak, Len; Kim, Myoung Joon; MacRae, Scott; Yoon, Geunyoung


    To measure the impact of corneal aberrations on the through-focus image quality of presbyopia-correcting intraocular lenses (IOLs) using an adaptive optics IOL metrology system. Flaum Eye Institute, University of Rochester, Rochester, New York, USA. Experimental study. An adaptive optics IOL metrology system comprising a model eye, wavefront sensor, deformable mirror, and an image-capturing device acquired through-focus images of a letter chart with 3.0 mm and 5.0 mm pupil diameters. The system was used to induce corneal astigmatism and higher-order aberrations (HOAs) in previously measured pseudophakic presbyopic eyes. A single-optic accommodating IOL (Crystalens HD (HD500), an apodized (Restor +3.0 diopter [D] SN6AD1) and full-aperture (Tecnis ZM900) diffractive multifocal IOL, and a monofocal IOL (Acrysof SN60AT) were evaluated. Image quality was quantified using the correlation-coefficient image-quality metric. The single-optic accommodating IOL and monofocal IOL performed similarly; however, with a 3.0 mm pupil, the former had better intermediate (1.50 D) image quality. The multifocal IOLs had bimodal through-focus image quality trends. Corneal astigmatism reduced through-focus image quality and depth of focus with all IOLs; however, the multifocal IOLs had the most severe decline in depth of focus. Ocular spherical aberration had the strongest impact on image quality when typical pseudophakic corneal HOAs were present. The uncorrected corneal astigmatism and HOAs in pseudophakic eyes significantly affected through-focus performance of presbyopia-correcting IOLs. Although multifocal IOLs significantly increased depth of focus, this benefit diminished when more than 0.75 D astigmatism remained uncorrected. Residual ocular spherical aberration had a significant effect on image quality in the presence of other corneal HOAs. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Reply to L.M. Brown et al. “Brief history of the Cambridge STEM aberration correction project and its progeny” in Ultramicroscopy 157, 88 (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Urban, K.W., E-mail: [Peter Grünberg Institute, Forschungszentrum Jülich, Jülich-Aachen Research Alliance (JARA), and Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, 52425 Jülich (Germany); Rose, H. [Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany)


    We comment on a Short Communication recently published in Ultramicroscopy in which Brown et al. criticize our description of the time sequence of events in the development of aberration correction systems in electron optics during the 1990s put forward in the introduction to the Ultramicroscopy April 2015 Special Issue. We present an analysis of the published literature furnishing evidence that our description is correct. - Highlights: • We scrutinize assertions made on the evolution of Cambridge Cs corrector project. • References [22-24] do not demonstrate improvement of resolution by Cs correction. • According to literature such improvement is only shown in reference [10] in 2001. • Corresponding evidence was published by Heidelberg project already in 1998. • The Heidelberg Cs corrector project antedates the Cambridge project by 3 years.

  8. Mo{sub 6}S{sub 4.5}I{sub 4.5} Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, Valeria [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Nellist, Peter [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Sloan, Jeremy [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR (United Kingdom); Mihailovic, Dragan [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Mo6, Teslova 30, 1000 Ljubljana (Slovenia); Green, Malcom [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR (United Kingdom); Blau, Werner J [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland); Coleman, Jonathan N [University of Dublin - Trinity College, Department of Physics, Dublin 2 (Ireland)


    The atomic structure of subnanometer diameter Mo{sub 6}S{sub 4.5}I{sub 4.5} nanowires and their superlattice packing in bundles have been studied by High Resolution Transmission Electron Microscopy (HRTEM) and Aberration Corrected Scanning Transmission Electron Microscopy (STEM). The individual nanowires are best described as one-dimensional Mo-chalcogenidehalide cluster polymers, composed of Mo octahedra, surrounded by iodine atoms and connected by bridging planes of 3 sulfur atoms. The nanowires are weakly bounded together into bundles by Van der Waals forces in a trigonal packing arrangement, with a nanowire to nanowire distance of 0.96 nm.

  9. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Häussler, Dietrich [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Houben, Lothar [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Essig, Stephanie [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Kurttepeli, Mert [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Dimroth, Frank [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Jäger, Wolfgang, E-mail: [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany)


    Aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) investigations have been applied to investigate the structure and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar cells are of particular interest since efficiencies well above 40% have been obtained for concentrator solar cells which are based on III-V compound semiconductors. In this methodologically oriented investigation, we explore the potential of combining aberration-corrected high-angle annular dark-field STEM imaging (HAADF-STEM) with spectroscopic techniques, such as EELS and energy-dispersive X-ray spectroscopy (EDXS), and with high-resolution transmission electron microscopy (HR-TEM), in order to analyze the effects of fast atom beam (FAB) and ion beam bombardment (IB) activation treatments on the structure and composition of bonding interfaces of wafer-bonded solar cells on Si substrates. Investigations using STEM/EELS are able to measure quantitatively and with high precision the widths and the fluctuations in element distributions within amorphous interface layers of nanometer extensions, including those of light elements. Such measurements allow the control of the activation treatments and thus support assessing electrical conductivity phenomena connected with impurity and dopant distributions near interfaces for optimized performance of the solar cells. - Highlights: • Aberration-corrected TEM and EELS reveal structural and elemental profiles across GaAs/Si bond interfaces in wafer-bonded GaInP/GaAs/Si - multi-junction solar cells. • Fluctuations in elemental concentration in nanometer-thick amorphous interface layers, including the disrubutions of light elements, are measured using EELS. • The projected widths of the interface layers are determined on the atomic scale from STEM-HAADF measurements. • The effects of atom and ion beam activation treatment on the bonding

  10. Characterisation of InAs/GaAs short period superlattices using column ratio mapping in aberration-corrected scanning transmission electron microscopy. (United States)

    Robb, Paul D; Finnie, Michael; Craven, Alan J


    The image processing technique of column ratio mapping was applied to aberration-corrected high angle annular dark field (HAADF) images of short period MBE (molecular beam epitaxy) grown InAs/GaAs superlattices. This method allowed the Indium distribution to be mapped and a more detailed assessment of interfacial quality to be made. Frozen-phonon multislice simulations were also employed to provide a better understanding of the experimental column ratio values. It was established that ultra-thin InAs/GaAs layers can be grown sufficiently well by MBE. This is despite the fact that the Indium segregated over 3-4 monolayers. Furthermore, the effect of the growth temperature on the quality of the layers was also investigated. It was demonstrated that the higher growth temperature resulted in a better quality superlattice structure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM (United States)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert


    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  12. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang W. [Purdue Univ., West Lafayette, IN (United States); Iddir, Hakim [Argonne National Lab. (ANL), Argonne, IL (United States); Uzun, Alper [Koc Univ., Instanbul (Turkey); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States); Browning, Nigel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Ortalan, Volkan [Purdue Univ., West Lafayette, IN (United States)


    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  13. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001 interface by aberration-corrected high-resolution transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    C. Wen


    Full Text Available The stacking faults (SFs in an AlSb/GaAs (001 interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM. The structure and strain distribution of the single and intersecting (V-shaped SFs associated with partial dislocations (PDs were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps εxx and εyy, a SF can be divided into several sections under different strain states (positive or negative strain values. Furthermore, the strain state for the same section of a SF is in contrast to each other in εxx and εyy strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  14. Spherical aberration in contact lens wear. (United States)

    Lindskoog Pettersson, A; Jarkö, C; Alvin, A; Unsbo, P; Brautaset, R


    The aim of the present studies was to investigate the effect on spherical aberration of different non custom-made contact lenses, both with and without aberration control. A wavefront analyser (Zywave, Bausch & Lomb) was used to measure the aberrations in each subject's right eye uncorrected and with the different contact lenses. The first study evaluated residual spherical aberration with a standard lens (Focus Dailies Disposable, Ciba Vision) and with an aberration controlled contact lens (ACCL) (Definition AC, Optical Connection Inc.). The second study evaluated the residual spherical aberrations with a monthly disposable silicone hydrogel lens with aberration reduction (PureVision, Bausch & Lomb). Uncorrected spherical aberration was positive for all pupil sizes in both studies. In the first study, residual spherical aberration was close to zero with the standard lens for all pupil sizes whereas the ACCL over-corrected spherical aberration. The results of the second study showed that the monthly disposable lens also over-corrected the aberration making it negative. The changes in aberration were statistically significant (plenses. Since the amount of aberration varies individually we suggest that aberrations should be measured with lenses on the eye if the aim is to change spherical aberration in a certain direction.

  15. Reduced sintering of mass-selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study. (United States)

    Niu, Yubiao; Schlexer, Philomena; Sebok, Bela; Chorkendorff, Ib; Pacchioni, Gianfranco; Palmer, Richard E


    Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis.

  16. Aberration characteristics of plane-parallel compensator plate (United States)

    Komarova, I. E.


    A specially constructed plane parallel compensator plate in a ring telescope catodioptric objective does not affect the size of the dead zone in the pupil and will not only eliminate parasitic flare or bright spots but also allow the relative aperture of each mirror and of the entire objective to be substantially enlarged. Such a plate consists of two elements, the smaller one with a diameter equal to that of the secondary mirror placed at the center of the larger one so as to face that mirror. Here the aberration characteristics of this compensator are analyzed according to the laws of geometric optics for wide beams of light rays. Five different compensator configurations are conceived on this basis for complete correction of spherical aberration, with the appropriate formulas given for calculating the necessary plate thickness.

  17. Reducing starbursts in highly aberrated eyes with pupil miosis. (United States)

    Xu, Renfeng; Kollbaum, Pete; Thibos, Larry; Lopez-Gil, Norberto; Bradley, Arthur


    To test the hypothesis that marginal ray deviations determine perceived starburst sizes, and to explore different strategies for decreasing starburst size in highly aberrated eyes. Perceived size of starburst images and visual acuities were measured psychophysically for eyes with varying levels of spherical aberration, pupil sizes, and defocus. Computationally, we use a polychromatic eye model including the typical levels of higher order aberrations (HOAs) for keratoconic and post-LASIK eyes to quantify the image quality (the visually weighted Strehl ratio derived from the optical transfer function, VSOTF) with different pupil sizes at both photopic and mesopic light levels. For distance corrected post-LASIK and keratoconic eyes with a night-time pupil (e.g., 7 mm), the starburst diameter is about 1.5 degrees (1 degree for normal presbyopic eyes), which can be reduced to ≤0.25 degrees with pupil sizes ≤3 mm. Starburst size is predicted from the magnitude of the longitudinal spherical aberration. Refracting the eye to focus the pupil margin also removed starbursts, but, unlike small pupils, significantly degraded visual acuity. Reducing pupil diameter to 3 mm improved image quality for these highly aberrated eyes by about 2.7 ×  to 1.7 ×  relative to the natural pupils when light levels were varied from 0.1 to 1000 cd m-2 , respectively. Subjects with highly aberrated eyes observed larger starbursts around bright lights at night predictable by the deviated marginal rays. These were effectively attenuated by reducing pupil diameters to ≤3 mm, which did not cause a drop in visual acuity or modelled image quality even at mesopic light levels. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  18. Bilateral Symmetry before and Six Months after Aberration-Free™ Correction with the SCHWIND AMARIS TotalTech Laser: Clinical Outcomes (United States)

    Arbelaez, Maria Clara; Vidal, Camila; Arba-Mosquera, Samuel


    Purpose To compare the preoperative and postoperative bilateral symmetry between OD and OS eyes that have undergone femto-LASIK using the Ziemer LDV femtosecond laser system, the SCHWIND AMARIS Excimer Laser and the Aberrationfree™ profiles implemented in the SCHWIND Custom Ablation Manager software. Methods A total of 25 LASIK patients were bilaterally evaluated at the six-month follow-up visit. In all cases standard examinations, pre- and postoperative analysis with corneal wavefront topography (OPTIKON Scout) were performed. Aberration-free™ aspheric treatments were devised using the Custom Ablation Manager software and ablations were performed by means of the SCHWIND AMARIS flying-spot excimer laser system (both SCHWIND eyetech- solutions). In all cases LASIK flaps were created using an LDV femtosecond laser (Ziemer Group). The OD/OS bilateral symmetry was evaluated in terms of corneal wavefront aberration. Results Preoperatively, 11 Zernike terms showed significant bilateral (OS-vs.-OD) symmetry, and only 6 Zernike terms were significantly different. Overall, 23 out of the 25 patients showed significant bilateral symmetry, and only 2 out of 25 patients showed significant differences. None of the aberration metrics changed from pre- to postoperative values by a clinically relevant amount. At the 6-month postoperative visit, 12 Zernike terms showed significant symmetry, and 8 terms were significantly different. Overall, 22 out of 25 patients showed significant bilateral symmetry (OS vs. OD), and only 3 out of 25 patients showed significant differences. Also, this postoperative examination revealed that 6 Zernike terms lost significant OS-vs.-OD symmetry, but 4 Zernike terms gained significant symmetry. Finally, 4 patients lost significant bilaterality, and 2 patients gained significant bilaterality: bilateral symmetry between eyes was better maintained in those patients with a clear preoperative bilateral symmetry. Conclusions Aberration-Free Treatments with

  19. Stellar aberration correction and thermoelastic compensation of Swarm μASC attitude observationsA comment to the Express Letter "Mysterious misalignments between geomagnetic and stellar reference frames seen in CHAMP and Swarm satellite measurements", by Stefan Maus (United States)

    Herceg, M.; Jørgensen, P. S.; Jørgensen, J. L.


    The Swarm constellation of three satellites measures the magnetic signal of the Earth using both a Vector Field Magnetometer and an Absolute Scalar Magnetometer. A Micro Advanced Stellar Compass (μASC) mounted on a common, supposedly stable, optical bench precisely determines its inertial attitude. However, comparison of the Inter Boresight Angle shows a relative attitude variation between the μASC Camera Head Units. These misalignments between Camera Head Units and a geomagnetic reference frame cannot be explained by incorrect aberration correction (as theorized by Maus). Herceg et al. found them to be caused by thermal gradient sensitivity of the optical bench system, opposing the underlying assumption of perfect platform stability. The results after applying thermal corrections show significant decrease in root mean square, with Inter Boresight Angle of thermally corrected data being nearly flat and clean from any variation caused by thermoelastic effects.

  20. Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.5μm using aberration-corrected scanning transmission electron microscopy

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Semenova, Elizaveta; Yvind, Kresten


    The emission wavelength of InAs quantum dots grown on InP has been shown to shift to the technologically desirable 1.5μm with the deposition of 1–2 monolayers of GaAs on top of the quantum dots. Here, we use aberration-corrected scanning transmission electron microscopy to investigate morphological...... and compositional changes occurring to the quantum dots as a result of the deposition of 1.7 monolayers of GaAs on top of them, prior to complete overgrowth with InP. The results are compared with theoretical models describing the overgrowth process....

  1. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat


    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  2. Quantitative atom column position analysis at the incommensurate interfaces of a (PbS){sub 1.14}NbS{sub 2} misfit layered compound with aberration-corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Garbrecht, M., E-mail: [Microanalysis of Materials, Institute of Materials Science, University of Kiel, 24143 Kiel (Germany); Spiecker, E., E-mail: [Microanalysis of Materials, Institute of Materials Science, University of Kiel, 24143 Kiel (Germany); Tillmann, K. [Ernst Ruska-Centre and Institute for Solid State Research, Research Centre Juelich GmbH, 52425 Juelich (Germany); Jaeger, W. [Microanalysis of Materials, Institute of Materials Science, University of Kiel, 24143 Kiel (Germany)


    Aberration-corrected HRTEM is applied to explore the potential of NCSI contrast imaging to quantitatively analyse the complex atomic structure of misfit layered compounds and their incommensurate interfaces. Using the (PbS){sub 1.14}NbS{sub 2} misfit layered compound as a model system it is shown that atom column position analyses at the incommensurate interfaces can be performed with precisions reaching a statistical accuracy of {+-}6 pm. The procedure adopted for these studies compares experimental images taken from compound regions free of defects and interface modulations with a structure model derived from XRD experiments and with multi-slice image simulations for the corresponding NCSI contrast conditions used. The high precision achievable in such experiments is confirmed by a detailed quantitative analysis of the atom column positions at the incommensurate interfaces, proving a tetragonal distortion of the monochalcogenide sublattice. -- Research Highlights: {yields} Quantitative aberration-corrected HRTEM analysis of atomic column positions in (PbS){sub 1.14}NbS{sub 2} misfit layered compound reveals tetragonal distortion of the PbS subsystem. {yields} Detailed comparison of multi-slice simulations with the experimental NCSI contrast condition imaging results lead to a high precision (better than 10 pm) for determining the positions of atoms. {yields} Precision in gaining information of local structure at atomic scale is demonstrated, which may not be accessible by means of X-ray and neutron diffraction analysis.

  3. Aberration-corrected high resolution electron microscopy of the misfit layered compound (PbS)1.14NbS2


    Garbrecht, Magnus


    Konventionelle und aberrations-korrigierte Hochauflösungs-Transmissionselektronenmikroskopie (HRTEM) sowie Raster-TEM (STEM) und Elektronenbeugung (ED) wurde in dieser Arbeit experimentell auf den Fehlanpassungsschichtkristall (PbS)1.14NbS2 angewendet. Ziel war es, die individuellen Atomsäulenpositionen an den Grenzflächen des Systems mit einer Präzision im sub-Ångstrom Bereich bestimmen zu können. Mit der so erreichten Genauigkeit in der Bestimmung von Atomsäulenabständen sollten quantitati...

  4. Correction

    CERN Multimedia


    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  5. Brightness limitations of cold field emitters caused by Coulomb interactions

    NARCIS (Netherlands)

    Cook, B.J.; Verduin, T.; Hagen, C.W.; Kruit, P.


    Emission theory predicts that high brightness cold field emitters can enhance imaging in the electron microscope. This (neglecting chromatic aberration) is because of the large (coherent) probe current available from a high brightness source and is based on theoretically determined values of reduced

  6. The Art of Optical Aberrations (United States)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  7. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations (United States)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan


    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  8. Atomic-resolution studies of In{sub 2}O{sub 3}-ZnO compounds on aberration-corrected electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wentao


    In this work, the characteristic inversion domain microstructures of In{sub 2}O{sub 3}(ZnO){sub m} (m=30) compounds were investigated by TEM methods. At bright-atom contrast condition, atomically resolved HR-TEM images of In{sub 2}O{sub 3}(ZnO){sub 30} were successfully acquired in [1 anti 100] zone axis of ZnO, with projected metal columns of {proportional_to}1.6 A well resolved. From contrast maxima in the TEM images, local lattice distortions at the pyramidal inversion domain boundaries were observed for the first time. Lattice displacements and the strain field in two-dimensions were visualized and measured using the 'DALI' algorithm. Atomically resolved single shot and focal series images of In{sub 2}O{sub 3}(ZnO){sub 30} were achieved in both zone axes of ZnO, [1 anti 100] and [2 anti 1 anti 10], respectively. The electron waves at the exit-plane were successfully reconstructed using the software package 'TrueImage'. Finally, a three dimensional atomic structure model for the pyramidal IDB was proposed, with an In distribution of 10%, 20%, 40%, 20% and 10% of In contents over 5 atom columns along basal planes, respectively. Through a detailed structural study of In{sub 2}O{sub 3}(ZnO){sub m} compounds by using phase-contrast and Z-contrast imaging at atomic resolution, In{sup 3+} atoms are determined with trigonal bi-pyramidal co-ordination and are distributed at the pyramidal IDBs. (orig.)

  9. Intraocular Lens Multifocality Combined with the Compensation for Corneal Spherical Aberration:A New Concept ofPresbyopia-CorrectingIntraocular Lens

    Directory of Open Access Journals (Sweden)

    Reiner Friedrich


    Full Text Available The outcomes of a prospective consecutive study aimed at evaluating the visual and refractive benefit after cataract surgery with the implantation of the aspheric diffractive multifocal intraocular lens (IOL Tecnis ZMB00 (Abbott Medical Optics are reported. A total of 31 eyes of 19 patients (age range, 40 to 81 years underwent phacoemulsification surgery with implantation of this aspheric multifocal IOL. At 6 months after surgery, postoperative spherical equivalent was within ±1.00 D in 96.8% of eyes, with 94.7% of patients presenting a postoperative binocular far LogMAR uncorrected visual acuity (UCVA of 0.1 or better. Far best-corrected distance VA improved significantly (p < 0.01, with postoperative values of 0.1 or better in 96.8% of eyes. Postoperative near UCVA was 0.10 (equivalent to J1 or better in 93.55% of eyes. Furthermore, the IOL power was found to be very poorly correlated with the postoperative far LogMAR (r = 0.13 and near UCVA (r = 0.13. In conclusion, the aspheric diffractive multifocal IOL Tecnis ZMB00 provides a restoration of the far and near visual function after phacoemulsification surgery for cataract removal or presbyopia correction, which is predictable and independent from the optical power of the implanted IOL.

  10. BrightFocus Foundation (United States)

    ... sooner. More science news Help us find a cure. Give to BrightFocus BrightFocus Updates BrightFocus Foundation Lauds Bill Gates Alzheimer’s Initiative “BrightFocus Foundation lauds today’s historic announcement by ...

  11. Determination of the incommensurate modulated structure of Bi{sub 2}Sr{sub 1.6}La{sub 0.4}CuO{sub 6+δ} by aberration-corrected transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Binghui, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yumei; Luo, Huiqian; Wen, Haihu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Rong; Cheng, Zhiying; Zhu, Jing [Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China)


    The incommensurate modulated structure (IMS) of Bi{sub 2}Sr{sub 1.6}La{sub 0.4}CuO{sub 6+δ} (BSLCO) has been studied by aberration-corrected transmission electron microscopy in combination with a high-dimensional (HD) space description. Two images are deconvoluted in the negative Cs imaging (NCSI) and positive Cs imaging (PCSI) modes. Similar results for the IMS have been obtained from two corresponding projected potential maps (PPMs), and the size of the dots representing atoms in the NCSI PPM is found to be smaller than that in the PCSI PPM. Considering that the object size is one of the factors that influence the precision of the structural determination, modulation functions for all unoverlapped atoms in BSLCO were determined on the basis of the NCSI PPM in combination with the HD space description. - Highlights: • Dots representing atoms in NCSI is found to be smaller than that in PCSI especially for heavy atoms. • Modulation functions of incommensurate modulated structure in Bi{sub 2}Sr{sub 1.6}La{sub 0.4}CuO{sub 6+δ} has been determined by using a NCSI image.

  12. Environmental TEM in an Aberration Corrected Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    the microscope column. The effects of gas on the electron wave in the objective lens are not well understood and needs further attention. Imaging samples with a simple geometry, such as gold particles on a flat graphene substrate and analyzing the variations in contrast, provides a means for understanding......The increasing use of environmental transmission electron microscopy (ETEM) in materials science provides exciting new possibilities for investigating chemical reactions and understanding both the interaction of fast electrons with gas molecules and the effect of the presence of gas on high......‐resolution imaging. A gaseous atmosphere in the pole‐piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 10‐20 nm), the gas in the environmental...

  13. Burkina Faso - BRIGHT II (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  14. A selective deficit in the appreciation and recognition of brightness: brightness agnosia? (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F


    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  15. Alteration of introns in a hyaluronan synthase 1 (HAS1 minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM: MM patients harbor similar changes.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1 have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.

  16. Photon Sieve Bandwidth Broadening by Reduction of Chromatic Aberration Effects Using Second-Stage Diffractive Optics (United States)


    thesis. 25 Still another manner in which to view chromatic aberration is in terms of Lateral Chromatic Aberration ( LCA ). Eq. 18 illustrates a...wavelength in addition to the in-focus location. This difference in height of images at two different colors is LCA (21:268). Aberration Correction

  17. Refractive surgery, optical aberrations, and visual performance. (United States)

    Applegate, R A; Howland, H C


    Visual optics is taking on new clinical significance. Given that current refractive procedures can and do induce large amounts of higher order ocular aberration that often affects the patient's daily visual function and quality of life, we can no longer relegate the considerations of ocular aberrations to academic discussions. Instead, we need to move toward minimizing (not increasing) the eye's aberrations at the same time we are correcting the eye's spherical and cylindrical refractive error. These are exciting times in refractive surgery, which need to be tempered by the fact that after all the research, clinical, and marketing dust settles, the level to which we improve the quality of the retinal image will be guided by the trade-off between cost and the improvement in the quality of life that refractive surgery offers.

  18. Study of ocular aberrations with age. (United States)

    Athaide, Helaine Vinche Zampar; Campos, Mauro; Costa, Charles


    Aging has various effects on visual system. Vision deteriorate, contrast sensitivity decreases and ocular aberrations apparently make the optical quality worse across the years. To prospective evaluate ocular aberrations along the ages. Three hundred and fifteen patients were examined, 155 were male (39.36%) and 160 were female (60.63%). Ages ranged from 5 to 64 year-old, the study was performed from February to November, 2004. Patients were divided into 4 age-groups according to IBGE (Instituto Brasileiro de Geografia e Estatística) classification: 68 patients from 5 to 14 year-old, 55 patients from 15 to 24 year-old, 116 from 25 to 44 year-old and 76 from 45 to 67 year-old. All patients had the following characteristics: best corrected visual acuity > 20/25, emmetropia or spherical equivalent < 3.50 SD, refractive astigmatism < 1.75 CD on cycloplegic refraction, normal ophthalmologic exam and no previous ocular surgeries. This protocol was approved by Federal University of São Paulo Institutional Review Board. Total optical aberrations were measured by H-S sensor LadarWave Custom Cornea Wavefront System (Alcon Laboratories Inc, Orlando, FLA, USA) and were statistically analysed. Corneal aberrations were calculated using CT-View software Version 6.89 (Sarver and Associates, Celebration, FL, USA). Lens aberrations were calculated by subtraction. High-order (0.32 e 0.48 microm) and ocular spherical aberrations (0.02 e 0.26 microm) increased respectively in child and middle age groups. High order (0.27 microm) and corneal spherical aberrations (0.05 microm) did not show changes with age. Lens showed a statistically significant spherical aberration increase (from -0.02 to 0.22 microm). Vertical (from 0.10 to -0.07 microm) and horizontal coma (from 0.01 to -0.12 microm) presented progressively negative values with aging. High-order and spherical aberrations increased with age due to lens contribution. The cornea did not affect significantly changes observed on ocular

  19. Describing ocular aberrations with wavefront vergence maps. (United States)

    Nam, Jayoung; Thibos, Larry N; Iskander, D Robert


    A common optometric problem is to specify the eye's ocular aberrations in terms of Zernike coefficients and to reduce that specification to a prescription for the optimum sphero-cylindrical correcting lens. The typical approach is first to reconstruct wavefront phase errors from measurements of wavefront slopes obtained by a wavefront aberrometer. This paper applies a new method to this clinical problem that does not require wavefront reconstruction. Instead, we base our analysis of axial wavefront vergence as inferred directly from wavefront slopes. The result is a wavefront vergence map that is similar to the axial power maps in corneal topography and hence has a potential to be favoured by clinicians. We use our new set of orthogonal Zernike slope polynomials to systematically analyse details of the vergence map analogous to Zernike analysis of wavefront maps. The result is a vector of slope coefficients that describe fundamental aberration components. Three different methods for reducing slope coefficients to a spherocylindrical prescription in power vector forms are compared and contrasted. When the original wavefront contains only second order aberrations, the vergence map is a function of meridian only and the power vectors from all three methods are identical. The differences in the methods begin to appear as we include higher order aberrations, in which case the wavefront vergence map is more complicated. Finally, we discuss the advantages and limitations of vergence map representation of ocular aberrations.

  20. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC


    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  1. Are changes in ocular aberrations with age a significant problem for refractive surgery? (United States)

    Marcos, Susana


    We discuss current knowledge about the change of aberrations with aging, cataract surgery, and laser in situ keratomileusis (LASIK) for myopia. Based on this evidence, we speculate about the long-term expectations for postoperative LASIK eyes in terms of aberrations. Standard myopic LASIK surgery produces a significant increase in aberrations, particularly corneal spherical aberration, which changes to positive values. Aberrations increase with age, and in particular, the spherical aberration of the crystalline lens shifts toward positive values. Therefore, no compensatory effect is expected to occur with age after standard myopic LASIK, but rather the unusually high amount of aberrations in postoperative LASIK patients is expected to worsen with age. The amount of aberrations in patients after cataract surgery with implantation of standard intraocular lenses (IOLs) is higher than in normal young subjects. If an ideal customized ablation (not inducing aberrations and reducing naturally existing aberrations) is ever possible, the perfect correction will not last (due to the change of aberrations with age), and aberrations of the crystalline lens corrected on the cornea are likely to reappear after conventional cataract surgery. Potential benefits of customized IOLs for cataract surgery and improved optics in older patients are discussed.

  2. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  3. HI Surface brightness mapping (United States)

    Pen, Ue-Li; Staveley-Smith, Lister; Chang, Tzu-Ching; Peterson, Jeff; Bandura, Kevin


    We propose to scan the 2dF survey field with Parkes multibeam in driftscan mode to make a map to cross correlate with galaxy redshifts. This allows a statistical detection of HI large scale structure out to z=0.15. In this cross correlation, the HI in ALL galaxies contributes, not only the bright ones, which significantly boosts the sensitivity. The proposed 40 hours on the fields result in a forecasted 20 sigma detection. The survey volume is 10 million cubic megaparsec, which contain 10^15 solar masses of hydrogen.

  4. Are optical aberrations during accommodation a significant problem for refractive surgery? (United States)

    Artal, Pablo; Fernández, Enrique J; Manzanera, Silvestre


    To study the limits to a perfect ideal customized wavefront correction due to the change of aberrations during accommodation. METHODS. We measured the dynamic changes of ocular aberrations during accommodation in normal eyes with a real-time Hartmann-Shack wavefront sensor. Those results were used in computer simulations to predict the benefit of a perfect customized correction. Due to the continuous changes of the aberrations over time, an ideal perfect static correction will not provide stable aberration-free optics. For example, when the eye accommodates to near objects, due to the changing aberrations, the eye will become aberrated again. An alternative correction using the aberration pattern for a slightly accommodated condition could provide a better-correction in a larger accommodative range, although at the cost of non-perfect correction for far vision. Due to the dynamic nature of ocular optics, a static perfect correction, for instance performed in customized refractive surgery, would not remain perfect for every condition occurring during normal accommodation.

  5. Lightness, brightness, and anchoring. (United States)

    Anderson, Barton L; Whitbread, Michael; de Silva, Chamila


    The majority of work in lightness perception has evaluated the perception of lightness using flat, matte, two-dimensional surfaces. In such contexts, the amount of light reaching the eye contains a conflated mixture of the illuminant and surface lightness. A fundamental puzzle of lightness perception is understanding how it is possible to experience achromatic surfaces as specific achromatic shades in the face of this ambiguity. It has been argued that the perception of lightness in such contexts implies that the visual system imposes an "anchoring rule" whereby a specific relative luminance (the highest) serves as a fixed point in the mapping of image luminance onto the lightness scale ("white"). We conducted a series of experiments to explicitly test this assertion in contexts where this mapping seemed most unlikely-namely, low-contrast images viewed in dim illumination. Our results provide evidence that the computational ambiguity in mapping luminance onto lightness is reflected in perceptual experience. The perception of the highest luminance in a two-dimensional Mondrian display varied monotonically with its brightness, ranging from midgray to white. Similar scaling occurred for the lowest luminance and, by implication, all other luminance values. We conclude that the conflation between brightness and lightness in two-dimensional Mondrian displays is reflected in perception and find no support for the claim that any specific relative luminance value acts as a fixed anchor point in this mapping function. © 2014 ARVO.

  6. [Influence of age on optical aberrations of the human eye]. (United States)

    Jahnke, M; Wirbelauer, C; Pham, D T


    Currently the influence of age on corneal and ocular aberrations is still insufficiently known. The aim of this clinical study was to compare age-related aberrations of human eyes. In a prospective study 98 eyes of 49 healthy patients ranging from 17 to 65 years of age (38.6+/-10.0 years) were consecutively examined. The best corrected visual acuity ranged from 0.8 to 1.6; 48 eyes were emmetropic (SE+/-0.5 D), 42 eyes myopic (SE +0.5 to +3.88 D). The corneal aberrations were derived from corneal topography (Keratron Scout, Optikon). The measurement of ocular aberrations was performed with a Tscherning wavefront aberrometer (ORK, Schwind). The aberrations of the Zernike coefficients and RMS values (1st to 4th order) were determined. The mean corneal and ocular Zernike coefficients of higher order were smaller than 0.2 microm. There was an evident decrease of wavefront aberrations with increasing order. Higher order corneal aberrations were larger than the corresponding ocular aberrations. With increasing age higher optical errors increased in complexity, and the correlation of corneal and ocular aberrations decreased with significant differences. Although the corneal ocular RMS value of the 3rd and 4th order correlated in the younger group (r=0.51, p=0.0001), there was no correlation in the older group (r=-0.48, p=0.832). The influence of age caused a significant increase of ocular aberrations of the 3rd and 4th order, in particular a tenfold extension of coma (C07) (p=0.002), a twofold extension of spherical aberration (C12) (p=0.0001), and an increase of the 3rd and 4th order RMS values (p=0.001). Increased age induced an increase in optical aberrations of the eye, which demonstrates the influence of the lens on ocular aberrations. The combination of corneal and ocular diagnostic methods is recommendable for a better understanding of visual performance.

  7. Evaluation method of an influence of wavefront aberration on signal quality in holographic memory (United States)

    Akieda, Kensuke; Nakajima, Akihito; Ohori, Tomohiro; Katakura, Kiyoto; Yamamoto, Manabu


    One of the problems that affects the practical use of holographic memory is deterioration of the reproduced images due to aberration in the optical system. The medium used in holographic memory systems must be interchangeable, and hence, it is necessary to clarify the influence of aberration in the optical system on the signal quality and perform aberration correction for drive compatibility. In this study, aberration is introduced in the reference light beam during image reproduction, and the deterioration of the reproduced image signal is examined.

  8. Changes of higher-order aberrations with the use of various mydriatics. (United States)

    Kim, Jae-Hyung; Lim, Taehyung; Kim, Myoung Joon; Tchah, Hungwon


    Advances in corneal refractive surgery have allowed ophthalmologists to correct ocular higher-order aberrations. To obtain more information on the ocular aberrations generated from the optical axis, mydriasis is required. The aim of this study is to evaluate the changes in higher-order aberrations with the use of various mydriatics. Higher-order aberrations were measured in 21 eyes of 21 subjects (age range 24-37 years; 13 males, 8 females). Repeated measurements were conducted before and after the installation of three different mydriatics: 10% phenylephrine, 1% tropicamide, or 1% cyclopentolate. At a pupil size of 6 mm, the average root mean square value of higher-order aberrations (HO-RMS) was 0.430 mum in undilated eyes, and 0.413, 0.410, and 0.477 mum after installation of phenylephrine, tropicamide, and cyclopentolate, respectively. There were no statistically significant differences in the HO-RMS between the four conditions. There was a significant difference in the spherical aberration between the undilated or phenylephrine-treated eyes, compared to those treated with tropicamide or cyclopentolate. Cycloplegic mydriatics seemed to shift spherical aberration in a positive direction. These results suggest that mydriatics may affect higher-order aberrations, especially spherical aberration, and this should be considered when performing wavefront analysis and when correcting wavefront errors.

  9. DNA Repair Defects and Chromosomal Aberrations (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.


    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  10. Theory of aberration fields for general optical systems with freeform surfaces. (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P


    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  11. Impact of astigmatism and high-order aberrations on subjective best focus. (United States)

    Marcos, Susana; Velasco-Ocana, Miriam; Dorronsoro, Carlos; Sawides, Lucie; Hernandez, Martha; Marin, Gildas


    We studied the role of native astigmatism and ocular aberrations on best-focus setting and its shift upon induction of astigmatism in 42 subjects (emmetropes, myopes, hyperopes, with-the-rule [WTR] and against-the-rule [ATR] myopic astigmats). Stimuli were presented in a custom-developed adaptive optics simulator, allowing correction for native aberrations and astigmatism induction (+1 D; 6-mm pupil). Best-focus search consisted on randomized-step interleaved staircase method. Each subject searched best focus for four different images, and four different conditions (with/without aberration correction, with/without astigmatism induction). The presence of aberrations induced a significant shift in subjective best focus (0.4 D; p < 0.01), significantly correlated (p = 0.005) with the best-focus shift predicted from optical simulations. The induction of astigmatism produced a statistically significant shift of the best-focus setting in all groups under natural aberrations (p = 0.001), and in emmetropes and in WTR astigmats under corrected aberrations (p < 0.0001). Best-focus shift upon induced astigmatism was significantly different across groups, both for natural aberrations and AO-correction (p < 0.0001). Best focus shifted in opposite directions in WTR and ATR astigmats upon induction of astigmatism, symmetrically with respect to the best-focus shift in nonastigmatic myopes. The shifts are consistent with a bias towards vertical and horizontal retinal blur in WTR and ATR astigmats, respectively, indicating adaptation to native astigmatism.

  12. Teradiode's high brightness semiconductor lasers (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz


    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  13. Temporal dynamics of ocular aberrations: monocular vs binocular vision. (United States)

    Mira-Agudelo, A; Lundström, L; Artal, P


    The temporal dynamics of ocular aberrations are important for the evaluation of, e.g. the accuracy of aberration estimates, the correlation to visual performance, and the requirements for real-time correction with adaptive optics. Traditionally, studies on the eye's dynamic behavior have been performed monocularly, which might have affected the results. In this study we measured aberrations and their temporal dynamics both monocularly and binocularly in the relaxed and accommodated state for six healthy subjects. Temporal frequencies up to 100 Hz were measured with a fast-acquisition Hartmann-Shack wavefront sensor having an open field-of-view configuration which allowed fixation to real targets. Wavefront aberrations were collected in temporal series of 5 s duration during binocular and monocular vision with fixation targets at 5 m and 25 cm distance. As expected, a larger temporal variability was found in the root-mean-square wavefront error when the eye accommodated, mainly for frequencies lower than 30 Hz. A statistically-significant difference in temporal behavior between monocular and binocular viewing conditions was found. However, on average it was too small to be of practical importance, although some subjects showed a notably higher variability for the monocular case during near vision. We did find differences in pupil size with mono- and binocular vision but the pupil size temporal dynamics did not behave in the same way as the aberrations' dynamics.

  14. Optical aberrations induced by subclinical decentrations of the ablation pattern (United States)

    Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo


    Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.

  15. Chromosome Aberrations by Heavy Ions (United States)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  16. Lightness, brightness, and brightness contrast: 2. Reflectance variation. (United States)

    Arend, L E; Spehar, B


    Changes of annulus luminance in traditional disk-and-annulus patterns can be perceived to be either reflectance or illuminance changes. In the present experiments, we examined the effect of varying annulus reflectance. In Experiment 1, we placed test and standard patch-and-surround patterns in identical Mondrian patchworks. Only the luminance of the test surround changed from trial to trial, appearing as reflectance variation under constant illumination. Lightness matches were identical to brightness matches, as expected. In Experiment 2, we used only the patch and surround (no Mondrian). Instructions said that the illumination would change from trial to trial. Lightness and brightness-contrast data were identical; illumination gradients were indistinguishable from reflectance gradients. In Experiment 3, the patterns were the same, but the instructions said that the shade of gray of the test surround would change from trial to trial. Lightness matches were identical to brightness matches, again confirming the ambiguity of disk-and-annulus patterns.

  17. Smart image sensor with adaptive correction of brightness (United States)

    Paindavoine, Michel; Ngoua, Auguste; Brousse, Olivier; Clerc, Cédric


    Today, intelligent image sensors require the integration in the focal plane (or near the focal plane) of complex algorithms for image processing. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, analog pre-processing are essential, on the one hand, to improve the quality of the images making them usable whatever the light conditions, and secondly, to detect regions of interest (ROIs) to limit the amount of pixels to be transmitted to a digital processor performing the high-level processing such as feature extraction for pattern recognition. To show that it is possible to implement analog pre-processing in the focal plane, we have designed and implemented in 130nm CMOS technology, a test circuit with groups of 4, 16 and 144 pixels, each incorporating analog average calculations.

  18. Aberration corrected STEM to study an ancient hair dyeing formula (United States)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.


    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  19. Bright Light Treatment in Psychiatry

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir


    Full Text Available Bright light treatment is a treatment modality that leads elevation of mood due to attenuation in depressive symptoms, regulation in circadian rhythm activity, increase the effect of antidepressants and amelioration in sleep quality. Bright light treatment is considered among the first-line treatments for seasonal affective disorder because of high response rates. Additionally, bright light treatment being extended to other conditions, including non-seasonal mood disorders, Alzheimer's disease, circadian rhythm sleep disorders, eating disorders, attention deficit hyperactivity disorder and other behavioral syndromes is likely to have a far reached use. Side effects are often temporary and can generally be overcome by reducing exposure time. The central focus on this paper is to review the action mechanisms, efficacy, usage areas, the ways of administration and side effects of the light treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(2.000: 177-188

  20. Nonlinear spline wavefront reconstruction from Shack-Hartmann intensity measurements through small aberration approximations. (United States)

    Brunner, Elisabeth; de Visser, Cornelis C; Verhaegen, Michel


    We propose an extension of the Spline based ABerration Reconstruction (SABRE) method to Shack-Hartmann (SH) intensity measurements, through small aberration approximations of the focal spot models. The original SABRE for SH slope measurements is restricted to the use of linear spline polynomials, due to the limited amount of data, and the resolution of its reconstruction is determined by the number of lenslets. In this work, a fast algorithm is presented that directly processes the pixel information of the focal spots, allowing the employment of nonlinear polynomials for high accuracy reconstruction. In order to guarantee the validity of the small aberration approximations, the method is applied in two correction steps, with a first compensation of large, low-order aberrations through the gradient-based linear SABRE followed by compensation of the remaining high-order aberrations with the intensity-based nonlinear SABRE.

  1. The BHVI-EyeMapper: peripheral refraction and aberration profiles. (United States)

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A


    The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.

  2. Network based sky Brightness Monitor (United States)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.


    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  3. Phase Aberrations in Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M


    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  4. Pathophysiology of MDS: genomic aberrations. (United States)

    Ichikawa, Motoshi


    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  5. Clinical importance of spherical and chromatic aberration on the accommodative response in contact lens wear (United States)

    Wahlberg, M.; Lindskoog Pettersson, A.; Rosén, R.; Nilsson, M.; Unsbo, P.; Brautaset, R.


    The aim of this study was to evaluate the accommodation response under both mono- and polychromatic light while varying the amount of spherical aberration. It is thought that chromatic and spherical aberrations are directional cues for the accommodative system and could affect response time, velocity or lag. Spherical aberration is often eliminated in modern contact lenses in order to enhance image quality in the unaccommodated eye. This study was divided into two parts. The first part was done to evaluate the amount of spherical and other Zernike aberrations in the unaccommodated eye when uncorrected and with two types of correction (trial lens and spherical-aberration controlled contact lens) and the second part evaluated the dynamic accommodation responses obtained when wearing each of the corrections under polychromatic and monochromatic conditions. Measurements of accommodation showed no significant differences in time, velocity and lag of accommodation after decreasing the spherical aberration with a contact lens, neither in monochromatic nor polychromatic light. It is unlikely that small to normal changes of spherical aberration in white light or monochromatic mid-spectral light affect directional cues for the accommodative system, not in white light or mid-spectral monochromatic light, since the accommodative response did not show any change.

  6. [Comparative studies of wavefront aberration and contrast sensitivity after phacoemulsification and intraocular lens implantation]. (United States)

    Zeng, Ming-bing; Liu, Yi-zhi; Yu, Qiang; Liu, Xia-lin; Yuan, Zhao-hui; Wang, Yu-lin; Liu, Tian


    To study the difference of the contrast sensitivity and wavefront aberration of two eyes who undergone phacoemulsification and intraocular transplantation respectively. Sixty-three patients with cataract were included in the study. With the consent of the patients, one eye was implanted SA60AT intraocular lens and another eye was implanted Tennis Z9001 intraocular lens after phacoemulsification. One and three months post-surgery, the best corrected visual acuity was recorded by computer and comprehensive optometry. Contrast sensitivity was analyzed by CSV-1000. The corneal aberration was measured by Option Keratron Scout. The whole ocular aberration was evaluated by Allegretto Waver Analyzer at pupillary diameter 4 mm and 6 mm. The best corrected visual acuity and the corneal spherical aberration, corneal coma aberration and RMS had no significant difference between the two groups. After one and three months, the contrast sensitivity of 3, 6, 12, 18c/d had statistic significance between the eye with and without glare through univariate split-plot analysis. The Z9001 contrast sensitivity value was much higher than the SA60AT groups. The results of Zernike polynomials C12, RMS4 and RMSh had statistic significance between the two groups through T-test. The Z9001 group value was much lower than the SA60AT groups. The Z9001 intraocular lens transplantation can reduce total ocular aberration, special the spherical aberration and improve visual acuity.

  7. Analysis of nodal aberration properties in off-axis freeform system design. (United States)

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao


    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  8. Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia. (United States)

    De Brabander, J; Chateau, N; Bouchard, F; Guidollet, S


    In optical systems, it is usual to compensate for longitudinal spherical aberration. In order to increase image quality, lens surfaces can be made aspheric to bring all object light rays into focus at the image plane. Theoretically, soft contact lenses with high power and spherical surfaces show significant amounts of spherical aberration. The use of spherical aberration-free soft contact lenses could therefore improve retinal image quality in the case of high ametropia. However, because of ocular aberration, accommodation effects, pupil dynamics, contact lens flexure, and positioning, the computation of the spherical aberration induced when a contact lens is placed on the eye is complicated. In this study, the spatial contrast sensitivity (CS) of 61 high ametropes wearing soft contact lenses with, and without, in-air spherical aberration compensation is measured. A slightly better overall performance was found with the standard lenses. There was no significant influence by the type of ametropia, age, and gender. If individual results are considered, clinically significant differences between the two lens groups are observed in approximately 30% of the cases. It seems that correcting in-air soft contact lens spherical aberration systematically is of no clinical interest. However, selective manipulation of spherical aberration could, in high power soft contact lenses, significantly improve CS in individuals.

  9. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method. (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J


    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)


    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  11. Iapetus Bright and Dark Terrains (United States)


    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  12. LSST Site: Sky Brightness Data (United States)

    Burke, Jamison; Claver, Charles


    The Large Synoptic Survey Telescope (LSST) is an upcoming robotic survey telescope. At the telescope site on Cerro Pachon in Chile there are currently three photodiodes and a Canon camera with a fisheye lens, and both the photodiodes and Canon monitor the night sky continuously. The NIST-calibrated photodiodes directly measure the flux from the sky, and the sky brightness can also be obtained from the Canon images via digital aperture photometry. Organizing and combining the two data sets gives nightly information of the development of sky brightness across a swath of the electromagnetic spectrum, from blue to near infrared light, and this is useful for accurately predicting the performance of the LSST. It also provides data for models of moonlight and twilight sky brightness. Code to accomplish this organization and combination was successfully written in Python, but due to the backlog of data not all of the nights were processed by the end of the summer.Burke was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  13. Ocular Chromatic Aberrations and Their Effects on Polychromatic Retinal Image Quality (United States)

    Zhang, Xiaoxiao

    Previous studies of ocular chromatic aberrations have concentrated on chromatic difference of focus (CDF). Less is known about the chromatic difference of image position (CDP) in the peripheral retina and no experimental attempt has been made to measure the ocular chromatic difference of magnification (CDM). Consequently, theoretical modelling of human eyes is incomplete. The insufficient knowledge of ocular chromatic aberrations is partially responsible for two unsolved applied vision problems: (1) how to improve vision by correcting ocular chromatic aberration? (2) what is the impact of ocular chromatic aberration on the use of isoluminance gratings as a tool in spatial-color vision?. Using optical ray tracing methods, MTF analysis methods of image quality, and psychophysical methods, I have developed a more complete model of ocular chromatic aberrations and their effects on vision. The ocular CDM was determined psychophysically by measuring the tilt in the apparent frontal parallel plane (AFPP) induced by interocular difference in image wavelength. This experimental result was then used to verify a theoretical relationship between the ocular CDM, the ocular CDF and the entrance pupil of the eye. In the retinal image after correcting the ocular CDF with existing achromatizing methods, two forms of chromatic aberration (CDM and chromatic parallax) were examined. The CDM was predicted by theoretical ray tracing and measured with the same method used to determine ocular CDM. The chromatic parallax was predicted with a nodal ray model and measured with the two-color vernier alignment method. The influence of these two aberrations on polychromatic MTF were calculated. Using this improved model of ocular chromatic aberration, luminance artifacts in the images of isoluminance gratings were calculated. The predicted luminance artifacts were then compared with experimental data from previous investigators. The results show that: (1) A simple relationship exists between

  14. Ocular aberrations and wavefront aberrometry: A review

    Directory of Open Access Journals (Sweden)

    Holly A. Unterhorst


    Full Text Available Wavefront aberrations can be described as deviations of the wavefront exiting the eye froma reference wavefront that is aberration free and diffraction limited. Ocular aberrations canbe sub-categorised as lower and higher order aberrations. Ocular aberrations have promptedinterest amongst the ocular healthcare community owing to their influences on the visualfunctioning of patients as well as differences observed in ocular aberrations through the useof refractive surgery both pre- and post-operatively. Uncompensated refractive error remainsone of the most common reasons for which patients consult optometrists. Compensationof refractive error, or lower order aberrations, has become a routine procedure during anoptometric examination. However, there are some patients who experience visual symptomseven after their refractive errors have been compensated via spectacles or contact lenses.Higher-order aberrations may be the source of these visual disturbances. Refractive surgeryhas been found to influence and even induce various changes in higher-order aberrationspost-operatively, which in turn has led to increased interest in wavefront aberrations and howthe measurement of these aberrations can improve diagnosis and treatment within optometryand ophthalmology.

  15. An investigation of the optics of an accelerating column for use with a high brightness ion source and a proton microprobe (United States)

    Colman, R. A.; Legge, G. J. F.


    The accelerating column of a 5U Pelletron accelerator is analysed in this paper. This accelerator provides the primary beam for the Melbourne Scanning Proton Microprobe. The finite element method is used to calculate the electrostatic field in the accelerator column, and optical properties are extracted from ray tracing. Gaussian properties are presented which specify object location for the column to produce an exit plane focus for five and three accelerating elements. Column acceptance is discussed and found to match emittance for all practical configurations. Chromatic and spherical aberrations are calculated for the column for a range of image distances and for five and three accelerating elements. The optical combination of the column with an ion source lens and a high brightness ion source is discussed. The contribution of the column is found to be principally dependent on the magnification and accelerating voltage of the lens. Where very low currents are required from the accelerator, beam brightness is limited by chromatic aberration, and for very low divergences by diffraction. At such currents the high brightness phase space "core" of the beam may be degraded by chromatic aberration in the accelerating column if the ion source lens magnification is low, or the lens acceleration is particularly high. Where high currents are required (for example above 100 pA), beam divergence angles are higher, and the brightness is no longer chromatically or diffraction limited. Under these circumstances, accelerating column aberrations will not degrade beam brightness.

  16. Aberrations of magnetooptical system of SALO recirculator (United States)

    Guk, I. S.; Dovbnya, A. N.; Kononenko, S. G.; Peev, F. A.; Tarasenko, A. S.


    The influence of spatial and chromatic aberrations on the parameters of the 730 MeV beam extracted from a SALO recirculator is studied using numerical simulation. The influence of fringing fields and the heterogeneity of the guide field of dipole magnets on the beam parameters at the extraction point is studied for different orders and types of aberrations. Estimates of the contributions of the different types of aberrations to the extracted beam emittance are presented.

  17. Corneal spherical aberration and its impact on choosing an intraocular lens for cataract surgery. (United States)

    Al-Sayyari, Tarfah M; Fawzy, Samah M; Al-Saleh, Ahmed A


    To analyze the post operative results of targeting zero spherical aberration by selecting the best-fit aspheric intraocular lens (IOL), based on preoperative corneal spherical aberration of patients with phacoemulsification surgery. AlHokama Eye Specialist Center, Riyadh, Saudi Arabia. From the 1st of October 2012 until the 10th of April 2013. Fifty-three eyes, were subjected to phacoemulsification cataract surgery and divided into two groups, 34 eyes were implanted with aspheric IOLs based on their corneal spherical aberration targeting post operative zero total spherical aberration, whereas 19 eyes were implanted with neutral aspheric IOLs regardless of their corneal spherical aberrations (CSAs). As a pre and post routine examination, patients underwent: slit lamp testing, intraocular pressure (IOP) measuring, fundus examination, best spectacle corrected visual acuity (BSCVA), manifest refraction, pupillometry, axial length, contrast sensitivity, and corneal aberration measurement using Pentacam HR (OCULUS, Germany) at the 6-mm optical zone. Post operatively, visual function questionnaire (VF-14) was asked to all patients. Fifty-three eyes of 45 patients, whose age ranged from 45 to 90 years old, were available for analysis, the selected group was implanted with: Tecnis ZA9003 or ZCB00 (Abbott Medical Optics) IOLs in 17 eyes with corneal spherical aberration of more than 0.27 μm, AcrySof IQ SN60WF (Alcon Laboratories Inc.) IOLs were implanted in 4 eyes with CSA = (0.2-0.27) μm, and Rayner 970C, 920H or 620H IOLs with spherical aberration (SA) = 0 in 13 eyes with CSA less than 0.20 μm. The other group of 19 eyes was implanted with aspheric IOLs that have zero spherical aberration (Rayner 970C or 920H) regardless of their CSA. Root mean square (RMS) of total corneal aberration positively correlates to the pupil diameter (P = 0.0031, r = 0.3989). A low negative correlation was found between the corneal spherical aberration of the fourth ordered (Z40

  18. Optimizing coronagraph designs to minimize their contrast sensitivity to low-order optical aberrations (United States)

    Green, Joseph J.; Shaklan, Stuart B.


    The presence of optical aberrations in the entrance pupil of a coronagraph causes the stellar light to scatter about the occulting spot, reducing the effective contrast achievable. Even if these aberrations are sufficiently corrected with a deformable mirror to enable planet detection, small drifts in the optical alignment of the telescope introduce additional low-order aberrations. The design parameters of the coronagraph itself (e.g. occulting spot size, Lyot stop diameter, etc.) affect how these aberrations impact the contrast in the focal plane. In this study, we examine the sensitivity of contrast to low-order optical errors for several coronagraph concepts over their respective design parameters. By combining these sensitivities with the telescope throughput, we show that for each coronagraph concept there is an optimum selection of the design parameters that provides efficient, high-contrast imaging at the inner working distance in the presence of alignment errors.

  19. Aberrations of varied line-space grazing incidence gratings in converging light beams (United States)

    Hettrick, M. C.


    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  20. Effect of methods of myopia correction on visual acuity, contrast sensitivity, and depth of focus

    NARCIS (Netherlands)

    Nio, YK; Jansonius, NM; Wijdh, RHJ; Beekhuis, WH; Worst, JGF; Noorby, S; Kooijman, AC


    Purpose. To psychophysically measure spherical and irregular aberrations in patients with various types of myopia correction. Setting: Laboratory of Experimental Ophthalmology, University of Groningen, Groningen, The Netherlands. Methods: Three groups of patients with low myopia correction

  1. Aberrant Radial Artery Causing Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Zinon T. Kokkalis


    Full Text Available Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic.

  2. Aberrant Radial Artery Causing Carpal Tunnel Syndrome. (United States)

    Kokkalis, Zinon T; Tolis, Konstantinos E; Megaloikonomos, Panayiotis D; Panagopoulos, Georgios N; Igoumenou, Vasilios G; Mavrogenis, Andreas F


    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic.

  3. How Bright Can Supernovae Get? (United States)

    Kohler, Susanna


    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  4. Measuring chromatic aberrations in imaging systems using plasmonic nano-particles

    CERN Document Server

    Gennaro, Sylvain D; Maier, Stefan A; Oulton, Rupert F


    Chromatic aberration in optical systems arises from the wavelength dependence of a glass's refractive index. Polychromatic rays incident upon an optical surface are refracted at slightly different angles and in traversing an optical system follow distinct paths creating images displaced according to color. Although arising from dispersion, it manifests as a spatial distortion correctable only with compound lenses with multiple glasses and accumulates in complicated imaging systems. While chromatic aberration is measured with interferometry, simple methods are attractive for their ease of use and low cost. In this letter we retrieve the longitudinal chromatic focal shift of high numerical aperture (NA) microscope objectives from the extinction spectra of metallic nanoparticles within the focal plane. The method is accurate for high NA objectives with apochromatic correction, and enables rapid assessment of the chromatic aberration of any complete microscopy systems, since it is straightforward to implement

  5. New Distant Comet Headed for Bright Encounter (United States)


    one or two hundred million kilometres from the Earth. It corresponds to a brightness that is about 60 times fainter than what can be seen with the naked eye and according to the statistics, a few comets with this brightness are normally discovered every year. However, some astronomers early remarked that the comet appeared to be moving rather slowly in the sky, indicating that it were possibly situated farther away. A near-parabolic orbit with perihelion passage in April 1997 Within less than three days after the announcement of the discovery, more than 60 accurate positions had been measured, many by advanced amateur astronomers equipped with modern CCD-detectors and the appropriate computer programmes. On this basis, Dan Green of the CBAT published a first, highly uncertain parabolic orbit. To some surprise, it showed that the comet was located at a heliocentric distance of no less than 1,000 million kilometres, well beyond the orbit of Jupiter! It was immediately obvious that it must therefore be intrinsically very bright. Indeed, it was about 250 times brighter than Comet Halley when this famous object was observed at the same distance in late 1987! During the next few days, observers all over the world obtained additional positions which allowed Brian Marsden to calculate a more accurate orbit. Thus, it also became possible to trace the comet's motion backwards in time with some confidence. As a result, Robert McNaught at Siding Spring Observatory (Australia) soon found a possible image of Comet Hale-Bopp on a photographic plate obtained in late April 1993 with the 1.2-metre Schmidt telescope at that site, i.e. more than two years before the discovery. The estimated magnitude of this object was about 18. It has not yet been possible to establish with absolute certainty that this image is indeed of Comet Hale-Bopp, which was at that time nearly 2,000 million kilometres from the Sun, but if the identification is correct, this would again indicate a most unusual

  6. Comparison of wavefront aberration changes in the anterior corneal surface after laser-assisted subepithelial keratectomy and laser in situ keratomileusis: preliminary study. (United States)

    Buzzonetti, Luca; Iarossi, Giancarlo; Valente, Paola; Volpi, Marzia; Petrocelli, Gianni; Scullica, Luigi


    To compare changes in anterior corneal wavefront aberrations after myopic laser-assisted subepithelial keratectomy (LASEK) and laser in situ keratomileusis (LASIK). Institute of Ophthalmology, Catholic University, Rome, Italy. This prospective study included 36 eyes of 25 myopic patients: 18 eyes of 12 patients had LASEK and 18 eyes of 13 patients, LASIK. The topography data (CSO EyeMap, version 6.2) were used to calculate corneal aberrations with 3.0 mm and 7.0 mm pupils before and 3 months after surgery. Total corneal aberrations increased similarly after LASEK and LASIK with the 7.0 mm pupil but did not change with the 3.0 mm pupil. Coma-like and spherical-like aberrations changed similarly after both procedures, but spherical-like aberrations increased after LASEK with the 3.0 mm pupil (P.05, independent t test), in individual eyes with an achieved correction less than 7.50 diopters (D), spherical-like aberrations increased more after LASEK than after LASIK. In this preliminary study, myopic LASEK and LASIK changed total and higher-order corneal aberrations. In both procedures, changes in spherical-like aberrations were dependent on the achieved correction. However, in individual eyes, spherical-like aberrations increased more after LASEK than after LASIK for low-moderate achieved correction, suggesting that these procedures may induce the same optical changes in the anterior corneal surface in different ways.

  7. [Monochromatic aberration in accommodation. Dynamic wavefront analysis]. (United States)

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J


    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  8. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.


    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  9. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,Y.; Wall, J.


    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative

  10. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.


    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The


    NARCIS (Netherlands)



    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  12. Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration. (United States)

    Mrochen, M; Kaemmerer, M; Mierdel, P; Seiler, T


    To study the clinical and theoretical effects of subclinical decentrations on the optical performance of the eye after photorefractive laser surgery. Department of Ophthalmology, University of Dresden, Dresden, Germany. Ocular aberrations were determined before and 1 month after uneventful photorefractive keratectomy (PRK) with the Multiscan laser (Schwind) in 10 eyes of 8 patients. The corrections ranged from -2.5 to -6.0 diopters, and ablation zones of 6.0 mm and larger were used. The measured wavefront errors were compared to numerical simulations using the individually determined decentrations and currently used ablation profiles. The PRK-induced aberrations were significantly greater than the preoperative aberrations. The numerically calculated increase in the higher-order optical aberrations correlated with the clinical results, demonstrating a major increase in coma- and spherical-like aberrations. Subclinical decentration (less than 1.0 mm) was found to be a major factor in increased coma-like and spherical-like aberrations after corneal laser surgery. To minimize higher-order optical errors, special efforts to center the ablation zone are necessary; for example, by eye-tracking systems that consider the visual axis.

  13. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato


    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  14. Clinical results after implantation of a spherical aberration-free intraocular lens: effect of contrast sensitivity and wavefront aberration--a clinical comparative study. (United States)

    Choi, Jin-A; Kim, Chan-Young; Na, Kyung-Sun; Park, Shin-Hae; Joo, Choun-Ki


    To compare the clinical results of the spherical aberration-free Akreos AO (Bausch & Lomb) with the Akreos Adapt (Bausch & Lomb), the parent model of spherical optic design. Fifty patients (100 eyes) were randomly assigned to bilaterally receive Akreos AO or Akreos Adapt intraocular lenses (IOLs) after phacoemulsification. At 6 months postoperatively, best-corrected contrast sensitivities were determined at 3, 4.8, 7.5, 12 and 19 cycles per degree using a Visual Capacity Analyzer (L2 Informatique) under mesopic (5 cd/m(2)) and photopic (100 cd/m(2)) conditions with undilated pupils. Wavefront analysis of total aberration was performed with the WaveScan WaveFront System (Advanced Medical Optics VISX). Postoperative contrast sensitivities were not statistically different under mesopic and photopic conditions. On the other hand, fourth-order spherical aberration was lower in the AO group than the Adapt group with only a marginal difference (p = 0.048). Other higher-order aberrations such as coma and trefoil were not significantly different between the two groups (p = 0.657, 0.614). The questionnaire on subjective visual quality in terms of glare disability, distant vision and night driving did not reveal an improved visual function in the AO group. The spherical aberration-free Akreos AO IOL did not show improved visual quality compared with its spherical counterpart. (c) 2009 S. Karger AG, Basel.

  15. Higher-Order Aberrations After Cyclopentolate, Tropicamide, and Artificial Tear Drops Application in Normal Eyes. (United States)

    Amirshekarizadeh, Negin; Hashemi, Hassan; Jafarzadehpur, Ebrahim; Mirzajani, Ali; Yekta, Abbasali; Khabazkhoob, Mehdi


    To determine the effect of cyclopentolate, tropicamide, and artificial tear drops on higher-order aberrations (HOAs) in normal eyes with OPD-Scan III (Nidek Inc., Tokyo, Japan). In this study, 189 eyes of individuals aged 20 to 35 years were selected as samples. Inclusion criteria were a corrected visual acuity of 20/20 or better, a minimum size of about 5 mm for the pupil in the dark, hyperopia and myopia less than 5 D, and astigmatism less than 2 D. Moreover, participants with pathological eye problems, a history of intraocular surgery, and ocular diseases affecting the accommodation, pupil size, and corneal surface were excluded. Higher-order aberrations of the participants were assessed by the OPD-Scan III before and after cyclopentolate (Colircuss), tropicamide (Mydrax 0.5%), and artificial tears (Tearlose) drop instillation. After instilling cyclopentolate drops, the mean of the total root mean square (RMS) increased from 4.580 to 6.335 D, total spherical aberration increased from 0.155 to 0.381 D, and total coma increased from 0.195 to 0.369 D; the increases were significant for total RMS and total spherical aberration, but a significant relationship was not seen with total coma. After tropicamide, the mean aberrations of total RMS increased from 4.301 to 4.568 D, total spherical aberration increased from 0.146 to 0.160 D, and total coma increased from 0.213 to 0.230 D; the increase was only significant for total coma. On the other hand, after artificial tears, the average of all aberrations decreased in a nonsignificant manner. Most changes of mean aberrations were related to cyclopentolate drops. Tropicamide and artificial tears had the second and third rank according to their effect on mean errors. As a result, it seems that ocular accommodation is the most important impact on HOA than pupil size. However, the pupil size is the second factor for HOAs.

  16. Chromosomal aberrations in uranium and coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.; Arndt, D.; Kotschy-Lang, N.; Obe, G. [Robert Koch Inst., Berlin (Germany)


    Peripheral lymphocytes from 66 Wismut uranium miners (WUM) and 29 Ruhr coal miners (RGM) were cultured and analysed for structural chromosomal aberrations in Giemsa-stained M1 metaphases. Cytogenetic data from 23 male white-collar workers from public services were used as a historical control group. The frequencies of chromosomal aberrations and sister chromatid exchanges in WUM and RCM were quite similar. Compared with public services workers, WUM and RCM had significantly higher frequencies of chromosomal aberrations. It is concluded that chromosomal aberrations in WUM are not induced by radioactive particles inhaled during underground mining but as in RCM rather result from factors such as age, lifestyle, illnesses, medications and diagnostic irradiations.

  17. An aberrant precision account of autism

    National Research Council Canada - National Science Library

    Lawson, Rebecca P; Rees, Geraint; Friston, Karl J


    ... (Pellicano and Burr, 2012). In response, we suggested that when Bayesian inference is grounded in its neural instantiation-namely, predictive coding-many features of autistic perception can be attributed to aberrant precision...

  18. Epigenetic aberrations in myeloid malignancies (Review). (United States)

    Takahashi, Shinichiro


    The development of novel technologies, such as massively parallel DNA sequencing, has led to the identification of several novel recurrent gene mutations, such as DNA methyltransferase (Dnmt)3a, ten-eleven-translocation oncogene family member 2 (TET2), isocitrate dehydrogenase (IDH)1/2, additional sex comb-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX) mutations in acute myeloid leukemia (AML) and other myeloid malignancies. These findings strongly suggest a link between recurrent genetic alterations and aberrant epigenetic regulations, resulting from an abnormal DNA methylation and histone modification status. This review focuses on the current findings of aberrant epigenetic signatures by these newly described genetic alterations. Moreover, epigenetic aberrations resulting from transcription factor aberrations, such as mixed lineage leukemia (MLL) rearrangement, ecotropic viral integration site 1 (Evi1) overexpression, chromosomal translocations and the downregulation of PU.1 are also described.

  19. Bright Sparks of Our Future! (United States)

    Riordan, Naoimh


    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  20. Space Brightness Evaluation for a Daylit Room

    Directory of Open Access Journals (Sweden)

    Takashi Maruyama


    Full Text Available One of the most important problems for lighting design is how to reduce an electric energy. One way to solve this problem is use of daylight, but little is known how to perceive a brightness of a room illuminated by daylight come in through a window and artificial light. Although the horizontal illuminance increases because of daylight, we would not perceive the room as bright as brightness estimated by the illuminance. The purpose of this study is to measure the space brightness for daylit room and to propose a evaluation method. The experiment was conducted with a couple of miniature office rooms, standard room and test room. Test room has several types of windows and standard room has no window. Subject was asked to evaluate the brightness of the test room relative to the standard room with method of magnitude estimation. It was found that brightness of daylit room did not increase simply with horizontal illuminance. Subject perceived a daylit room darker than a room illuminated only by the artificial light even if horizontal illuminance of these room was same. The effect of daylight on space brightness would vary with the window size and intensity of daylight or artificial light.

  1. Human Adolescent Phase Response Curves to Bright White Light. (United States)

    Crowley, Stephanie J; Eastman, Charmane I


    Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.

  2. Bright boys the making of information technology

    CERN Document Server

    Green, Tom


    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  3. A spectroscopic atlas of bright stars

    CERN Document Server

    Martin, Jack


    Suitable for amateur astronomers interested in practical spectroscopy or spectrography, this reference book identifies more than 70 (northern hemisphere) bright stars that are suitable observational targets. It provides finder charts for locating these sometimes-familiar stars.

  4. Nimbus-5 ESMR Polar Gridded Brightness Temperatures (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  5. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer. (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent


    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  6. Computational genes: a tool for molecular diagnosis and therapy of aberrant mutational phenotype

    Directory of Open Access Journals (Sweden)

    Ignatova Zoya


    Full Text Available Abstract Background A finite state machine manipulating information-carrying DNA strands can be used to perform autonomous molecular-scale computations at the cellular level. Results We propose a new finite state machine able to detect and correct aberrant molecular phenotype given by mutated genetic transcripts. The aberrant mutations trigger a cascade reaction: specific molecular markers as input are released and induce a spontaneous self-assembly of a wild type protein or peptide, while the mutational disease phenotype is silenced. We experimentally demostrated in in vitro translation system that a viable protein can be autonomously assembled. Conclusion Our work demostrates the basic principles of computational genes and particularly, their potential to detect mutations, and as a response thereafter administer an output that suppresses the aberrant disease phenotype and/or restores the lost physiological function.

  7. Magnetic topological analysis of coronal bright points (United States)

    Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.


    Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at

  8. Effect of Interior Chromaticness on Space Brightness

    Directory of Open Access Journals (Sweden)

    Hidenari Takada


    Full Text Available To design a lighting environment, horizontal illuminance is generally used as the brightness of a room. But it is reported that a subjective brightness does not always match the horizontal illuminance. For example, the room furnished with high saturated colored objects is perceived brighter than the room furnished with achromatic objects, even though the horizontal illuminance is the same. To investigate a effect of interior chromaticness on space brightness, we conducted the experiment in four miniature rooms that were different in terms of chromaticness of interior decorating surfaces, but kept lightness of surfaces constant. Subjects were asked to set the illuminance of reference room, that is furnished with achromatic objects, to equate the brightness of the test room, that is with chromatic objects. Four of seven subjects needed less illuminance to get the equality of space brightness if the test room had a saturated objects. The illuminance ratio of test to reference room was about 1.4. Other three subjects set the illuminance of reference room almost equal to test room. Thus, there are differences between individuals so further work would be needed to estimate the quantitative effect of interior chromaticness on space brightness.

  9. Calculation of aberration coefficients by ray tracing. (United States)

    Oral, M; Lencová, B


    In this paper we present an approach for the calculation of aberration coefficients using accurate ray tracing. For a given optical system, intersections of a large number of trajectories with a given plane are computed. In the Gaussian image plane the imaging with the selected optical system can be described by paraxial and aberration coefficients (geometric and chromatic) that can be calculated by least-squares fitting of the analytical model on the computed trajectory positions. An advantage of such a way of computing the aberration coefficients is that, in comparison with the aberration integrals and the differential algebra method, it is relatively easy to use and its complexity stays almost constant with the growing complexity of the optical system. This paper shows a tested procedure for choosing proper initial conditions and computing the coefficients of the fifth-order geometrical and third-order, first-degree chromatic aberrations by ray tracing on an example of a weak electrostatic lens. The results are compared with the values for the same lens from a paper Liu [Ultramicroscopy 106 (2006) 220-232].

  10. Effects of chalazion excision on ocular aberrations. (United States)

    Sabermoghaddam, Ali A; Zarei-Ghanavati, Siamak; Abrishami, Mojtaba


    The goal of this study was to compare higher-order aberrations before and after upper lid chalazion excision. Fourteen eyes from 12 patients (8 females, mean age: 28.7 ± 2.7 years) with upper lid chalazion were enrolled in this prospective interventional case series. Chalazia were excised by standard transconjunctival vertical incision. Ocular aberrations were evaluated by aberrometry (ZyWave) before and 2 months after chalazion excision. Root mean square of total higher-order aberrations decreased from 0.67 ± 0.12 to 0.43 ± 0.15 μm (P = 0.012) after excision. The root mean square of Zernike orders in the vertical and horizontal trefoil and horizontal coma were decreased after excision. Orbscan IIz tomography showed a statistically significant decrease in 5 mm zone irregularity (P = 0.027) and an increase in minimum simulated keratometry after surgery (P = 0.046). Chalazion increases higher-order aberrations, as measured by the Hartmann-Shack aberrometer, which could affect the preoperative evaluation and results of refractive surgery, especially wavefront-guided approaches. Chalazion excision could reduce ocular aberrations and is recommended before refractive surgeries.

  11. Effect of Spherical Aberration on the Optical Quality after Implantation of Two Different Aspherical Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Michael Lasta


    Full Text Available Purpose. To compare the effect of spherical aberration on optical quality in eyes with two different aspherical intraocular lenses. Methods. 120 eyes of 60 patients underwent phacoemulsification. In patients’ eyes, an aberration-free IOL (Aspira-aA; Human Optics or an aberration-correcting aspherical IOL (Tecnis ZCB00; Abott Medical Optics was randomly implanted. After surgery, contrast sensitivity and wavefront measurements as well as tilt and decentration measurements were performed. Results. Contrast sensitivity was significantly higher in eyes with Aspira lens under mesopic conditions with 12 cycles per degree (CPD and under photopic conditions with 18 CPD (p=0.02. Wavefront measurements showed a higher total spherical aberration with a minimal pupil size of 4 mm in the Aspira group (0.05 ± 0.03 than in the Tecnis group (0.03 ± 0.02 (p=0.001. Strehl ratio was higher in eyes with Tecnis (0.28 ± 0.17 with a minimal pupil size larger than 5 mm than that with Aspira (0.16 ± 0.14 (p=0.04. In pupils with a minimum diameter of 4 mm spherical aberration had a significant effect on Strehl ratio, but not in pupils with a diameter less than 4 mm. Conclusions. Optical quality was better in eyes with the aberration-correcting Tecnis IOL when pupils were large. In contrast, this could not be shown in eyes with pupils under 4 mm or larger. This trial is registered with NCT03224728.

  12. Energy-exchange collisions of dark-bright-bright vector solitons. (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K


    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  13. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. (United States)

    Santini, Emanuela; Huynh, Thu N; MacAskill, Andrew F; Carter, Adam G; Pierre, Philippe; Ruggero, Davide; Kaphzan, Hanoch; Klann, Eric


    Autism spectrum disorders (ASDs) are an early onset, heterogeneous group of heritable neuropsychiatric disorders with symptoms that include deficits in social interaction skills, impaired communication abilities, and ritualistic-like repetitive behaviours. One of the hypotheses for a common molecular mechanism underlying ASDs is altered translational control resulting in exaggerated protein synthesis. Genetic variants in chromosome 4q, which contains the EIF4E locus, have been described in patients with autism. Importantly, a rare single nucleotide polymorphism has been identified in autism that is associated with increased promoter activity in the EIF4E gene. Here we show that genetically increasing the levels of eukaryotic translation initiation factor 4E (eIF4E) in mice results in exaggerated cap-dependent translation and aberrant behaviours reminiscent of autism, including repetitive and perseverative behaviours and social interaction deficits. Moreover, these autistic-like behaviours are accompanied by synaptic pathophysiology in the medial prefrontal cortex, striatum and hippocampus. The autistic-like behaviours displayed by the eIF4E-transgenic mice are corrected by intracerebroventricular infusions of the cap-dependent translation inhibitor 4EGI-1. Our findings demonstrate a causal relationship between exaggerated cap-dependent translation, synaptic dysfunction and aberrant behaviours associated with autism.

  14. An aberrant precision account of autism.

    Directory of Open Access Journals (Sweden)

    Rebecca P Lawson


    Full Text Available Autism is a neurodevelopmental disorder characterised by problems with social-communication, restricted interests and repetitive behaviour. A recent and controversial article presented a compelling normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012. In response, we suggested that when Bayesian interference is grounded in its neural instantiation – namely, predictive coding – many features of autistic perception can be attributed to aberrant precision (or beliefs about precision within the context of hierarchical message passing in the brain (Friston et al., 2013. Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings – that speak directly or indirectly to neurobiological mechanisms – are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs.

  15. [Detection of complex chromosomal aberrations in patients with multiple myeloma using multiplex fluorescence in situ hybridization]. (United States)

    Jiang, Yuan-qiang; Chen, Li-juan; Zhu, Yu; Qiu, Hai-rong; Wang, Rong; Xu, Jia-ren; Lu, Hua; Li, Jian-yong


    To explore the value of multiplex fluorescence in situ hybridization (M-FISH) in the detection of the complex chromosomal aberrations (CCAs) in multiple myeloma (MM). M-FISH was used in 10 MM patients with CCAs detected by conventional cytogenetics (CC) using R-banding to refine the rearrangement of CCAs and identify the characteristics of marker chromosome. M-FISH confirmed the 29 structural aberrations shown by CC analysis, and also confirmed the specific source of 21 types of chromosomal aberration, which were not detected by CC analysis. Among them, t(2;15)(q33;q22), t(6;7)(q23;q34), t(8;11) (q24;q23), t(1;14)(q10;q32) and t(X;1)(q26;q25) were new chromosomal aberrations. The median survival time of 9 MM patients with CCAs was 23 months and evidently shorter than that of MM patients without CCAs, with the mean survival time being 34 months. M-FISH could refine CCAs in MM patients, find or correct the missed or misidentified abnormalities analyzed by CC. It has provided one of the essential methods for the research of chromosomal aberrations in MM.

  16. Optical aberrations in professional baseball players. (United States)

    Kirschen, David G; Laby, Daniel M; Kirschen, Matthew P; Applegate, Raymond; Thibos, Larry N


    To determine the presence, type, and size of optical higher-order aberrations (HOAs) in professional athletes with superior visual acuity and to compare them with those in an age-matched population of nonathletes. Vero Beach and Fort Myers, Florida, USA. Players from 2 professional baseball teams were studied. Each player's optical aberrations were measured with a naturally dilated 4.0 mm pupil using a Z-Wave aberrometer and a LADARWave aberrometer. One hundred sixty-two players (316 eyes) were evaluated. The HOAs were less than 0.026 mum in all cases. Spherical aberration C(4,0) was the largest aberration with both aberrometers. There were small but statistically significant differences between the aberrometers in mean values for trefoil C(3,3) and C(3,-3) and secondary astigmatism C(4,2). Although statistically significant, the differences were clinically insignificant, being similar at approximately 0.031 diopter (D) of spherical power. A statistically significant difference was found between the professional baseball players and the control population in trefoil C(3,-3). These differences were clinically insignificant, similar to 0.071 D of spherical power. Professional baseball players have small higher-order optical aberrations when tested with naturally dilated pupils. No clinically significant differences were found between the 2 aberrometers. Statistically significant differences in trefoil were found between the players and the control population; however, the difference was clinically insignificant. It seems as though the visual system of professional baseball players is limited by lower-order aberrations and that the smaller HOAs do not enhance visual function over that in a control population. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Higher order aberrations in amblyopic children and their role in refractory amblyopia

    Directory of Open Access Journals (Sweden)

    Arnaldo Dias-Santos


    Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.

  18. Digital holographic interferometer with correction of distortions (United States)

    Sevryugin, A. A.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Y.


    The paper considers the use of holographic interferometer for hologram re-recording with correction of distortions. Each optical system contains some beam path deviations, called aberrations of the optical system. They are seen in the resulting interference pattern as a distortion of fringes. While increasing the sensitivity of the interference pattern by N times at the same time we introduce new aberrations, caused by re-recording setup in addition to aberrations that are already presented on the interferogram, caused by initial recording, also multiplied by N times. In this experiment we decided to use a modified setup with spatially combined interferograms with use of matrix spatial light modulator and digital image processing of the interferograms recorded by CCD or CMOS camera.

  19. Correct Models


    Blacher, René


    Ce rapport complete les deux rapports précédents et apporte une explication plus simple aux résultats précédents : à savoir la preuve que les suites obtenues sont aléatoires.; In previous reports, we have show how to transform a text $y_n$ in a random sequence by using functions of Fibonacci $T_q$. Now, in this report, we obtain a clearer result by proving that $T_q(y_n)$ has the IID model as correct model. But, it is necessary to define correctly a correct model. Then, we study also this pro...

  20. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.


    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  1. Chromosomal aberrations induced by Markhamia tomentosa (Benth ...

    African Journals Online (AJOL)

    Markhamia tomentosa (Benth.) K. Schum. Ex Engl. (Bignoniaceae) is used traditionally in the treatment of pain, oedema, pulmonary troubles and cancer. The genotoxic and cytotoxic effects of the ethanolic extract of the leaves of M. tomentosa was investigated using the Allium cepa root chromosomal aberration assay.

  2. Anti-forensics of chromatic aberration (United States)

    Mayer, Owen; Stamm, Matthew C.


    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  3. Confidence intervals for concentration and brightness from fluorescence fluctuation measurements. (United States)

    Pryse, Kenneth M; Rong, Xi; Whisler, Jordan A; McConnaughey, William B; Jiang, Yan-Fei; Melnykov, Artem V; Elson, Elliot L; Genin, Guy M


    The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The χ(2) hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymptotic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap (BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile. Copyright © 2012 Biophysical Society

  4. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.


    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...

  5. On the Brightness of Supernova Ia

    CERN Document Server

    Zheng, Yijia


    Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

  6. Contralateral eye surgery with adjustable suture for management of third nerve palsy with aberrant regeneration

    Directory of Open Access Journals (Sweden)

    Phuong Thi Thanh Nguyen


    Full Text Available Aberrant regeneration of the third nerve following its palsy is commonly seen after trauma and compressive lesions. This phenomenon is thought to result due to misdirection of the regenerating axons. Surgical management is a great challenge in the third nerve palsy owing to multiple muscle involvement and is often accompanied by ptosis and poor Bell's phenomenon. We present a case of a 27-year-old male who developed isolated complete third nerve palsy of the left eye following head trauma. Features of aberrant regeneration were seen after 6 months, namely, inverse Duane's sign and Pseudo-Von Graefe's sign. He underwent recess-resect procedure in the unaffected eye with adjustable suture technique which not only corrected the deviation but also the ptosis by utilizing the oculomotor synkinesis. Thus, contralateral eye surgery combined with adjustable suture technique resulted in an accurate alignment of the eye and obviated the need for ptosis correction.

  7. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling


    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  8. Higher-order aberrations and anisometropia. (United States)

    Hartwig, Andreas; Atchison, David A; Radhakrishnan, Hema


    Myopia incidence is increasing around the world. Myopization is considered to be caused by a variety of factors. One consideration is whether higher-order aberrations (HOA) influence myopization. More knowledge of optics in anisometropic eyes might give further insight into the development of refractive error. To analyze the possible influence of HOA on refractive error development, we compared HOA between anisometropes and isometropes. We analyzed HOA up to the 4th order for both eyes of 20 anisometropes (mean age: 43 ± 17 years) and 20 isometropes (mean age: 33 ± 17 years). HOA were measured with the Shack-Hartman i.Profiler (Carl Zeiss, Germany) and were recalculated for a 4 mm pupil. Mean spherical equivalent (MSE) was based on the subjective refraction. Anisometropia was defined as ≥1 D interocular difference in MSE. The mean absolute differences between right and left eyes in spherical equivalent were 0.28 ± 0.21 D in the isometropic group and 2.81 ± 2.04 D in the anisometropic group. Interocular differences in HOA were compared with the interocular difference in MSE using correlations. For isometropes oblique trefoil, vertical coma, horizontal coma and spherical aberration showed significant correlations between the two eyes. In anisometropes, all analyzed higher-order aberrations correlated significantly between the two eyes except oblique secondary astigmatism and secondary astigmatism. When analyzing anisometropes and isometropes separately, no significant correlations were found between interocular differences of higher-order aberrations and MSE. For isometropes and anisometropes combined, tetrafoil correlated significantly with MSE in left eyes. The present study could not show that interocular differences of higher-order aberrations increase with increasing interocular difference in MSE.

  9. Conservation of an ion beam brightness. Study of a non brightness disturbing lens; Conservation de la brillance d'un faisceau ionique. Etude d'une lentille ne deteriorant pas cette brillance

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    Experimental studies of ion sources prove that large initial brightnesses can be obtained by using the plasma expansion principle. However these brightnesses are usually spoiled by the beam focusing and accelerating systems. A high intensity focusing set up is first theoretically studied, then numerically determined by use of a 7094 IBM computer. Aberrations have been minimized. It has then been possible to construct a set up conserving the source initial brightness. For a 100 mA beam the focusing voltage is 150 kV, the beam study has been done for 350 keV beam final energy. Given is a discussion of results. (author) [French] L'etude experimentale des sources d'ions, montre que de grandes brillances initiales peuvent etre atteintes en utilisant le principe de l'expansion du plasma. Mais generalement ces brillances sont alterees par la focalisation et l'acceleration du faisceau. Nous presentions une etude theorique, suivie d'une determination numerique utilisant l'ordinateur IBM 7094, d'un montage capable de focaliser des intensites elevees. Nous nous efforcons de reduire au minimum les aberrations. Nous avons pu realiser un systeme conservant la brillance initiale de la source. Pour une intensite de 100 mA la tension de focalisation doit etre de 150 kV. L'etude du faisceau a ete faite a 350 keV. Nous discutons enfin des resultats obtenus. (auteur)

  10. Aberration-accounting calibration for 3D single-molecule localization microscopy (United States)

    Cabriel, Clément; Bourg, Nicolas; Dupuis, Guillaume; Lévêque-Fort, Sandrine


    We propose a straightforward sample-based technique to calibrate the axial detection in 3D single molecule localization microscopy (SMLM). Using microspheres coated with fluorescent molecules, the calibration curves of PSF-shaping- or intensity-based measurements can be obtained for any required depth range from a few hundreds of nanometers to several tens of microns. This experimental method takes into account the effect of the spherical aberration without requiring computational correction.

  11. Chromatic aberration compensation in numerical reconstruction of digital holograms by Fresnel-Bluestein propagation. (United States)

    Hincapie, Diego; Velasquez, Daniel; Garcia-Sucerquia, Jorge


    In this Letter, we present a method for chromatic compensation in numerical reconstruction of digitally recorded holograms based on Fresnel-Bluestein propagation. The proposed technique is applied to correct the chromatic aberration that arises in the reconstruction of RGB holograms of both millimeter- and micrometer-sized objects. The results show the feasibility of this strategy to remove the wavelength dependence of the size of the numerically propagated wavefields.

  12. Scattering compensation by focus scanning holographic aberration probing (F-SHARP) (Conference Presentation) (United States)

    Papadopoulos, Ioannis N.; Jouhanneau, Jean-Sébastien; Poulet, James; Judkewitz, Benjamin


    Optical microscopy is an indispensable tool for researchers, allowing them to closely investigate different organisms, revealing new features and phenomena in biomedical research. Although very useful, conventional imaging techniques that rely only on ballistic, unaffected photons to form images inside inhomogeneous media, like biological tissue, are eventually limited up to the diffusion regime of optical propagation where scattering becomes dominant and no ballistic light can be detected. Adaptive optics and nonlinear optimization methods that rely on so called guide stars have been employed to overcome this problem and image deeper inside biological tissue. These techniques attempt to recover the optimal wavefront that will enhance the image quality or that will render a focus spot inside the scattering biological tissue. In order to achieve that, they have to iterate through each correction mode (e.g. each pixel on a wavefront shaper) thus trading off measurement time with wavefront resolution. Here we present a new turbidity suppression approach, termed Focus Scanning Holographic Aberration Probing (F-SHARP or F♯) that allows us to directly measure the amplitude and phase of the scattered light distribution at the focal plane (scattered E-field PSF). Knowledge of the E-field enables rapid correction of both aberration and scattering with a high resolution. We demonstrate the power of F-SHARP by correcting for aberration and scattering and imaging neuronal structures through the larval zebrafish and mouse brain and through thinned mouse skull in vivo.

  13. Theoretical investigation of aberrations upon ametropic human eyes (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin


    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  14. Differentiated Effects of Sensory Activities as Abolishing Operations via Non-Contingent Reinforcement on Academic and Aberrant Behavior (United States)

    Mancil, G. Richmond; Haydon, Todd; Boman, Marty


    The purpose of the study was to evaluate the effectiveness of sensory activities used as antecedent interventions on the percentage correct on academic tasks and rate of aberrant behavior in three elementary aged children with Autism Spectrum Disorders (ASD). Study activities were conducted in an after school program for children with ASD where…

  15. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision

    NARCIS (Netherlands)

    Vladusich, Tony

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory

  16. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    material collected by former Soviet Union robots and Apollo astronauts. With the completion of the first round of lunar exploration by human beings, the study of lunar microwave brightness tempe- rature was completely forgotten. Accompanied by a new upcoming era of lunar exploration and the development of science and ...

  17. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P


    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  18. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G


    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  19. Simultaneous brightness contrast of foraging Papilio butterflies (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro


    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  20. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also ... Center for Space Science and Applied Research, Chinese Academy of Sciences, P.O. Box 8701, Beijing 100 080, China.

  1. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.


    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that

  2. Spherical aberration from trajectories in real and hard-edge ...

    Indian Academy of Sciences (India)

    (3)–(4) by comparing with spherical aberration obtained from the ensemble of particle trajectories. The scaled field gives the same focal length. 3. Particle trajectory. 3.1 Ray equation with aberration. The particle trajectory in a solenoid magnet with aberrations is governed by the third-order paraxial ray equation given in eq.

  3. Generalized beam quality factor of aberrated truncated Gaussian laser beams

    CSIR Research Space (South Africa)

    Mafusire, C


    Full Text Available The authors outline a theory for the calculation of the beam quality factor of an aberrated laser beam. They provide closed form equations that show that the beam quality factor of an aberrated Gaussian beam depends on all primary aberrations except...

  4. The nature of solar brightness variations (United States)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.


    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  5. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana


    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  6. The aberrant retroesophageal right subclavian artery. (United States)

    Seres-Sturm, M; Maros, T N; Seres-Sturm, L


    Two cases with arteria lusoria were found at 278 routine dissections. These arteria arise as the last branches of the aortic arch and have a retroesophageal position. At the crossing point, the esophagus narrows due to the groove caused by the artery. The appearance of this malposition is the consequence of the perturbation in the organo-genesis of the right dorsal aorta and fourth branchial artery. The aberration can lead to disphagia lusoria.

  7. Retrotracheal aberrant left brachiocephalic vein: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Adalet E.; Haliloglu, Mithat; Karcaaltincaba, Musturay; Ariyurek, Macit O. [Hacettepe University Faculty of Medicine, Department of Radiology, Ankara (Turkey)


    We present a child with double aberrant left brachiocephalic vein (ALBCV) that was an incidental finding on CT. The anterior and thin branch was above the aortic arch and behind the truncus brachiocephalicus and drained into the superior vena cava (SVC). The posterior and thick branch of the ALBCV coursed posterior to the trachea and oesophagus and joined with the azygos vein before draining into the SVC. To our knowledge, retrotracheal ALBCV has not been previously described. (orig.)

  8. Aberrant attachment of orbicularis oculi: Case report

    Directory of Open Access Journals (Sweden)

    Sehgal Ritu


    Full Text Available A morphological peculiarity was observed in the form of an aberrant lateral bony attachment of the orbital part of the Orbicularis oculi muscle on the zygomatic bone, during routine dissection of a cadaver of an adult male of Indian origin. Fibers of this part of the muscle are not known to show any lateral attachment on bone. This paper discusses the presentation, probable embryological cause and clinical implications of this unusual finding.

  9. Modelling of optical aberrations caused by light propagation in mouse cranial bone using second harmonic generation imaging (United States)

    Tehrani, Kayvan; Kner, Peter; Mortensen, Luke J.


    Multiphoton imaging through the bone to image into the bone marrow or the brain is an emerging need in the scientific community. Due to the highly scattering nature of bone, bone thinning or removal is typically required to enhance the resolution and signal intensity at the imaging plane. The optical aberrations and scattering in the bone significantly affect the resolution and signal to noise ratio of deep tissue microscopy. Multiphoton microscopy uses long wavelength (nearinfrared and infrared) excitation light to reduce the effects of scattering. However, it is still susceptible to optical aberrations and scattering since the light propagates through several layers of media with inhomogeneous indices of refraction. Mechanical removal of bone is highly invasive, laborious, and cannot be applied in experiments where imaging inside of the bone is desired. Adaptive optics technology can compensate for these optical aberrations and potentially restore the diffraction limited point spread function of the system even in deep tissue. To design an adaptive optics system, a priori knowledge of the sample structure assists selection of the proper correction element and sensing methods. In this work we present the characterization of optical aberrations caused by mouse cranial bone, using second harmonic generation imaging of bone collagen. We simulate light propagation through the bone, calculate aberrations and determine the correction that can be achieved using a deformable mirror.

  10. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images. (United States)

    Legras, Richard; Benard, Yohann; Lopez-Gil, Norberto


    To compare the effect of primary spherical aberration and vertical coma on depth of focus measured with 2 methods. Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique, and Université Paris-Sud, Orsay, France. Evaluation of technology. The subjective depth of focus, defined as the interval of vision for which the target was still perceived acceptable, was evaluated using 2 methods. In the first method, the subject changed the defocus term by reshaping the mirror, which also corrected the subject's aberrations and induced a certain value of coma or primary spherical aberration. In the second procedure, the subject changed the displayed images, which were calculated for various defocuses and with the desired aberration using a numerical eye model. Depth of focus was measured using a 0.18 diopter (D) step in 4 nonpresbyopic subjects corrected for the entire eye aberrations with a 6.0 mm and 3.0 mm pupil and with the addition of 0.3 μm and 0.6 μm of positive primary spherical aberration or vertical coma. There was good concordance between the depth of focus measured with both methods (differences within 1/3 D, r(2) = 0.88). Image-quality metrics failed to predict the subjective depth of focus (r(2) < 0.41). These data confirm that defocus in the retinal image can be generated by optical or computational methods and that both can be used to assess the effect of higher-order aberrations on depth of focus. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank


    Purpose Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Methods Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10∶14 light∶dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Results Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1∶1 or 7∶7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. Conclusions The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1∶1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical

  12. Automated aberration compensation in high numerical aperture systems for arbitrary laser modes (Conference Presentation) (United States)

    Hering, Julian; Waller, Erik H.; von Freymann, Georg


    Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent

  13. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)


    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  14. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise. (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A


    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  15. Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses. (United States)

    Ravikumar, Sowmya; Bradley, Arthur; Thibos, Larry N


    To evaluate the impact of target distance on polychromatic image quality in a virtual model eye implanted with hybrid refractive-diffractive intraocular lenses (IOLs). School of Optometry, Indiana University, Bloomington, Indiana, USA. Experimental study. A pseudophakic model eye was constructed by incorporating a phase-delay map for a diffractive optical element into a reduced eye model incorporating ocular chromatic aberration, pupil apodization, and higher-order monochromatic aberrations. The diffractive element was a monofocal IOL with a +3.2 diopter (D) diffractive power or 2 types of bifocal IOLs (nonapodized or apodized) with a +2.92 D addition (add) power. Polychromatic point-spread functions and image quality for white and monochromatic light were quantified for a series of target vergences, wavelengths, and pupil diameters using modulation transfer functions and image-quality metrics. Ocular longitudinal chromatic aberration was largely corrected by the monofocal design and by both bifocal designs for near targets. In the bifocal design, add power and the ratio of distance:near image quality changed significantly with wavelength and pupil size. Also, image quality for distance was better with the apodized design. Achromatization by the diffractive IOL provided significant improvement in polychromatic retinal image quality. Along with apodization and higher-order aberrations, it can significantly affect the near-distance balance provided by a diffractive multifocal IOL. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Surgical treatment of aberrant aortic origin of coronary arteries. (United States)

    Kooij, Marlotte; Vliegen, Hubert W; de Graaf, Michiel A; Hazekamp, Mark G


    Aberrant origin of the coronary arteries is rare but can be life threatening. It is an important cause of sudden death in athletes and other young adults, and may be treated surgically. Consensus exists that interarterial left coronary artery (LCA) should be surgically repaired. For interarterial right coronary artery (RCA), the discussion remains open. The purpose of this study was to analyse our surgical experience. From 2001 until 2014, 31 patients were operated for interarterial RCA, interarterial LCA or intraseptal course of the LCA. Twenty-six patients had interarterial RCA, 4 patients interarterial LCA and 1 patient an intraseptal course of the LCA. Median age at operation was 38 years (range 9-66 years). Twenty-eight patients had previous or current symptoms. The most important were a life-threatening event with resuscitation in 3 and myocardial infarction in 3 others. Surgical repair of interarterial RCA consisted of unroofing of the ostium with or without reimplantation in 25 patients and CABG on the RCA with a venous graft in 1 patient. Reconstruction of interarterial LCA consisted of ostium reconstruction of the LCA with a venous patch in 4 patients. The patient with an intraseptal course had a complete release of the LCA out of the septum and reimplantation in the correct coronary sinus. Follow-up was done by analysis of outpatient records, direct patient contact, echocardiography, electrocardiography, CT-angiography and an exercise test. Median follow-up was 6 years (range 0-11 years). One patient was lost to follow-up. No early or late mortality occurred. Three patients had ischaemia with ventricular fibrillation or ventricular tachycardia shortly after surgery. Two were immediately reoperated, 1 had a stent implantation 1.5 months after release of intraseptal LCA. Two of these patients show a slight dysfunction of the left ventricle at follow-up. All other patients are asymptomatic. Surgery for aberrant origin of coronary arteries is safe. There is

  17. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...

  18. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography (United States)

    Fernández, Enrique J.; Drexler, Wolfgang


    Optical coherence tomography (OCT) enables visualization of the living human retina with unprecedented high axial resolution. The transverse resolution of existing OCT approaches is relatively modest as compared to other retinal imaging techniques. In this context, the use of adaptive optics (AO) to correct for ocular aberrations in combination with OCT has recently been demonstrated to notably increase the transverse resolution of the retinal OCT tomograms. AO is required when imaging is performed through moderate and large pupil sizes. A fundamental difference of OCT as compared to other imaging techniques is the demand of polychromatic light to accomplish high axial resolution. In ophthalmic OCT applications, the performance is therefore also limited by ocular chromatic aberrations. In the current work, the effects of chromatic and monochromatic ocular aberrations on the quality of retinal OCT tomograms, especially concerning transverse resolution, sensitivity and contrast, are theoretically studied and characterized. The repercussion of the chosen spectral bandwidth and pupil size on the final transverse resolution of OCT tomograms is quantitatively examined. It is found that losses in the intensity of OCT images obtained with monochromatic aberration correction can be up to 80 %, using a pupil size of 8 mm diameter in combination with a spectral bandwidth of 120 nm full width at half maximum for AO ultrahigh resolution OCT. The limits to the performance of AO for correction of monochromatic aberrations in OCT are established. The reduction of the detected signal and the resulting transverse resolution caused by chromatic aberration of the human eye is found to be strongly dependent on the employed bandwidth and pupil size. Comparison of theoretical results with experimental findings obtained in living human eyes is also provided.

  19. Correction note. (United States)


    Correction note for Sanders, M., Calam, R., Durand, M., Liversidge, T. and Carmont, S. A. (2008), Does self-directed and web-based support for parents enhance the effects of viewing a reality television series based on the Triple P - Positive Parenting Programme?. Journal of Child Psychology and Psychiatry, 49: 924-932. doi: 10.1111/j.1469-7610.2008.01901.x. © 2014 Association for Child and Adolescent Mental Health.

  20. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica


    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  1. Companions of Bright Barred Shapley Ames Galaxies


    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson


    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  2. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)


    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.


    National Aeronautics and Space Administration — The TC4 AMPR Brightness Temperature (TB) dataset consists of brightness temperature data from July 19, 2007 through August 8, 2007. The Tropical Composition, Cloud...

  4. Brightness illusion in the guppy (Poecilia reticulata). (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo


    A long-standing debate surrounds the issue of whether human and nonhuman species share similar perceptual mechanisms. One experimental strategy to compare visual perception of vertebrates consists in assessing how animals react in the presence of visual illusions. To date, this methodological approach has been widely used with mammals and birds, while few studies have been reported in distantly related species, such as fish. In the present study we investigated whether fish perceive the brightness illusion, a well-known illusion occurring when 2 objects, identical in physical features, appear to be different in brightness. Twelve guppies (Poecilia reticulata) were initially trained to discriminate which rectangle was darker or lighter between 2 otherwise identical rectangles. Three different conditions were set up: neutral condition between rectangle and background (same background used for both darker and lighter rectangle); congruent condition (darker rectangle in a darker background and lighter rectangle in a lighter background); and incongruent condition (darker rectangle in a lighter background and lighter rectangle in a darker background). After reaching the learning criterion, guppies were presented with the illusory pattern: 2 identical rectangles inserted in 2 different backgrounds. Guppies previously trained to select the darker rectangle showed a significant choice of the rectangle that appears to be darker by human observers (and vice versa). The human-like performance exhibited in the presence of the illusory pattern suggests the existence of similar perceptual mechanisms between humans and fish to elaborate the brightness of objects. (c) 2016 APA, all rights reserved).

  5. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian


    SPM enable an aberration-free bunching and thus the timing resolution of the positron lifetime measurements is only limited by the detection system. The combination of the high intense positron source NEPOMUC, the twofold brightness enhancement, the high efficient, aberration-free beam pulsing and the performance of the SPM will enable measurements of three dimensional defect maps with a lateral resolution below 1 {mu}m within shortest measurement times and will hence establish the microscopic positron lifetime measurement as a standard technique. (orig.)

  6. Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics. (United States)

    Zhou, Wen; Stojanovic, Aleksandar; Utheim, Tor Paaske


    The aim of the study is to raise the awareness of the influence of coma-like higher-order aberrations (HOAs) on power and orientation of refractive astigmatism (RA) and to explore how to account for that influence in the planning of topography-guided refractive surgery in eyes with coma-like-aberrations-dominant corneal optics. Eleven eyes with coma-like-aberrations-dominant corneal optics and with low lenticular astigmatism (LA) were selected for astigmatism analysis and for treatment simulations with topography-guided custom ablation. Vector analysis was used to evaluate the contribution of coma-like corneal HOAs to RA. Two different strategies were used for simulated treatments aiming to regularize irregular corneal optics: With both strategies correction of anterior corneal surface irregularities (corneal HOAs) were intended. Correction of total corneal astigmatism (TCA) and RA was intended as well with strategies 1 and 2, respectively. Axis of discrepant astigmatism (RA minus TCA minus LA) correlated strongly with axis of coma. Vertical coma influenced RA by canceling the effect of the with-the-rule astigmatism and increasing the effect of the against-the-rule astigmatism. After simulated correction of anterior corneal HOAs along with TCA and RA (strategies 1 and 2), only a small amount of anterior corneal astigmatism (ACA) and no TCA remained after strategy 1, while considerable amount of ACA and TCA remained after strategy 2. Coma-like corneal aberrations seem to contribute a considerable astigmatic component to RA in eyes with coma-like-aberrations dominant corneal optics. If topography-guided ablation is programmed to correct the corneal HOAs and RA, the astigmatic component caused by the coma-like corneal HOAs will be treated twice and will result in induced astigmatism. Disregarding RA and treating TCA along with the corneal HOAs is recommended instead.

  7. Genomic aberrations in borderline ovarian tumors

    Directory of Open Access Journals (Sweden)

    Davidson Ben


    Full Text Available Abstract Background According to the scientific literature, less than 30 borderline ovarian tumors have been karyotyped and less than 100 analyzed for genomic imbalances by CGH. Methods We report a series of borderline ovarian tumors (n = 23 analyzed by G-banding and karyotyping as well as high resolution CGH; in addition, the tumors were analyzed for microsatellite stability status and by FISH for possible 6q deletion. Results All informative tumors were microsatellite stable and none had a deletion in 6q27. All cases with an abnormal karyotype had simple chromosomal aberrations with +7 and +12 as the most common. In three tumors with single structural rearrangements, a common breakpoint in 3q13 was detected. The major copy number changes detected in the borderline tumors were gains from chromosome arms 2q, 6q, 8q, 9p, and 13q and losses from 1p, 12q, 14q, 15q, 16p, 17p, 17q, 19p, 19q, and 22q. The series included five pairs of bilateral tumors and, in two of these pairs, informative data were obtained as to their clonal relationship. In both pairs, similarities were found between the tumors from the right and left side, strongly indicating that bilaterality had occurred via a metastatic process. The bilateral tumors as a group showed more aberrations than did the unilateral ones, consistent with the view that bilaterality is a sign of more advanced disease. Conclusion Because some of the imbalances found in borderline ovarian tumors seem to be similar to imbalances already known from the more extensively studied overt ovarian carcinomas, we speculate that the subset of borderline tumors with detectable imbalances or karyotypic aberrations may contain a smaller subset of tumors with a tendency to develop a more malignant phenotype. The group of borderline tumors with no imbalances would, in this line of thinking, have less or no propensity for clonal evolution and development to full-blown carcinomas.

  8. Wavefront aberrations of x-ray dynamical diffraction beams. (United States)

    Liao, Keliang; Hong, Youli; Sheng, Weifan


    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  9. Ocular aberrations in barn owl eyes. (United States)

    Harmening, Wolf M; Vobig, Michael A; Walter, Peter; Wagner, Hermann


    Optical quality in barn owl eyes is presented in terms of measuring the ocular wavefront aberrations with a standard Tscherning-type wavefront aberrometer under natural viewing conditions. While accommodative state was uncontrolled, all eyes were focused within 0.4D with respect to the plane of the aberrometer. Total RMS wavefront error was between 0.06 and 0.15 microm (mean: 0.10 microm, STD: 0.03 microm, defocus cancelled) for a 6 mm pupil. The results suggest that image quality in barn owl eyes is excellent.

  10. Aberration-free volumetric high-speed imaging of in vivo retina

    CERN Document Server

    Hillmann, Dierck; Hain, Carola; Sudkamp, Helge; Franke, Gesa; Pfäffle, Clara; Winter, Christian; Hüttmann, Gereon


    Research and medicine rely on non-invasive optical techniques to image living tissue with high resolution in space and time. But so far a single data acquisition could not provide entirely diffraction-limited tomographic volumes of rapidly moving or changing targets, which additionally becomes increasingly difficult in the presence of aberrations, e.g., when imaging retina in vivo. We show, that a simple interferometric setup based on parallelized optical coherence tomography acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells, but the technique is also applicable to obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds.

  11. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables (United States)

    Yasini, Siavash; Pierpaoli, Elena


    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  12. Study of Three-Dimensional Image Brightness Loss in Stereoscopy


    Hsing-Cheng Yu; Xie-Hong Tsai; An-Chun Luo; Ming Wu; Sei-Wang Chen


    When viewing three-dimensional (3D) images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D) images in order to adjust the 3D-image brightness values. In addition, the ph...

  13. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Masayuki Nakamori


    Full Text Available Summary: Myotonic dystrophy types 1 (DM1 and 2 (DM2 are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM, a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6 myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling. : Congenital myotonic dystrophy (CDM manifests characteristic genetic (very large CTG repeat expansions, epigenetic (CpG hypermethylation upstream of the repeat, and phenotypic (muscle immaturity features not seen in adult DM. Nakamori et al. find phenotype-genotype and epigenotype correlation in CDM muscle and reveal involvement of the IL-6 myokine signaling pathway in the disease process. Keywords: CTCF, ER stress, IL-6, muscular dystrophy, NF-κB, trinucleotide, cytokine, splicing

  14. Effect of Quartic Phase Optical Aberration on Laser Beam Quality (United States)

    Bencheikh, A.; Bouafia, M.; Boubetra, Dj.


    Laser beam quality is related to the aberration effect. Quartic phase aberration, more commonly known as spherical aberration, can result from aberrated optical components such as beam expanding telescopes, focusing or collimating lenses, or other conventional optical elements; from thermal focusing or thermal blooming in high power laser windows, lenses, amplifier rods, optical isolators, and other absorbing media. In general any kind of quartic aberration will lead to increased far field beam spread, degraded laser beam focusability and increased values of the beam quality. Currently, a well established quality parameter for laser beams is the M2 factor. This paper presents a new mathematical set for the spherical aberration coefficient C4 of Gaussian beams. The main idea comes from the estimation of the laser beam quality factor M2 given by Siegman. We show that this coefficient concerns only the case of geometrical optics.

  15. Primary aberration coefficients for axial gradient-index lenses (United States)

    Bociort, Florian


    As for homogeneous lenses, for axial gradients the analysis of the Seidel and chromatic aberration coefficients can be very useful in lens design. However, at present few commercial optical design programs list the Seidel aberrations of GRIN lenses and none of them lists the chromatic aberrations. In order to facilitate the computer implementation of the chromatic aberrations of axial GRIN lenses a new mathematical derivation for the axial and lateral color coefficients is presented. Also, new qualitative insight into the properties of axial GRIN lenses is obtained by introducing the thin-lens approximation in the aberration expressions. Within the domain of validity of this approximation, the primary aberrations of an axial GRIN lens are equivalent to those of a pair of homogeneous aspherical lens in contact, having a common plane surface and having refractive indices and Abbe numbers equal to the corresponding axial GRIN values at the two end surfaces.

  16. A Monte-Carlo Model for the Formation of Radiation-induced Chromosomal Aberrations (United States)

    Ponomarev, Artem L.; Cornforth, Michael N.; Loucas, Brad D.; Cucinotta, Francis A.


    multi-centrics were also recorded. Conclusion: High-LET DNA damage affects the frequencies of chromosomal aberrations. The ratio of rings to dicentrics is correct for the genomic size cut-offs corresponding to available experimental data. The present work predicts a relative abundance of small rings following irradiation by heavy ions.

  17. Investigating the Bright End of LSST Photometry (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration


    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  18. Dark and Bright Ridges on Europa (United States)


    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL galileo.

  19. Hydronephrosis by an Aberrant Renal Artery: A Case Report


    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon


    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography an...

  20. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer


    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye.Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  1. An exceptionally bright, compact starburst nucleus (United States)

    Margon, Bruce; Anderson, Scott F.; Mateo, Mario; Fich, Michel; Massey, Philip


    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies.

  2. Broadband bright twin beams and their upconversion (United States)

    Chekhova, Maria V.; Germanskiy, Semen; Horoshko, Dmitri B.; Kitaeva, Galiya Kh.; Kolobov, Mikhail I.; Leuchs, Gerd; Phillips, Chris R.; Prudkovskii, Pavel A.


    We report on the observation of broadband (40 THz) bright twin beams through high-gain parametric down-conversion in an aperiodically poled lithium niobate crystal. The output photon number is shown to scale exponentially with the pump power and not with the pump amplitude, as in homogeneous crystals. Photon-number correlations and the number of frequency/temporal modes are assessed by spectral covariance measurements. By using sum-frequency generation on the surface of a non-phasematched crystal, we measure a cross-correlation peak with the temporal width 90 fs.

  3. Human axial chromatic aberration found not to decline with age. (United States)

    Ware, C


    Millodot (1976) reported a dramatic decline in the amount of axial chromatic aberration of the human eye with age. The present study represents a failure to replicate that finding using a more standard procedure. No difference in chromatic aberration was found between a young and an older group of observers. Also, the chromatic aberrations of two observers which had been measured 25 years previously showed no decline when these measurements were repeated, even though their ages at first and second testing straddled the period over which Millodot reported the most change in chromatic aberration.

  4. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence (United States)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce


    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  5. A Neurocomputational Account of the Role of Contour Facilitation in Brightness Perception

    Directory of Open Access Journals (Sweden)

    Dražen eDomijan


    Full Text Available A novel filling-in model is proposed in order to account for challenging brightness illusions where inducing background elements are spatially separated from gray target such as dungeon, cube and grating illusion, bull's eye and ring patterns. The model implements simple idea that neural response to low-contrast contour is enhanced (facilitated by the presence of collinear or parallel high-contrast contour in the wider neighborhood. Contour facilitation is achieved via dendritic inhibition which enables computation of maximum function among inputs to the node. Recurrent application of maximum function leads to the propagation of neural signal along collinear or parallel contour segments. When strong global contour signal is accompanied with weak local contour signal at the same location, conditions are met to produce brightness assimilation within filling-in network. Computer simulations showed that the model correctly predicts brightness appearance in all of the above mentioned illusions as well as in White's effect, Benary's cross, Todorović's illusion, checkerboard contrast, contrast-contrast illusion and various variations on the White's effect. The proposed model offer new insights on how geometric factors (contour colinearity or parallelism jointly with contrast magnitude contribute to the brightness perception.

  6. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)


    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  7. Subpicosecond, high-brightness excimer laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Gosnell, T.R.; Roberts, J.P.; Lester, C.S.; Gibson, R.B.; Harper, S.E.; Tallman, C.R.


    Subpicosecond, high-brightness excimer laser systems are being used to explore the interaction of intense coherent ultraviolet radiation with matter. Applications of current systems include generation of picosecond x-ray pulses, investigation of possible x-ray laser pumping schemes, studies of multiphoton phenomena in atomic species, and time-resolved photochemistry. These systems, based on the amplification of subpicosecond pulses in small aperture (/approximately/1 cm/sup 2/) XeCl or KrF amplifiers, deliver focal spot intensities of /approximately/10/sup 17/ W/cm/sup 2/. Scaling to higher intensities, however, will require an additional large aperture amplifier which preserves near-diffraction-limited beam quality and subpicosecond pulse duration. We describe here both a small aperture KrF system which routinely provides intensities >10/sup 17/ W/cm/sup 2/ to several experiments, and a large aperture XeCl system designed to deliver /approximately/1 J subpicosecond pulses and yield intensities on target in excess of 10/sup 19/W/cm/sup 2/. We also discuss the effects of two-photon absorption on large-aperture, high-brightness excimer lasers. 4 refs., 2 figs.

  8. Optical Sky Brightness at Dome C, Antarctica (United States)

    Kenyon, S.; Storey, J. W. V.; Burton, M. G.


    Dome C, Antarctica is a prime site for astronomical observations in terms of climate, wind speeds and turbulence. The infrared and terahertz sky backgrounds are the lowest of any inhabited place on Earth. However, at present little is known about the optical sky brightness and atmospheric extinction. Using a variety of modelling techniques together with data from the South Pole, we estimate the brightness of the night sky including the contributions from scattered sunlight, moonlight, aurorae, airglow, zodiacal light and artificial sources. We compare our results to another prime astronomical site, Mauna Kea. We find moonlight has significantly less effect at Dome C than at Mauna Kea. Aurorae are expected to have a minor impact at both sites, and zodiacal light is expected to be less at Dome C than at Mauna Kea. Airglow emissions at Dome C are expected to be similar to those at temperate sites. With proper planning, artificial sources of light pollution should be non-existent. The overall atmospheric extinction, or opacity, is expected to be the minimum possible. We conclude that Dome C is a very promising site not only for infrared and terahertz astronomy, but for optical astronomy as well..

  9. Sublimation in bright spots on (1) Ceres (United States)

    Nathues, A.; Hoffmann, M.; Schaefer, M.; Le Corre, L.; Reddy, V.; Platz, T.; Cloutis, E. A.; Christensen, U.; Kneissl, T.; Li, J.-Y.; Mengel, K.; Schmedemann, N.; Schaefer, T.; Russell, C. T.; Applin, D. M.; Buczkowski, D. L.; Izawa, M. R. M.; Keller, H. U.; O'Brien, D. P.; Pieters, C. M.; Raymond, C. A.; Ripken, J.; Schenk, P. M.; Schmidt, B. E.; Sierks, H.; Sykes, M. V.; Thangjam, G. S.; Vincent, J.-B.


    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5, 6, 7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’, which is the distance from the Sun at which water molecules condense.

  10. Aberrant intestinal microbiota in individuals with prediabetes

    DEFF Research Database (Denmark)

    Allin, Kristine H; Tremaroli, Valentina; Caesar, Robert


    AIMS/HYPOTHESIS: Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut...... among individuals with prediabetes (mean log2 fold change -1.74 (SEM 0.41), p adj  = 2 × 10-3 and -1.65 (SEM 0.34), p adj  = 4 × 10-4, respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did...... with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age- and sex-matched individuals with normal glucose regulation. RESULTS: We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals...

  11. Overlapped Fourier coding for optical aberration removal (United States)

    Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei


    We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982

  12. Diet, aberrant crypt foci and colorectal cancer. (United States)

    Bruce, W R; Archer, M C; Corpet, D E; Medline, A; Minkin, S; Stamp, D; Yin, Y; Zhang, X M


    We have used the aberrant crypt focus (ACF) assay to test and develop hypotheses linking diet and colon cancer. The hypotheses were suggested by epidemiological studies that identified possible dietary factors associated with colorectal cancer risk. The ACF assay was used to quantitate the effect of the dietary factors on the initiation and growth of these putative precursors of colon cancers in experimental animals. Using this approach we have developed 3 new hypotheses for the role of diet in colorectal cancer. These are (1) a risk associated with 5-hydroxymethyl-2-furaldehyde in caramelized sugar, (2) a risk associated with some factor in thermolyzed casein, and (3) a risk associated with single nutrient boluses of sucrose and fructose. The importance of these hypotheses has still to be tested in long term carcinogenesis experiments, in analytic epidemiology studies and then, perhaps, in intervention trials.

  13. Étude cytogenetique des aberrations chromosomiques chez des ...

    African Journals Online (AJOL)

    After 48 hours of culture in the presence of BrdU, the samples underwent the whole procedure of the metaphase cytogenetic analysis technique. Results: The 22 technicians totaled 4856 metaphases containing 421 chromosomal aberrations and 28 sister chromatid exchanges. It was noted the complex aberrations ...

  14. An aberrant uterus: Case report | Ondieki | East African Medical ...

    African Journals Online (AJOL)

    A case of an aberrant uterus is presented and literature reviewed. The patient presented with abnormal uterine bleeding, left iliac fossa pain and was managed by excising the aberrant uterus. This case was an enigma as it didn't present in the classical way one with anomalies of the uterus would present. Despite ...

  15. Aberrant Breast in a Rare Site: A Case Report

    Directory of Open Access Journals (Sweden)

    Levent Yeniay


    Full Text Available Aberrant breast tissue is an anomaly in the embryogenesis of the breast that is found along the mammary ridge or out of that line. We report a case of a 71-year-old female patient with an abdominal aberrant breast tissue found incidentally in a piece of mesenteric biopsy. The histological features were consistent with breast tissue.

  16. Graphical Methods for Quantifying Macromolecules through Bright Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hang; DeFilippis, Rosa Anna; Tlsty, Thea D.; Parvin, Bahram


    Bright ?eld imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition, and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to Flbroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color images into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quanti?ed by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of samplepreparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions, and (iv) has a superior computing performance

  17. Bright sneezes and dark coughs, loud sunlight and soft moonlight. (United States)

    Marks, L E


    Synesthetic metaphors (such as "the dawn comes up like thunder") are expressions in which words or phrases describing experiences proper to one sense modality transfer their meanings to another modality. In a series of four experiments, subjects used scales of loudness, pitch, and brightness to evaluate the meanings of a variety of synesthetic (auditory-visual) metaphors. Loudness and pitch expressed themselves metaphorically as greater brightness; in turn, brightness expressed itself as greater loudness and as higher pitch. Although loudness thus shared with brightness a metaphorical connection, pitch and brightness showed a connection that was closer and that applied more generally to different kinds of visual brightness. The ways that people evaluate synesthetic metaphors emulate the characteristics of synesthetic perception, thereby suggesting that synesthesia in perception and synesthesia in language both may emenate from the same source-from a phenomenological similarity in the makeup of sensory experiences of different modalities.

  18. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.L., E-mail: [Institute of Solid State Research and Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Houben, L.; Thust, A.; Barthel, J. [Institute of Solid State Research and Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany)


    Employing an aberration corrector in a high-resolution transmission electron microscope, the spherical aberration C{sub S} can be tuned to negative values, resulting in a novel imaging technique, which is called the negative C{sub S} imaging (NCSI) technique. The image contrast obtained with the NCSI technique is compared quantitatively with the image contrast formed with the traditional positive C{sub S} imaging (PCSI) technique. For the case of thin objects negative C{sub S} images are superior to positive C{sub S} images concerning the magnitude of the obtained contrast, which is due to constructive rather than destructive superposition of fundamental contrast contributions. As a consequence, the image signal obtained with a negative spherical aberration is significantly more robust against noise caused by amorphous surface layers, resulting in a measurement precision of atomic positions which is by a factor of 2-3 better at an identical noise level. The quantitative comparison of the two alternative C{sub S}-corrected imaging modes shows that the NCSI mode yields significantly more precise results in quantitative high-resolution transmission electron microscopy of thin objects than the traditional PCSI mode.

  19. Global coordinates and exact aberration calculations applied to physical optics modeling of complex optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.; Barnard, C.; Viswanathan, V.K.


    Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by ''unfolding'' the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidents optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.

  20. A resolution insensitive to geometrical aberrations by using incoherent illumination and interference imaging (United States)

    Xiao, Peng; Fink, Mathias; Gandjbakhche, Amir H.; Claude Boccara, A.


    This contribution is another opportunity to acknowledge the influence of Roger Maynard on our research work when he pushed one of us (ACB) to explore the field of waves propagating in complex media rather than limiting ourselves to the wavelength scale of thermal waves or near field phenomena. Optical tomography is used for imaging in-depth scattering media such as biological tissues. Optical coherence tomography (OCT) plays an important role in imaging biological samples. Coupling OCT with adaptive optics (AO) in order to correct eye aberrations has led to cellular imaging of the retina. By using our approach called Full-Field OCT (FFOCT) we show that, with spatially incoherent illumination, the width of the point-spread function (PSF) that governs the resolution is not affected by aberrations that induce only a reduction of the signal level. We will describe our approach by starting with the PSF experimental data followed by a simple theoretical analysis, and numerical calculations. Finally full images obtained through or inside scattering and aberrating media will be shown.

  1. Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    George J Burghel

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN is a major driving force of microsatellite stable (MSS sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR at high frequency (>10%. Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains. Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.

  2. Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer. (United States)

    Burghel, George J; Lin, Wei-Yu; Whitehouse, Helen; Brock, Ian; Hammond, David; Bury, Jonathan; Stephenson, Yvonne; George, Rina; Cox, Angela


    Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.

  3. Hydronephrosis by an Aberrant Renal Artery: A Case Report (United States)

    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon


    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography angiogram (CTA) or magnetic resonance angiogram (MRA). We describe a 36-year-old woman with right hydronephrosis. Kidney ultrasonogram and excretory urogram revealed right hydronephrosis. CTA and MRA clearly displayed an aberrant renal artery and hydronephrosis. The patient underwent surgical exploration. For the evaluation of hydronephrosis by an aberrant renal artery, use of CTA and MRA is advocated. PMID:12760271

  4. Image based method for aberration measurement of lithographic tools (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa


    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  5. Bright photoluminescent hybrid mesostructured silica nanoparticles. (United States)

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica


    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods.

  6. Bioinspired bright noniridescent photonic melanin supraballs. (United States)

    Xiao, Ming; Hu, Ziying; Wang, Zhao; Li, Yiwen; Tormo, Alejandro Diaz; Le Thomas, Nicolas; Wang, Boxiang; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali


    Structural colors enable the creation of a spectrum of nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (~1.74) melanin cores and low-RI (~1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics.

  7. Kappa-effect and brightness oscillations of stars (United States)

    Zhugzhda, Y. D.; Roth, M.; Herzberg, W.


    In this paper the theory of visibility and darkening functions for the brightness oscillations of stars is outlined. For this the non-grey approximation is used and the effect of opacity disturbances on stellar brightness oscillations is explored for different types of stars. An explanation of the Procyon paradox is proposed. Special features of the brightness oscillations are discussed. The effect of opacity fluctuations on the damping of p-mode oscillations is considered. Furthermore, the photospheric kappa-mechanism is discussed.

  8. An unusual case of left aberrant innominate artery with right aortic arch: evaluation with high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Giulio [University Rene Descartes-Paris 5, Department of Pediatric Cardiology, Hopital Necker Enfants Malades, Paris (France); Gesualdo, Francesco; Brunelle, Francis; Ou, Phalla [University Rene Descartes-Paris 5, Department of Pediatric Radiology, Hopital Necker Enfants Malades, Paris Cedex 15 (France)


    A left aberrant innominate (brachiocephalic) artery is an angiographically well-known entity that may cause tracheal compression. We report a male newborn who was admitted for further investigation of a prenatally suspected major vessel anomaly. High-resolution CT was used to completely assess the abnormal anatomy and the relationship with the airway, as well as to guide the surgical approach for its correction. (orig.)

  9. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu


    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  10. The night sky brightness at McDonald Observatory (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.


    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  11. Adult hippocampal neurogenesis poststroke: More new granule cells but aberrant morphology and impaired spatial memory. (United States)

    Woitke, Florus; Ceanga, Mihai; Rudolph, Max; Niv, Fanny; Witte, Otto W; Redecker, Christoph; Kunze, Albrecht; Keiner, Silke


    Stroke significantly stimulates neurogenesis in the adult dentate gyrus, though the functional role of this postlesional response is mostly unclear. Recent findings suggest that newborn neurons generated in the context of stroke may fail to correctly integrate into pre-existing networks. We hypothesized that increased neurogenesis in the dentate gyrus following stroke is associated with aberrant neurogenesis and impairment of hippocampus-dependent memory. To address these questions we used the middle cerebral artery occlusion model (MCAO) in mice. Animals were housed either under standard conditions or with free access to running wheels. Newborn granule cells were labelled with the thymidine analoque EdU and retroviral vectors. To assess memory performance, we employed a modified version of the Morris water maze (MWM) allowing differentiation between hippocampus dependent and independent learning strategies. Newborn neurons were morphologically analyzed using confocal microscopy and Neurolucida system at 7 weeks. We found that neurogenesis was significantly increased following MCAO. Animals with MCAO needed more time to localize the platform and employed less hippocampus-dependent search strategies in MWM versus controls. Confocal studies revealed an aberrant cell morphology with basal dendrites and an ectopic location (e.g. hilus) of new granule cells born in the ischemic brain. Running increased the number of new neurons but also enhanced aberrant neurogenesis. Running, did not improve the general performance in the MWM but slightly promoted the application of precise spatial search strategies. In conclusion, ischemic insults cause hippocampal-dependent memory deficits which are associated with aberrant neurogenesis in the dentate gyrus indicating ischemia-induced maladaptive plasticity in the hippocampus.

  12. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. (United States)

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer


    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.

  13. Interaction between Corneal and Internal Ocular Aberrations Induced by Orthokeratology and Its Influential Factors (United States)

    Chen, Qingzhong; Me, Rao; Yu, Yunjie; Shi, Guangsen


    Purpose To investigate the interaction between corneal, internal, and total wavefront aberrations (WAs) and their influential factors during orthokeratology (OK) treatment in Chinese adolescents. Methods Thirty teenagers (n = 30 eyes) were enrolled in the study; spherical equivalent refraction (SE), corneal curvature radius (CCR), central corneal thickness (CCT), WAs, and the difference in limbal transverse diameter and OK lens diameter (ΔLLD) were detected before and after one-month OK treatment. Every component of WAs was measured simultaneously by iTrace aberrometer. The influential factors of OK-induced WAs were analyzed. Results SE and CCT decreased while CCR increased significantly (P < 0.01). Higher-order aberrations (HOAs), Spherical aberrations (SAs), and coma increased significantly (P < 0.01). Corneal horizontal coma (Z31-C) and corneal spherical aberrations (Z40-C) increased (P < 0.01). The HOAs, coma, SAs, Z31-C, Z31-T, Z40-C, and Z40-T were positively correlated with SE and CCR (P < 0.01). Z3−1-C showed negative correlations with (ΔLLD) and positive correlations with SE (P < 0.05). Conclusions The increase in OK-induced HOAs is mainly attributed to Z31 and Z40 of cornea. Z3−1 in the internal component showed a compensative effect on the corneal vertical coma. The degree of myopic correction and increase in CCR may be the essential influential factors of the increase in Z31 and Z40. The appropriate size of the OK lens may be helpful to decrease OK-induced vertical coma. PMID:28845432

  14. Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes

    Directory of Open Access Journals (Sweden)

    Jinhua Bao


    Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.

  15. The Mechanisms of Aberrant Protein Aggregation (United States)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas


    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  16. Chromosome aberrations in solid tumors have a stochastic nature

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Mauro A.A. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil) and Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil) and Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil) and Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil)]. E-mail:; Onsten, Tor G.H. [Departamento de Medicina Interna, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre 90035-903 (Brazil); Universidade Luterana do Brasil, Rua Miguel Tostes 101, Canoas 92420-280 (Brazil); Moreira, Jose C.F. [Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-anexo, Porto Alegre 90035-003 (Brazil); Almeida, Rita M.C. de [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970 (Brazil)


    An important question nowadays is whether chromosome aberrations are random events or arise from an internal deterministic mechanism, which leads to the delicate task of quantifying the degree of randomness. For this purpose, we have defined several Shannon information functions to evaluate disorder inside a tumor and between tumors of the same kind. We have considered 79 different kinds of solid tumors with 30 or more karyotypes retrieved from the Mitelman Database of Chromosome Aberrations in Cancer. The Kaplan-Meier cumulative survival was also obtained for each solid tumor type in order to correlate data with tumor malignance. The results here show that aberration spread is specific for each tumor type, with high degree of diversity for those tumor types with worst survival indices. Those tumor types with preferential variants (e.g. high proportion of a given karyotype) have shown better survival statistics, indicating that aberration recurrence is a good prognosis. Indeed, global spread of both numerical and structural abnormalities demonstrates the stochastic nature of chromosome aberrations by setting a signature of randomness associated to the production of disorder. These results also indicate that tumor malignancy correlates not only with karyotypic diversity taken from different tumor types but also taken from single tumors. Therefore, by quantifying aberration spread, we could confront diverse models and verify which of them points to the most likely outcome. Our results suggest that the generating process of chromosome aberrations is neither deterministic nor totally random, but produces variations that are distributed between these two boundaries.

  17. Line Shape Effects on Intensity Measurements of Solar Features: Brightness Correction to SOHO MDI Continuum Images

    NARCIS (Netherlands)

    Criscuoli, S.; Ermolli, I.; Del Moro, D.; Giorgi, F.; Tritschler, A.; Uitenbroek, H.; Vitas, N.


    Continuum intensity observations obtained with theMichelson Doppler Imager (MDI) on board the SOHO mission provide long time series of filtergrams that are ideal for studying the evolution of large-scale phenomena in the solar atmosphere and their dependence on solar activity. These filtergrams,

  18. The Compact Hyperspectral Aberration-corrected Platform (CHAP), an instrument for microspacecraft. Project (United States)

    National Aeronautics and Space Administration — In-situ analysis of solar system bodies plays a crucial role in understanding the evolution of our planet, setting the stage for life's origins. As has been...

  19. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. (United States)

    Yang, H; Lozano, J G; Pennycook, T J; Jones, L; Hirsch, P B; Nellist, P D


    Screw dislocations play an important role in materials' mechanical, electrical and optical properties. However, imaging the atomic displacements in screw dislocations remains challenging. Although advanced electron microscopy techniques have allowed atomic-scale characterization of edge dislocations from the conventional end-on view, for screw dislocations, the atoms are predominantly displaced parallel to the dislocation line, and therefore the screw displacements are parallel to the electron beam and become invisible when viewed end-on. Here we show that screw displacements can be imaged directly with the dislocation lying in a plane transverse to the electron beam by optical sectioning using annular dark field imaging in a scanning transmission electron microscope. Applying this technique to a mixed [a+c] dislocation in GaN allows direct imaging of a screw dissociation with a 1.65-nm dissociation distance, thereby demonstrating a new method for characterizing dislocation core structures.

  20. A daytime measurement of the lunar contribution to the night sky brightness in LSST's ugrizy bands-initial results (United States)

    Coughlin, Michael; Stubbs, Christopher; Claver, Chuck


    We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

  1. Broadband aberration-free focusing reflector for acoustic waves (United States)

    Wang, Aixia; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Jiang, Wei; Feng, Mingde


    An aberration-free focusing reflector (AFR) for acoustic waves is proposed with the aim to eliminate spherical aberration and coma simultaneously. Meanwhile, the AFR can focus acoustic waves with low dispersion in a wide frequency range of 14-50 kHz. The broadband aberration-free focusing effect is originated from an elliptical reflection phase gradient profile, which is achieved by milling different depths of axisymmetric grooves on a planoconcave-like brass plate using the ray theory. Theoretical and numerical results are in good agreement. The designed AFR can find broad engineering, industrial and medical applications.

  2. Simple numerical chromosome aberrations in two pituitary adenomas

    DEFF Research Database (Denmark)

    Dietrich, C U; Pandis, N; Bjerre, P


    -secreting adenoma, three aberrant clones were detected, giving the karyotype 45,X, -Y[20]/47,XY, +Y[6]/45,XY, -21[3]/46,XY[21]. One cell had the chromosome complement 46,X, -Y, +9; no other nonclonal aberrations were detected. The only hitherto published case of pituitary adenoma analyzed by banding techniques (Rey...... et al. [1986]: Cancer Genet Cytogenet 23:171-174) also had only numerical clonal changes that included extra copies of chromosome 9. We conclude that pituitary adenomas may be karyotypically characterized by numerical aberrations and that trisomy 9 seems to be the best candidate for a primary...

  3. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.


    chromosomal structural rearrangements and single nucleotide variants (SNVs). Conventional AML diagnostics and recent seminal next-generation sequencing (NGS) studies have identified more than 200 recurrent genetic aberrations presenting in various combinations in individual patients. Significantly, many...... of these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with a normal...

  4. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    And Johnson SB parameters are observed to be best in discriminating the Johnson SB distribution of infrared brightness temperatures of deep convective systems for each season. Due to these properties of Johnson SB function, it can be utilized in the modelling of the histogram of infrared brightness temperature of deep ...

  5. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    It is observed that Johnson SB function is the best continuous distribution function in explaining the histogram of infrared brightness temperatures of the convective clouds. The best fit is confirmed by Kolmogorov–Smirnov statistic. Johnson SB's distribution of histogram of infrared brightness temperatures clearly ...

  6. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  7. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.


    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  8. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.


    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  9. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris


    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness...

  10. Surface photometry of bulge dominated low surface brightness galaxies

    NARCIS (Netherlands)

    Beijersbergen, M; de Blok, WJG; van der Hulst, JM


    We present results of broad band BVRI observations of a sample of galaxies with a low surface brightness (LSB) disk and a bulge. These galaxies are well described as exponential disks and exponential bulges with no preferred value for either scale length or central surface brightness. The median B

  11. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia (United States)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd


    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  12. Aberrations of Genetic Material as Biomarkers of Ionizing Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Milacic, S.


    Ionizing radiation is the most powerful mutagen in environmental and working conditions. The result of genotoxic effect of radiation is the development of chromosome aberrations. The structural chromosome aberrations in peripheral blood lymphocytes are dicentric, ring, acentric fragment. The observation of chromosome aberration frequency in lymphocyte karyotype is the conclusive method to assess the absorbed dose of ionizing radiation. Our study compared the incidence of chromosome aberrations in occupationally exposed healthy medical workers and in non-exposed healthy population. We analyzed the effect of working place, dose by thermo luminescence personal dosimeter (TLD), duration of occupational exposure (DOE) and age to the sum of aberrant cells and aberrations. four-year study included 462 subjects, mean-aged 42.3 years, who were occupational exposed to ionizing radiation and 95 subjects, mean-aged 35,2 years, who were not exposed to ionizing radiation, during the same time period and from the same territory. All of them possess thermo luminescence personal dosimeter (TLD) which is read by scanner for thermo luminescence dosimeters. Modified Moorheard's micro method for peripheral blood lymphocytes and conventional cytogenetic technique of chromosome aberration analysis were used for analysis of chromosome aberrations. Stained preparations (Giemsa) are observed in immersion by light microscope. The karyotype of 200 lymphocytes in metaphase is analyzed the most characteristic aberration: dicentric, then the ring and acentric fragments. The increased incidence of chromosome aberrations was found to tbe 21.6% in the exposed group and 2.1% in the controls, while the findings within the limits (non-specific chromosome lesions-gaps breaks, elongations, and exchanges) were equal in both groups (22%). Among occupationally exposed medical workers, the highest incidence was found in nuclear medicine workers (42.6%), then in orthopedists (27.08%). There is highly

  13. An isolated, bright cusp aurora at Saturn (United States)

    Kinrade, J.; Badman, S. V.; Bunce, E. J.; Tao, C.; Provan, G.; Cowley, S. W. H.; Grocott, A.; Gray, R. L.; Grodent, D.; Kimura, T.; Nichols, J. D.; Arridge, C. S.; Radioti, A.; Clarke, J. T.; Crary, F. J.; Pryor, W. R.; Melin, H.; Baines, K. H.; Dougherty, M. K.


    Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of 4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems.

  14. Intercomparisons of Nine Sky Brightness Detectors

    Directory of Open Access Journals (Sweden)

    Henk Spoelstra


    Full Text Available Nine Sky Quality Meters (SQMs have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  15. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.


    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  16. Dark Skies, Bright Kids Year 6 (United States)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine


    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  17. Dark Skies, Bright Kids Year 9 (United States)

    Burkhardt, Andrew Michael; Mathews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest


    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  18. Bright visible light emission from graphene. (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel


    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  19. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.


    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  20. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki


    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  1. 78 FR 75449 - Miscellaneous Corrections; Corrections (United States)


    ... cross- references, correcting grammatical errors, revising language for clarity and consistency, and... practice. Specifically, these amendments are to correct grammatical errors and to revise cross-references.... The final rule contained minor errors in grammar, punctuation, and referencing. This document corrects...

  2. Early Development of Children with Sex Chromosome Aberrations. (United States)

    Haka-Ilse, Katerina; And Others


    Arthur Retlaw and Associates, Inc., Suite 2080, 1603 Orrington Avenue, Evanston, Illinois 60201. A prospective study was made of the early development of 42 children with sex chromosome aberrations. (Author)

  3. Impact of primary aberrations on coherent lidar performance

    DEFF Research Database (Denmark)

    Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist


    In this work we investigate the performance of a monostatic coherent lidar system in which the transmit beam is under the influence of primary phase aberrations: spherical aberration (SA) and astigmatism. The experimental investigation is realized by probing the spatial weighting function...... of the lidar system using different optical transceiver configurations. A rotating belt is used as a hard target. Our study shows that the lidar weighting function suffers from both spatial broadening and shift in peak position in the presence of aberration. It is to our knowledge the first experimental...... demonstration of these tendencies. Furthermore, our numerical and experimental results show good agreement. We also demonstrate how the truncation of the transmit beam affects the system performance. It is both experimentally and numerically proven that aberration effects have profound impact on the antenna...

  4. Chromosome aberrations in pesticide-exposed greenhouse workers

    DEFF Research Database (Denmark)

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O


    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...

  5. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)


    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  6. Not Always Black and White: Colour Aberrations in the Dovekie

    National Research Council Canada - National Science Library



    We describe four records of colour aberrations in the dovekie (Alle alle). During six years of studies of breeding ecology in two large dovekie colonies in West Spitsbergen, we recorded one albino chick...

  7. Are persistent delusions in schizophrenia associated with aberrant salience?

    Directory of Open Access Journals (Sweden)

    Rafeef Abboud


    Conclusion: These findings do not support the hypothesis that persistent delusions are related to aberrant motivational salience processing in TRS patients. However, they do support the view that patients with schizophrenia have impaired reward learning.

  8. [Cystic dystrophy on aberrant pancreas. Contribution of ultrasound-endoscopy]. (United States)

    Andrieu, J; Palazzo, L; Chikli, F; Doll, J; Chome, J


    Cystic dystrophy of aberrant pancreatic tissue without chronic pancreatitis is a rare disease described by Potet and Duclert in 1970. Clinical diagnosis is possible by endoscopy and intraluminalsonography; we report the first case diagnosed by intraluminalsonography.

  9. Performance of a phase-conjugate-engine implementing a finite-bit phase correction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K; Stappaerts, E; Wilks, S; Young, P; Gavel, D; Tucker, J; Silva, D; Olivier, S


    This article examines the achievable Strehl ratio when a finite-bit correction to an aberrated wave-front is implemented. The phase-conjugate-engine (PCE) used to measure the aberrated wavefront consists of a quadrature interferometric wave-front sensor, a liquid-crystal spatial-light-modulator and computer hardware/software to calculate and apply the correction. A finite-bit approximation to the conjugate phase is calculated and applied to the spatial light modulator to remove the aberrations from the optical beam. The experimentally determined Strehl ratio of the corrected beam is compared with analytical expressions for the expected Strehl ratio and shown to be in good agreement with those predictions.

  10. Corneal aberrations before and after small-incision cataract surgery. (United States)

    Guirao, Antonio; Tejedor, Jaime; Artal, Pablo


    To study the effect of small-incision cataract surgery on the optical aberrations of the cornea. Corneal topography was measured before and after cataract surgery on 70 eyes of 70 patients. Monofocal foldable IOLs were implanted after phacoemulsification through a clear-cornea, 3.5-mm incision without suture. Corneal aberrations, up to the fifth order and 6-mm pupil, were calculated by ray-tracing from the corneal topography. Pre- and postoperative aberrations were compared in each patient and the optical changes induced by surgery investigated. The root mean square of the wave aberration slightly increased on average after surgery (pre, 0.65 +/- 0.46 microm; post, 0.85 +/- 0.63 microm). Most aberration terms were similar, averaged across the 70 patients, before and after surgery (spherical aberration: pre, 0.32 +/- 0.12 microm, and post, 0.34 +/- 0.19 microm; astigmatism: pre, 0.9 +/- 0.8 D, and post, 1.1 +/- 1.0 D; coma: pre, 0.27 +/- 0.18 microm, and post, 0.32 +/- 0.33 microm). However, in each patient, there were changes after surgery in the magnitude (either increasing or decreasing) and/or orientation of aberrations. The mean induced astigmatism was -1.0 +/- 0.9 D at the orientation of the surgical meridian. Induced trefoil also showed a predominant pattern at this direction. Patients with nasal incisions experienced larger changes. Small-incision surgery does not systematically degrade the optical quality of the anterior corneal surface. However, it introduces changes in some aberrations, especially in nonrotationally symmetric terms such as astigmatism, coma, and trefoil. The incision site plays a main role in the corneal changes after surgery.

  11. Modified matching Ronchi test to visualize lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hassani, Kh; Ziafi, H Hooshmand, E-mail: [Optics Research Lab 3, Department of Physics, University of Tehran, PO Box 14395/547, Tehran (Iran, Islamic Republic of)


    We introduce a modification to the matching Ronchi test to visualize lens aberrations with simple and inexpensive equipment available in educational optics labs. This method can help instructors and students to observe and estimate lens aberrations in real time. It is also a semi-quantitative tool for primary tests in research labs. In this work by comparing a single lens with a doublet, we can clearly demonstrate the superior quality of the doublet over the single lens, and estimate their conic constants.

  12. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations (United States)

    Mulrooney, Mark K.; Matney, Mark J.


    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed

  13. Dark Skies, Bright Kids: Year 2 (United States)

    Carlberg, Joleen K.; Johnson, K.; Lynch, R.; Walker, L.; Beaton, R.; Corby, J.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Kingery, A.; Layman, S.; Murphy, E.; Richardson, W.; Ries, P.; Romero, C.; Sivakoff, G.; Sokal, K.; Trammell, G.; Whelan, D.; Yang, A.; Zasowski, G.


    The Dark Skies, Bright Kids (DSBK) outreach program brings astronomy education into local elementary schools in central Virginia's Southern Albemarle County through an after-school club. Taking advantage of the unusually dark night skies in the rural countryside, DSBK targets economically disadvantaged schools that tend to be underserved due to their rural locale. The goals of DSBK are to foster children's natural curiosity, demonstrate that science is a fun and creative process, challenge students' conceptions of what a scientist is and does, and teach some basic astronomy. Furthermore, DSBK works to assimilate families into students' education by holding family observing nights at the school. Now in its third semester, DSBK has successfully run programs at two schools with very diverse student populations. Working with these students has helped us to revise our activities and to create new ones. A by-product of our work has been the development of lesson plans, complete with learning goals and detailed instructions, that we make publically available on our website. This year we are expanding our repertoire with our new planetarium, which allows us to visualize topics in novel ways and supplements family observing on cloudy nights. The DSBK volunteers have also created a bilingual astronomy artbook --- designed, written, and illustrated by UVa students --- that we will publish and distribute to elementary schools in Virginia. Our book debuted at the last AAS winter meeting, and since then it has been extensively revised and updated with input from many individuals, including parents, professional educators, and a children's book author. Because the club is currently limited to serving a few elementary schools, this book will be part of our efforts to broaden our impact by bringing astronomy to schools we cannot go to ourselves and reaching out to Spanish-speaking communities at the same time.

  14. Optical microvariability of bright type 2 quasars (United States)

    Polednikova, Jana; Ederoclite, Alessandro; Cepa, Jordi; de Diego Onsurbe, José Antonio; González-Serrano, José Ignacio


    We present results from a project focused on searching optical microvariabilty (also known as ``intra-night'' variability) in type 2 - obscured - quasars. Optical microvariability can be described as very small changes in the flux, typically in the order of hundredths of magnitude, which can be observed on timescales of hours. Such studies have been so far conducted for samples of blazars and type 1, unobscured, AGNs, where the optical microvariability was detected with success. We have focused on obscured targets which would pose a challenge to the AGN standard model. In the present work, however, we have observed a sample of three bright (g mag < 17) type 2 quasar, based on the catalog of type 2 quasars from SDSS of Reyes et al. (2008). The observations were carried out with the 1.5 meter telescope at San Pedro Martir observatory in Mexico. The sample was observed during an observation period of four days in Johnsons V filter, resulting in at least two continuous intervals of observations per target during the observational run. We have obtained differential light curves for our sources as well as for the comparison stars. They were analyzed using one-way analysis of variance statistical test (ANOVA), which has been repeatedly used in the past for studies of unobscured targets. Based on the results from the statistical analysis, we show that at least two out of three observed targets appear to be variable on time scales of hours. So far, this is the first study which confirmed existence of optical microvariability in type 2 quasars.

  15. Analysis of four aberrometers for evaluating lower and higher order aberrations.

    Directory of Open Access Journals (Sweden)

    Fabiano Cade

    Full Text Available PURPOSE: To compare the measurements of lower and higher order aberrations (HOA of 4 commonly used aberrometers. SETTING: Massachusetts Eye & Ear Infirmary, Boston, USA. DESIGN: Prospective, cross-sectional study, in a controlled, single-blinded fashion. METHODS: Multiple readings were obtained in 42 eyes of 21 healthy volunteers, at a single visit, with each of the following aberrometers: Alcon LADARWave®, Visx WaveScan®, B & L Zywave®, and Wavelight Allegro Analyzer®. Results were compared and analyzed in regards to the lower and HOA, to the different wavefront sensing devices and software, Tscherning and Hartmann-Shack and between the Fourier and Zernike algorithms. Statistical analysis included Bland-Altman plots, Intraclass Correlation Coefficient (ICC, multiple comparison tests with Analysis of Variance and Kruskal-Wallis. Significant level was set to p<0.05 and alpha level correction was adjusted under the Bonferroni criteria. RESULTS: Most measurements of all 4 aberrometers were comparable. However, statistically significant differences were found between the aberrometers in total HOA (tHOA, spherical aberration (SA, horizontal coma and astigmatism (2,2. LADARwave and Wavescan showed significant differences in tHOA (P<0.001, ICC = 0.549, LoA = 0.19±0.5 and in SA (P<0.001, ICC = 0.733, LoA = 0.16±0.37. Wavescan showed a significant difference compared to Zywave (p<0.001, ICC = 0.920, LoA = 0.09±0.13 in SA. Comparisons between Allegro Analyzer and Zywave demonstrated significant differences in both Horizontal Coma (3,1 (p<0.001, ICC = -0.207, LoA = -0.15±0.48 and Astigmatism (2,2 (P = 0.003, ICC = -0.965, LoA = 0.2±2.5. Allegro Analyzer also differed from Wavescan in Horizontal Coma (3,1 (P<0.001, ICC = 0.725, LoA = -0.07±0.25. CONCLUSIONS: Although some measurements were comparable predominately in the lower order aberrations, significant differences were found in the tHOA, SA, horizontal coma and astigmatism. Our analysis

  16. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  17. Simulated prototype of posterior chamber phakic intraocular lens for presbyopia correction. (United States)

    Pérez-Vives, Cari; Ferrer-Blasco, Teresa; Cerviño-Expósito, Alejandro; Madrid-Costa, David; Montés-Micó, Robert


    To evaluate the visual impact of adding different spherical aberration values to an Implantable Collamer Lens phakic intraocular lens (pIOL) to increase the depth of focus using an adaptive optics visual simulator. University of Valencia, Valencia, Spain. Experimental study. Wavefront aberrations in -3.00 D and -6.00 diopter (D) pIOLs were measured in vitro. Afterward, different simulated pIOL experimental prototypes were created along with variances in the spherical aberration. An adaptive optics visual simulator was used to simulate vision after the implantation of the different pIOL prototypes from their wavefront aberrations. The corrected distance visual acuity (CDVA) and depth of focus were measured in 3.0 and 4.5 mm pupils. In a 3.0 mm pupil, the CDVA achieved with -3.00 and -6.00 D pIOLs and all pIOL prototypes evaluated was above 20/20 except for a -6.00 D pIOL + spherical aberration 4 at 50% CDVA contrast, which decreased to 20/25. However, in a 4.5 mm pupil, the CDVA obtained with the pIOL prototypes decreased significantly and was more pronounced when the spherical aberration induced was negative. The depth of focus increment was larger with the highest spherical aberration added and with a small pupil. Nevertheless, it was independent of the sign of the added spherical aberration. The outcomes show that residual negative spherical aberration after pIOL implantation will disrupt the CDVA. However, some residual positive spherical aberration after pIOL implantation increased the depth of focus with excellent CDVA, providing a possible pIOL design for young presbyopic patients. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Visual features underlying perceived brightness as revealed by classification images.

    Directory of Open Access Journals (Sweden)

    Ilmari Kurki

    Full Text Available Along with physical luminance, the perceived brightness is known to depend on the spatial structure of the stimulus. Often it is assumed that neural computation of the brightness is based on the analysis of luminance borders of the stimulus. However, this has not been tested directly. We introduce a new variant of the psychophysical reverse-correlation or classification image method to estimate and localize the physical features of the stimuli which correlate with the perceived brightness, using a brightness-matching task. We derive classification images for the illusory Craik-O'Brien-Cornsweet stimulus and a "real" uniform step stimulus. For both stimuli, classification images reveal a positive peak at the stimulus border, along with a negative peak at the background, but are flat at the center of the stimulus, suggesting that brightness is determined solely by the border information. Features in the perceptually completed area in the Craik-O'Brien-Cornsweet do not contribute to its brightness, nor could we see low-frequency boosting, which has been offered as an explanation for the illusion. Tuning of the classification image profiles changes remarkably little with stimulus size. This supports the idea that only certain spatial scales are used for computing the brightness of a surface.

  19. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  20. High-speed CuBr brightness amplifier beam profile (United States)

    Evtushenko, G. S.; Torgaev, S. N.; Trigub, M. V.; Shiyanov, D. V.; Evtushenko, T. G.; Kulagin, A. E.


    This paper addresses the experimental study of the beam profile of the CuBr brightness amplifier operating at a wide range of pulse repetition frequencies. The use of a medium-size gas discharge tube (2 cm) ensures the operation of the brightness amplifier both at typical PRFs (520 kHz) and at higher PRFs (up to 100 kHz), either with or without HBr additive. The effect of the active additive on the beam profile is demonstrated. The testing results on kinetic modeling of radial processes in the laser (brightness amplifier) plasma are also discussed.

  1. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn (United States)

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; hide


    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.

  2. Volumetric optical coherence microscopy enabled by aberrated optics (Conference Presentation) (United States)

    Mulligan, Jeffrey A.; Liu, Siyang; Adie, Steven G.


    Optical coherence microscopy (OCM) is an interferometric imaging technique that enables high resolution, non-invasive imaging of 3D cell cultures and biological tissues. Volumetric imaging with OCM suffers a trade-off between high transverse resolution and poor depth-of-field resulting from defocus, optical aberrations, and reduced signal collection away from the focal plane. While defocus and aberrations can be compensated with computational methods such as interferometric synthetic aperture microscopy (ISAM) or computational adaptive optics (CAO), reduced signal collection must be physically addressed through optical hardware. Axial scanning of the focus is one approach, but comes at the cost of longer acquisition times, larger datasets, and greater image reconstruction times. Given the capabilities of CAO to compensate for general phase aberrations, we present an alternative method to address the signal collection problem without axial scanning by using intentionally aberrated optical hardware. We demonstrate the use of an astigmatic spectral domain (SD-)OCM imaging system to enable single-acquisition volumetric OCM in 3D cell culture over an extended depth range, compared to a non-aberrated SD-OCM system. The transverse resolution of the non-aberrated and astigmatic imaging systems after application of CAO were 2 um and 2.2 um, respectively. The depth-range of effective signal collection about the nominal focal plane was increased from 100 um in the non-aberrated system to over 300 um in the astigmatic system, extending the range over which useful data may be acquired in a single OCM dataset. We anticipate that this method will enable high-throughput cellular-resolution imaging of dynamic biological systems over extended volumes.

  3. Sixth-order wave aberration theory of ultrawide-angle optical systems. (United States)

    Lu, Lijun; Cao, Yiqing


    In this paper, we develop sixth-order wave aberration theory of ultrawide-angle optical systems like fisheye lenses. Based on the concept and approach to develop wave aberration theory of plane-symmetric optical systems, we first derive the sixth-order intrinsic wave aberrations and the fifth-order ray aberrations; second, we present a method to calculate the pupil aberration of such kind of optical systems to develop the extrinsic aberrations; third, the relation of aperture-ray coordinates between adjacent optical surfaces is fitted with the second-order polynomial to improve the calculation accuracy of the wave aberrations of a fisheye lens with a large acceptance aperture. Finally, the resultant aberration expressions are applied to calculate the aberrations of two design examples of fisheye lenses; the calculation results are compared with the ray-tracing ones with Zemax software to validate the aberration expressions.

  4. Identifying Bright X-Ray Beasts (United States)

    Kohler, Susanna


    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  5. Millimeter-wave Imaging Radiometer Brightness Temperatures, Wakasa Bay, Japan (United States)

    National Aeronautics and Space Administration — This data set includes calibrated brightness temperatures measured over Wakasa Bay in the Sea of Japan in January and February 2003. The MIR was carried on a...

  6. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2 (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  7. SMEX03 SSM/I Brightness Temperature Data, Alabama (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  8. Binocular Coordination in Reading When Changing Background Brightness

    Directory of Open Access Journals (Sweden)

    Köpsel Anne


    Full Text Available Contradicting results concerning binocular coordination in reading have been reported: Liversedge et al. (2006 reported a dominance of uncrossed fixations, whereas Nuthmann and Kliegl (2009 observed more crossed fixations in reading. Based on both earlier and continuing studies, we conducted a reading experiment involving varying brightness of background and font. Calibration was performed using Gabor patches presented on grey background. During the experimental session, text had to be read either on dark, bright, or grey background. The data corroborates former results that showed a predominance of uncrossed fixations when reading on dark background, as well as those showing a predominance of crossed fixations, when reading on bright background. Besides these systematic shifts, the new results show an increase in unsystematic variability when changing the overall brightness from calibration to test. The origins of the effects need to be clarified in future research.

  9. CLPX-Satellite: AVHRR/HRPT Brightness Temperatures and Reflectances (United States)

    National Aeronautics and Space Administration — This data set includes AVHRR/HRPT (Advanced Very High Resolution Radiometer/High Resolution Picture Transmission) brightness temperatures and reflectances over the...

  10. SMEX03 SSM/I Brightness Temperature Data, Brazil (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  11. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project (United States)

    National Aeronautics and Space Administration — The focus of the proposed effort is maximizing the brightness of fiber coupled laser diode pump sources at a minimum cost. The specific innovation proposed is to...

  12. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures (United States)

    National Aeronautics and Space Administration — NSIDC produces daily gridded brightness temperature data from orbital swath data generated by the Special Sensor Microwave/Imager (SSM/I) aboard the Defense...


    National Aeronautics and Space Administration — This volume contains the archive of Lunar brightness temperature data derived from images acquired by the Clementine Long Wavelength Infrared (LWIR) camera. The LWIR...

  14. SMEX02 SSM/I Brightness Temperature Data, Iowa (United States)

    National Aeronautics and Space Administration — The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometric system. Data are brightness...

  15. CLASIC07 PALS Brightness Temperature Data V001 (United States)

    National Aeronautics and Space Administration — This data set contains brightness temperature data obtained by the Passive Active L-band System (PALS) microwave aircraft radiometer instrument as part of the Cloud...

  16. Operational Bright-Band Snow Level Detection Using Doppler Radar (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  17. Visible Color and Photometry of Bright Materials on Vesta (United States)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.


    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  18. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics. (United States)

    Sabesan, Ramkumar; Barbot, Antoine; Yoon, Geunyoung


    Highly aberrated keratoconic (KC) eyes do not elicit the expected visual advantage from customized optical corrections. This is attributed to the neural insensitivity arising from chronic visual experience with poor retinal image quality, dominated by low spatial frequencies. The goal of this study was to investigate if targeted perceptual learning with adaptive optics (AO) can stimulate neural plasticity in these highly aberrated eyes. The worse eye of 2 KC subjects was trained in a contrast threshold test under AO correction. Prior to training, tumbling 'E' visual acuity and contrast sensitivity at 4, 8, 12, 16, 20, 24 and 28 c/deg were measured in both the trained and untrained eyes of each subject with their routine prescription and with AO correction for a 6mm pupil. The high spatial frequency requiring 50% contrast for detection with AO correction was picked as the training frequency. Subjects were required to train on a contrast detection test with AO correction for 1h for 5 consecutive days. During each training session, threshold contrast measurement at the training frequency with AO was conducted. Pre-training measures were repeated after the 5 training sessions in both eyes (i.e., post-training). After training, contrast sensitivity under AO correction improved on average across spatial frequency by a factor of 1.91 (range: 1.77-2.04) and 1.75 (1.22-2.34) for the two subjects. This improvement in contrast sensitivity transferred to visual acuity with the two subjects improving by 1.5 and 1.3 lines respectively with AO following training. One of the two subjects denoted an interocular transfer of training and an improvement in performance with their routine prescription post-training. This training-induced visual benefit demonstrates the potential of AO as a tool for neural rehabilitation in patients with abnormal corneas. Moreover, it reveals a sufficient degree of neural plasticity in normally developed adults who have a long history of abnormal visual

  19. The Etiology of Presbyopia, Contributing Factors, and Future Correction Methods (United States)

    Hickenbotham, Adam Lyle

    Presbyopia has been a complicated problem for clinicians and researchers for centuries. Defining what constitutes presbyopia and what are its primary causes has long been a struggle for the vision and scientific community. Although presbyopia is a normal aging process of the eye, the continuous and gradual loss of accommodation is often dreaded and feared. If presbyopia were to be considered a disease, its global burden would be enormous as it affects more than a billion people worldwide. In this dissertation, I explore factors associated with presbyopia and develop a model for explaining the onset of presbyopia. In this model, the onset of presbyopia is associated primarily with three factors; depth of focus, focusing ability (accommodation), and habitual reading (or task) distance. If any of these three factors could be altered sufficiently, the onset of presbyopia could be delayed or prevented. Based on this model, I then examine possible optical methods that would be effective in correcting for presbyopia by expanding depth of focus. Two methods that have been show to be effective at expanding depth of focus include utilizing a small pupil aperture or generating higher order aberrations, particularly spherical aberration. I compare these two optical methods through the use of simulated designs, monitor testing, and visual performance metrics and then apply them in subjects through an adaptive optics system that corrects aberrations through a wavefront aberrometer and deformable mirror. I then summarize my findings and speculate about the future of presbyopia correction.

  20. Synthesis and functionalization of a triaryldiamine-base photoconductive/photorefractive composite, and its application to aberrated image restoration (United States)

    Liang, Yichen

    Organic phoorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe (SQCdSe). Due to the charge-transporting capability of STPD, the composites photosensitized with STPD-capped QCdSe exhibited superior performance relative to composites employing more traditional photosensitizers (such as fullerene C60 and trioctylphosphine-capped QCdSe), with figures-of-merit including photoconductivities in excess of 60 pS/cm, two-beam coupling gain coefficients in excess of 110 cm-1, and PR response time of less than 30 ms. In addition, the ability of TPD-based PR composites to correct aberrations associated with a laser beam was described. Here, a severely aberrated laser beam was able to be restored to a nearly unaberrated condition through the PR process, and the potential of this technique for practical applications was well explained. Based on the current experimental geometry, a PR response time of 0.5 s was observed, which is the fastest PR response time reported for a PR composite operating under experimental conditions designed for the correction of optical aberrations.

  1. The Photometric Brightness Variation of Geostationary Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Haingja Seo


    Full Text Available Photometric observation is one of the most effective techniques for determining the physical characteristics of unknown space objects and space debris. In this research, we examine the change in brightness of the Communication, Ocean, Meteorological Satellite-1 (COMS-1 Geostationary Orbit Satellite (GEO, and compare it to our estimate model. First, we calculate the maximum brightness time using our calculation method and then derive the light curve shape using our rendering model. The maximum brightness is then calculated using the induced equation from Pogson's formula. For a comparison with our estimation, we carried out photometric observation using an optical telescope. The variation in brightness and the shape of the light curve are similar to the calculations achieved using our model, but the maximum brightness shows a slightly different value from our calculation result depending on the input parameters. This paper examines the photometric phenomenon of the variation in brightness of a GEO satellite, and the implementation of our approach to understanding the characteristics of space objects.

  2. Global View of the Bright Material on Vesta (United States)

    Zambon, F.; DeSanctis, C.; Schroeder, S.; Tosi, F.; Li, J.-Y.; Longobardo, A.; Ammannito, E.; Blewett, D. T.; Palomba, E.; Capaccioni, F.; hide


    At 525 km in mean diameter, Vesta is the second-most massive and one of the brightest asteroids of the main-belt. Here we give a global view of the bright material (BM) units on Vesta. We classified the BMs according to the normal visual albedo. The global albedo map of Vesta allows to be divided the surface into three principal types of terrains: bright regions, dark regions and intermediate regions. The distribution of bright regions is not uniform. The mid-southern latitudes contain the most bright areas, while the northern hemisphere is poor in bright regions. The analysis of the spectral parameters and the normal visual albedo show a dependence between albedo and the strength (depth) of ferrous iron absorption bands, strong bands correspond with high albedo units. Vesta's average albedo is 0.38, but there are bright material whose albedo can exceed 0.50. Only the E-Type asteroids have albedos comparable to those of the BMs on Vesta. The Dawn mission observed a large fraction of Vesta's surface at high spatial resolution, allowing a detailed study of the morphology and mineralogy of it. In particular, reflectance spectra provided by the Visible and InfraRed spectrometer (VIR), confirmed that Vesta's mineralogy is dominated by pyroxenes. All Vesta spectra show two strong absorption bands at approx 0.9 and 1.9 micron, typical of the pyroxenes and associated with the howardite, eucrite and diogenite (HED) meteorites.

  3. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator (United States)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.


    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  4. Semen quality in men with Y chromosome aberrations. (United States)

    Antonelli, A; Marcucci, L; Elli, R; Tanzi, N; Paoli, D; Radicioni, A; Lombardo, F; Lenzi, A; Gandini, L


    Infertile males sometimes bear structurally balanced chromosome aberrations, such as translocations and inversions, which involve both autosomes and sex chromosomes. The aim of this study was to evaluate genotype-phenotype correlations in a sample of infertile men with various types of Y chromosome abnormalities. In particular, we examined the effect of (i) balanced structural aberrations such as translocations between sex chromosomes and autosomes; (ii) unbalanced structural aberrations such as deletions or isodicentrics, both [idic(Yp)] and [idic(Yq)]. We studied 13 subjects bearing Y chromosome aberrations. Each patient underwent seminal fluid examination, andrological inspection, hormone study, testicular ultrasound, conventional and molecular cytogenetic analysis and study of Y chromosome microdeletions. Comparison of genotype and sperm phenotype in infertile patients with various Y chromosome aberrations revealed the key role of meiotic pairing defects in arresting spermatogenesis, both in the presence and in the absence of azoospermic factor microdeletions and cell mosaicism. The failure of meiosis and, in consequence, spermatogenesis may be a result of the failure to inactivate the X chromosome in the meiotic prophase, which is necessary for normal male spermatogenesis to take place. © 2010 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  5. Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers

    Directory of Open Access Journals (Sweden)

    Chen Shen


    Full Text Available In this paper, we investigate a type of anisotropic, acoustic complementary metamaterial (CMM and its application in restoring acoustic fields distorted by aberrating layers. The proposed quasi two-dimensional (2D, nonresonant CMM consists of unit cells formed by membranes and side branches with open ends. Simultaneously, anisotropic and negative density is achieved by assigning membranes facing each direction (x and y directions different thicknesses, while the compressibility is tuned by the side branches. Numerical examples demonstrate that the CMM, when placed adjacent to a strongly aberrating layer, could acoustically cancel out that aberrating layer. This leads to dramatically reduced acoustic field distortion and enhanced sound transmission, therefore virtually removing the layer in a noninvasive manner. In the example where a focused beam is studied, using the CMM, the acoustic intensity at the focus is increased from 28% to 88% of the intensity in the control case (in the absence of the aberrating layer and the CMM. The proposed acoustic CMM has a wide realm of potential applications, such as cloaking, all-angle antireflection layers, ultrasound imaging, detection, and treatment through aberrating layers.

  6. Primary chromatic aberration elimination via optimization work with genetic algorithm (United States)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao


    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  7. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines. (United States)

    George, Kerry A; Hada, Megumi; Jackson, Lori J; Elliott, Todd; Kawata, Tetsuya; Pluth, Janice M; Cucinotta, Francis A


    We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (gamma rays and high-energy iron ions (LET = 151 keV/microm). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for gamma rays compared to iron nuclei. For gamma-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose-response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures.

  8. Designing multifocal corneal models to correct presbyopia by laser ablation (United States)

    Alarcón, Aixa; Anera, Rosario G.; Del Barco, Luis Jiménez; Jiménez, José R.


    Two multifocal corneal models and an aspheric model designed to correct presbyopia by corneal photoablation were evaluated. The design of each model was optimized to achieve the best visual quality possible for both near and distance vision. In addition, we evaluated the effect of myosis and pupil decentration on visual quality. The corrected model with the central zone for near vision provides better results since it requires less ablated corneal surface area, permits higher addition values, presents stabler visual quality with pupil-size variations and lower high-order aberrations.

  9. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. (United States)

    Alió, Jorge L; Piñero, David P; Alesón, Alicia; Teus, Miguel A; Barraquer, Rafael I; Murta, Joaquim; Maldonado, Miguel J; Castro de Luna, Gracia; Gutiérrez, Ramón; Villa, César; Uceda-Montanes, Antonio


    To evaluate the clinical features of keratoconus taking into consideration anterior corneal aberrations, internal astigmatism, and corneal biomechanical properties and to define a new grading system based on visual limitation. Vissum Corporation, Alicante, Spain. Retrospective case series. This multicenter study comprised consecutive keratoconic eyes with no previous ocular surgery or active ocular disease. Visual, refractive, corneal topography, and pachymetry outcomes were analyzed. Internal astigmatism was calculated by vectorial analysis. Corneal aberrations and corneal biomechanics characterized by the Ocular Response Analyzer were evaluated in some eyes. Correlations between clinical data and a linear multiple regression analysis for characterizing the relationship between visual limitation and objective clinical data were performed. This study comprised 776 eyes of 507 patients (age range 11 to 79 years) The mean keratometry (K) correlated significantly with logMAR corrected distance visual acuity (CDVA) (r = 0.591, Paberrations between 4 groups differentiated by visual limitation (Pcorneas and allowed development of a new grading system for this condition. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye. (United States)

    Atchison, D A; Smith, G; Waterworth, M D


    Simple formulas based on reduced eyes have been developed to predict the variation in longitudinal chromatic aberration with variation in ametropia or accommodation. Two formulas were developed, one for axial ametropia and one for refractive ametropia. The latter also served as a model for accommodation. The results using the formulas are in close agreement with results obtained using raytracing through more sophisticated models. Combining the results of different methods gives the following predictions of change in chromatic difference of focus, between wavelengths of 400 and 700 nm, with change in each diopter of refractive error or accommodation: axial ametropia 0.012 to 0.017 D (0.6 to 0.9%), refractive ametropia 0.05 D (2.2 to 2.4%), and accommodation 0.04 to 0.05 D (2.1 to 2.6%). The chromatic aberration effects of correcting lenses with low dispersion are intermediate in effect and opposite in sign to the effects of corresponding degrees of axial ametropia and refractive ametropia.

  11. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)


    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  12. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy


    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  13. Experimental demonstration of a light beam with superior aberration resilience. (United States)

    Gaffar, Md; Kalita, Ranjan; Boruah, Bosanta R


    In this Letter, we present the experimental results of a focused light beam that exhibits superior resilience to various common monochromatic aberrations. The light beam, obtained by applying a helical phase mask on an azimuthally polarized beam, has an Airy pattern that is like a circularly symmetric focal spot. Our results show that the beam in the presence of aberrations has better performance in terms of the Strehl ratio and the effect on the radius of the encircled energy relative to a normal linearly polarized or circularly polarized beam. Our experimental results agree well with the corresponding theoretical results.

  14. [Prenatal diagnostics of chromosomal aberrations Czech Republic: 1994-2007]. (United States)

    Gregor, V; Sípek, A; Sípek, A; Horácek, J '; Langhammer, P; Petrzílková, L; Calda, P


    An analysis of prenatal diagnostics efficiency of selected types of chromosomal aberrations in the Czech Republic in 2007. Update of 1994-2007 data according to particular selected diagnoses. Retrospective epidemiological analysis of pre- and postnatal chromosomal aberrations diagnostics and its efficiency. Data on pre- and postnatally diagnosed birth defects in the Czech Republic during 1994-2007 were used. Data on prenatally diagnosed birth defects (and for terminated pregnancies) were collected from particular departments of prenatal diagnostics, medical genetics and ultrasound diagnostics in the Czech Republic, data on birth defects in births from the National Birth Defects Register (Institute for Health Information and Statistics). Total numbers over the period under the study, mean incidences of selected types of chromosomal aberrations and mean prenatal diagnostics efficiencies were analyzed. Following chromosomal aberrations were studied: Down, Edwards, Patau, Turner and Klinefelter syndromes and syndromes 47,XXX and 47,XYY. A relative proportion of Down, Edwards and Patau syndromes as well as other autosomal and gonosomal aberration is presented in figures. Recently, trisomies 13, 18 and 21 present around 70% of all chromosomal aberrations in selectively aborted fetuses, in other pregnancies, "other chromosomal aberrations" category (mostly balanced reciprocal translocations and inversions) present more than 2/3 of all diagnoses. During the period under the study, following total numbers, mean relative incidences (per 10,000 live births, in brackets) and mean prenatal diagnostics efficiency (in %) were found in following chromosomal syndromes: Down syndrome 2,244 (16.58) and 63.37%, Edwards syndrome 521 (3.85) and 79.93%, Patau syndrome 201 (1.49) and 68.87%, Turner syndrome 380 (2.81) and 79.89%, 47,XXX syndrome 61 (0.45) and 59.74%, Klinefelter syndrome 163 (1.20) and 73.65% and 47,XYY syndrome 22 (0.16) and 54.76%. The study gives updated results of

  15. Aberration Theory - A Spectrum Of Design Techniques For The Perplexed (United States)

    Shafer, David


    The early medieval scholar Maimonides wrote a famous book called "Guide for the Perplexed", which explained various thorny philosophical and religious questions for the benefit of the puzzled novice. I wish I had had such a person to guide me when I first started a career in lens design. There the novice is often struck by how much of an "art" this endeavor is. The best bet, for a beginner with no experience, should be to turn to optical aberration theory - which, in principle, should explain much of what goes into designing an optical system. Unfortunately, this subject is usually presented in the form of proofs and derivations, with little time spent on the practical implications of aberration theory. Furthermore, a new generation of lens designers, who grew up with the computer, often consider aberration theory as an unnecessary relic from the past. My career, by contrast, is based on the conviction that using the results of aberration theory is the only intelligent way to design optical systems. Computers are an invaluable aide, but we must, ultimately, bite the bullet and think. Along these lines, I have given several papers over the last few years which deal directly with the philosophy of lens design; the kind of guides for the perplexed that I wished I had had from the start. These papers include: "Lens design on a desert island - A simple method of optical design", "A modular method of optical design", "Optical design with air lenses", "Optical design with 'phantom' aspherics", "Optical design methods: your head as a personal computer", "Aberration theory and the meaning of life", and a paper at Innsbruck - "Some interesting correspondences in aberration theory". In all cases, the emphasis is on using your head to think, and the computer to help you out with the numerical work and the "fine-tuning" of a design. To hope that the computer will do the thinking for you is folly. Solutions gained by this route rarely equal the results of an experienced and

  16. Efficacy, safety, predictability, aberrations and corneal biomechnical parameters after SMILE and FLEx: Meta-analysis (United States)

    Ma, Jing; Cao, Nan-Jue; Xia, Li-Kun


    AIM To identify possible differences of efficacy, safety, predictability, higher-order aberrations and corneal biomechnical parameters after small-incision lenticule extraction (SMILE) and femtosecond lenticule extraction (FLEx). METHODS A systematic literature retrieval was conducted in Medline, Embase and the Cochrane Library, up to October, 2015. The included studies were subject to a Meta-analysis. Comparison between SMILE and FLEx was measured as pooled odds ratio (OR) or weighted mean differences (WMD). Of 95% confidence intervals (CI) were used to analyze data. RESULTS A total of seven studies were included. Firstly, there were no differences in uncorrected distance visual acuity (UDVA) 20/20 or better (OR, 1.37; 95% CI, 0.69 to 2.69; P=0.37) and logMAR UDVA (WMD, -0.02; 95% CI, -0.05 to 0.01; P=0.17) after SMILE versus FLEx. We found no differences in corrected distance visual acuity (CDVA) unchanged (OR, 0.98; 95% CI, 0.46 to 2.11; P=0.97) and logMAR CDVA (WMD, -0.00; 95% CI, -0.01 to 0.01; P=0.90) either. Secondly, we found no differences in refraction within ±1.00 D (OR, 0.98; 95% CI, 0.13 to 7.28; P=0.99) and ±0.50 D (OR, 1.62; 95% CI, 0.62 to 4.28; P=0.33) of target postoperatively. Thirdly, for higher-order aberrations, we found no differences in the total higher-order aberrations (WMD, -0.04; 95% CI, -0.09 to 0.01; P=0.14), coma (WMD, -0.04; 95% CI, -0.09 to 0.01; P=0.11), spherical (WMD, 0.01; 95% CI, -0.02 to 0.03; P=0.60) and trefoil (WMD, -0.00; 95% CI, -0.04 to 0.03; P=0.76). Furthermore, for corneal biomechanical parameters, we also found no differences (WMD, 0.08; 95% CI, -0.17 to 0.33; P=0.54) after SMILE versus FLEx. CONCLUSION There are no statistically differences in efficacy, safety, predictability, higher-order aberrations and corneal biomechnical parameters postoperative between SMILE and FLEx. PMID:27275436

  17. Corneal Densitometry and Higher Order Aberrations After Bowman Layer Transplantation: 1-Year Results. (United States)

    Luceri, Salvatore; Parker, Jack; Dapena, Isabel; Baydoun, Lamis; Oellerich, Silke; van Dijk, Korine; Melles, Gerrit R J


    To evaluate corneal densitometry and higher order aberrations (HOAs) up to 1 year after Bowman layer (BL) transplantation. This was a retrospective study carried out at a tertiary referral center. Fifteen eyes of 14 patients who underwent BL transplantation for advanced keratoconus and had at least 1 year of follow-up were examined before BL transplantation and postoperatively at 1 day, 1 week, and 1, 3, 6, and 12 months. Corrected distance visual acuity (CDVA) with spectacles and contact lenses, anterior and posterior HOAs, and corneal densitometry were analyzed. One year after surgery, average logarithm of the minimum angle of resolution of spectacle-CDVA changed from 1.35 (±0.46) preoperatively to 0.96 (±0.32, P cornea, with a peak 1 month after surgery (P transplantation, whereas corneal backscattering increased, mostly in the central and posterior layers, where the graft has been placed. Changes in HOAs and corneal backscattering did not correlate with CDVA.

  18. PROFFIT: Analysis of X-ray surface-brightness profiles (United States)

    Eckert, Dominique


    PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

  19. A neurodynamical model of brightness induction in v1.

    Directory of Open Access Journals (Sweden)

    Olivier Penacchio

    Full Text Available Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.

  20. CTE Corrections for WFPC2 and ACS (United States)

    Dolphin, Andrew


    The error budget for optical broadband photometry is dominated by three factors: CTE corrections, long-short anomaly corrections, and photometric zero points. Questions about the dependencies of the CTE have largely been resolved, and my CTE corrections have been included in the WFPC2 handbook and tutorial. What remains to be done is the determination of the "final" CTE correction at the end of the WFPC2 mission, which will increase the accuracy of photometry obtained in the final few cycles. The long-short anomaly is still the subject of much debate, as it remains unclear whethere or not this effect is real and, if so, what its size and nature is. Photometric zero points have likewise varied by over 0.05 magnitudes in the literature, and will likely remain unresolved until the long-short anomaly is addressed {given that most calibration exposures are short while most science exposures are long}. It is also becoming apparent that similar issues will affect the accuracy of ACS photometry, and consequently that an ACS CTE study analogous to my WFPC2 work would significantly improve the calibration of ACS. I therefore propose to use archival WFPC2 images of omega Cen and ACS images of 47 Tuc to continue my HST calibration work. I also propose to begin work on "next-generation" CTE corrections, in which corrections are applied to the images based on accurate charge-trapping models rather than to the reduced photometry. This technique will allow for more accurate CTE corrections in certain cases {such as a star above a bright star or on a variable background}, improved PSF-fitting photometry of faint stars, and image restoration for accurate analysis of extended objects.

  1. NWS Corrections to Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...

  2. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  3. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)


    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  4. Observation bias correction with an ensemble Kalman filter


    Fertig, Elana J.; Baek, Seung-Jong; Hunt, Brian R.; Ott, Edward; Szunyogh, Istvan; Aravéquia, José A.; Kalnay, Eugenia; Li, Hong; Liu, Junjie


    This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data assimilation procedure. We illustrate our approach by applying it to a particular ensemble scheme—the local ensemble transform Kalman filter (LETKF)—to assimilate simulated biased atmospheric infrared sounder brightness temperature observations from 15 channels ...

  5. Bright light therapy of subsyndromal seasonal affective disorder in the workplace: morning vs. afternoon exposure. (United States)

    Avery, D H; Kizer, D; Bolte, M A; Hellekson, C


    Bright light therapy in seasonal affective disorder (SAD) has been studied extensively. However, little attention has been given to subsyndromal seasonal affective disorder (SSAD) or the use of bright light in the workplace. Many patients using bright light boxes complain of the inconvenience of use. Much of this inconvenience involves the often-recommended early timing of the bright light therapy. Patients, who already have difficulty awakening, often have difficulty using the bright light therapy soon after awakening before going to work. If bright light could be used effectively in the workplace, the treatment would be more convenient; the improved convenience would probably improve compliance. In this study, we studied the effectiveness of bright light therapy in subjects with SSAD in the workplace, comparing morning bright light with afternoon bright light. Morning and afternoon bright light treatment (2500 lux) were compared in 30 subsyndromal seasonal affective disorder patients using the bright light therapy in the workplace. Hamilton Depression Ratings and subjective measures of mood, energy, alertness and productivity were assessed before and after 2 weeks of light therapy. Both morning and evening bright light significantly decreased the depression ratings and improved the subjective mood, energy, alertness and productivity scores. However, there were no significant differences between the two times of administration of the bright light treatment. Both bright light treatments were well tolerated. Bright light given in the workplace improves subjective ratings of mood, energy, alertness and productivity in SSAD subjects. Morning and afternoon bright lights resulted in similar levels of improvement.

  6. Thermal lensing measurement from the coefficient of defocus aberration

    CSIR Research Space (South Africa)

    Bell, Teboho


    Full Text Available We measured the thermally induced lens from the coefficient of defocus aberration using a Shack-Hartmann wavefront sensor (SHWFS). As a calibration technique, we infer the focal length of standard lenses probed by a collimated Gaussian beam...

  7. Expressions for third-order aberration theory for holographic images

    Indian Academy of Sciences (India)

    Expressions for third-order aberration theory for holographic images. S K Tripathy S Ananda Rao. Brief Reports Volume 60 Issue 1 January 2003 pp 151-157 ... Author Affiliations. S K Tripathy1 S Ananda Rao1. Department of Physics, Jagannath Institute for Technology and Management, Parlakhemundi 761 200, India ...

  8. Intrachanges as part of complex chromosome-type exchange aberrations

    NARCIS (Netherlands)

    Boei, JJWA; Vermeulen, S; Moser, J; Mullenders, LHF; Natarajan, AT


    The chromosome-type exchange aberrations induced by ionizing radiation during the G(0)/G(1) phase of the cell cycle are believed to be the result of illegitimate rejoining of chromosome breaks. From numerous studies using chromosome painting, it has emerged that even after a moderate dose of

  9. Aberrant Right Subclavian Artery: A Life‑threatening Anomaly that ...

    African Journals Online (AJOL)

    Lusoria artery or aberrant right subclavian artery (ARSA) is a rare anatomical variation of the origin of the right subclavian artery. Essentially, right subclavian artery originates from the brachiocephalic artery, but in 0.4-1.8% of the general population it may arise directly from the aortic arch distal to the left subclavian artery.

  10. Aberrant behavior of preschool children: Evaluation of questionnaire

    Directory of Open Access Journals (Sweden)

    Fajgelj Stanislav


    Full Text Available In the study metric characteristics of children aberrant behavior questionnaire were analyzed. The analysis was performed on the sample of 1.165 children, aged 4-7, in preschool institutions in several towns of Vojvodina. The questionnaire contained 36 items of the Likert-type scale and was filled in by one parent of each child. The authors examined main metric characteristics of the complete questionnaire, as well as individual items under the Rasche’s measurement model. Generally, parents seldom notice aberrant behavior in their children. Most frequently they notice stubbornness, while very rarely torturing of animals. The item discrimination, on the whole, was found satisfying. The reliability of the questionnaire is 0.84., and all indicators of misfit are within satisfactory ranges. According to differential functioning of the items, the authors found gender and age specificities of parents’ evaluation of aberrant behavior of their children. Parents often notice stubbornness and moldiness in girls, and aggression in boys. According to the parent’s observations, younger children are characterized by nail nibbling, ticklishness, and fearfulness, whereas older children show a tendency to force their way by crying, waywardness and bed-wetting. By means of factor analysis of the items, three principal facets of aberrant behavior were determined: overindulgence, shyness and quarrelsomeness. Cross validation (hold out showed that these three facets were robust in relation to the selection of the sample.

  11. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer

    DEFF Research Database (Denmark)

    Bonassi, Stefano; Norppa, Hannu; Ceppi, Marcello


    Mechanistic evidence linking chromosomal aberration (CA) to early stages of cancer has been recently supported by the results of epidemiological studies that associated CA frequency in peripheral lymphocytes of healthy individuals to future cancer incidence. To overcome the limitations of single...

  12. Thermally induced lensing determination from the coefficient of defocus aberration

    CSIR Research Space (South Africa)

    Bell, Teboho


    Full Text Available The effects of a temperature gradient in a laser crystal in an end-pumped configuration in a solid-state laser resonator results in thermally induced aberrations. Of particular interest we measure the thermally induced lens from the coefficient...

  13. Axial chromatic aberration of the human eye: frequency or wavelength? (United States)

    Pease, P L; Barbeito, R


    The axial chromatic aberration of the human eye is nearly perfectly described by a linear function when expressed in terms of frequency rather than wavelength. Since linear functions are simple to work with and more readily understood, there are advantages for the expression of these data in terms of frequency.

  14. Measurement of low-order aberrations with an autostigmatic microscope (United States)

    Kuhn, William P.


    The addition of a piezo-electric focusing stage and phase retrieval algorithms to a compact, adaptable autostigmatic microscope provides for both improved focus sensitivity during optical system alignment as well as the ability to measure low-order aberrations for system qualification. A description of the instrument and initial results are reported.

  15. Municipal landfill leachates induced chromosome aberrations in rat ...

    African Journals Online (AJOL)

    This study examined the potential mutagenic effects of raw and simulated leachates from Olushosun municipal solid waste (MSW) landfill using rat bone marrow chromosome aberration assay. Raw leachate obtained directly from the landfill and simulated leachate obtained via the American Society for Testing and Materials ...

  16. Municipal landfill leachates induced chromosome aberrations in rat ...

    African Journals Online (AJOL)



    Nov 16, 2006 ... leachate induced chromosome aberration in rat. Other reports on leachate induced genotoxicity in Allium cepa. (Cabrera and Rodriguez, 1999; Bakare and Wale-. Adeyemo, 2004; Chandra et al., 2005.), Vicia faba. (Radetski et al., 2004; Sang and Li, 2004), Drosophila melanogaster (Siddique et al., 2005) ...

  17. Aberrant Pattern of Scanning in Prosopagnosia Reflects Impaired Face Processing (United States)

    Stephan, Blossom Christa Maree; Caine, Diana


    Visual scanpath recording was used to investigate the information processing strategies used by a prosopagnosic patient, SC, when viewing faces. Compared to controls, SC showed an aberrant pattern of scanning, directing attention away from the internal configuration of facial features (eyes, nose) towards peripheral regions (hair, forehead) of the…

  18. Bright and Not-So-Bright Prospects for Women in Physics in China-Beijing (United States)

    Wu, Ling-An; Yang, Zhongqin; Ma, Wanyun


    Science in China-Beijing is enjoying a healthy increase in funding year by year, so the prospects for physicists are also bright. However, employment discrimination against women, formerly unthinkable, is becoming more and more explicit as the country evolves toward a market economy. Some recruitment notices bluntly state that only men will be considered, or impose restrictions upon potential female candidates. Female associate professors in many institutions are forced to retire at age 55, compared with 60 for men. This double-pinching discrimination against both younger and older women threatens to lead to a "pincer" effect, more serious than the "scissors" effect. Indeed, the ratio of senior-level women physicists in general has dropped significantly in recent years in China. Ironically, the number of female students applying for graduate studies is on the rise, as it is becoming increasingly difficult for them to compete with men in the job market with just an undergraduate degree. The Chinese Physical Society has made certain efforts to promote the image of women physicists, but it will take time and effort to reverse the trend.

  19. High-brightness ultra-cold metastable neon-beam

    CERN Document Server

    Shimizu, Fujio


    This paper presents detailed characteristics of an ultra-cold bright metastable neon atomic beam which we have been using for atom-interferometric applications. The basis of the device is an atomic beam released from a magneto-optical trap (MOT) which is operated with a high intensity trapping laser, high magnetic quadrupole field, and large laser detuining. Mainly due to the complex structure of three dimensional magnetic field and laser beams, a bright small spot of atoms is formed near the center of the quadrupole magnetic field under an appropriate operating condition. We obtained the minimum trap diameter of 50 micron meter, the atomic density nearly 10^{13}cm^{-3}, and the atomic temperature slightly less than the Doppler limited temperature of 200 micro-K. By releasing trapped atoms we obtained an bright cold atomic beam which is not far from the collision limited atomic density.

  20. A high brightness probe of polymer nanoparticles for biological imaging (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng


    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  1. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan


    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  2. On the relation between zenith sky brightness and horizontal illuminance (United States)

    Kocifaj, M.; Posch, Th.; Solano Lamphar, H. A.


    The effects of artificial light at night are an emergent research topic for astronomers, physicists, engineers and biologists around the world. This leads to a need for measurements of the night sky brightness (= diffuse luminance of the night sky) and nocturnal illuminance. Currently, the most sensitive light meters measure the zenith sky brightness in magV/arcsec2 or - less frequently - in cd m-2. However, the horizontal illuminance resulting only from the night sky is an important source of information that is difficult to obtain with common instruments. Here we present a set of approximations to convert the zenith luminance into horizontal illuminance. Three different approximations are presented for three idealized atmospheric conditions: homogeneous sky brightness, an isotropically scattering atmosphere and a turbid atmosphere. We also apply the resulting conversion formulae to experimental data on night sky luminance, obtained during the past three years.

  3. Corneal first-surface aberration analysis of the biomechanical effects of astigmatic keratotomy and a microkeratome cut after penetrating keratoplasty. (United States)

    Kohnen, Thomas; Bühren, Jens


    Astigmatic keratotomy (AK) was performed in a patient after penetrating keratoplasty (PKP) for keratoconus to reduce high post-PKP astigmatism. The procedure led to a significant decrease in astigmatism, but corneal higher-order aberrations (HOAs) increased. After PKP, the patient was scheduled for 2-step laser in situ keratomileusis (LASIK) to correct myopia and astigmatism. One day after the microkeratome cut, a decrease of -2.75 diopters in the spherical equivalent (SE) was noted. Although subjective manifest cylinder and corneal spherical aberrations were marginally affected, a marked decrease in coma and other HOAs could be observed. One month after the cut, the SE was unchanged. Excimer laser ablation was not performed as the patient was satisfied with the result and refused further treatment. This case shows that AK cuts can induce HOAs and a single microkeratome cut performed in corneal grafts can have strong biomechanical effects on lower-order aberrations and HOAs. If LASIK is planned after PKP, a 2-step approach is recommended to anticipate biomechanical effects and avoid overcorrection or undercorrection.

  4. Aberrant glycated haemoglobin (HbA1c) results leading to haemoglobinopathy diagnosis in four Belgian patients. (United States)

    Van Laer, C; Harteveld, C L; Pauwels, S; Desmet, K; Kieffer, D


    We report four cases in which haemoglobinopathy screening was triggered following aberrant HbA1c analysis. Either the HbA1c assay was unable to produce a quantifiable result or it showed the presence of an extra fraction and/or the result was discordant with the clinical context. In the reported four patients, all from Caucasian, Belgian descent, Hb analysis was performed using cation-exchange high performance liquid chromatography. If necessary, additional Hb electrophoresis was carried out to establish a preliminary (biochemical) diagnosis. Definitive diagnosis was obtained for every sample through DNA-analysis. Three patients were carriers of Hb J-Toronto and one of Hb Stanleyville-II. This report underlines the importance of correct interpretation of HbA1c results to avoid mismanagement of (diabetic) patients. Since neither the RBC indices, the clinical context, nor the ethnicity of these patients was suspicious for an underlying haemoglobinopathy, the aberrant HbA1c result was the only indicator for further investigation. Laboratory personnel and clinicians should be aware of the possibility of uncommon, sometimes clinically unsuspected, Hb variants to cause aberrant HbA1c values, even in populations with low prevalence for haemoglobinopathies. Further analysis should be prompted to obtain definitive diagnosis. Alternative methods for monitoring glycaemic control should be used.

  5. Effects of Bright Light Treatment on Psychomotor Speed in Athletes

    Directory of Open Access Journals (Sweden)

    Mikko Paavo Tulppo


    Full Text Available Purpose: A recent study suggests that transcranial brain targeted light treatment via ear canals may have physiological effects on brain function studied by functional magnetic resonance imaging (fMRI techniques in humans. We tested the hypothesis that bright light treatment could improve psychomotor speed in professional ice hockey players. Methods: Psychomotor speed tests with audio and visual warning signals were administered to a Finnish National Ice Hockey League team before and after 24 days of transcranial bright light or sham treatment. The treatments were given during seasonal darkness in the Oulu region (latitude 65 degrees north when the strain on the players was also very high (10 matches during 24 days. A daily 12-min dose of bright light or sham (n = 11 for both treatment was given every morning between 8–12 am at home with a transcranial bright light device. Mean reaction time and motor time were analyzed separately for both psychomotor tests. Analysis of variance for repeated measures adjusted for age was performed. Results: Time x group interaction for motor time with a visual warning signal was p = 0.024 after adjustment for age. In Bonferroni post-hoc analysis, motor time with a visual warning signal decreased in the bright light treatment group from 127 ± 43 to 94 ± 26 ms (p = 0.024 but did not change significantly in the sham group 121 ± 23 vs. 110 ± 32 ms (p = 0.308. Reaction time with a visual signal did not change in either group. Reaction or motor time with an audio warning signal did not change in either the treatment or sham group. Conclusion: Psychomotor speed, particularly motor time with a visual warning signal, improves after transcranial bright light treatment in professional ice-hockey players during the competition season in the dark time of the year.

  6. Bright solitons in non-equilibrium coherent quantum matter. (United States)

    Pinsker, F; Flayac, H


    We theoretically demonstrate a mechanism for bright soliton generation in spinor non-equilibrium Bose-Einstein condensates made of atoms or quasi-particles such as polaritons in semiconductor microcavities. We give analytical expressions for bright (half) solitons as minimizing functions of a generalized non-conservative Lagrangian elucidating the unique features of inter and intra-competition in non-equilibrium systems. The analytical results are supported by a detailed numerical analysis that further shows the rich soliton dynamics inferred by their instability and mutual cross-interactions.

  7. HSV Brightness Factor Matching for Gesture Recognition System


    Mokhtar M. Hasan; Pramod K. Mishra


    The main goal of gesture recognition research is to establish a system which can identify specific human gestures and use these identified gestures to be carried out by the machine, In this paper, we introduce a new method for gesture recognition that based on computing the local brightness for each block of the gesture image, the gesture image is divided into 25x25 blocks each of 5x5 block size, and we calculated the local brightness of each block, so, each gesture produces 25x25 features va...

  8. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.


    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  9. Optical quality for keratoconic eyes with conventional RGP lens and simulated, customised contact lens corrections: a comparison. (United States)

    Jinabhai, Amit; Neil Charman, W; O'Donnell, Clare; Radhakrishnan, Hema


    To compare monochromatic aberrations of keratoconic eyes when uncorrected, corrected with spherically-powered RGP (rigid gas-permeable) contact lenses and corrected using simulations of customised soft contact lenses for different magnitudes of rotation (up to 15°) and translation (up to 1mm) from their ideal position. The ocular aberrations of examples of mild, moderate and severe keratoconic eyes were measured when uncorrected and when wearing their habitual RGP lenses. Residual aberrations and point-spread functions of each eye were simulated using an ideal, customised soft contact lens (designed to neutralise higher-order aberrations, HOA) were calculated as a function of the angle of rotation of the lens from its ideal orientation, and its horizontal and vertical translation. In agreement with the results of other authors, the RGP lenses markedly reduced both lower-order aberrations and HOA for all three patients. When compared with the RGP lens corrections, the customised lens simulations only provided optical improvements if their movements were constrained within limits which appear to be difficult to achieve with current technologies. At the present time, customised contact lens corrections appear likely to offer, at best, only minor optical improvements over RGP lenses for patients with keratoconus. If made in soft materials, however, these lenses may be preferred by patients in term of comfort. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  10. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD


    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  11. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Källman Tiia


    Full Text Available Abstract Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS, are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals.

  12. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome (United States)

    Nieminen-von Wendt, Taina; Paavonen, Juulia E; Ylisaukko-Oja, Tero; Sarenius, Susan; Källman, Tiia; Järvelä, Irma; von Wendt, Lennart


    Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS), are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals. PMID:15826308

  13. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  14. Intracorneal Inlays for the Correction of Presbyopia. (United States)

    Binder, Perry S


    The current nonsurgical approaches for the correction of presbyopia are spectacles or contact lenses or the use of pharmaceuticals to create an artificial pupil and/or to stimulate residual accommodation. Refractive surgical procedures use a monovision approach and/or a multifocal corneal laser ablation with or without the induction of negative spherical aberration to improve near vision. More recently, new surgical approaches include intracorneal inlays. Inlay approaches include increasing corneal curvature alone, implanting a multifocal inlay, or by implanting a small aperture device that functions as a pinhole to restore unaided near and intermediate visual acuity. This review presents an analysis of the history and development of the various inlay approaches designed to improve presbyopia. Unlike other refractive surgical approaches, these newer techniques are removable. Each has its advantages and disadvantages.

  15. Long-term comparison of corneal aberration changes after laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser flap creation. (United States)

    Muñoz, Gonzalo; Albarrán-Diego, César; Ferrer-Blasco, Teresa; García-Lázaro, Santiago; Cerviño-Expósito, Alejandro


    To compute and compare visual acuity, refractive outcomes, and anterior corneal aberration changes after myopic laser in situ keratomileusis (LASIK) with flap creation by a mechanical microkeratome and by a femtosecond laser. Private practice refractive surgery center, Valencia, Spain. Comparative case series. Patients were assigned to have LASIK flap creation with a mechanical microkeratome (Carriazo-Barraquer) or a femtosecond laser (IntraLase). The Visx S2 excimer laser was used for myopic ablation in all cases. Main outcome measures included uncorrected and corrected distance visual acuities and the defocus equivalent. Higher-order aberrations (HOAs) were computed from the anterior corneal surface measured with topography for 4.0 mm and 6.0 mm pupil diameters before and 48 months after surgery. The study evaluated 50 patients (98 eyes). The root mean square of HOAs increased postoperatively by a factor of approximately 1.9 in both groups and with both pupil diameters. There were no statistically significant differences between the 2 groups in the increase in anterior corneal aberrations, mean postoperative visual acuity, or residual refraction. All visual and optical performance metrics remained stable throughout the 4-year follow-up. There were no complications with flap creation and no postoperative complications. The increase in anterior corneal aberrations after myopic LASIK was similar after mechanical microkeratome and femtosecond laser flap creation. Visual acuity, refraction, and the optical quality of the cornea after LASIK remained stable through 4 years postoperatively in both groups. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Corneal aberration changes after rigid gas permeable contact lens wear in keratokonic patients

    Directory of Open Access Journals (Sweden)

    Fereshteh Shokrollahzadeh


    Conclusion: In this study, corneal aberrations remained unchanged 3 months after wearing RGP contact lens. Further studies with sufficient samples in different groups of keratoconus severity or baseline aberrations are needed to obtain more accurate results.

  17. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models

    National Research Council Canada - National Science Library

    Song, Hui; Yuan, Xiaoyong; Tang, Xin


    In this study, the effects of intraocular lenses (IOLs) with different diopters (D) on chromatic aberration were investigated in human eye models, and the influences of the central thickness of IOLs on chromatic aberration were compared...

  18. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.


    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  19. An update on ECARUCA, the European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations

    NARCIS (Netherlands)

    Vulto-van Silfhout, Anneke T.; van Ravenswaaij, Conny M. A.; Hehir-Kwa, Jayne Y.; Verwiel, Eugene T. P.; Dirks, Rita; van Vooren, Steven; Schinzel, Albert; de Vries, Bert B. A.; de Leeuw, Nicole

    The European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations (ECARUCA, is an online database initiated in 2003 that collects and provides detailed, curated clinical and molecular information on rare unbalanced chromosome aberrations. ECARUCA now contains

  20. Chromosomal Aberrations in Monozygotic and Dizygotic Twins Versus Singletons in Denmark During 1968-2009

    DEFF Research Database (Denmark)

    Kristensen, Lone Krøldrup; Larsen, Lisbeth A; Fagerberg, Christina


    BACKGROUND: Hall (Embryologic development and monozygotic twinning. Acta Geneticae Medicae et Gemellologiae, Vol. 45, 1996, pp. 53-57) hypothesized that chromosomal aberrations can lead to monozygotic (MZ) twinning. However, twinning and chromosomal aberrations increase prenatal mortality and could...

  1. A Fundamental Climate Data Record of Intercalibrated Brightness Temperature Data from SSM/I and SSMIS (United States)

    Sapiano, M. R. P.; Berg, W. K.; McKague, D.; Kummerow, C. D.


    The first Special Sensor Microwave/Imager (SSM/I) was launched in June 1987 on the Defense Meteorological Satellite Program's (DMSP) F08 spacecraft and started what is now a nearly continuous 24-year record of passive microwave imager data that can be used to monitor the climate system. This includes such fields as precipitation (over both land and ocean), the extent of sea ice and snow, sea ice concentration, total precipitable water, cloud liquid water, and surface wind speed over oceans. A total of nine window channel radiometers have been launched to date in the DMSP series including the SSM/I instrument on board F08, F10, F11, F13, F14, and F15 followed by the Special Sensor Microwave Imager/Sounder (SSMIS) on board F16, F17, and F18, which is expected to operate for at least the next decade. As a result, this data record provides the best available source of long-term global observations of several hydrological variables for climate applications. Although the DMSP sensors provide a long-term record, because the sensors were developed for operational use there are a number of issues that must be addressed to produce a dataset suitable for use in climate applications. There are a several quality control and calibration issues including, but not limited to, quality control of the original antenna temperatures, geolocation, cross-track bias corrections, solar and lunar intrusion issues and emissive antennas. The goal of producing an FCDR of brightness temperature data involves not only addressing many of these instrument issues, but also developing a well-documented, transparent approach that allows for subsequent improvements as well as a framework for incorporating future sensors. Once the data have been quality controlled and various calibration corrections have been applied, the goal is to adjust the calibration of the various sensors so that they are physically consistent. Such intercalibration does not correct for changes due to local observing time, which


    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4041 (South Africa); Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Dünner, Rolando; Gallardo, Patricio [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W.; Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, Megan B.; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, Haverford, PA 19041 (United States); and others


    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T{sub U}{sup 149}= 106.7 ± 2.2 K and T{sub U}{sup 219}= 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T{sub S}{sup 149}= 137.3 ± 3.2 K and T{sub S}{sup 219}= 137.3 ± 4.7 K.

  3. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    Keywords. Bose–Einstein condensate; optical lattices; inhomogeneous nonlinearity. Abstract. Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and ...

  4. Compact collimators for high brightness blue LEDs using dielectric multilayers

    NARCIS (Netherlands)

    Cornelissen, H.J.; Ma, H.; Ho, C.; Li, M.; Mu, C.


    A novel method is presented to inject the light of millimeter-sized high-brightness blue LEDs into light guides of submillimeter thickness. Use is made of an interference filter that is designed to pass only those modes that will propagate in the light guide by total internal reflection. Other modes

  5. Bright and dark soliton solutions of the (3+ 1)-dimensional ...

    Indian Academy of Sciences (India)

    In this paper, we obtain the 1-soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation and the generalized Benjamin equation. By using two solitary wave ansatz in terms of sech p and tanh p functions, we obtain exact analytical bright and dark soliton solutions for the considered ...

  6. Brightness perception in low resolution images of 3d textures

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; van der Heijden, Ferdinand; Siteur, J.


    A first step towards the analysis of the appearance of 3 dimensional textures is presented in this paper. It is assumed that the scale of the texture is small relative to the resolution of the camera. Therefore, the texture itself is not distinguishable.However, the perceived brightness of the

  7. Reducing Color/Brightness Interaction in Color Television (United States)

    Marchman, Robert H.


    Proposed digitally sampled scan-conversion scheme for color television reduces unwanted interactions between chrominance and luminance signals. New scheme reduces luminance and chrominance bandwidth to increase frequency separation between signals. To avoid proportionally reducing horizontal brightness resolution and horizontal color resolution, horizontal interlace of luminance signal and two color-difference signals used.

  8. The bright optical afterglow of the long GRB 001007

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Castro-Tirado, A.J.; Gorosabel, J.


    We present optical follow up observations of the long GRB 001007 between 6.14 hours and similar to468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light ...

  9. The star-bright hour : [luuletused] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989


    Sisu: The star-bright hour ; Not a dream ; The Piper ; Corals in an ancent river. Luuletused pärinevad kogumikust "Tuulelaeval valgusest on aerud = Windship with Oars of Light. (Tallinn : Huma, 2001). Orig.: Tähetund ; Mitte viirastus, meelepett ; Vilepuhuja ; Korallid Emajões

  10. Time series analysis of bright galactic X-ray sources

    DEFF Research Database (Denmark)

    Priedhorsky, W. C.; Brandt, Søren; Lund, Niels


    We analyze 70 to 110 day data sets from eight bright galactic X-ray binaries observed by WATCH/Eureca, in search of periodic variations. We obtain new epochs for the orbital variation of Cyg X-3 and 4U 1700-37, and confirmation of a dip in Cyg X-1 at superior conjunction of the X-ray star. No evi...

  11. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng


    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  12. Bright soliton trains of trapped Bose-Einstein condensates


    Al Khawaja, U.; Stoof, H.T C; Hulet, R. G.; Strecker, K. E.; Patridge, G.B.


    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.




  14. Spectral Index Changes with Brightness for -Ray Loud Blazars

    Indian Academy of Sciences (India)

    Theoretic relation of spectral index changes depending on -ray brightness is obtained. The correlations between the ratio of -ray flux densities and the differences of the -ray spectral indices are discussed for the three subclasses of HBL, LBL and FSRQs. Results show that the ratio is related with the differences for the ...

  15. Bright soliton trains of trapped Bose-Einstein condensates

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.; Hulet, R.G.; Strecker, K.E.; Patridge, G.B.


    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the

  16. Henrietta Leavitt - A Bright Star of Astronomy; Resonance June 2001

    Indian Academy of Sciences (India)

    In fact, it was not known then that we live in a galaxy called the Milky Way, and that there were other galaxies in the universe like ours. This big handicap was elegantly removed by a momentous discovery by an American astronomer named Henrietta. Leavitt in 1912. She found a way to determine the actual brightness of a ...

  17. The star-bright hour : [poems] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989


    Autori lühitutvustus lk. 231. Sisu: The star-bright hour ; The debt ; Not a dream ; Fog-bound ; Corals in an Ancient river ; Frou-frou 1-3. Orig.: Tähetund ; Vilepuhuja ; Võlg ; "Mitte viirastus, meelepett..." ; Udus ; Korallid Emajões ; Froufrou 1-3

  18. Stability of bright solitons in some physical systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelap, Francois B [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Talla, Pierre K [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Tchitnga, Robert [Department of Physics, Faculty of Science, University of Dschang, P O Box 69, Dschang (Cameroon); Faye, Mansour M [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta DIOP de Dakar, BP 5005, Dakar - Fann (Senegal)


    Dynamical systems described by the modified quintic complex Ginzburg Landau equation and its derivative forms are considered and the stability of their bright soliton solution is investigated numerically by means of the split-step Fourier method. Some discussions related to the way of ensuring the stability of this solution are presented.

  19. Does bright light have an anxiolytic effect? - an open trial

    Directory of Open Access Journals (Sweden)

    Kripke Daniel F


    Full Text Available Abstract Background The aim of this open trial was to examine the influence of acute bright light exposure on anxiety in older and young adults. Methods This study was ancillary to a complex 5-day laboratory experiment testing phase-responses to light at all times of the day. On 3 consecutive days, participants were exposed to bright light (3,000 lux for 3 hours. The Spielberger State-Trait Anxiety Inventory (Form Y1 was administered 5 minutes before and 20 minutes after each treatment. Mean state anxiety before and after treatment were analyzed by age, sex, and time ANOVA. To avoid floor effects, only participants with baseline STAI levels of ≥ 25 were included. Results A significant anxiolytic effect of bright light was found for the mean data, as well as for each of the three days. No significant main effect of age, sex, or interaction of these factors with STAI change were found. Conclusion The results show consistent and significant (albeit modest anxiolytic effects following acute bright light exposure in low anxiety adults. Further randomized, controlled trials in clinically anxious individuals are needed.

  20. Modeling laser brightness from cross porro prism resonators

    CSIR Research Space (South Africa)

    Forbes, A


    Full Text Available Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2...

  1. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    Abstract. Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in ...

  2. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but ...

  3. Evaluation of brightness temperature from a forward model of ...

    Indian Academy of Sciences (India)

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () ...

  4. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.


    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency of...

  5. The "Brightness Rules" Alternative Conception for Light Bulb Circuits (United States)

    Bryan, Joel A.; Stuessy, Carol


    An alternative conception for the observed differences in light bulb brightness was revealed during an unguided inquiry investigation in which prospective elementary teachers placed identical bulbs in series, parallel, and combination direct current circuits. Classroom observations, document analyses, and video and audio transcriptions led to the…

  6. Protocol of networks using energy sharing collisions of bright solitons

    Indian Academy of Sciences (India)

    Soliton network; coupled nonlinear Schrödinger system; bright soliton; soliton collision. PACS Nos 42.65.Tg; 02.30. .... CNLS equations, we shall explore the dynamics of solitons in simple networks, i.e., PSG. In §4, the conclusion is ...... KS thank the Principal and management of Bishop Heber College for constant support.

  7. Measurements of the geometrical aberrations of the eye

    NARCIS (Netherlands)

    Brink, G. van den


    Subjective measurements were made with a telescopic apparatus through small parts of the optical system of the eye. Measures were taken to control the brightness of the object, the state of accommodation and the position of the eye behind the apparatus. The results show that: 1. (1) the focusing

  8. SKYMONITOR: A Global Network for Sky Brightness Measurements (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.


    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  9. Aberrant parietal cortex developmental trajectories in girls with Turner syndrome and related visual-spatial cognitive development: a preliminary study. (United States)

    Green, Tamar; Chromik, Lindsay C; Mazaika, Paul K; Fierro, Kyle; Raman, Mira M; Lazzeroni, Laura C; Hong, David S; Reiss, Allan L


    Turner syndrome (TS) arises from partial or complete absence of the X-chromosome in females. Girls with TS show deficits in visual-spatial skills as well as reduced brain volume and surface area in the parietal cortex which supports these cognitive functions. Thus, measuring the developmental trajectory of the parietal cortex and the associated visual-spatial cognition in TS may provide novel insights into critical brain-behavior associations. In this longitudinal study, we acquired structural MRI data and assessed visual-spatial skills in 16 (age: 8.23 ± 2.5) girls with TS and 13 age-matched controls over two time-points. Gray and white matter volume, surface area and cortical thickness were calculated from surfaced based segmentation of bilateral parietal cortices, and the NEPSY Arrows subtest was used to assess visual-spatial ability. Volumetric and cognitive scalars were modeled to obtain estimates of age-related change. The results show aberrant growth of white matter volume (P = 0.011, corrected) and surface area (P = 0.036, corrected) of the left superior parietal regions during childhood in girls with TS. Other parietal sub-regions were significantly smaller in girls with TS at both time-points but did not show different growth trajectories relative to controls. Furthermore, we found that visual-spatial skills showed a widening deficit for girls with TS relative to controls (P = 0.003). Young girls with TS demonstrate an aberrant trajectory of parietal cortical and cognitive development during childhood. Elucidating aberrant neurodevelopmental trajectories in this population is critical for determining specific stages of brain maturation that are particularly dependent on TS-related genetic and hormonal factors. © 2014 Wiley Periodicals, Inc.

  10. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.


    that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  11. Aberrations and adaptive optics in super-resolution microscopy (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas


    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  12. Toward Precision LSST Weak-Lensing Measurement. I. Impacts of Atmospheric Turbulence and Optical Aberration (United States)

    Jee, M. James; Tyson, J. Anthony


    The weak-lensing science of the Large Synoptic Survey Telescope (LSST) project drives the need to carefully model and separate the instrumental artifacts from the intrinsic shear signal caused by gravitational lensing. The dominant source of the systematics for all ground-based telescopes is the spatial correlation of the point-spread function (PSF) modulated by both atmospheric turbulence and optical aberrations in the telescope and camera system. In this article, we present a full field-of-view simulation of the LSST images by modeling both the atmosphere and the system optics with the most current data for the telescope and camera specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer Kolmogorov/von Kármán phase screens with the parameters estimated from the on-site measurements. LSST will continuously sample the wavefront, correcting the optics alignment and focus. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal-plane data to introduce realistic residual aberrations and focal-plane height variations. Although this expected focal-plane flatness deviation for LSST is small compared with that of other existing cameras, the fast focal ratio of the LSST optics cause this focal-plane flatness variation and the resulting PSF discontinuities across the CCD boundaries to be significant challenges in our removal of the PSF-induced systematics. We resolve this complication by performing principal component analysis (PCA) CCD by CCD and by interpolating the basis functions derived from the analysis using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10-7 over the cosmologically interesting (dark-matter-dominated) scale 10‧-3°. From a null test using the Hubble Space Telescope (HST) Ultra Deep Field (UDF) galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity

  13. [Aberration of somatic karyotype in normozoospermic males from infertile couples]. (United States)

    Mordalska, A; Barczyk, A; Hübner, H; Malinowski, A; Szpakowski, M


    During the complex investigation of couple infertility, a group of 40 normozoospermic males having low density of semen was selected. Cytogenetic analysis revealed 2 cases of somatic karyotype aberrations: 47,XYY and 46,XY,t(14;19), and 2 cases of chromosomal polymorphisms: 46,XYq+ i 46,XY,14p+. In the article the mechanism of fertility disturbances evoked by these findings is discussed in aspects of the function of spermatozoa and its genetic material content.

  14. Hybridoma fusion cell lines contain an aberrant kappa transcript. (United States)

    Carroll, W L; Mendel, E; Levy, S


    The V region sequence of a non-productive kappa transcript from two myeloma fusion partners has been determined. This transcript has an aberrant VJ recombination site resulting in a translation stop site at position 105. It is variably expressed in hybridomas made from all fusion partners derived from the original MOPC-21 tumor. The amount of this transcript may greatly exceed levels of the productive light chain mRNA.

  15. Aberrant Lymphatic Endothelial Progenitors in Lymphatic Malformation Development


    Wu, June K.; Christopher Kitajewski; Maia Reiley; Keung, Connie H.; Julie Monteagudo; Andrews, John P.; Peter Liou; Arul Thirumoorthi; Alvin Wong; Kandel, Jessica J; Shawber, Carrie J.


    Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial...

  16. Aberrant Phenotype in Iranian Patients with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Mehdi Jahedi


    Full Text Available Purpose: The aim of this study was to evaluate the incidence of aberrant phenotypes and possible prognostic value in peripheral and bone marrow blood mononuclear cells of Iranian patients with AML. Methods: 56 cases of de novo AML (2010-2012 diagnosed by using an acute panel of monoclonal antibodies by multiparametric flowcytometry. Immunophenotyping was done on fresh bone marrow aspirate and/or peripheral blood samples using the acute panel of MoAbs is stained with Phycoerythrin (PE /fluorescein isothiocyanate (FITC, Allophycocyanin (APC and Peridinin-chlorophyll protein complex (perCP. We investigated Co-expression of lymphoid-associated markers CD2, CD3, CD7, CD 10, CD19, CD20 and CD22 in myeloblasts. Results: Out of the 56 cases, 32 (57.1% showed AP. CD7 was positive in 72.7% of cases in M1 and 28.5% in M2 but M3 and M4 cases lacked this marker. We detected CD2 in 58.35 of M1cases, 21.40% of M2 cases, 33.3 of M3 and 20% of M5; but M4 patients lacked this marker. The CBC analysis demonstrated a wide range of haemoglobin concentration, Platelet and WBC count which varied from normal to anaemia, thrombocytopenia to thrombocytosis and leukopenia to hyper leukocytosis. Conclusions: Our findings showed that CD7 and CD2 were the most common aberrant marker in Iranian patients with AML. However, we are not find any significant correlation between aberrant phenotype changing and MRD in our population. Taken together, this findings help to provide new insights in to the investigation of other aberrant phenotypes that may play roles in diagnosis and therapeutic of AML.

  17. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  18. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M


    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  19. Nutritional rehabilitation of mitochondrial aberrations in aplastic anaemia. (United States)

    He, Ling; Miao, Xiaoyan; Lv, Guangyan; Yang, Peiman; Wu, Wenguo; Jia, Li


    Aplastic anaemia (AA) is a disease characterised by bone marrow hypocellularity and peripheral blood pancytopenia. AA is also associated with mitochondrial aberrations. The present study was undertaken primarily to test the hypothesis that a nutrient mixture could affect the nutritional rehabilitation of mitochondrial aberrations in AA mice. BALB/c AA mice were induced by a combination of hypodermic injections of acetylphenylhydrazine (100 mg/kg), X-rays (2·0 Gy) and intraperitoneal injections of cyclophosphamide (80 mg/kg). We treated these mice with nutrient mixture-supplemented diets in a dose-dependent manner (1445·55, 963·7, 674·59 mg/kg per d), and the effects of the nutrient mixture for mitochondrial rehabilitation were analysed in AA mice. Transmission electron microscopy showed that mitochondrial ultrastructural abnormalities in bone marrow cells, splenocytes and hepatocytes of the nutrient mixture groups were restored markedly, compared with the AA group. Mitochondrial membrane potentials of the nutrient mixture groups were increased remarkably. Western blot analysis also revealed that the nutrient mixture significantly inhibited cytochrome c release of mitochondria in the AA group. Furthermore, the mitochondrial DNA content of the nutrient mixture groups was also increased. Our data suggest that the nutrient mixture may promote the rehabilitation of mitochondrial aberrations, and consequently protects against mitochondrial dysfunction in AA mice.

  20. Aberrant behavior and cognitive ability in preschool children

    Directory of Open Access Journals (Sweden)

    Bala Gustav


    Full Text Available The sample included 712 preschool boys and girls at the age of 4 to 7 years (mean 5.96 decimal years and standard deviation .96 from preschool institutions in Novi Sad, Sombor, Sremska Mitrovica and Bačka Palanka. Information concerning 36 indicators of aberrant behavior of the children were supplied by their parents, whereas their cognitive ability was tested by Raven’s progressive colored matrices. Based on factor analysis (promax method, four factors i.e. generators of aberrant behavior in children were singled out: aggression, anxiousness, dissociation, and hysteria, whose relations with cognitive functioning and age were also analyzed by factor analysis. Aberrant behavior and cognitive abilities show significant interrelatedness. Owing to orderly developed cognitive abilities, a child understands essence and reality of problems, realizes possibilities and manners of solving them, and succeeds in realizing successful psycho-social functioning. Developed cognitive abilities enable a child to recognize and understand her/his own reactions in different situations and develop manners of reacting, which leads to strengthening psycho-social safety and adapting behavior in accordance with her/his age and abilities.