WorldWideScience

Sample records for bright solar-type stars

  1. Superflares on solar-type stars.

    Science.gov (United States)

    Maehara, Hiroyuki; Shibayama, Takuya; Notsu, Shota; Notsu, Yuta; Nagao, Takashi; Kusaba, Satoshi; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2012-05-16

    Solar flares are caused by the sudden release of magnetic energy stored near sunspots. They release 10(29) to 10(32) ergs of energy on a timescale of hours. Similar flares have been observed on many stars, with larger 'superflares' seen on a variety of stars, some of which are rapidly rotating and some of which are of ordinary solar type. The small number of superflares observed on solar-type stars has hitherto precluded a detailed study of them. Here we report observations of 365 superflares, including some from slowly rotating solar-type stars, from about 83,000 stars observed over 120 days. Quasi-periodic brightness modulations observed in the solar-type stars suggest that they have much larger starspots than does the Sun. The maximum energy of the flare is not correlated with the stellar rotation period, but the data suggest that superflares occur more frequently on rapidly rotating stars. It has been proposed that hot Jupiters may be important in the generation of superflares on solar-type stars, but none have been discovered around the stars that we have studied, indicating that hot Jupiters associated with superflares are rare.

  2. Precise mass and radius measurements for the components of the bright solar-type eclipsing binary star V1094 Tau

    CERN Document Server

    Maxted, P F L; Torres, G; Lacy, C H S; Southworth, J; Smalley, B; Pavlovski, K; Marschall, L A; Clausen, J V

    2015-01-01

    V1094 Tau is bright eclipsing binary star with an orbital period close to 9 days containing two stars similar to the Sun. Our aim is to test models of Sun-like stars using precise and accurate mass and radius measurements for both stars in V1094 Tau. We present new spectroscopy of V1094 Tau which we use to estimate the effective temperatures of both stars and to refine their spectroscopic orbits. We also present new, high-quality photometry covering both eclipses of V1094 Tau in the Stroemgren uvby system and in the Johnson V-band. The masses, radii and effective temperatures of the stars in V1094 Tau are found to be M$_A$ = 1.0964 $\\pm$ 0.0040 M$_{\\odot}$, R$_A$ = 1.4129 $\\pm$ 0.0058 R$_{\\odot}$, T$_{\\rm eff,A}$ = 5850 $\\pm$ 100 K, and M$_B$ = 1.0120 $\\pm$ 0.0028 M$_{\\odot}$, R$_B$ = 1.0913 $\\pm$ 0.0066 R$_{\\odot}$, T$_{\\rm eff,B}$ = 5700 $\\pm$ 100 K. An analysis of the times of mid-eclipse and the radial velocity data reveals apsidal motion with a period of 14500 $\\pm$ 3700 years. The observed masses, radii...

  3. Asteroseismic Inference for Solar-Type Stars

    CERN Document Server

    Monteiro, M J P F G; Thompson, M J

    2001-01-01

    The oscillation spectra of solar-type stars may in the not-too- distant future be used to constrain certain properties of the stars. The CD diagram of large versus small frequency separations is one of the powerful tools available to infer the properties - including perhaps masses and ages - of stars which display a detectable spectrum of oscillation. Also, the border of a convective region in a solar-type star gives rise to a characteristic periodic signal in the star's low-degree p-mode frequencies. Such a signature contains information about the location and nature of the transition between convective and non-convective regions in the star. In this work we address some of the uncertainties associated with the direct use of the CD diagram to evaluate the mass and age of the star due to the unknown contributions that make the stars different from the evolutionary models used to construct our reference grid. We also explore the possibility of combining an amplitude versus period diagram with the CD diagram to...

  4. Lithium Abundance Of The Solar-Type Superflare Stars

    Science.gov (United States)

    Honda, Satoshi; Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2016-07-01

    We performed the high dispersion spectroscopy of solar-type superflare stars by Subaru/HDS, and estimate the stellar parameters and lithium abundance of the stars to compare with the Sun. Our spectroscopic analysis of superflare stars show more than half of targets have no evidence of binary system and the stellar parameters are in the range of solar-type stars (Notsu et al. 2015a&b). We also investigate the correlations of Lithium abundance with stellar atmospheric parameters, rotational velocity, and superflare activities to understand the nature of superflare stars and the possibility of the nucleosynthesis of lithium by superflares. The derived lithium abundance in superflare stars do not show the correlation with stellar parameters. As compared with the lithium abundance in Hyades cluster which is younger than the sun, it is suggested that half of observed stars are young. However, there are some objects which show the low lithium and slowly rotate from the estimated v sin(i) and period of brightness variation. These results indicate that the superflare stars are not only young stars but also old stars like our sun. In our observations, we could not find the any evidence of lithium productions by superflare.

  5. On laminar convection in solar type stars

    CERN Document Server

    Bruevich, E A

    2010-01-01

    We present a new model of large-scale multilayer convection in solar type stars. This model allows us to understand such self-similar structures observed at solar surface as granulation, supergranulation and giant cells. We study the slow-rotated hydrogen star without magnetic field with the spherically-symmetric convective zone. The photon's flux comes to the convective zone from the central thermonuclear zone of the star. The interaction of these photons with the fully ionized hydrogen plasma with $T>10^5K$ is carried out by the Tomson scattering of photon flux on protons and electrons. Under these conditions plasma is optically thick relative to the Tomson scattering. This fact is the fundamental one for the multilayer convection formation. We find the stationary solution of the convective zone structure. This solution describes the convective layers responsible to the formation of the structures on the star's surface.

  6. {High dispersion spectroscopy of solar-type superflare stars with Subaru/HDS†

    Science.gov (United States)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    We carried out spectroscopic observations with Subaru/HDS of 50 solar-type superflare stars found from Kepler data. More than half (34 stars) of the target stars show no evidence of the binary system, and we confirmed atmospheric parameters of these stars are roughly in the range of solar-type stars. We then conducted the detailed analyses for these 34 stars. First, the value of the ``v sin i'' (projected rotational velocity) measured from spectroscopic results is consistent with the rotational velocity estimated from the brightness variation. Second, there is a correlation between the amplitude of the brightness variation and the intensity of Ca II IR triplet line. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared with the Sun. These results support that the brightness variation of superflare stars is explained by the rotation of a star with large starspots.

  7. High dispersion spectroscopy of solar-type superflare stars with Subaru/HDS

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2015-01-01

    We carried out spectroscopic observations with Subaru/HDS of 50 solar-type superflare stars found from Kepler data. More than half (34 stars) of the target stars show no evidence of the binary system, and we confirmed atmospheric parameters of these stars are roughly in the range of solar-type stars. We then conducted the detailed analyses for these 34 stars. First, the value of the "$v\\sin i$" (projected rotational velocity) measured from spectroscopic results is consistent with the rotational velocity estimated from the brightness variation. Second, there is a correlation between the amplitude of the brightness variation and the intensity of Ca II IR triplet line. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared with the Sun. These results support that the brightness variation of superflare stars is explained by the rotation of a star with large starspots.

  8. Understanding Activity Cycles of Solar Type Stars with Kepler

    Science.gov (United States)

    Tovar, Guadalupe; Montet, Benjamin; Johnson, John A.

    2017-01-01

    As the era of exploring new worlds and systems advances we seek to answer the question: How common is our Sun? There is considerable evidence about the recurring activity cycles of our Sun but very little is known about the activity cycles of other stars. By calibrating the full frame images from the original Kepler mission that were taken once a month over the course of four years, we are able to do relative photometry on roughly 5 million stars. By building a model of the pixel response function we were able to achieve 0.8% precision photometry. We identify 50,000 solar type stars based on magnitude, surface gravity, and temperature cuts. We observe the relative increase and decrease in brightness of the stars indicating signs of activity cycles similar to our Sun. We continue to explore how a data driven pixel response function model could improve our precision to 0.1% photometry measurements.

  9. Convection in Oblate Solar-Type Stars

    CERN Document Server

    Wang, Junfeng; Liang, Chunlei

    2016-01-01

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly-rotating solar-type stars. This has been achieved by exploiting the capabilities of the new Compressible High-ORder Unstructured Spectral difference (CHORUS) code. We consider rotation rates up to 85\\% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17\\% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat flux in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface...

  10. Photometric Variations In The Sun And Solar-Type Stars

    Science.gov (United States)

    Giampapa, Mark

    The rich array of solar magnetic field-related phenomena we see occurs not only on stellar counterparts of our Sun but in stars that represent significant departures in their fundamental parameters from those of the Sun. Though these phenomena appear energetically negligible when compared to the total luminosity of stars, they nevertheless govern the angular momentum evolution and modulate the radiative and particle output of the Sun and late-type stars. The term "The Solar-Stellar Connection" has been coined to describe the solar-stellar synergisms in the investigation of the generation, emergence and coupling of magnetic fields with the outer solar-stellar atmosphere to produce what we broadly refer to as magnetic activity. With the discovery of literally thousands of planets beyond our solar system, the Solar-Stellar-Planet Connection is quickly emerging as a new area of investigation of the impacts of magnetic activity on exoplanet atmospheres. In parallel with this rapid evolution in our perspectives is the advent of transformative facilities for the study of the Sun and the dynamic Universe. The primary focus of this invited talk will be on photometric variations in solar-type stars and the Sun. These brightness variations are associated with thermal homogeneities typically defined by magnetic structures that are also spatially coincident with key radiative proxies. Photometric variability in solar-type stars and the Sun includes transient brightening, rotational modulation by cool spots and cycle-related variability, each with a characteristic signature in time and wavelength. The emphasis of this presentation will be on the relationship between broadband photometric variations and magnetic field-related activity in solar-type stars and the Sun. Facets of this topic will be discussed both retrospectively and prospectively as we enter a revolutionary, new era for astronomy.

  11. Rotation Periods of Nine ROSAT Selected Solar-Type Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We monitored 16 X-ray selected young solar-type stars for light variation and found appreciable periodic light variability with amplitudes of a few hundredths of a magnitude in nine of the objects. Using the method of Phase Dispersion Minimization (PDM) and Fourier analysis (software PERIOD04), the rotation periods of these stars were determined from the photometric data. The rotation periods of all nine stars are shorter than about 3 days.It is suggested that, as with the Pleiades cluster, small amplitude light variations are quite common among young solar-type stars with rotation periods around 3 days or less. This gives further evidence for the spin up of solar-type stars predicted by models of angular momentum evolution of pre-main sequence stars.

  12. A Bcool magnetic snapshot survey of solar-type stars

    CERN Document Server

    Marsden, S C; Jeffers, S V; Morin, J; Fares, R; Reiners, A; Nascimento, J D do; Auriere, M; Bouvier, J; Carter, B D; Catala, C; Dintrans, B; Donati, J -F; Gastine, T; Jardine, M; Konstantinova-Antova, R; Lanoux, J; Lignieres, F; Morgenthaler, A; Ramirez-Velez, J C; Theado, S; Van Grootel, V

    2013-01-01

    Stellar magnetic field measurements obtained from spectropolarimetry offer key data for activity and dynamo studies, and we present the results of a major high-resolution spectropolarimetric Bcool project magnetic snapshot survey of 170 solar-type stars from observations with the Telescope Bernard Lyot and the Canada-France-Hawaii Telescope. For each target star a high signal-to-noise circularly polarised Stokes V profile has been obtained using Least-Squares Deconvolution, and used to detect surface magnetic fields and measure the corresponding mean surface longitudinal magnetic field ($B_{l}$). Chromospheric activity indicators were also measured. Surface magnetic fields were detected for 67 stars, with 21 of these stars classified as mature solar-type stars, a result that increases by a factor of four the number of mature solar-type stars on which magnetic fields have been observed. In addition, a magnetic field was detected for 3 out of 18 of the subgiant stars surveyed. For the population of K-dwarfs the...

  13. Acoustic glitches in solar-type stars from Kepler

    DEFF Research Database (Denmark)

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Ballot, J;

    2012-01-01

    We report the measurement of the acoustic locations of layers of sharp variation in sound speed in the interiors of 19 solar-type stars observed by the Kepler mission. The oscillatory signal in the frequencies arising due to the acoustic glitches at the base of the convection zone and the second ...

  14. High Dispersion Spectroscopy of Solar-Type Superflare Stars With Subaru/HDS

    Science.gov (United States)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2016-07-01

    Superflares are flares that release total energy 10-104times greater than that of the biggest solar flares ( 1032 erg). Recent Kepler-space-telescope observations found more than 1000superflares on a few hundred solar-type stars (Maehara et al. 2012, Nature; Shibayama et al. 2013, ApJS, Maehara et al. 2015 EPS).Suchsuperflare stars show quasi-periodicbrightnessvariations with the typical period of from one to a few tens of days. Such variations are thought to be caused by the rotation of the star with large starspots (Notsu et al. 2013, ApJ). However, spectroscopic observations are needed in order to confirm whether the variation is really due to the rotation and whether superflares can occur on ordinary single stars similar to our Sun.Then we have carried out spectroscopic observations for 50 solar-type superflare stars with Subaru/HDS (Notsu et al. 2015a&b, PASJ). As a result, more than half (34 stars) of the targetstars show no evidence of binarity, and the atmospheric parameters of these stars are in the range of solar-type stars.The detailed analyses for these 34 stars show that (1) the projected rotational velocities (v sin i) are consistent with the rotational velocities estimated from the brightness variations, (2)there is a correlation between the brightness variation amplitude and the intensity of Ca II IR triplet line. These results support that the brightness variation discussed above is explained bythe rotation of a star with large starspots. (The contents of this poster were already summarized in the proceeding of IAU Symposium S320 (Notsu et al. 2016 IAUS in press, arXiv:1510.08143))

  15. Automated Asteroseismic Analysis of Solar-type Stars

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Campante, T.L.; Chaplin, W.J.

    2010-01-01

    The rapidly increasing volume of asteroseismic observations on solar-type stars has revealed a need for automated analysis tools. The reason for this is not only that individual analyses of single stars are rather time consuming, but more importantly that these large volumes of observations open...... the possibility to do population studies on large samples of stars and such population studies demand a consistent analysis. By consistent analysis we understand an analysis that can be performed without the need to make any subjective choices on e.g. mode identification and an analysis where the uncertainties...

  16. High Dispersion Spectroscopy of Solar-type Superflare Stars. II. Stellar Rotation, Starspots, and Chromospheric Activities

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2014-01-01

    We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS. These 50 stars were selected from the solar-type superflare stars that we had discovered from the Kepler data. More than half (34 stars) of these 50 target superflare stars show no evidence of binarity, and we estimated stellar parameters of these 34 stars in our previous study (Notsu et al. 2015, hereafter called Paper I). According to our previous studies using Kepler data, superflare stars show quasi-periodic brightness variations whose amplitude (0.1-10\\%) is much larger than that of the solar brightness variations (0.01-0.1\\%) caused by the existence of sunspots on the rotating solar surface. In this study, we investigated whether these quasi-periodic brightness variations of superflare stars are explained by the rotation of a star with fairly large starspots, by using stellar parameters derived in Paper I. First, we confirmed that the value of the projected rotational velocity $v \\sin i$ is consistent with th...

  17. BESO échelle spectroscopy of solar-type stars at Cerro Armazones

    Science.gov (United States)

    Fuhrmann, K.; Chini, R.; Hoffmeister, V. H.; Lemke, R.; Murphy, M.; Seifert, W.; Stahl, O.

    2011-03-01

    The Bochum Échelle Spectroscopic Observer BESO is a fibre-fed high-resolution spectrograph for the 1.5-m Hexapod Telescope at the Cerro Armazones Observatory in the Atacama desert in Chile. Here we report on the first BESO observations and model atmosphere analyses of solar-type stars secured in 2010 April. The quality of the data is first tested with a reflected sunlight spectrum as well as the standard G-type subgiant 70 Vir. We then investigate the bright and supposedly single F-type star ξ Gem and present the spectroscopic evidence that instead favours an equal-mass binary. We present also the first composite synthetic modelling of the G-type visual binary HR 3430 and discuss the spectroscopic observations that identify this as a triple system. We conclude with another triple, the famous and very nearby α Cen, and the basic stellar parameters of its inner, solar-type visual binary.

  18. Metallicity calibration for solar type stars based on red spectra

    Institute of Scientific and Technical Information of China (English)

    Jing-Kun Zhao; Gang Zhao; Yu-Qin Chen; A-Li Luo

    2011-01-01

    Based on a high resolution and high signal-to-noise ratio (S/N) spectral analysis of 90 solar-type stars, we have established several new metallicity calibrations in the Teff range [5600, 6500] K based on red spectra with the wavelength range of 560-880 nm. The new metallicity calibrations are applied to determine the metallicity of solar analogs selected from Sloan Digital Sky Survey (SDSS) spectra. There is a good consistent result with the adopted value presented in SDSS-DR7 and a small scatter of 0.26 dex for stars with S/N > 50 being obtained. This study provides a new reliable way to derive the metallicity for solar-like stars with low resolution spectra.In particular, our calibrations are useful for finding metal-rich stars, which are missing in the SEGUE Stellar Parameter Pipeline.

  19. Activity trends in young solar-type stars

    CERN Document Server

    Lehtinen, Jyri; Hackman, Thomas; Kajatkari, Perttu; Henry, Gregory W

    2015-01-01

    We apply the Continuous Period Search (CPS) time series analysis method on Johnson B and V band photometry of 21 young and active solar-type, collected over 16 to 27 years and characterize the behaviour of their activity. Using the CPS method, differential rotation could be estimated from the observed variations of the photometric rotation period. Active longitudes were retrieved by applying a non-parametric period search on the light curve minimum epochs, and activity cycles by applying a secondary period search on the modelled light curve mean and amplitude values. We supplemented the time series results by calculating new $\\log{R'_{\\rm HK}}$ emission indices for the stars from high resolution spectroscopy. The measurements of the photometric rotation period variations point to a trend of increasing differential rotation coefficients towards longer rotation periods but do not reveal any dependence from the effective temperature of the stars. The secondary period searches revealed activity cycles in 18 of th...

  20. Asteroseismology of solar-type stars with K2

    CERN Document Server

    Chaplin, W J; Handberg, R; Basu, S; Buchhave, L A; Campante, T L; Davies, G R; Huber, D; Latham, D W; Latham, C A; Serenelli, A; Antia, H M; Appourchaux, T; Ball, W H; Benomar, O; Casagrande, L; Christensen-Dalsgaard, J; Coelho, H R; Creevey, O L; Elsworth, Y; Garc, R A; Gaulme, P; Hekker, S; Kallinger, T; Karoff, C; Kawaler, S D; Kjeldsen, H; Lundkvist, M S; Marcadon, F; Mathur, S; Miglio, A; Mosser, B; R, C; Roxburgh, I W; Aguirre, V Silva; Stello, D; Verma, K; White, T R; Bedding, T R; Barclay, T; Buzasi, D L; Deheuvels, S; Gizon, L; Houdek, G; Howell, S B; Salabert, D; Soderblom, D R

    2015-01-01

    We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign\\,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around $1000\\,\\rm \\mu Hz$. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of two-and-a-half in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as ${\\simeq 2500}\\,\\rm \\mu Hz$ into play as potential asteroseismic targets for K2.

  1. Evolution of Cold Circumstellar Dust Around Solar-Type Stars

    CERN Document Server

    Carpenter, J M; Schreyer, K; Launhardt, R; Henning, T; Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Th.

    2004-01-01

    We present submillimeter (CSO 350um) and millimeter (SEST 1.2 mm, OVRO 3 mm) photometry for 125 solar-type stars from the FEPS Spitzer Legacy program that have masses between ~0.5 and 2.0 Msun and ages from 3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal to noise ratio >= 3$: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris disk system HD 107146 with OVRO. RXJ1842.9-3532 and RXJ1852.3-3700 are located in projection nearby the R CrA molecular cloud with estimated ages of ~10 Myr, while PDS66 is a probable member of the 20 Myr old Lower Centaurus-Crux subgroup of the Sco-Cen OB association. The continuum emission toward these three sources is unresolved at the 24'' SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5x10**-5 Msun. Analysis of the visibility data toward HD107146 (age 80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the as...

  2. Dynamical Model for Spindown of Solar-type Stars

    Science.gov (United States)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (i) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (ii) magnetic activity saturates for higher rotation rate; (iii) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (i) a power-law spindown {{Ω }}\\propto {t}-0.52; (ii) that magnetic activity scales roughly linearly with rotation rate; (iii) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self

  3. Carbon-to-Oxygen Ratios in M dwarfs and Solar-type stars

    CERN Document Server

    Nakajima, Tadashi

    2016-01-01

    Initial C/O ratios of circumstellar disks have been obtained in solar-type stars by differential photospheric abundance analysis with respect to the Sun. We present C/O ratios of M dwarfs obtained by absolute abundance analysis derived from CO and H2O spectra in the K-band. We compare the distributions of C/O ratios in M dwarfs and solar-type stars using the Kolmogorov-Smirnov test. The C/O distribution of M dwarfs is consistent with low frequency of high C/O ratios in solar-type stars.

  4. SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya; Notsu, Shota; Notsu, Yuta; Nagao, Takashi [Department of Astronomy, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Maehara, Hiroyuki; Honda, Satoshi; Ishii, Takako T.; Nogami, Daisaku; Shibata, Kazunari, E-mail: shibayama@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatory, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2013-11-01

    By extending our previous study by Maehara et al., we searched for superflares on G-type dwarfs (solar-type stars) using Kepler data for a longer period (500 days) than that (120 days) in our previous study. As a result, we found 1547 superflares on 279 G-type dwarfs, which is much more than the previous 365 superflares on 148 stars. Using these new data, we studied the statistical properties of the occurrence rate of superflares, and confirmed the previous results, i.e., the occurrence rate (dN/dE) of superflares versus flare energy (E) shows a power-law distribution with dN/dE∝E {sup –α}, where α ∼ 2. It is interesting that this distribution is roughly similar to that for solar flares. In the case of the Sun-like stars (with surface temperature 5600-6000 K and slowly rotating with a period longer than 10 days), the occurrence rate of superflares with an energy of 10{sup 34}-10{sup 35} erg is once in 800-5000 yr. We also studied long-term (500 days) stellar brightness variation of these superflare stars and found that in some G-type dwarfs the occurrence rate of superflares was extremely high, ∼57 superflares in 500 days (i.e., once in 10 days). In the case of Sun-like stars, the most active stars show a frequency of one superflare (with 10{sup 34} erg) in 100 days. There is evidence that these superflare stars have extremely large starspots with a size about 10 times larger than that of the largest sunspot. We argue that the physical origin of the extremely high occurrence rate of superflares in these stars may be attributed to the existence of extremely large starspots.

  5. Zeeman-Doppler imaging of active young solar type stars

    CERN Document Server

    Hackman, Thomas; Rosén, Lisa; Kochukhov, Oleg; Käpylä, Maarit J

    2015-01-01

    By studying young magnetically active late-type stars, i.e. analogues to the young Sun, one can draw conclusions on the evolution of the solar dynamo. We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. High-resolution spectropolarimetry of the targets were obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratio of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. All the three targets show clear signs of both magnetic fields and cool spots. Only one of the targets, namely V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indic...

  6. Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes

    CERN Document Server

    Amard, Louis; Charbonnel, Corinne; Gallet, Florian; Bouvier, Jérôme

    2016-01-01

    We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a st...

  7. Observations of non-solar-type dynamo processes in stars with shallow convective zones

    NARCIS (Netherlands)

    Jeffers, S.V.; Donati, J.F.; Alecian, E.; Marsden, S.C.

    2010-01-01

    The magnetic field topology and differential rotation are fundamental signatures of the dynamo processes that generate the magnetic activity observed in the Sun and solar-type stars. To investigate how these dynamo processes evolve in stars with shallow convective zones, we present high-resolution s

  8. Bright Times for an Ancient Star

    Science.gov (United States)

    Fuhrmann, K.; Chini, R.

    2017-01-01

    Field stars of Population II are among the oldest sources in the Galaxy. Most of their solar-type dwarfs are non-single and, given their extreme age, a significant fraction is accompanied by stellar remnants. Here we report the discovery of the bright F7V star 49 Lib as a massive and very metal-rich Population II field blue straggler, along with evidence for a white dwarf as its dark and unseen companion. 49 Lib is known as a relatively fast-rotating, single-lined spectroscopic binary in a 3 year orbit and with an apparent age of about τ ≃ 2.3 Gyr. Its chemistry and kinematics, however, both consistently imply that 49 Lib must be an ancient Population II star at τ ≃ 12 Gyr. With reference to the inclination from the astrometric orbit, leading to a {M}{WD}={0.50}-0.04+0.03 M⊙ low-mass white dwarf, and in view of the {M}{BS}={1.55}-0.13+0.07 M⊙ massive, evolved F-type blue straggler star, we demonstrate that 49 Lib must have been the subject of a mostly conservative mass transfer with a near-equal-mass M ≃ 1.06 + 1.00 M⊙ G-type binary at birth. For its future evolution, we point to the possibility as a progenitor system toward a type Ia supernova. Most importantly, however, we note that the remarkable metal enrichment of 49 Lib at [Mg/H] = +0.23 and [Fe/H] = ‑0.11 has principally very relevant implications for the early epoch when the Milky Way came into being.

  9. Observations of Hierarchical Solar-Type Multiple Star Systems

    CERN Document Server

    Roberts,, Lewis C; Mason, Brian D; Hartkopf, William I; Riddle, Reed L

    2015-01-01

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.

  10. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C. Jr. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109 (United States); Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Mason, Brian D.; Hartkopf, William I. [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States); Riddle, Reed L., E-mail: lewis.c.roberts@jpl.nasa.gov [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  11. Bright Star Astrometry with URAT

    CERN Document Server

    Zacharias, Norbert

    2015-01-01

    The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) is observing the northern sky since April 2012 for an astrometric survey. Multiple overlaps per year are performed in a single bandpass (680$-$750 nm) using the "redlens" 20 cm aperture astrograph and a mosaic of large CCDs. Besides the regular, deep survey to magnitude 18.5, short exposures with an objective grating are taken to access stars as bright as 3rd magnitude. A brief overview of the program, observing and reductions is given. Positions on the 8 to 20 mas level are obtained of 66,202 Hipparcos stars at current epochs. These are compared to the Hipparcos Catalog to investigate its accuracy. About 20\\% of the observed Hipparcos stars are found to have inconsitent positions with the Hipparcos Catalog prediction on the 3 sigma level or over (about 75 mas or more discrepant position offsets). Some stars are now seen at an arcsec (or 25 sigma) off their Hipparcos Catalog predicted position.

  12. Asteroseismic modelling of the solar-type subgiant star β Hydri

    DEFF Research Database (Denmark)

    Brandão, I.M.; Dogan, Gülnur; Christensen-Dalsgaard, Jørgen;

    2011-01-01

    the surface layers of stars. Because β Hydri is an evolved solar-type pulsator with mixed modes in its frequency spectrum, it is very interesting for asteroseismic studies. Aims: The goal of the present work is to search for a representative model of the solar-type star β Hydri, based on up-to-date non...... and different physics, using the stellar evolutionary code ASTEC. For the models that are inside the observed error box of β Hydri, we computed their frequencies with the pulsation code ADIPLS. We used two approaches to find the model that oscillates with the frequencies that are closest to the observed...

  13. WASP-32b: A Transiting Hot Jupiter Planet Orbiting a Lithium-Poor, Solar-Type Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Enoch, R.; Lister, T. A.; Pepe, F.; Pollacco, D. L.; Ségransan, D.; Skillen, I.; Udry, S.

    2010-12-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V = 11.3) solar-type star (Teff = 6100 ± 100 K, [Fe/H] = -0.13 ± 0.10). The light curve of the star obtained with the WASP-South and WASP-North instruments shows periodic transitlike features with a depth of about 1% and a duration of 0.10 day every 2.72 days. The presence of a transitlike feature in the light curve is confirmed using z -band photometry obtained with Faulkes Telescope North. High-resolution spectroscopy obtained with the Coralie spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass Mp of 3.60 ± 0.07 MJup and a radius Rp = 1.19 ± 0.06 RJup. WASP-32 is one of a small group of hot Jupiters with masses greater than 3 MJup. We find that some stars with hot Jupiter companions and with masses M⋆ ≈ 1.2 M⊙, including WASP-32, are depleted in lithium and that the majority of these stars have lithium abundances similar to field stars.

  14. The Decay of Debris Disks around Solar-Type Stars

    CERN Document Server

    Sierchio, J M; Su, K Y L; Gaspar, Andras

    2014-01-01

    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 $\\mu$m for 255 stars of types F4 - K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the HR diagram, to assign accurate stellar ages. Within this spectral type range, at 24 $\\mu$m, $13.6 \\pm 2.8 \\%$ of the stars younger than 5 Gyr have excesses at the 3$\\sigma$ level or more, while none of the older stars do, confirming previous work. At 70 $\\mu$m, $22.5 \\pm 3.6\\%$ of the younger stars have excesses at $ \\ge$ 3 $\\sigma$ significance, while only $4.7^{+3.7}_{-2.2}$% of the older stars do. To characterize the far infrared behavior of debris disks more robustly, we double the sample by including stars from the DEBRIS and DUNES surveys. For the F4 - K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far infrared excess with spectral type (detected fractions of 21.9$^{+4.8}_{-4.3}\\%$, late F; 16.5$^{+3.9}_{-3.3...

  15. The decay of debris disks around solar-type stars

    Energy Technology Data Exchange (ETDEWEB)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gáspár, Andras, E-mail: sierchio@mit.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-04-10

    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 μm for 255 stars of types F4-K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the H-R diagram, to assign accurate stellar ages. Within this spectral type range, at 24 μm, 13.6% ± 2.8% of the stars younger than 1 Gyr have excesses at the 3σ level or more, whereas none of the older stars do, confirming previous work. At 70 μm, 22.5% ± 3.6% of the younger stars have excesses at ≥3σ significance, whereas only 4.7{sub −2.2}{sup +3.7}% of the older stars do. To characterize the far-infrared behavior of debris disks more robustly, we doubled the sample by including stars from the DEBRIS and DUNES surveys. For the F4-K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far-infrared excess with spectral type (detected fractions of 21.9{sub −4.3}{sup +4.8}%, late F; 16.5{sub −3.3}{sup +3.9}%, G; and 16.9{sub −5.0}{sup +6.3}%, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses, with fractional luminosities just under 10{sup –5}. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than are expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.

  16. The Decay of Debris Disks around Solar-type Stars

    Science.gov (United States)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gáspár, Andras

    2014-04-01

    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 μm for 255 stars of types F4-K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the H-R diagram, to assign accurate stellar ages. Within this spectral type range, at 24 μm, 13.6% ± 2.8% of the stars younger than 1 Gyr have excesses at the 3σ level or more, whereas none of the older stars do, confirming previous work. At 70 μm, 22.5% ± 3.6% of the younger stars have excesses at >=3σ significance, whereas only 4.7^{+3.7}_{-2.2}% of the older stars do. To characterize the far-infrared behavior of debris disks more robustly, we doubled the sample by including stars from the DEBRIS and DUNES surveys. For the F4-K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far-infrared excess with spectral type (detected fractions of 21.9^{+4.8}_{-4.3}%, late F; 16.5^{+3.9}_{-3.3}%, G; and 16.9^{+6.3}_{-5.0}%, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses, with fractional luminosities just under 10-5. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than are expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.

  17. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    CERN Document Server

    Mengel, M W; Carter, B D; Horner, J; King, R; Fares, R; Jeffers, S V; Petit, P; Vidotto, A A; Morin, J

    2016-01-01

    We present a spectropolarimetric snapshot survey of solar-type planet hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|B$_{\\ell}$|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman Doppler Mapping.

  18. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    Science.gov (United States)

    Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration

    2017-03-01

    We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.

  19. Solar-type dynamo behaviour in fully convective stars without a tachocline

    Science.gov (United States)

    Wright, Nicholas J.; Drake, Jeremy J.

    2016-07-01

    In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

  20. Solar-type dynamo behaviour in fully convective stars without a tachocline.

    Science.gov (United States)

    Wright, Nicholas J; Drake, Jeremy J

    2016-07-28

    In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

  1. Steady-state evolution of debris disks around solar-type stars

    CERN Document Server

    Kains, N; Greaves, J S

    2011-01-01

    We present an analysis of debris disk data around Solar-type stars (spectral types F0-K5) using the steady-state analytical model of Wyatt et al. (2007). Models are fitted to published data from the FEPS (Meyer et al. 2006) project and various GTO programs obtained with MIPS on the Spitzer Space Telescope at 24 micron and 70 micron, and compared to a previously published analysis of debris disks around A stars using the same evolutionary model. We find that the model reproduces most features found in the data sets, noting that the model disk parameters for solar-type stars are different to those of A stars. Although this could mean that disks around Solar-type stars have different properties from their counterparts around earlier-type stars, it is also possible that the properties of disks around stars of different spectral types appear more different than they are because the blackbody disk radius underestimates the true disk radius by a factor $X_r$ which varies with spectral type. We use results from reali...

  2. Verification of the Kepler Input Catalog from asteroseismology of solar-type stars

    NARCIS (Netherlands)

    G.A. Verner; W.J. Chaplin; S. Basu; T.M. Brown; S. Hekker; D. Huber; C. Karoff; S. Mathur; T.S. Metcalfe; B. Mosser; P.O. Quirion; T. Appourchaux; T.R. Bedding; H. Bruntt; T.L. Campante; Y. Elsworth; R.A. Garcia; R. Handberg; C. Regulo; I.W. Roxburgh; D. Stello; J. Christensen-Dalsgaard; R.L. Gilliland; S.D. Kawaler; H. Kjeldsen; C. Allen; B.D. Clarke; F.R. Girouard

    2011-01-01

    We calculate precise stellar radii and surface gravities from the asteroseismic analysis of over 500 solar-type pulsating stars observed by the Kepler space telescope. These physical stellar properties are compared with those given in the Kepler Input Catalog (KIC), determined from ground-based mult

  3. Predicting the Detectability of Oscillations in Solar-type Stars Observed by Kepler

    DEFF Research Database (Denmark)

    Chaplin, William J.; Kjeldsen, Hans; Bedding, Timothy R.;

    2011-01-01

    Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here...

  4. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission

    NARCIS (Netherlands)

    Chaplin, W.J.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Basu, S.; Miglio, A.; Appourchaux, T.; Bedding, T.R.; Elsworth, Y.; Garcia, R.A.; Gilliland, R.L.; Girardi, L.; Houdek, G.; Karoff, C.; Kawaler, S.D.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Verner, G.A.; Ballot, J.; Bonanno, A.; Brandao, I.M.; Broomhall, A.M.; Bruntt, H.; Campante, T.L.; Corsaro, E.; Creevey, O.L.; Esch, L.; Gai, N.; Gaulme, P.; Hale, S.J.; Handberg, R.; Hekker, S.; Huber, D.; Jimenez, A.; Mathur, S.; Mazumdar, A.; Mosser, B.; New, R.; Pinsonneault, M.H.; Pricopi, D.; Quirion, P.O.; Regulo, C.; Salabert, D.; Serenelli, A.M.; Silva Aguirre, V.; Sousa, S.G.; Stello, D.; Stevens, I.R.; Suran, M.D.; Uytterhoeven, K.; White, T.R.; Borucki, W.J.; Brown, T.M.; Jenkins, J.M.; Kinemuchi, K.; Van Cleve, J.; Klaus, T.C.

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar

  5. Dynamical model for spindown of solar-type stars

    CERN Document Server

    Sood, Aditi; Hollerbach, Rainer

    2016-01-01

    Since their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g. via stellar winds. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum loss by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation and age and magnetic field strength. Here, a spindown model is proposed where loss of angular momentum by magnetic fields is evolved dynamically, instead of being kinematically prescribed. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates the nonlinear feedback mechanisms on rotation and magnetic fields. Our extended model reproduces key observations and explains the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate $\\Omega$ vs. time (age), magnet...

  6. SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER II. PHOTOMETRIC VARIABILITY OF SUPERFLARE-GENERATING STARS: A SIGNATURE OF STELLAR ROTATION AND STARSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Notsu, Yuta; Shibayama, Takuya; Notsu, Shota; Nagao, Takashi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Maehara, Hiroyuki; Honda, Satoshi; Ishii, Takako T.; Nogami, Daisaku; Shibata, Kazunari, E-mail: ynotsu@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Kitakazan-ohmine-cho, Yamashina-ku, Kyoto 607-8471 (Japan)

    2013-07-10

    We performed simple spot-model calculations for quasi-periodic brightness variations of solar-type stars showing superflares using Kepler photometric data. Most of the superflare stars show quasi-periodic brightness modulations with a typical period of one to a few tens of days. Our results indicate that these brightness variations can be explained by the rotation of a star with fairly large starspots. Using the results of the period analysis, we investigated the relation between the energy and frequency of superflares and the rotation period. Stars with relatively slower rotation rates can still produce flares that are as energetic as those of more rapidly rotating stars although the average flare frequency is lower for more slowly rotating stars. We found that the energy of superflares is related to the total coverage of the starspot. The correlation between the spot coverage and the flare energy in superflares is similar to that in solar flares. These results suggest that the energy of superflares can be explained by the magnetic energy stored around the starspots.

  7. WASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Gillon, M; Hellier, C; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Enoch, R; Lister, T A; Pepe, F; Pollacco, D L; Ségransan, D; Skillen, I; Udry, S

    2010-01-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WA...

  8. High Dispersion Spectroscopy of Solar-type Superflare Stars. III. Lithium Abundances

    CERN Document Server

    Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2015-01-01

    We report on the abundance analysis of Li in solar-type (G-type main sequence) superflare stars which were found by the analysis of Kepler photometric data. Li is a key element to understand the evolution of the stellar convection zone which reflects the age of solar-type stars. We performed the high dispersion spectroscopy of solar-type superflare stars with Subaru/HDS, and confirmed that 34 stars show no evidence of binarity in our previous study. In this study, we derived the Li abundances of these 34 objects. We investigate correlations of Li abundance with stellar atmospheric parameters, rotational velocity, and superflare activities to understand the nature of superflare stars and the possibility of the nucleosynthesis of Li by superflares. We confirm the large dispersion in the Li abundance, and the correlation with stellar parameters is not seen. As compared with the Li abundance in Hyades cluster which is younger than the Sun, it is suggested that half of the observed stars are younger than Hyades cl...

  9. Transport Phenomena and Light Element Abundances in the Sun and Solar Type Stars

    CERN Document Server

    Vauclair, S

    2000-01-01

    The observations of light elements in the Sun and Solar type stars givespecial clues for understanding the hydrodynamical processes at work in stellarinteriors. In the Sun 7Li is depleted by 140 while 3He has not increased bymore than 10 0n 3 Gyrs. Meanwhile the inversion of helioseismic modes lead toa precision on the sound velocity of about .1The mixing processes below thesolar convection zone are constrained by these observations. Lithium isdepleted in most Pop I solar type stars. In halo stars however, the lithiumabundance seems constant in the "spite plateau" with no observed dispersion,which is difficult to reconcile with the theory of diffusion processes. In thepresent paper, the various relevant observations will be discussed. It will beshown that the mu-gradients induced by element settling may help solving the"lithium paradox".

  10. Two Wide Planetary-Mass Companions to Solar-Type Stars in Upper Scorpius

    CERN Document Server

    Ireland, Michael J; Martinache, Frantz; Law, Nicholas M; Hillenbrand, Lynne A

    2010-01-01

    At wide separations, planetary-mass and brown dwarf companions to solar type stars occupy a curious region of parameters space not obviously linked to binary star formation or solar-system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (50-500 AU) companions to solar type stars in Upper Scorpius. We report one new discovery of a ~14 M_J companion around GSC 06214-00210, and confirm that the candidate planetary mass companion 1RXS J160929.1-210524 detected by Lafreniere et al (2008) is in fact co-moving with its primary star. In our survey, these two detections correspond to ~4% of solar type stars having companions in the 6-20 M_J mass and 200-500 AU separation range. This figure is higher than would be...

  11. Statistical properties of superflares on solar-type stars based on the Kepler 1-min cadence data

    CERN Document Server

    Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    We searched for superflares on solar-type stars using the Kepler short-cadence (1-min sampling) data in order to detect superflares with short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of $10^{32}$ erg to $10^{36}$ erg. Using these new data combined with the results from the data with 30-min sampling, we found the occurrence frequency ($dN/dE$) of superflares as a function of flare energy ($E$) shows the power-law distribution ($dN/dE \\propto E ^{-\\alpha}$) with $\\alpha=1.5$ for $10^{33}brightness variations. We also found that the duration of superflares ($\\tau$) increases with the flare energy ($E$) as $\\tau \\propto E^{0.39\\pm 0.03}$. This can be explained if we assume the time-scale of flares is determined by the Alfv$\\acute{\\rm e}$n time.

  12. First Detection of Thermal Radio Emission from Solar-Type Stars with the Karl G. Jansky Very Large Array

    CERN Document Server

    Villadsen, Jackie; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars {\\tau} Cet, {\\eta} Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in calcium-II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few {\\mu}Jy at combinations of 10.0, 15.0, and 34.5 GHz. {\\tau} Cet, {\\eta} Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0-GHz upper limits imply a rising spectral index greater than 1.0 for {\\tau} Cet and 1.6 for {\\eta} Cas A, at the 95% confidence level. The measured 34.5-GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically- thick thermal free-free emission from the chromosphere, with possible contributions...

  13. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    CERN Document Server

    Mazumdar, A; Ballot, J; Antia, H M; Basu, S; Houdek, G; Mathur, S; Cunha, M S; Aguirre, V Silva; Garcia, R A; Salabert, D; Verner, G A; Christensen-Dalsgaard, J; Metcalfe, T S; Sanderfer, D T; Seader, S E; Smith, J C; Chaplin, W J

    2013-01-01

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results ...

  14. Bright stars observed by FIMS/SPEAR

    CERN Document Server

    Jo, Young-Soo; Min, Kyoung-Wook; Choi, Yeon-Ju; Lim, Tae-Ho; Lim, Yeo-Myeong; Edelstein, Jerry; Han, Wonyong

    2015-01-01

    In this paper, we present a catalogue of the spectra of bright stars observed during the sky survey using the Far-Ultraviolet Imaging Spectrograph (FIMS), which was designed primarily to observe diffuse emissions. By carefully eliminating the contamination from the diffuse background, we obtain the spectra of 70 bright stars observed for the first time with a spectral resolution of 2--3 {\\AA} over the wavelength of 1370--1710 {\\AA}. The far-ultraviolet spectra of an additional 139 stars are also extracted with a better spectral resolution and/or higher reliability than those of the previous observations. The stellar spectral type of the stars presented in the catalogue spans from O9 to A3. The method of spectral extraction of the bright stars is validated by comparing the spectra of 323 stars with those of the International Ultraviolet Explorer (IUE) observations.

  15. Solar-type dynamo behaviour in fully convective stars without a tachocline

    CERN Document Server

    Wright, Nicholas J

    2016-01-01

    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dyna...

  16. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission

    DEFF Research Database (Denmark)

    Chaplin, William J.; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stell...... properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy....

  17. A Bcool spectropolarimetric survey of over 150 solar-type stars

    CERN Document Server

    Marsden, Stephen; Jeffers, Sandra; Nascimento, Jose-Dias do; Carter, Bradley; Brown, Carolyn

    2013-01-01

    As part of the Bcool project, over 150 solar-type stars chosen mainly from planet search databases have been observed between 2006 and 2013 using the NARVAL and ESPaDOnS spectropolarimeters on the Telescope Bernard Lyot (Pic du Midi, France) and the Canada France Hawaii Telescope (Mauna Kea, USA), respectively. These single 'snapshot' observations have been used to detect the presence of magnetic fields on 40% of our sample, with the highest detection rates occurring for the youngest stars. From our observations we have determined the mean surface longitudinal field (or an upper limit for stars without detections) and the chromospheric surface fluxes, and find that the upper envelope of the absolute value of the mean surface longitudinal field is directly correlated to the chromospheric emission from the star and increases with rotation rate and decreases with age.

  18. Continued Kinematic and Photometric Investigations of Hierarchical Solar-type Multiple Star Systems

    Science.gov (United States)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Marinan, Anne D.

    2017-03-01

    We observed 15 of the solar-type binaries within 67 pc of the Sun previously observed by the Robo-AO system in the visible, with the PHARO near-infrared camera and the PALM-3000 adaptive optics system on the 5 m Hale telescope. The physical status of the binaries is confirmed through common proper motion and detection of orbital motion. In the process, we detected a new candidate companion to HIP 95309. We also resolved the primary of HIP 110626 into a close binary, making that system a triple. These detections increase the completeness of the multiplicity survey of the solar-type stars within 67 pc of the Sun. Combining our observations of HIP 103455 with archival astrometric measurements and RV measurements, we are able to compute the first orbit of HIP 103455, showing that the binary has a 68 year period. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  19. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  20. Asteroseismology of solar-type stars with Kepler: II. Stellar modeling

    DEFF Research Database (Denmark)

    Metcalfe , T.S.; Karoff, Christoffer

    2010-01-01

    Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that the star has evolved...... significantly. We have derived initial estimates of the properties of KIC 11026764 from the oscillation frequencies observed by Kepler, combined with ground-based spectroscopic data. We present preliminary results from detailed modeling of this star, employing a variety of independent codes and analyses...

  1. Statistical properties of superflares on solar-type stars with Kepler data

    CERN Document Server

    Notsu, Yuta; Shibayama, Takuya; Honda, Satoshi; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    Superflares are flares that release total energy 10$\\sim$10$^{4}$ times greater than that of the biggest solar flares with energy of $\\sim$10$^{32}$ erg. We searched superflares on solar-type stars (G-type main sequence stars) using the Kepler 30-min (long) and 1-min (short) cadence data. We found more than 1500 superflares on 279 stars from 30-min cadence data (Q0-6) and 187 superflares on 23 stars from 1-min cadence data (Q0-17). The bolometric energy of detected superflares ranges from the order of 10$^{32}$ erg to 10$^{36}$ erg. Using these data, we found that the occurrence frequency ($dN/dE$) of superflares is expressed as a power-law function of flare energy ($E$) with the index of -1.5 for $10^{33}$ Most of the superflare stars show quasi-periodic light variations with the amplitude of a few percent, which can be explained by the rotation of the star with large starspots. The bolometric energy released by flares is consistent with the magnetic energy stored around such large starspots. Furthermore, ou...

  2. Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler Mission

    CERN Document Server

    Chaplin, W J; Huber, D; Serenelli, A; Casagrande, L; Aguirre, V Silva; Ball, W H; Creevey, O L; Gizon, L; Handberg, R; Karoff, C; Lutz, R; Marques, J P; Miglio, A; Stello, D; Suran, M D; Pricopi, D; Metcalfe, T S; Monteiro, M J P F G; Molenda-Zakowicz, J; Appourchaux, T; Christensen-Dalsgaard, J; Elsworth, Y; Garcia, R A; Houdek, G; Kjeldsen, H; Bonanno, A; Campante, T L; Corsaro, E; Gaulme, P; Hekker, S; Mathur, S; Mosser, B; Regulo, C; Salabert, D

    2013-01-01

    We use asteroseismic data obtained by the NASA Kepler Mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in a survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures were available for the entire ensemble from complementary photometry; spectroscopic estimates of T_eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. [Abbreviated version... see paper for full abstract.

  3. Membership, metallicity and lithium abundances for solar-type stars in NGC 6633

    CERN Document Server

    Jeffries, R D; Harmer, S; Deliyannis, C P

    2002-01-01

    We present spectroscopic observations of candidate F, G and K type stars in NGC 6633, an open cluster with a similar age to the Hyades. We identify 10 new cluster members including one short period binary system. Combining this survey with that of Jeffries (1997), we identify a total of 30 solar-type members. We have used the F and early G stars to spectroscopically estimate [Fe/H]=-0.096+/-0.081 for NGC 6633 and with more precision that NGC 6633 has (0.074+/-0.041) dex less iron than the Pleiades and (0.206+/-0.040) dex less iron than the Hyades. Lithium abundances have been estimated for the NGC 6633 members and compared with consistently determined Li abundances in other clusters. Several mid F stars in NGC 6633 show strong Li depletion at approximately the same effective temperature that this phenomenon is seen in the Hyades. At cooler temperatures the Li abundance patterns in several open clusters with similar ages (NGC 6633, Hyades, Praesepe and Coma Berenices) are remarkably similar, despite their diff...

  4. A Survey of Stellar Families: Multiplicity of Solar-Type Stars

    CERN Document Server

    Raghavan, Deepak; Henry, Todd J; Latham, David W; Marcy, Geoffrey W; Mason, Brian D; Gies, Douglas R; White, Russel J; Brummelaar, Theo A ten

    2010-01-01

    We present the results of a comprehensive assessment of companions to solar-type stars. A sample of 454 stars, including the Sun, was selected from the Hipparcos catalog with {\\pi} > 40 mas, {\\sigma}_{\\pi}/{\\pi} < 0.05, 0.5 < B - V < 1.0 (~ F6-K3), and constrained by absolute magnitude and color to exclude evolved stars. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the CHARA Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. In addition, we include the results from extensive radial-velocity monitoring programs and evaluate companion information from various catalogs. The overall observed fractions of single, double, triple, and higher order systems are 56% \\pm 2%, 33% \\pm 2%, 8% \\pm 1%, and 3% \\pm 1%, respectively, counting all confirmed stellar and brown dwarf companions. Our completeness analysis indicates that only a few undisc...

  5. Oscillation frequencies for 35 \\Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning

    CERN Document Server

    Davies, G R; Bedding, T R; Handberg, R; Lund, M N; Chaplin, W J; Huber, D; White, T R; Benomar, O; Hekker, S; Basu, S; Campante, T L; Christensen-Dalsgaard, J; Elsworth, Y; Karoff, C; Kjeldsen, H; Lundkvist, M S; Metcalfe, T S; Stello, D

    2015-01-01

    \\Kepler has revolutionised our understanding of both exoplanets and their host stars. Asteroseismology is a valuable tool in the characterisation of stars and \\Kepler is an excellent observing facility to perform asteroseismology. Here we select a sample of 35 \\Kepler solar-type stars which host transiting exoplanets (or planet candidates) with detected solar-like oscillations. Using available \\Kepler short cadence data up to Quarter 16 we create power spectra optimised for asteroseismology of solar-type stars. We identify modes of oscillation and estimate mode frequencies by ``peak bagging'' using a Bayesian MCMC framework. In addition, we expand the methodology of quality assurance using a Bayesian unsupervised machine learning approach. We report the measured frequencies of the modes of oscillation for all 35 stars and frequency ratios commonly used in detailed asteroseismic modelling. Due to the high correlations associated with frequency ratios we report the covariance matrix of all frequencies measured ...

  6. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Silburt, Ari; Wu, Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States)

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lower numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.

  7. Deriving precise parameters for cool solar-type stars. Optimizing the iron line list

    Science.gov (United States)

    Tsantaki, M.; Sousa, S. G.; Adibekyan, V. Zh.; Santos, N. C.; Mortier, A.; Israelian, G.

    2013-07-01

    Context. Temperature, surface gravity, and metallicitity are basic stellar atmospheric parameters necessary to characterize a star. There are several methods to derive these parameters and a comparison of their results often shows considerable discrepancies, even in the restricted group of solar-type FGK dwarfs. Aims: We want to check the differences in temperature between the standard spectroscopic technique based on iron lines and the infrared flux method (IRFM). We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences between the two methods are higher, as presented in a previous work. Methods: Our spectroscopic analysis was based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis was determined using the code MOOG. We optimized the line list using a cool star (HD 21749) with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. Results: We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM for the stars in common shows that the differences for the cooler stars are significantly smaller and more homogeneously distributed than in previous studies for stars with temperatures below 5000 K. Moreover, a comparison is presented between interferometric temperatures with our results that shows good agreement, even though the sample is small and the errors of the mean differences are large. We use the new line list to re-derive parameters for some of the cooler stars that host planets. Finally, we present the impact of the new temperatures on the [Cr i/Cr ii] and [Ti i/Ti ii] abundance ratios that previously showed systematic trends with temperature. We show that the slopes

  8. A UNIFORM ASTEROSEISMIC ANALYSIS OF 22 SOLAR-TYPE STARS OBSERVED BY KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, S.; Metcalfe, T. S.; Christensen-Dalsgaard, J.; Dogan, G. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Woitaszek, M. [Computational and Information Systems Laboratory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Bruntt, H.; Karoff, C.; Campante, T. L. [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark); Verner, G. A.; Chaplin, W. J.; Elsworth, Y. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Creevey, O. L. [Laboratoire Lagrange, UMR7293, Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d' Azur, BP 4229, 06304 Nice Cedex 4 (France); Basu, S.; Deheuvels, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Stello, D.; Bedding, T. R.; Benomar, O. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR8617, Universite Paris XI, Batiment 121, 91405 Orsay Cedex (France); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, 91191 Gif-sur-Yvette Cedex (France); Bonanno, A. [INAF Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania (Italy); and others

    2012-04-20

    Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to {approx}1% precision, and ages to {approx}2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.

  9. Time-dependent nonextensivity arising from the rotational evolution of solar-type stars

    CERN Document Server

    Silva, Jose R P; Soares, Braulio B; de Freitas, Daniel B

    2013-01-01

    The nonextensive formalism is a generalization of the Boltzmann-Gibbs Statistics. In this formalism the entropic index q is a quantity characterizing the degree of nonextensivity, and is interpreted as a parameter of long-memory or long-range interactions between the components of the system. Since its proposition in 1988, this formalism has been applied to investigate a wide spectrum of natural phenomena. In stellar astrophysics, theoretical distribution function based on nonextensive formalism (q-distributions) has been successfully applied to reproduce the distribution of stellar radial and rotational velocity data. In this paper, we investigate the time variation of the entropic index q obtained from the distribution of rotation, Vsini, for a sample of 254 rotational data for solar-type star from 11 open clusters aged between 35.5Myr and 2.6Gyr. As a result we have found an anti-correlation between the entropic index q and the age of clusters, and that the distribution of rotation Vsini for these stars be...

  10. Radio emission and mass loss rate limits of four young solar-type stars

    Science.gov (United States)

    Fichtinger, Bibiana; Güdel, Manuel; Mutel, Robert L.; Hallinan, Gregg; Gaidos, Eric; Skinner, Stephen L.; Lynch, Christene; Gayley, Kenneth G.

    2017-03-01

    Aims: Observations of free-free continuum radio emission of four young main-sequence solar-type stars (EK Dra, π1 UMa, χ1 Ori, and κ1 Cet) are studied to detect stellar winds or at least to place upper limits on their thermal radio emission, which is dominated by the ionized wind. The stars in our sample are members of The Sun in Time programme and cover ages of 0.1-0.65 Gyr on the main-sequence. They are similar in magnetic activity to the Sun and thus are excellent proxies for representing the young Sun. Upper limits on mass loss rates for this sample of stars are calculated using their observational radio emission. Our aim is to re-examine the faint young Sun paradox by assuming that the young Sun was more massive in its past, and hence to find a possible solution for this famous problem. Methods: The observations of our sample are performed with the Karl G. Jansky Very Large Array (VLA) with excellent sensitivity, using the C-band receiver from 4-8 GHz and the Ku-band from 12-18 GHz. Atacama Large Millimeter/Submillitmeter Array (ALMA) observations are performed at 100 GHz. The Common Astronomy Software Application (CASA) package is used for the data preparation, reduction, calibration, and imaging. For the estimation of the mass loss limits, spherically symmetric winds and stationary, anisotropic, ionized winds are assumed. We compare our results to 1) mass loss rate estimates of theoretical rotational evolution models; and 2) to results of the indirect technique of determining mass loss rates: Lyman-α absorption. Results: We are able to derive the most stringent direct upper limits on mass loss so far from radio observations. Two objects, EK Dra and χ1 Ori, are detected at 6 and 14 GHz down to an excellent noise level. These stars are very active and additional radio emission identified as non-thermal emission was detected, but limits for the mass loss rates of these objects are still derived. The emission of χ1 Ori does not come from the main target

  11. Phosphorus-bearing molecules in solar-type star forming regions: First PO detection

    CERN Document Server

    Lefloch, B; Viti, S; Jimenez-Serra, I; Codella, C; Podio, L; Ceccarelli, C; Mendoza, E; Lepine, J R D; Bachiller, R

    2016-01-01

    As part of the Large Program ASAI (Astrochemical Surveys At IRAM), we have used the IRAM 30m telescope to lead a systematic search for the emission of rotational transitions of P-bearing species between 80 and 350 GHz towards L1157-B1, a shock position in the solar-type star forming region L1157. We report the detection of several transitions of PN and, for the first time, of prebiotic molecule PO. None of these species are detected towards the driving protostar of the outflow L1157-mm. Analysis of the line profiles shows that PN arises from the outflow cavity, where SiO, a strong shock tracer, is produced. Radiative transfer analysis yields an abundance of 2.5e-9 and 0.9e-9 for PO and PN, respectively. These results imply a strong depletion (approx 100) of Phosphorus in the quiescent cloud gas. Shock modelling shows that atomic N plays a major role in the chemistry of PO and PN. The relative abundance of PO and PN brings constraints both on the duration of the pre-shock phase, which has to be about 1 Myr, an...

  12. DUst around NEarby Stars (DUNES): searching for Kuiper-belt analogues around solar-type stars

    Science.gov (United States)

    Montesinos, B.; Dunes Consortium

    2011-11-01

    In this paper we summarize some of the results of the Herschel Open Time Key Programme DUNES (DUst around NEarby Stars). This project aims at detecting and studying cold dust discs, i.e. Edgeworth-Kuiper-belt analogues, around FGK stars of the solar neighbourhood, in a volume-limited sample. The sensitivity and wavelengths of the two instruments used, namely PACS (70, 100 and 160 micron) and SPIRE (250, 350 and 500 micron) are the appropriate ones for these tasks. Despite of the fact that, at the time of writing these proceedings, only about half of the sample has been observed, new results and increased statistics with respect to previous surveys and observations have emerged. Some new, unexpected results, in the form of very cold discs, pose some challenges to the current modelling paradigms. Note that at the time this paper is published, the results given and some of the conclusions will be obviously out of date.

  13. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Science.gov (United States)

    Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.; Jenkins, Jon M.; Rowe, Jason F.; Batalha, Natalie M.; Borucki, William J.; Koch, David G.; Dunham, Edward W.; Gautier, Thomas N., III; Van Cleve, Jeffrey; Cochran, William D.; Latham, David W.; Lissauer, Jack J.; Torres, Guillermo; Brown, Timothy M.; Gilliland, Ronald L.; Buchhave, Lars A.; Caldwell, Douglas A.; Christensen-Dalsgaard, Jørgen; Ciardi, David; Fressin, Francois; Haas, Michael R.; Howell, Steve B.; Kjeldsen, Hans; Seager, Sara; Rogers, Leslie; Sasselov, Dimitar D.; Steffen, Jason H.; Basri, Gibor S.; Charbonneau, David; Christiansen, Jessie; Clarke, Bruce; Dupree, Andrea; Fabrycky, Daniel C.; Fischer, Debra A.; Ford, Eric B.; Fortney, Jonathan J.; Tarter, Jill; Girouard, Forrest R.; Holman, Matthew J.; Johnson, John Asher; Klaus, Todd C.; Machalek, Pavel; Moorhead, Althea V.; Morehead, Robert C.; Ragozzine, Darin; Tenenbaum, Peter; Twicken, Joseph D.; Quinn, Samuel N.; Isaacson, Howard; Shporer, Avi; Lucas, Philip W.; Walkowicz, Lucianne M.; Welsh, William F.; Boss, Alan; Devore, Edna; Gould, Alan; Smith, Jeffrey C.; Morris, Robert L.; Prsa, Andrej; Morton, Timothy D.; Still, Martin; Thompson, Susan E.; Mullally, Fergal; Endl, Michael; MacQueen, Phillip J.

    2012-08-01

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R ⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R sstarf/a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp period plane and increases substantially down to the smallest radius (2 R ⊕) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P power law, df/dlog R = kRR α with kR = 2.9+0.5 - 0.4, α = -1.92 ± 0.11, and R ≡ R p/R ⊕. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R p > 2 R ⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R ⊕, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P 0. For smaller planets, P 0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T eff range of 3600-7100 K

  14. The evolution of surface magnetic fields in young solar-type stars - I. The first 250 Myr

    Science.gov (United States)

    Folsom, C. P.; Petit, P.; Bouvier, J.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Jeffers, S. V.; Marsden, S. C.; Vidotto, A. A.

    2016-03-01

    The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from five associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 M⊙, and rotation periods from 0.4 to 6 d. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. Comparing the magnetic properties of our zero-age main-sequence sample to those of both younger and older stars, it appears that the magnetic evolution of solar-type stars during the pre-main sequence is primarily driven by structural changes, while it closely follows the stars' rotational evolution on the main sequence.

  15. WASP-50b: a hot Jupiter transiting a moderately active solar-type star

    CERN Document Server

    Gillon, M; Lendl, M; Maxted, P F L; Triaud, A H M J; Anderson, D R; Barros, S C C; Bento, J; Collier-Cameron, A; Enoch, B; Faedi, F; Hellier, C; Jehin, E; Magain, P; Montalban, J; Pepe, F; Pollacco, D; Queloz, D; Smalley, B; Segransan, D; Smith, A M S; Southworth, J; Udry, S; West, R G; Wheatley, P J

    2011-01-01

    We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tid...

  16. Zeeman-Doppler imaging of active young solar-type stars

    Science.gov (United States)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  17. Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program

    CERN Document Server

    Sousa, Sérgio G; Israelian, Garik; Lovis, C; Mayor, Michel; Silva, Pedro B; Udry, Stephane

    2010-01-01

    Stellar metallicity strongly correlates with the presence of planets and their properties. To check for new correlations between stars and the existence of an orbiting planet, we determine precise stellar parameters for a sample of metal-poor solar-type stars. This sample was observed with the HARPS spectrograph and is part of a program to search for new extrasolar planets. The stellar parameters were determined using an LTE analysis based on equivalent widths (EW) of iron lines and by imposing excitation and ionization equilibrium. The ARES code was used to allow automatic and systematic derivation of the stellar parameters. Precise stellar parameters and metallicities were obtained for 97 low metal-content stars. We also present the derived masses, luminosities, and new parallaxes estimations based on the derived parameters, and compare our spectroscopic parameters with an infra-red flux method calibration to check the consistency of our method in metal poor stars. Both methods seems to give the same effect...

  18. Discovery of a Low-Mass Companion to the Solar-Type Star TYC 2534-698-1

    CERN Document Server

    Kane, Stephen R; Cochran, William D; Street, Rachel A; Thirupathi, Sivarani; Henry, Gregory W; Williamson, Michael H

    2008-01-01

    Brown dwarfs and low-mass stellar companions are interesting objects to study since they occupy the mass region between deuterium and hydrogen burning. We report here the serendipitous discovery of a low-mass companion in an eccentric orbit around a solar-type main sequence star. The stellar primary, TYC 2534-698-1, is a G2V star that was monitored both spectroscopically and photometrically over the course of several months. Radial velocity observations indicate a minimum mass of 0.037 M_solar and an orbital period of ~103 days for the companion. Photometry outside of the transit window shows the star to be stable to within ~6 millimags. The semi-major axis of the orbit places the companion in the 'brown dwarf desert' and we discuss potential follow-up observations that could constrain the mass of the companion.

  19. Variations on Debris Disks III. Collisional Cascades and Giant Impacts in the Terrestrial Zones of Solar-type Stars

    CERN Document Server

    Kenyon, Scott J

    2015-01-01

    We analyze two new sets of coagulation calculations for solid particles orbiting within the terrestrial zone of a solar-type star. In models of collisional cascades, numerical simulations demonstrate that the total mass, the mass in 1 mm and smaller particles, and the dust luminosity decline with time more rapidly than predicted by analytic models, $\\propto t^{-n}$ with $n \\approx$ 1.1-1.2 instead of 1. Size distributions derived from the numerical calculations follow analytic predictions at radii less than 0.1 km but are shallower than predicted at larger sizes. In simulations of planet formation, the dust luminosity declines more slowly than in pure collisional cascades, with $n \\approx$ 0.5-0.8 instead of 1.1-1.2. Throughout this decline, giant impacts produce large, observable spikes in dust luminosity which last roughly 0.01-0.1 Myr and recur every 1-10 Myr. If most solar-type stars have Earth mass planets with $a \\lesssim$ 1-2 AU, observations of debris around 1-100 Myr stars allow interesting tests of ...

  20. Stability analysis of a tidally excited internal gravity wave near the centre of a solar-type star

    CERN Document Server

    Barker, Adrian

    2011-01-01

    We perform a stability analysis of a tidally excited nonlinear internal gravity wave near the centre of a solar-type star in two-dimensions. The motivation is to understand the tidal interaction between short-period planets and their solar-type host stars, which involves the launching of gravity waves at the top of the radiation zone that propagate towards the stellar centre. Studying the instabilities of these waves near the centre, where nonlinearities are most important, is essential, since it may have implications for the survival of these planets. When the waves have sufficient amplitude to overturn the stratification, they break and form a critical layer, which efficiently absorbs subsequent ingoing wave angular momentum, and can result in the planet spiralling into the star. However, previous simulations do not find the waves to undergo instability for smaller amplitudes. This work has two aims: to determine any instabilities that set in for small-amplitude waves, and to further understand the breaking...

  1. Is beryllium ultra-depletion in solar-type stars linked to the presence of a white dwarf companion?

    CERN Document Server

    Desidera, S; Lugaro, M

    2015-01-01

    Abundance studies of solar-type stars revealed a small fraction of objects with extreme depletion of beryllium. We investigate the possible link between the beryllium depletion and the presence of companions. The classical methods (radial velocity, astrometry, imaging) used to search for binary companions were exploited. We also performed a chemical analysis to identify binaries by the alteration in abundances that is produced by the accretion of material lost by a former evolved companion. We found that all the four previously investigated stars that were found to be ultra--depleted in Be are binaries. In two cases the companion is a white dwarf, and in the other two cases the companion might be a white dwarf or a main-sequence star. One new barium star was identified. We speculate that the interaction with the white dwarf progenitor caused an alteration in the abundance pattern of the star, which resulted in severe beryllium depletion. Possible mechanisms such as thermohaline mixing, episodic accretion, and...

  2. Verification of the Kepler Input Catalog from Asteroseismology of Solar-type Stars

    DEFF Research Database (Denmark)

    Verner, G.A.; Chaplin, W.J.; Basu, S.;

    2011-01-01

    -based multi-color photometry. For the stars in our sample, we find general agreement but we detect an average overestimation bias of 0.23 dex in the KIC determination of log (g) for stars with log (g)KIC > 4.0 dex, and a resultant underestimation bias of up to 50% in the KIC radii estimates for stars with R...... KIC sun. Part of the difference may arise from selection bias in the asteroseismic sample; nevertheless, this result implies there may be fewer stars characterized in the KIC with R ~ 1 R sun than is suggested by the physical properties in the KIC. Furthermore, if the radius estimates are taken...

  3. High Dispersion Spectroscopy of Solar-type Superflare Stars. I. Temperature, Surface Gravity, Metallicity, and $v \\sin i$

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2014-01-01

    We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS, and measured the stellar parameters of them. These 50 targets were selected from the solar-type (G-type main sequence) superflare stars that we had discovered from the Kepler photometric data. As a result of these spectroscopic observations, we found that more than half (34 stars) of our 50 targets have no evidence of binary system. We then estimated effective temperature ($T_{\\rm{eff}}$), surface gravity ($\\log g$), metallicity ([Fe/H]), and projected rotational velocity ($v\\sin i$) of these 34 superflare stars on the basis of our spectroscopic data. The accuracy of our estimations is higher than that of Kepler Input Catalog (KIC) values, and the differences between our values and KIC values ($(\\Delta T_{\\rm{eff}})_{\\rm{rms}} \\sim 219$K, $(\\Delta \\log g)_{\\rm{rms}} \\sim 0.37$ dex, and $(\\Delta\\rm{[Fe/H]})_{\\rm{rms}} \\sim 0.46$ dex) are comparable to the large uncertainties and systematic differences of KIC values ...

  4. The evolution of surface magnetic fields in young solar-type stars I: the first 250 Myr

    CERN Document Server

    Folsom, C P; Bouvier, J; Lèbre, A; Amard, L; Palacios, A; Morin, J; Donati, J -F; Jeffers, S V; Marsden, S C; Vidotto, A A

    2016-01-01

    The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler Imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from 5 associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 solar masses, and rotation periods from 0.4 to 6 days. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. ...

  5. Supernova enrichment and dynamical histories of solar-type stars in clusters

    CERN Document Server

    Parker, Richard J; Davies, Melvyn B; Meyer, Michael R

    2013-01-01

    We use N-body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as 26-Al, were delivered to the Sun's protoplanetary disc from a supernova at the epoch of Solar System formation. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure, and those with smooth profiles. We also adopt different initial virial ratios - from cool, collapsing clusters to warm, expanding associations. In each cluster we place the same stellar population; the clusters each have 2100 stars, and contain one massive 25M_Sun star which is expected to explode as a supernova at about 6.6Myr. We determine the number of Solar (G)-type stars that are within 0.1 - 0.3pc of the 25M_Sun star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26-Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed `singletons'; stars whic...

  6. Age dependence of wind properties for solar type stars: a 3d study

    CERN Document Server

    Réville, Victor; Strugarek, Antoine; Brun, Allan Sacha

    2016-01-01

    Young and rapidly rotating stars are known for intense, dynamo generated magnetic fields. Spectropolarimetric observations of those stars in precisely aged clusters are key input for gyrochronology and magnetochronology. We use ZDI maps of several young K-type stars of similar mass and radius but with various ages and rotational periods, to perform 3D numerical MHD simulations of their coronae and follow the evolution of their magnetic properties with age. Those simulations yield the coronal structure as well as the instant torque exerted by the magnetized, rotating wind on the star. As stars get older, we find that the angular momentum loss decreases with $\\Omega^3$, which is the reason for the convergence on the Skumanich law. For the youngest stars of our sample, the angular momentum loss show signs of saturation around $8\\Omega_{\\odot}$, which is a common value used in spin evolution models for K-type stars. We compare these results to semi-analytical models and existing braking laws. We observe a complex...

  7. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    DEFF Research Database (Denmark)

    Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.

    2012-01-01

    a nearly complete set of detected planets as small as 2 R ⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability...... of transit, R /a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp R...... ⊕. We count planets in small domains of R p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest...

  8. Larger Planet Radii Inferred from Stellar "Flicker" Brightness Variations of Bright Planet Host Stars

    CERN Document Server

    Bastien, Fabienne A; Pepper, Joshua

    2014-01-01

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, logg. Recent work has demonstrated that the short-timescale brightness variations ("flicker") of stars can be used to measure logg to a high accuracy of ~0.1-0.2 dex (Bastien et al. 2013). Here, we use flicker measurements of 289 bright (Kepmag<13) candidate planet-hosting stars with Teff=4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, an astrophysical bias exists that contaminates the stellar sample with evolved stars: nearly 50%...

  9. Deriving precise parameters for cool solar-type stars. Optimizing the iron line list

    CERN Document Server

    Tsantaki, M; Adibekyan, V Zh; Santos, N C; Mortier, A; Israelian, G

    2013-01-01

    Temperature, surface gravity, and metallicitity are basic stellar atmospheric parameters necessary to characterize a star. We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences with the Infrared Flux Method are higher, as presented in previous work. Our spectroscopic analysis is based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis is determined using the code MOOG. We optimize the line list using a cool star with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM shows that the differences for the cooler stars are significantly smaller and more homo...

  10. Superflares on the slowly rotating solar-type stars KIC10524994 and KIC07133671?

    CERN Document Server

    Kitze, M; Hambaryan, V; Ginski, C

    2014-01-01

    An investigation of the G-type stellar population with Kepler (as done by Maehara et al.) shows that less than 1 per cent of those stars show superflares. Due to the large pixel scale of Kepler ($\\sim4 arcsec \\: px^{-1}$), it is still not clear whether the detected superflares really occur on the G-type stars. Knowing the origin of such large brightenings is important to study their frequency statistics, which are uncertain due to the low number of sun-like stars ($T_{eff} = 5600-6000 \\:K$ and $P_{rot} > 10 \\:d$) which are currently considered to exhibit superflares. We present a complete Kepler data analysis of the sun-like stars KIC10524994 and KIC07133671 (the only two stars within this subsample of solar twins with flare energies larger than $10^{35}$ erg; Maehara et al.), regarding superflare properties and a study about their origin. We could detect four new superflares within the epoch Maehara et al. investigated and found 14 superflares in the remaining light curve for KIC10524994. Astrometric Kepler ...

  11. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    CERN Document Server

    Howard, Andrew W; Bryson, Stephen T; Jenkins, Jon M; Rowe, Jason F; Batalha, Natalie M; Borucki, William J; Koch, David G; Dunham, Edward W; Gautier, Thomas N; Van Cleve, Jeffrey; Cochran, William D; Latham, David W; Lissauer, Jack J; Torres, Guillermo; Brown, Timothy M; Gilliland, Ronald L; Buchhave, Lars A; Caldwell, Douglas A; Christensen-Dalsgaard, Jorgen; Ciardi, David; Fressin, Francois; Haas, Michael R; Howell, Steve B; Kjeldsen, Hans; Seager, Sara; Rogers, Leslie; Sasselov, Dimitar D; Steffen, Jason H; Basri, Gibor S; Charbonneau, David; Christiansen, Jessie; Clarke, Bruce; Dupree, Andrea; Fabrycky, Daniel C; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Tarter, Jill; Girouard, Forrest R; Holman, Matthew J; Johnson, John Asher; Klaus, Todd C; Machalek, Pavel; Moorhead, Althea V; Morehead, Robert C; Ragozzine, Darin; Tenenbaum, Peter; Twicken, Joseph D; Quinn, Samuel N; Isaacson, Howard; Shporer, Avi; Lucas, Philip W; Walkowicz, Lucianne M; Welsh, William F; Boss, Alan; Devore, Edna; Gould, Alan; Smith, Jeffrey C; Morris, Robert L; Prsa, Andrej; Morton, Timothy D

    2011-01-01

    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re...

  12. On the metallicity dependence of the [Y/Mg]-age relation for solar-type stars

    Science.gov (United States)

    Feltzing, Sofia; Howes, Louise M.; McMillan, Paul J.; Stonkutė, Edita

    2017-02-01

    Several recent studies of solar twins in the solar neighbourhood have shown a tight correlation between various elemental abundances and age, in particular [Y/Mg]. If this relation is real and valid for other types of stars as well as elsewhere in the Galaxy, it would provide a very powerful tool to derive ages of stars without the need to resort to determining their masses (evolutionary stage) very precisely. The method would also likely work if the stellar parameters have relatively large errors. The studies presented in the recent literature span a narrow range of [Fe/H]. By studying a larger sample of solar neighbourhood dwarfs with a much larger range of [Fe/H], we find that the relation between [Y/Mg] and age depends on the [Fe/H] of the stars. Hence, it appears that the [Y/Mg]-age relation is unique to solar analogues.

  13. On the metallicity dependance of the [Y/Mg] - age relation for solar type stars

    CERN Document Server

    Feltzing, S; McMillan, P J; Stonkute, E

    2016-01-01

    Several recent studies of Solar twins in the Solar neighbourhood have shown a tight correlation between various elemental abundances and age, in particular [Y/Mg]. If this relation is real and valid for other types of stars as well as elsewhere in the Galaxy it would provide a very powerful tool to derive ages of stars without the need to resort to determining their masses (evolutionary stage) very precisely. The method would also likely work if the stellar parameters have relatively large errors. The studies presented in the recent literature span a narrow range of [Fe/H]. By studying a larger sample of Solar neighbourhood dwarfs with a much larger range in [Fe/H], we find that the relation between [Y/Mg] and age depends on the [Fe/H] of the stars. Hence, it appears that the [Y/Mg] - age relation is unique to Solar analogues.

  14. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission

    CERN Document Server

    Chaplin, W J; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Zakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandao, I M; Broomhall, A -M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Dogan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P -O; Régulo, C; Salabert, D; Serenelli, A M; Aguirre, V Silva; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C; 10.1126/science.1201827

    2011-01-01

    In addition to its search for extra-solar planets, the NASA Kepler Mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solartype stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  15. Coronal thermal structure and abundances of supermetal-rich solar-type stars

    Science.gov (United States)

    Brickhouse, Nancy S. (Principal Investigator); Mushotzky, Richard F. (Technical Monitor)

    2005-01-01

    This observation is for grating spectroscopy of Tau Boo, a late-type star with very high metallicity (about twice solar). Despite the extreme condition of high metallicity in the photosphere, the abundance ratios of the corona appear consistent with the general picture of a coronal abundance/activity relation. The target was obtained by XMM-Newton on 24 June 2003 for 71900 sec. The European PI Antonio Maggio is responsible for data reduction. Members of our team presented at the Cool Stars Workshop 13 held in Hamburg, Germany in July 2004 and conferred at that time on the publication of results. This project is complete except for the final publication.

  16. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  17. Precise spectroscopic parameters for solar-type stars with moderate-to-high rotation

    Science.gov (United States)

    Tsantaki, M.; Sousa, S.; Santos, N. C.; Montalto, M.

    2014-07-01

    One of the primary objectives of Gaia is to survey billions stars and build the most precise 3D map of the Milky Way. Automated techniques of spectral analysis are needed to perform a rapid and homogeneous processing of the data to provide precise and accurate stellar parameters, such as for the GAIA-ESO survey. In this context, our recent work is based on the spectral synthesis technique to derive parameters for both slowly and fast rotating stars (Tsantaki et al. 2014). The spectroscopic analysis was performed using the package Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) and a specific methodology to deal with fast rotators (υsini up to 50 km/s). The spectral regions, including the atomic data of all the lines in our analysis are available online in SME readable format http://mariatsantaki.weebly.com;. A comparison between the parameters derived with our methodology and with the iron ionization and excitation method (e.g. Sousa et al. 2008; Tsantaki et al. 2013) shows that both results are on the same scale. Additionally, for fast rotating stars, our results are in good agreement with literature values when comparing to other methods. We are now able to provide parameters for a very wide group of stars: from giants to dwarfs and from slowly to fast rotating stars. Except for galactic studies, stellar parameters are important for the planetary characterization. We provided updated stellar and planetary properties for ten systems. The stellar parameters were compiled in the SWEET-Catalogue (https://www.astro.up.pt/resources/sweet-cat/).

  18. BRITE-Constellation: Nanosatellites for precision photometry of bright stars

    Science.gov (United States)

    Weiss, W. W.; Moffat, A. F. J.; Schwarzenberg-Czerny, A.; Koudelka, O. F.; Grant, C. C.; Zee, R. E.; Kuschnig, R.; Mochnacki, St.; Rucinski, S. M.; Matthews, J. M.; Orleański, P.; Pamyatnykh, A. A.; Pigulski, A.; Alves, J.; Guedel, M.; Handler, G.; Wade, G. A.; Scholtz, A. L.; Scholtz

    2014-02-01

    BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V ~ 4, with precision and time coverage not possible from the ground. The current mission design consists of three pairs of 7 kg nanosats (hence ``Constellation'') from Austria, Canada and Poland carrying optical telescopes (3 cm aperture) and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats (funded by Austria) are UniBRITE, designed and built by UTIAS-SFL (University of Toronto Institute for Aerospace Studies-Space Flight Laboratory) and its twin, BRITE-Austria, built by the Technical University Graz (TUG) with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency, under contract to the Canadian Space Agency. Each BRITE instrument has a wide field of view (~ 24 degrees), so up to 15 bright stars can be observed simultaneously in 32 × 32 sub-rasters. Photometry (with reduced precision but thorough time sampling) of additional fainter targets will be possible through on-board data processing. A critical technical element of the BRITE mission is the three-axis attitude control system to stabilize a nanosat with very low inertia. The pointing stability is better than 1.5 arcminutes rms, a significant advance by UTIAS-SFL over any previous nanosatellite. BRITE-Constellation will primarily measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology. The BRITE sample of many of the brightest stars in the night sky is dominated by the most intrinsically luminous stars: massive stars seen at all evolutionary stages, and evolved medium-mass stars at the very end of their nuclear burning phases (cool giants and AGB stars). The Hertzsprung-Russell diagram for stars brighter than mag V=4 from which the BRITE-Constellation sample

  19. Discovery of peculiar periodic spectral modulations in a small fraction of solar type stars

    CERN Document Server

    Borra, E F

    2016-01-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal to noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines and signals generated by Extraterrestrial Intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally we consider the possibility, pre...

  20. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    Science.gov (United States)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  1. Revealing a universal planet-metallicity correlation for planets of different solar-type stars

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A., E-mail: ji.wang@yale.edu [Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2015-01-01

    The metallicity of exoplanet systems serves as a critical diagnostic of planet formation mechanisms. Previous studies have demonstrated the planet–metallicity correlation for large planets (R{sub P} ⩾ 4 R{sub E}); however, a correlation has not been found for smaller planets. With a sample of 406 Kepler objects of interest whose stellar properties are determined spectroscopically, we reveal a universal planet–metallicity correlation: not only gas-giant planets (3.9 R{sub E} stars. The planet occurrence rates of gas-giant planets, gas-dwarf planets, and terrestrial planets are 9.30{sub −3.04}{sup +5.62}, 2.03{sub −0.26}{sup +0.29}, and 1.72{sub −0.17}{sup +0.19} times higher for metal-rich stars than for metal-poor stars, respectively.

  2. Resolved Millimeter-Wavelength Observations of Debris Disks around Solar-Type Stars

    CERN Document Server

    Steele, Amy; Carpenter, John; Ricarte, Angelo; Andrews, Sean M; Wilner, David J; Chiang, Eugene

    2015-01-01

    The presence of debris disks around young main sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The FEPS (Formation and Evolution of Planetary Systems) $Spitzer$ Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at ~2" resolution that spatially resolve the debris disks around these nearby ($d\\sim$50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array (ALMA) data to enable a uniform analysis of the full five-object sample. We simultaneou...

  3. RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Amy; Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT, 06459 (United States); Carpenter, John [Division of Physics, Mathematics, and Astronomy, MC249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Ricarte, Angelo [J. W. Gibbs Laboratory, Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene, E-mail: asteele@wesleyan.edu [Department of Astronomy, 501 Campbell Hall, University of California, Berkeley, CA 94720-3411 (United States)

    2016-01-01

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

  4. Star Formation Rates in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Pickering, T. E.; Impey, C. D.; van Gorkom, J.; Bothun, G. D.

    1994-01-01

    The low surface brightness (LSB) disk galaxies found in recent surveys (e.g.,\\ Schombert et al. 1992, AJ, 103, 1107) tend to be blue and gas rich. These properties along with their low mean surface luminosity and H i densities imply an inefficient mode of star formation. The Hα images that we presen

  5. STAR-FORMATION THRESHOLDS IN LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    VANDERHULST, JM; SKILLMAN, ED; SMITH, TR; BOTHUN, GD; MCGAUGH, SS; DEBLOK, WJG

    1993-01-01

    Low Surface Brightness (LSB) galaxies appear to have low star formation rates despite their often quite normal H I contents as judged from global H I properties such as M(H I)/L and M(H I)/M(T) ratios. H I imaging with the Very Large Array of the National Radio Astronomy Observatory (the NRAO is ope

  6. The star-bright hour : [poems] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2003-01-01

    Autori lühitutvustus lk. 231. Sisu: The star-bright hour ; The debt ; Not a dream ; Fog-bound ; Corals in an Ancient river ; Frou-frou 1-3. Orig.: Tähetund ; Vilepuhuja ; Võlg ; "Mitte viirastus, meelepett..." ; Udus ; Korallid Emajões ; Froufrou 1-3

  7. The star-bright hour : [luuletused] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2006-01-01

    Sisu: The star-bright hour ; Not a dream ; The Piper ; Corals in an ancent river. Luuletused pärinevad kogumikust "Tuulelaeval valgusest on aerud = Windship with Oars of Light. (Tallinn : Huma, 2001). Orig.: Tähetund ; Mitte viirastus, meelepett ; Vilepuhuja ; Korallid Emajões

  8. A new procedure for defining a homogenous line-list for solar-type stars

    CERN Document Server

    Sousa, S G; Adibekyan, V; Delgado-Mena, E; Tabernero, H M; Hernández, J I González; Montes, D; Smiljanic, R; Korn, A J; Bergemann, M; Soubiran, C; Mikolatis, S

    2013-01-01

    Context. The homogenization of the stellar parameters is an important goal for large observational spectroscopic surveys, but it is very difficult to achieve it because of the diversity of the spectroscopic analysis methods used within a survey, such as spectrum synthesis and the equivalent width method. To solve this problem, constraints to the spectroscopic analysis can be set, such as the use of a common line-list. Aims. We present a procedure for selecting the best spectral lines from a given input line-list, which then allows us to derive accurate stellar parameters with the equivalent width method. Methods. To select the lines, we used four very well known benchmark stars, for which we have high-quality spectra. From an initial line-list, the equivalent width of each individual line was automatically measured for each benchmark star using ARES, then we performed a local thermodynamic equilibrium analysis with MOOG to compute individual abundances. The results allowed us to choose the best lines which gi...

  9. A Statistical Reconstruction of the Planet Population Around Kepler Solar-Type Stars

    CERN Document Server

    Silburt, Ari; Wu, Yanqin

    2014-01-01

    Using the most recent Kepler catalog, we reconstruct the occurrence rate of small (Neptune-sized or below) planets as a function of orbital period and planet radius, taking careful account of various detection biases. We analyze a sample of $76,000$ Sun-like stars and their associated planet candidates with periods between $20$ and $200$ days, and sizes between $1$ and $4 R_\\oplus$. Such planets have likely experienced little photoevaporation, and may reflect the "primordial" planet population. Assuming that the size distribution of planets are independent of their orbital periods (and vice versa), we conclude that Kepler planets are preferentially peaked at $2-2.8 R_\\oplus$, with their numbers decreasing gradually toward smaller sizes. These planets are found roughly uniformly in logarithmic period. The average number of planets per star, in the stated period and size ranges, is $0.46 \\pm 0.03$. This number rises by $\\sim 0.2$ if one includes planets inward of $20$ days. Upon extrapolation we obtain an occur...

  10. Rotation-Activity-Age Relations For Solar-Type And Cooler Stars

    Science.gov (United States)

    Basri, Gibor

    2016-08-01

    The fact that stellar rotation and chromospheric emission are correlated with age was explicitly noted by Wilson (1963) and reinforced by Kraft (1967). Wilson knew that Ca II emission was correlated with surface magnetic field in the Sun. Skumanich (1972) suggested a simple functional for the age-activity relation, and suggested that magnetic braking was the likely reason for the decline in activity. A theory for the rotation-activity connection was elucidated by Noyes et al. (1984), who invoked the Rossby number as important to the stellar dynamo. This calibrated the relation by convection zone depth and turnover time, although it was noted early and recently confirmed that it is not clear whether Rossby number is empirically superior to the rotation period itself in producing a clear rotation-activity relation. In fact, turnover times are hard to properly define, and the Rossby number is itself calibrated to tighten the relations. The number of stars in samples used to study this has increased dramatically, as have the diagnostics available to assess magnetic activity. It remains clear is that there is a strong relationship between magnetic activity and stellar rotation, and that magnetic braking forces both activity and rotation to decrease with age. These relations are also subject to modification as a function of stellar mass. There has recently been a great increase in the number of measured stellar rotation periods, and in the calibration of these relations using star clusters (whose ages can be independently assessed). I will summarize some of the ongoing progress on this topic.

  11. The Stability of F-star Brightness on Century Timescales

    CERN Document Server

    Lund, Michael B; Stassun, Keivan G; Hippke, Michael; Angerhausen, Daniel

    2016-01-01

    The century-long photometric record of the DASCH project provides a unique window into the variability of stars normally considered to be photometrically inactive. In this paper, we look for long-term trends in the brightness of F stars, with particular attention to KIC 8462852,an F3 main sequence star that has been identified as significant short-term variability according to Kepler observations. Although a simple search for variability suggests long-term dimming of a number of F stars, we find that such trends are artifacts of the 'Menzel Gap' in the DASCH data. That includes the behavior of KIC 8462852, which we believe is consistent with constant flux over the full duration of observations. We do, however, present a selection of F stars thatdo have significant photometric trends, even after systematics are taken into account.

  12. An icy Kuiper-Belt around the young solar-type star HD 181327

    CERN Document Server

    Lebreton, J; Thi, W -F; Roberge, A; Donaldson, J; Schneider, G; Maddison, S T; Ménard, F; Riviere-Marichalar, P; Mathews, G S; Kamp, I; Pinte, C; Dent, W R F; Barrado, D; Duchêne, G; Gonzalez, J -F; Grady, C A; Meeus, G; Pantin, E; Williams, J P; Woitke, P

    2011-01-01

    HD 181327 is a young F5/F6V star belonging to the Beta Pictoris moving group (12 Myr). It harbors an optically thin belt of circumstellar material at 90 AU. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. We obtained far-IR observations with the Herschel/PACS instrument, and 3.2 mm observations with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS images that break the degeneracy between the disk geometry and the dust properties. We use the radiative transfer code GRaTer to compute a large grid of models, and we identify the grain models that best reproduce the Spectral Energy Distribution through a Bayesian analysis. We attempt to detect the [OI] and [CII] lines with PACS spectroscopy, providing observables to our photochemical code ProDiMo. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected in the far-IR with PACS and the disk is resolved with both PACS and ATCA. A medium ...

  13. BRITE-Constellation: nanosatellites for precision photometry of bright stars

    CERN Document Server

    Weiss, W W; Moffat, A F J; Schwarzenberg-Czerny, A; Koudelka, O F; Grant, C C; Zee, R E; Kuschnig, R; Mochnacki, St; Matthews, J M; Orleanski, P; Pamyatnykh, A; Pigulski, A; Alves, J; Guedel, M; Handler, G; Wade, G A; Zwintz, K; CCD,

    2014-01-01

    BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, the brightness and temperature variations of stars generally brighter than mag(V) ~ 4, with precision and time coverage not possible from the ground. The current mission design consists of six nanosats (hence Constellation): two from Austria, two from Canada, and two from Poland. Each 7 kg nanosat carries an optical telescope of aperture 3 cm feeding an uncooled CCD. One instrument in each pair is equipped with a blue filter, the other with a red filter. Each BRITE instrument has a wide field of view (~24 degrees), so up to about 15 bright stars can be observed simultaneously, sampled in 32 pixel x 32 pixel sub-rasters. Photometry of additional fainter targets, with reduced precision but thorough time sampling, will be possible through onboard data processing. The BRITE sample is dominated by the most intrinsically luminous stars: massive stars seen at all e...

  14. A Lithium Abundance Study of Solar-type Stars in Blanco 1 using the 2.1m McDonald Telescope: Developing Undergraduate Research Experiences.

    Science.gov (United States)

    Cargile, Phillip; James, D. J.; Villalon, K.; Girgenti, S.; Mermilliod, J.

    2007-12-01

    We present a new catalog of lithium equivalent widths for 20 solar-type stars in the young (60-100 Myr), nearby (250 pc) open cluster Blanco 1, measured from high-resolution spectra (R 30,000), taken during an observing run on the 2.1m telescope at McDonald Observatory. These new lithium data, coupled with the 20 or so extant measurements in the literature, are used in combination with the results of a recently completed standardized BVIc CCD survey, and corresponding 2MASS near-infrared colors, to derive precise lithium abundances for solar-type stars in Blanco 1. Comparing these new results with the existing lithium dataset for other open clusters, we investigate the mass- and age-dependent lithium depletion distribution among early-epoch (< 1Gyr) solar-type stars, and specifically, the lithium abundance scatter as a function of mass in Blanco 1. Our scientific project is highly synergystic with a pedagogical philosophy. We have instituted a program whereby undergraduate students - typically majoring in Liberal Arts and performing an independent study in Astronomy - receive hands-on research experience observing with the 2.1m telescope at the McDonald Observatory. After their observing run, these undergraduates take part in the reduction and analysis of the acquired spectra, and their research experience typically culminates in writing an undergraduate thesis and/or giving a professional seminar to the Astronomy group at Vanderbilt University.

  15. K2-30 b and K2-34 b: Two inflated hot Jupiters around solar-type stars

    Science.gov (United States)

    Lillo-Box, J.; Demangeon, O.; Santerne, A.; Barros, S. C. C.; Barrado, D.; Hébrard, G.; Osborn, H. P.; Armstrong, D. J.; Almenara, J.-M.; Boisse, I.; Bouchy, F.; Brown, D. J. A.; Courcol, B.; Deleuil, M.; Delgado Mena, E.; Díaz, R. F.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Pollacco, D.; Rajpurohit, A.; Rey, J.; Santos, N. C.; Sousa, S. G.; Tsantaki, M.; Wilson, P. A.

    2016-10-01

    We report the discovery of the two hot Jupiters K2-30 b and K2-34 b. The two planets were detected during campaigns 4 and 5 of the extension of the Kepler mission, K2; they transit their main-sequence stars with periods of ~4.099 and ~2.996 days. Subsequent ground-based radial velocity follow-up with SOPHIE, HARPS-N, and CAFE established the planetary nature of the transiting objects. We analyzed the transit signal, radial velocity, and spectral energy distributions of the two systems to characterize their properties. Both planets (K2-30 b and K2-34 b) are bloated hot Jupiters (1.20 RJup and 1.22 RJup) around relatively bright (V = 13.5 and V = 11.5) slow rotating main-sequence (G8 and F9) stars. Thus, these systems are good candidates for detecting the Rossiter-MacLaughlin effect in order to measure their obliquity and for atmospheric studies. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A50

  16. EPIC210957318b and EPIC212110888b: two inflated hot-Jupiters around Solar-type stars

    CERN Document Server

    Lillo-Box, J; Santerne, A; Barros, S C C; Barrado, D; Hébrard, G; Osborn, H P; Armstrong, D J; Almenara, J -M; Boisse, I; Bouchy, F; Brown, D J A; Courcol, B; Deleuil, M; Mena, E Delgado; Díaz, R F; Kirk, J; Lam, K W F; McCormac, J; Pollacco, D; Rajpurohit, A; Rey, J; Santos, N C; Sousa, S G; Tsantaki, M; Wilson, P A

    2016-01-01

    We report the discovery of the two hot-Jupiters EPIC210957318b and EPIC212110888b (hereafter EPIC-318b and EPIC-888b, respectively). The two planets were detected transiting their main-sequence star with periods $\\sim$ 4.099 and $\\sim$ 2.996 days, in campaigns 4 and 5 of the extension of the Kepler mission, K2. Subsequent ground-based radial velocity follow-up with SOPHIE, HARPS-N and CAFE, established the planetary nature of the transiting objects. We analyzed the transit signal, radial velocity and spectral energy distributions of the two systems to characterize their properties. Both planets (EPIC-318b and EPIC-888b) are bloated hot-Jupiters (1.25 $R_{\\rm Jup}$ and 1.33 $R_{\\rm Jup}$) around relatively bright (V =13.5 and V=11.5), slow rotating main-sequence (G8 and F9) stars. Thus, these systems are good candidates for detecting the Rossiter-MacLaughlin effect to measure their obliquity and for atmospheric studies.

  17. BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars

    CERN Document Server

    Weiss, W W; Schwarzenberg-Czerny, A; Koudelka, O F; Grant, C C; Zee, R E; Kuschnig, R; Mochnacki, St; Rucinski, S M; Matthews, J M; Orleanski, P; Pamyatnykh, A; Pigulski, A; Alves, J; Guedel, M; Handler, G; Wade, G A; Scholtz, A L

    2013-01-01

    BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design consists of three pairs of 7 kg nanosats from Austria, Canada and Poland carrying optical telescopes and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats are UNIBRITE, designed and built by University of Toronto Institute for Aerospace Studies - Space Flight Laboratory and its twin, BRITE-Austria, built by the Technical University Graz with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency under contract to the Canadian Space Agency into a low-Earth dusk-dawn polar orbit.

  18. Bright Transients from Black Hole - Neutron Star Mergers

    CERN Document Server

    D'Orazio, Daniel J; Murray, Norman W; Price, Larry

    2016-01-01

    Direct detection of black hole-neutron star (BHNS) pairs is anticipated with the advent of aLIGO. Electromagnetic counterparts may be crucial for a confident gravitational-wave detection as well as for extraction of astronomical information. Yet BHNS star pairs are notoriously dark and so inaccessible to telescopes. Contrary to this expectation, a bright electromagnetic transient can occur in the final moments before merger as long as the neutron star is highly magnetized. The orbital motion of the neutron star magnet creates a Faraday flux and corresponding power available for luminosity. A spectrum of curvature radiation ramps up until the rapid injection of energy ignites a fireball, which would appear as an energetic blackbody peaking in the X-ray to gamma-rays for neutron star field strengths ranging from $10^{12}$G to $10^{16}$G respectively and a $10M_{\\odot}$ black hole. The fireball event may last from a few milliseconds to a few seconds depending on the NS magnetic field strength, and may be observa...

  19. Improving sodium laser guide star brightness by polarization switching

    Science.gov (United States)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-01-01

    Optical pumping with circularly polarized light has been used to enhance the brightness of sodium laser guide star. But the benefit is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the return. With ESO’s laser guide star system at Paranal as example, numerical simulation shows that the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 50% at 90°. The proposal is significant since most astronomical observation is at angle between 60° and 90° and it only requires a minor addition to the delivery optics of present laser system. PMID:26797503

  20. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    Science.gov (United States)

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets.

  1. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States)

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.

  2. Discovery of two new bright magnetic B stars: i Car and Atlas

    CERN Document Server

    Neiner, Coralie; Oksala, Mary E; Blazere, Aurore

    2015-01-01

    The BRITE (BRIght Target Explorer) constellation of nano-satellites performs seismology of bright stars via high precision photometry. In this context, we initiated a high resolution, high signal-to-noise, high sensitivity, spectropolarimetric survey of all stars brighter than V=4. The goal of this survey is to detect new bright magnetic stars and provide prime targets for both detailed magnetic studies and asteroseismology with BRITE. Circularly polarised spectra were acquired with Narval at TBL (France) and HarpsPol at ESO in La Silla (Chile). We discovered two new magnetic B stars: the B3V star i Car and the B8V component of the binary star Atlas. Each star was observed twice to confirm the magnetic detections and check for variability. These bright magnetic B stars are prime targets for asteroseismology and for flux-demanding techniques, such as interferometry.

  3. The dearth of nuclear star clusters in bright galaxies

    Science.gov (United States)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.; Spera, M.

    2016-03-01

    We investigate the interaction of a massive globular cluster (GC) with a super massive black hole (SMBH), located at the centre of its host galaxy, by means of direct N-body simulations. The results show that tidal distortions induced by the stellar background and the SMBH act on a time shorter than that of dynamical friction decay for a 106 M⊙ GC whenever the SMBH mass exceeds ˜108 M⊙. This implies an almost complete dissolution of the infalling GC before it reaches the inner region (≲5 pc) of the parent galaxy. The generalization of this result to a larger sample of infalling GCs shows that such destructive process may prevent the formation and growth of a bright galactic nucleus. Another interesting, serendipitous, result we obtained is that the close interaction between the SMBH and the GC produces a `wave' of stars that escape from the cluster and, in a fraction, even from the whole galaxy.

  4. VizieR Online Data Catalog: Solar-type stars from SDSS-III MARVELS. VI. HD 87646 (Ma+, 2016)

    Science.gov (United States)

    Ma, B.; Ge, J.; Wolszczan, A.; Muterspaugh, M. W.; Lee, B.; Henry, G. W.; Schneider, D. P.; Martin, E. L.; Niedzielski, A.; Xie, J.; Fleming, S. W.; Thomas, N.; Williamson, M.; Zhu, Z.; Agol, E.; Bizyaev, D.; da Costa, L. N.; Jiang, P.; Fiorenzano, A. F. M.; Hernandez, J. I. G.; Guo, P.; Grieves, N.; Li, R.; Liu, J.; Mahadevan, S.; Mazeh, T.; Nguyen, D. C.; Paegert, M.; Sithajan, S.; Stassun, K.; Thirupathi, S.; van Eyken, J. C.; Wan, X.; Wang, J.; Wisniewski, J. P.; Zhao, B.; Zucker, S.

    2016-11-01

    We have obtained a total of 16 observations of HD87646 using the W.M. Keck Exoplanet Tracker (KeckET) from 2006 December to 2007 June. The radial velocities obtained are listed in Table1. The KeckET instrument was constructed in 2005 August-2006 February with support from the Keck Foundation. It was coupled with a wide field Sloan Digital Sky Survey telescope (SDSS) and used for the pilot Multi-Object APO RV Exoplanet Large-Area Survey (MARVELS). This is the sixth paper in this series, examining the low-mass companions around solar-type stars from the SDSS-III MARVELS survey (Wisniewski et al. 2012, Cat. J/AJ/143/107; Fleming et al. 2012AJ....144...72F; Ma et al. 2013AJ....145...20M; Jiang et al. 2013AJ....146...65J; De Lee et al. 2013AJ....145..155D). The KeckET instrument consists of eight subsystems-a multi-object fiber feed, an iodine cell, a fixed-delay interferometer system, a slit, a collimator, a grating, a camera, and a 4k*4k CCD detector. In addition, it contains four auxiliary subsystems: the interferometer control, an instrument calibration system, a photon flux monitoring system, and a thermal probe and control system. The instrument is fed with 60 fibers with 200μm core diameters, which are coupled to 180μm core diameter short fibers from the SDSS telescope, corresponding to 3arcsec on the sky at f/5. The resolving power for the spectrograph is R=5100, and the wavelength coverage is ~900Å, centered at 5400Å. KeckET has one spectrograph and one 4k*4k CCD camera that captures one of the two interferometer outputs, and has a 5.5% detection efficiency from the telescope to the detector without the iodine cell under the typical APO seeing conditions (~1.5arcsec seeing). The CCD camera records fringing spectra from 59 objects in a single exposure. Subsequent observations were performed using the Exoplanet Tracker (ET) instrument at Kitt Peak National Observatory (KPNO). Initial follow-up was performed in 2007 November. Additional data points were

  5. Asteroseismic properties of solar-type stars observed with the NASA K2 mission: results from Campaigns 1-3 and prospects for future observations

    CERN Document Server

    Lund, Mikkel N; Casagrande, Luca; Aguirre, Víctor Silva; Basu, Sarbani; Bieryla, Allyson; Christensen-Dalsgaard, Jørgen; Latham, David W; White, Timothy R; Davies, Guy R; Huber, Daniel; Buchhave, Lars A; Handberg, Rasmus

    2016-01-01

    We present an asteroseismic analysis of 33 solar-type stars observed in short cadence during Campaigns (C) 1-3 of the NASA K2 mission. We were able to extract both average seismic parameters and individual mode frequencies for stars with dominant frequencies up to ~3300{\\mu}Hz, and we find that data for some targets are good enough to allow for a measurement of the rotational splitting. Modelling of the extracted parameters is performed by using grid-based methods using average parameters and individual frequencies together with spectroscopic parameters. For the target selection in C3, stars were chosen as in C1 and C2 to cover a wide range in parameter space to better understand the performance and noise characteristics. For C3 we still detected oscillations in 73% of the observed stars that we proposed. Future K2 campaigns hold great promise for the study of nearby clusters and the chemical evolution and age-metallicity relation of nearby field stars in the solar neighbourhood. We expect oscillations to be ...

  6. Surveying the Bright Stars by Optical Interferometry I: A Search for Multiplicity Among Stars of Spectral Types F - K

    CERN Document Server

    Hutter, Donald; Tycner, Christopher; Benson, James; Hummel, Christian; Sanborn, Jason; Franz, Otto G; Johnston, Kenneth

    2016-01-01

    We present the first results from an ongoing survey for multiplicity among the bright stars using the Navy Precision Optical Interferometer (NPOI). We first present a summary of NPOI observations of known multiple systems, including the first detection of the companion of $\\beta$ Scuti with precise relative astrometry, to illustrate the instrument's detection sensitivity for binaries at magnitude differences $\\Delta$$m$ $\\lessapprox$ 3 over the range of angular separation 3 - 860 milliarcseconds (mas). A limiting $\\Delta$$m_{700}$ $\\sim$ 3.5 is likely for binaries where the component spectral types differ by less than two. Model fits to these data show good agreement with published orbits, and we additionally present a new orbit solution for one of these stars, $\\sigma$ Her. We then discuss early results of the survey of bright stars at $\\delta$ $\\geq$ -20$\\deg$. This survey, which complements previous surveys of the bright stars by speckle interferometry, initially emphasizes bright stars of spectral types F...

  7. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  8. The Galactic O-Star Spectroscopic Survey (GOSSS). II. Bright Southern Stars

    CERN Document Server

    Sota, A; Morrell, N I; Barbá, R H; Walborn, N R; Gamen, R C; Arias, J I; Alfaro, E J

    2013-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ~ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of delta = -20 degrees, for a total number of 258 O stars. We also revise the northern sample of paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic surve...

  9. The age-mass-metallicity-activity relation for solar-type stars: comparisons with asteroseismology and the NGC 188 open cluster

    Science.gov (United States)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Schiavon, R. P.

    2016-10-01

    Context. The Mount Wilson Ca ii index log(R'_HK) is the accepted standard metric of calibration for the chromospheric activity versus age relation for FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than ~2 Gyr, which would severely hamper its application to date disk stars older than the Sun. Aims: We present a new activity-age calibration of the Mt. Wilson index that explicitly takes mass and [Fe/H] biases into account; these biases are implicit in samples of stars selected to have precise ages, which have so far not been appreciated. Methods: We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and [Fe/H] , augmented with data from the Pleiades, Hyades, M 67 clusters, and the Ursa Major moving group. Results: We further test the calibration with extensive new Gemini/GMOS log ()R'HK) data of the old, solar [Fe/H] clusters, M 67 and NGC 188. The observed NGC 188 activity level is clearly lower than M 67. We correctly recover the isochronal age of both clusters and establish the viability of deriving usable chromospheric ages for solar-type stars up to at least ~6 Gyr, where average errors are ~0.14 dex provided that we explicitly account for the mass and [Fe/H] dimensions. We test our calibration against asteroseismological ages, finding excellent correlation (ρ = + 0.89). We show that our calibration improves the chromospheric age determination for a wide range of ages, masses, and metallicities in comparison to previous age-activity relations.

  10. The dearth of nuclear star clusters in bright galaxies

    CERN Document Server

    Arca-Sedda, Manuel; Spera, Mario

    2015-01-01

    We investigate the interaction of a massive globular cluster (GC) with a super massive black hole (SMBH), located at the centre of its host galaxy, by means of direct $N$-body simulations. The results show that tidal distortions induced by the stellar background and the SMBH act on a time shorter than that of dynamical friction decay for a $10^6$ M$_\\odot$ GC whenever the SMBH mass exceeds $\\sim 10^8$ M$_\\odot$. This implies an almost complete dissolution of the infalling GC before it reaches the inner region ($\\lesssim 5$ pc) of the parent galaxy. The generalization of this result to a larger sample of infalling GCs shows that such destructive process may prevent the formation and growth of a bright galactic nucleus. Another interesting, serendipitous, result we obtained is that the close interaction between the SMBH and the GC produces a ``wave'' of stars that escape from the cluster and, in a fraction, even from the whole galaxy.

  11. Chandra's Darkest Bright Star: not so Dark after All?

    Science.gov (United States)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  12. The Gaia-ESO Survey: chemical signatures of rocky accretion in a young solar-type star

    CERN Document Server

    Spina, L; Randich, S; Sacco, G G; Jeffries, R; Magrini, L; Franciosini, E; Meyer, M R; Tautvaišienė, G; Gilmore, G; Alfaro, E J; Prieto, C Allende; Bensby, T; Bragaglia, A; Flaccomio, E; Koposov, S E; Lanzafame, A C; Costado, M T; Hourihane, A; Lardo, C; Lewis, J; Monaco, L; Morbidelli, L; Sousa, S G; Worley, C C; Zaggia, S

    2015-01-01

    It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypot...

  13. Improving distances to nearby bright stars: Combining astrometric data from Hipparcos, Nano-JASMINE and Gaia

    CERN Document Server

    Michalik, Daniel; Hobbs, David; Lammers, Uwe; Yamada, Yoshiyuki

    2014-01-01

    Starting in 2013, Gaia will deliver highly accurate astrometric data, which eventually will supersede most other stellar catalogues in accuracy and completeness. It is, however, lim- ited to observations from magnitude 6 to 20 and will therefore not include the brightest stars. Nano-JASMINE, an ultrasmall Japanese astrometry satellite, will observe these bright stars, but with much lower accuracy. Hence, the Hipparcos catalogue from 1997 will likely remain the main source of accurate distances to bright nearby stars. We are investigating how this might be improved by optimally combining data from all three missions in a joint astrometric solu- tion. This would take advantage of the unique features of each mission: the historic bright-star measurements of Hipparcos, the updated bright-star observations of Nano-JASMINE, and the very accurate reference frame of Gaia. The long temporal baseline between the missions pro- vides additional benefits for the determination of proper motions and binary detection, which ...

  14. Spectroscopic parameters for solar-type stars with moderate/high rotation. New parameters for 10 planet-hosts

    CERN Document Server

    Tsantaki, M; Santos, N C; Montalto, M; Delgado-Mena, E; Mortier, A; Adibekyan, V; Israelian, G

    2014-01-01

    Planetary studies demand precise and accurate stellar parameters as input to infer the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. In this work, we present a refinement of the spectral synthesis technique designed to treat better more rapidly rotating FGK stars. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicitity and rotational velocity. This procedure is tested for samples of low and moderate/fast rotating FGK stars. The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), assuming Kurucz model atmospheres in LTE. The line list where the synthesis is conducted, is comprised of iron lines and the atomic data are derived after solar calibration. The comparison of our stellar parameters shows good agreement with literature values, both for low and for higher rotating stars. In addition, our results are on the same scale w...

  15. Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red-giant stars

    NARCIS (Netherlands)

    S. Hekker; Y. Elsworth; S. Basu; A. Mazumdar; V. Silva Aguirre; W.J. Chaplin

    2013-01-01

    Asteroseismology, i.e. the study of the internal structures of stars via their global oscillations, is a valuable tool to obtain stellar parameters such as mass, radius, surface gravity and mean density. These parameters can be obtained using certain scaling relations which are based on an asymptoti

  16. Toward a Deterministic Model of Planetary Formation VI: Dynamical Interaction and Coagulation of Multiple Rocky Embryos and Super-Earth Systems around Solar Type Stars

    CERN Document Server

    Ida, S

    2010-01-01

    Radial velocity and transit surveys indicate that solar-type stars bear super-Earths, with mass and period up to ~ 20 M_E and a few months, are more common than those with Jupiter-mass gas giants. In many cases, these super-Earths are members of multiple-planet systems in which their mutual dynamical interaction has influenced their formation and evolution. In this paper, we modify an existing numerical population synthesis scheme to take into account protoplanetary embryos' interaction with their evolving natal gaseous disk, as well as their close scatterings and resonant interaction with each other. We show that it is possible for a group of compact embryos to emerge interior to the ice line, grow, migrate, and congregate into closely-packed convoys which stall in the proximity of their host stars. After the disk-gas depletion, they undergo orbit crossing, close scattering, and giant impacts to form multiple rocky Earths or super-Earths in non-resonant orbits around ~ 0.1AU with moderate eccentricities of ~...

  17. A Survey of the High Order Multiplicity of Nearby Solar-Type Binary Stars with Robo-AO

    Science.gov (United States)

    2015-01-20

    3.32 0.21 0.007 0.05 0.24 0.007 0.12 annular zones surrounding the star are computed and it is assumed that the companions brighter than 5σ are...2.55 10−5. The linear term in Y corresponds to the modified vertical scale. It is caused by the mismatch between the optical and CCD centers...stable; it is modeled here as zero for Δx < 0.7, one forΔx > 1.7, and linear in between. Considering the large range in periods, the exact form of this

  18. A Survey of the High Order Multiplicity of Nearby Solar-type Binary Stars with Robo-AO

    Science.gov (United States)

    Riddle, Reed L.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Roberts, Lewis C., Jr.; Baranec, Christoph; Law, Nicholas M.; Bui, Khanh; Burse, Mahesh P.; Das, H. K.; Dekany, Richard G.; Kulkarni, Shrinivas; Punnadi, Sujit; Ramaprakash, A. N.; Tendulkar, Shriharsh P.

    2015-01-01

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 103.5 to 105 days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 106 to 107.5 days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.

  19. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.; Kulkarni, Shrinivas; Tendulkar, Shriharsh P. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Mason, Brian D.; Hartkopf, William I. [U.S. Naval Observatory, 3450 Massachusetts Avenue, Washington, DC 20392-5420 (United States); Roberts, Lewis C. Jr. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Baranec, Christoph [Institute for Astronomy, University of Hawai" i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Burse, Mahesh P.; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune, 411007 (India)

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5} days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5} days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.

  20. The Solar Twin Planet Search III. The [Y/Mg] clock: estimating stellar ages of solar-type stars

    CERN Document Server

    Maia, M Tucci; Meléndez, J; Bedell, M; Bean, J L; Asplund, M

    2016-01-01

    Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provide an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015) recently suggested that the abundances of the s-process element Y and the $\\alpha$-element Mg could be used to estimate stellar ages. This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range ($0.3-10.0$\\,Gyr) and investigate their use for estimating ages. We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. The [Y/Mg] ratio shows a strong correlation with age. It has a slope of -0.041$\\pm$0.001 dex/Gyr and a significance of 41 $\\sigma$. Th...

  1. A survey of the high order multiplicity of nearby solar-type binary stars with Robo-AO

    CERN Document Server

    Riddle, Reed L; Mason, Brian D; Hartkopf, William I; Roberts,, Lewis C; Baranec, Christoph; Law, Nicholas M; Bui, Khanh; Burse, Mahesh P; Das, H K; Dekany, Richard G; Kulkarni, Shrinivas; Punnadi, Sujit; Ramaprakash, A N; Tendulkar, Shriharsh P

    2014-01-01

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the SDSS $i'$ band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over $10''$ to quantify the still poorly constrained frequency of their sub-systems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary sub-systems with periods from $10^{3.5}$ to $10^5$ days is 0.12$\\pm$0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of sub-systems in both ...

  2. Formation of Super-Earth Mass Planets at 125-250 AU from a Solar-type Star

    CERN Document Server

    Kenyon, S J

    2015-01-01

    We investigate pathways for the formation of icy super-Earth mass planets orbiting at 125-250 AU around a 1 solar mass star. An extensive suite of coagulation calculations demonstrates that swarms of 1 cm to 10 m planetesimals can form super-Earth mass planets on time scales of 1-3 Gyr. Collisional damping of 0.01-100 cm particles during oligarchic growth is a highlight of these simulations. In some situations, damping initiates a second runaway growth phase where 100-3000 km protoplanets grow to super-Earth sizes. Our results establish the initial conditions and physical processes required for in situ formation of super-Earth planets at large distances from the host star. For nearby dusty disks in HD 107146, HD 202628, and HD 207129, ongoing super-Earth formation at 80-150 AU could produce gaps and other structures in the debris. In the solar system, forming a putative planet X at a 1000 AU) requires a modest (very massive) protosolar nebula.

  3. Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red giant stars

    CERN Document Server

    Hekker, S; Basu, S; Mazumdar, A; Aguirre, V Silva; Chaplin, W J

    2013-01-01

    Asteroseismology, i.e. the study of the internal structures of stars via their global oscillations, is a valuable tool to obtain stellar parameters such as mass, radius, surface gravity and mean density. These parameters can be obtained using certain scaling relations which are based on an asymptotic approximation. Usually the observed oscillation parameters are assumed to follow these scaling relations. Recently, it has been questioned whether this is a valid approach, i.e., whether the order of the observed oscillation modes are high enough to be approximated with an asymptotic theory. In this work we use stellar models to investigate whether the differences between observable oscillation parameters and their asymptotic estimates are indeed significant. We compute the asymptotic values directly from the stellar models and derive the observable values from adiabatic pulsation calculations of the same models. We find that the extent to which the atmosphere is included in the models is a key parameter. Conside...

  4. No Time for Dead Time: Timing Analysis of Bright Black Hole Binaries with NuSTAR

    NARCIS (Netherlands)

    Bachetti, M.; Harrison, F.A.; Cook, R.; Tomsick, J.; Schmid, C.; Grefenstette, B.W.; Barret, D.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; Fabian, A.C.; Fürst, F.; Gandhi, P.; Hailey, C.J.; Kara, E.; Maccarone, T.J.; Miller, J.M.; Pottschmidt, K.; Stern, D.; Uttley, P.; Walton, D.J.; Wilms, J.; Zhang, W.W.

    2015-01-01

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time per

  5. A high-resolution spectroscopy survey of beta Cephei pulsations in bright stars

    NARCIS (Netherlands)

    Telting, J.H.; Schrijvers, C.; Ilyin, I.V.; Uytterhoeven, K.; Ridder, J. de; Aerts, C.C.; Henrichs, H.F.

    2006-01-01

    We present a study of absorption line-profile variations in early-B type near-main-sequence stars without emission lines. We have surveyed a total of 171 bright stars using the Nordic Optical Telescope (NOTSA), William Herschel Telescope (ING) and Coud�uxiliary Telescope (ESO). Our sample contains 7

  6. The Solar Twin Planet Search. III. The [Y/Mg] clock: estimating stellar ages of solar-type stars

    Science.gov (United States)

    Tucci Maia, M.; Ramírez, I.; Meléndez, J.; Bedell, M.; Bean, J. L.; Asplund, M.

    2016-05-01

    Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-process element Y and the α-element Mg could be used to estimate stellar ages. Aims: This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range (0.3-10.0 Gyr) and investigate their use for estimating ages. Methods: We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. Results: The [Y/Mg] ratio shows a strong correlation with age. It has a slope of -0.041 ± 0.001 dex/Gyr and a significance of 41σ. This is in excellent agreement with the relation first proposed by Nissen (2015). We found some outliers that turned out to be binaries where mass transfer may have enhanced the yttrium abundance. Given a precise measurement of [Y/Mg] with typical error of 0.02 dex in solar twins, our formula can be used to determine a stellar age with ~0.8 Gyr precision in the 0 to 10 Gyr range. Based on observations obtained at the Clay Magellan Telescopes at Las Campanas Observatory, Chile and at the 3.6 m Telescope at the La Silla ESO Observatory, Chile (program ID 188.C-0265).

  7. No time for dead time: timing analysis of bright black hole binaries with NuSTAR

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Harrison, Fiona A.; Cook, Rick

    2015-01-01

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time ...... techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105....

  8. Brightness Independent 4-Star Matching Algorithm for Lost-in-Space 3-Axis Attitude Acquisition

    Institute of Scientific and Technical Information of China (English)

    DONG Ying; XING Fei; YOU Zheng

    2006-01-01

    A star identification algorithm was developed for a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) autonomous star tracker to acquire 3-axis attitude information for a lost-in-space spacecraft. The algorithm took advantage of an efficient on-board database and an original "4-star matching" pattern recognition strategy to achieve fast and reliable star identification. The on-board database was composed of a brightness independent guide star catalog (mission catalog) and a K-vector star pair catalog. The star pattern recognition method involved direct location of star pair candidates and a simple array matching procedure. Tests of the algorithm with a CMOS active pixel sensor (APS) star tracker result in a 99.9% success rate for star identification for lost-in-space 3-axis attitude acquisition when the angular measurement accuracy of the star tracker is at least 0.01°. The brightness independent algorithm requires relatively higher measurement accuracy of the star apparent positions that can be easily achieved by CCD or CMOS sensors along with subpixel centroiding techniques.

  9. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    Science.gov (United States)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  10. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Guhathakurta, Puragra; Dorman, Claire E. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howley, Kirsten M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lauer, Tod R.; Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Astronomical Institute, University of Utrecht, Princetonplein 5, 3584 CC Utrecht (Netherlands); Rix, Hans-Walter [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  11. The linear polarisation of southern bright stars measured at the parts-per-million level

    CERN Document Server

    Cotton, Daniel V; Kedziora-Chudczer, Lucyna; Bott, Kimberly; Lucas, P W; Hough, J H; Marshall, Jonathan P

    2015-01-01

    We report observations of the linear polarisation of a sample of 50 nearby southern bright stars measured to a median sensitivity of $\\sim$4.4 $\\times 10^{-6}$. We find larger polarisations and more highly polarised stars than in the previous PlanetPol survey of northern bright stars. This is attributed to a dustier interstellar medium in the mid-plane of the Galaxy, together with a population containing more B-type stars leading to more intrinsically polarised stars, as well as using a wavelength more sensitive to intrinsic polarisation in late-type giants. Significant polarisation had been identified for only six stars in the survey group previously, whereas we are now able to deduce intrinsic polarigenic mechanisms for more than twenty. The four most highly polarised stars in the sample are the four classical Be stars ($\\alpha$ Eri, $\\alpha$ Col, $\\eta$ Cen and $\\alpha$ Ara). For the three of these objects resolved by interferometry, the position angles are consistent with the orientation of the circumstel...

  12. Bright Planetary Nebulae and their Progenitors in Galaxies Without Star Formation

    CERN Document Server

    Richer, Michael G

    2008-01-01

    We present chemical abundances for planetary nebulae in M32, NGC 185, and NGC 205 based upon spectroscopy obtained at the Canada-France-Hawaii Telescope using the Multi-Object Spectrograph. From these and similar data compiled from the literature for other Local Group galaxies, we consider the origin and evolution of the stellar progenitors of bright planetary nebulae in galaxies where star formation ceased long ago. The ratio of neon to oxygen abundances in bright planetary nebulae is either identical to that measured in the interstellar medium of star-forming dwarf galaxies or at most changed by a few percent, indicating that neither abundance is significantly altered as a result of the evolution of their stellar progenitors. Several planetary nebulae appear to have dredged up oxygen, but these are the exception, not the rule. The progenitors of bright planetary nebulae typically enhance their original helium abundances by less than 50%. In contrast, nitrogen enhancements can reach factors of 100. However, ...

  13. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  14. The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    CERN Document Server

    Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Lang, Dustin; Williams, Benjamin F; Guhathakurta, Puragra; Howley, Kirsten M; Lauer, Tod R; Bell, Eric F; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Dorman, Claire E; Gilbert, Karoline M; Kalirai, Jason; Larsen, Søren S; Olsen, Knut A G; Rix, Hans-Walter; Seth, Anil C; Skillman, Evan D; Weisz, Daniel R

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \\times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \\sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch st...

  15. Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars

    CERN Document Server

    Chelli, Alain; Bourgès, Laurent; Mella, Guillaume; Lafrasse, Sylvain; Bonneau, Daniel; Chesneau, Olivier

    2016-01-01

    The diameter of a star is a major observable that serves to test the validity of stellar structure theories. It is also a difficult observable that is mostly obtained with indirect methods since the stars are so remote. Today only ~600 apparent star diameters have been measured by direct methods: optical interferometry and lunar occultations. Accurate star diameters are now required in the new field of exoplanet studies, since they condition the planets' sizes in transit observations, and recent publications illustrate a visible renewal of interest in this topic. Our analysis is based on the modeling of the relationship between measured angular diameters and photometries. It makes use of two new reddening-free concepts: a distance indicator called pseudomagnitude, and a quasi-experimental observable that is independent of distance and specific to each star, called the differential surface brightness (DSB). The use of all the published measurements of apparent diameters that have been collected so far, and a c...

  16. WASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Brown, D. J. A.; Gillon, M.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Ségransan, D.; Udry, S.; West, R. G.; Wheatley, P. J.

    2015-03-01

    We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 MJup; 1.46 RJup) in a 4.9-day, near-aligned (λ = 12.7 ± 4.2°) orbit around CD-24 102 (V = 10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91 MJup; 1.21 RJup) in a 3.4-day, near-aligned (λ = 8 ± 18°) orbit around a V = 12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7+ 2-1 Gyr and 6000 ± 100 K for WASP-20; 5+ 3-2 Gyr and 6100 ± 150 K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. Based on observations made with: the WASP-South (South Africa) and SuperWASP-North (La Palma) photometric survey instruments; the C2 and EulerCam cameras and the CORALIE spectrograph, all mounted on the 1.2-m Euler-Swiss telescope (La Silla); the HARPS spectrograph on the ESO 3.6-m telescope (La Silla) under programs 072.C-0488, 082.C-0608, 084.C-0185, and 085.C-0393; and LCOGT's Faulkes Telescope North (Maui) and Faulkes Telescope South (Siding Spring).Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61

  17. The Distribution of Star Formation and Metals in the Low Surface Brightness Galaxy UGC 628

    CERN Document Server

    Young, J E; Wang, Sharon X

    2015-01-01

    We introduce the MUSCEL Program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially-resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with mo...

  18. Pseudomagnitudes and differential surface brightness: Application to the apparent diameter of stars

    Science.gov (United States)

    Chelli, Alain; Duvert, Gilles; Bourgès, Laurent; Mella, Guillaume; Lafrasse, Sylvain; Bonneau, Daniel; Chesneau, Olivier

    2016-05-01

    The diameter of a star is a major observable that serves to test the validity of stellar structure theories. It is also a difficult observable that is mostly obtained with indirect methods since the stars are so remote. Today only ~600 apparent star diameters have been measured by direct methods: optical interferometry and lunar occultations. Accurate star diameters are now required in the new field of exoplanet studies, since they condition the planets' sizes in transit observations, and recent publications illustrate a visible renewal of interest in this topic. Our analysis is based on the modeling of the relationship between measured angular diameters and photometries. It makes use of two new reddening-free concepts: a distance indicator called pseudomagnitude, and a quasi-experimental observable that is independent of distance and specific to each star, called the differential surface brightness (DSB). The use of all the published measurements of apparent diameters that have been collected so far, and a careful modeling of the DSB allow us to estimate star diameters with a median statistical error of 1.1%, knowing their spectral type and, in the present case, the VJHKs photometries. We introduce two catalogs, the JMMC Measured Diameters Catalog (JMDC), containing measured star diameters, and the second version of the JMMC Stellar Diameter Catalog (JSDC), augmented to about 453 000 star diameters. Finally, we provide simple formulas and a table of coefficients to quickly estimate stellar angular diameters and associated errors from (V, Ks) magnitudes and spectral types.

  19. Rapidly Rotating, X-ray Bright Stars in the Kepler Field

    CERN Document Server

    Howell, Steve B; Boyd, Padi; Smith, Krista Lynne; Gelino, Dawn

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type FK, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, that is evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short-lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  20. High resolution spectroscopy of bright subdwarf B stars - I. Radial velocity variables

    CERN Document Server

    Edelmann, H; Altmann, M; Karl, C; Lisker, T

    2005-01-01

    Radial velocity curves for 15 bright subdwarf B binary systems have been measured using high precision radial velocity measurements from high S/N optical high-resolution spectra. In addition, two bright sdB stars are discovered to be radial velocity variable but the period could not yet be determined. The companions for all systems are unseen. The periods range from about 0.18 days up to more than ten days. The radial velocity semi amplitudes are found to lie between 15 and 130 km/s. Using the mass functions, the masses of the unseen companions have been constrained to lower limits of 0.03 up to 0.55 M_sun, and most probable values of 0.03 up to 0.81 M_sun. The invisible companions for three of our program stars are undoubtedly white dwarfs. In the other cases they could be either white dwarfs or main sequence stars. For two stars the secondaries could possibly be brown dwarfs. As expected, the orbits are circular for most of the systems. However, for one third of the program stars we find slightly eccentric ...

  1. An atlas of bright star spectra in the near infrared from Cassini-VIMS

    CERN Document Server

    Stewart, Paul N; Nicholson, Philip D; Sloan, G C; Hedman, Matthew M

    2015-01-01

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K and S giants. However it also contains spectra of other bright nearby stars including carbon stars and main sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric dataset is recovered that spans the near-infrared from 0.8 to 5.1 microns with spectral resolution ranging from R=53.5 to R=325. Spectra have been calibrated into absolute flux units after careful characterisation of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data prod...

  2. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Paul N.; Tuthill, Peter G. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Nicholson, Philip D. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Sloan, G. C. [Cornell Center for Astrophyics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Hedman, Matthew M., E-mail: p.stewart@physics.usyd.edu.au [Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.

  3. Tähetund = The star-bright hour : [luuletused] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2001-01-01

    Tekst eesti ja inglise k. B. Alveri lühibiograafia eesti ja inglise k. lk. 31. Sisu: Tähetund = The star-bright hour ; Vilepuhuja = The piper ; Masin 1-2 = The Machine 1-2 ; Võlg = The debt ; Mitte viirastus, meelepett = Not a dream ; Udus = Fog-bound ; Korallid Emajões = Corals in an Ancient river ; Froufrou 1-3 = Frou-frou 1-3

  4. New bright optical spectrophotometric standards: A-type stars from the STIS Next Generation Spectral Library

    CERN Document Server

    Prieto, Carlos Allende

    2015-01-01

    Exoplanets have sparked interest in extremely high signal-to-noise ratio spectroscopic observations of very bright stars, in a regime where flux calibrators, in particular DA white dwarfs, are not available. We argue that A-type stars offer a useful alternative and reliable space-based spectrophotometry is now available for a number of bright ones in the range 3bright trustworthy A-type flux standards for the optical range (400-800 nm), and provide scaled model fluxes for them. Our tests suggest that the absolute fluxes for these stars in the optical are reliable to within 3%. We limit the spectral range to 400-800 nm, since our models have difficulties to reproduce the observed fluxes in the near-infrared and, especially, in the near-UV, where the discrepancies rise up to ~ 10%. Based on our model fits, we derive angular diameters with an estimated accuracy of about 1%.

  5. Bright transients from strongly-magnetized neutron star-black hole mergers

    Science.gov (United States)

    D'Orazio, Daniel J.; Levin, Janna; Murray, Norman W.; Price, Larry

    2016-07-01

    Direct detection of black hole-neutron star pairs is anticipated with the advent of aLIGO. Electromagnetic counterparts may be crucial for a confident gravitational-wave detection as well as for extraction of astronomical information. Yet black hole-neutron star pairs are notoriously dark and so inaccessible to telescopes. Contrary to this expectation, a bright electromagnetic transient can occur in the final moments before merger as long as the neutron star is highly magnetized. The orbital motion of the neutron star magnet creates a Faraday flux and corresponding power available for luminosity. A spectrum of curvature radiation ramps up until the rapid injection of energy ignites a fireball, which would appear as an energetic blackbody peaking in the x ray to γ rays for neutron star field strengths ranging from 1012 to 1016 G respectively and a 10 M⊙ black hole. The fireball event may last from a few milliseconds to a few seconds depending on the neutron star magnetic-field strength, and may be observable with the Fermi Gamma-Ray Burst Monitor with a rate up to a few per year for neutron star field strengths ≳1014 G . We also discuss a possible decaying post-merger event which could accompany this signal. As an electromagnetic counterpart to these otherwise dark pairs, the black-hole battery should be of great value to the development of multi-messenger astronomy in the era of aLIGO.

  6. Bright stars and recent star formation in the irregular magellanic galaxy NGC2366

    CERN Document Server

    Aparicio, A; Gallart, C; Castaneda, H O; Chiosi, C; Bertelli, G; Muñoz-Tunón, C; Telles, E; Tenorio-Tagle, G; Díaz, A I; García-Vargas, M L; Garzón, F; González-Delgado, R M; Mas-Hesse, J M; Pérez, E; Rodríguez-Espinosa, J M; Terlevich, E; Terlevich, R J; Varela, A M; Vílchez, J M; Cepa, J; Gallart, C; Castaneda, H; Chiosi, C; Bertelli, G; Munoz-Tunon, Casiana; Telles, Eduardo; Tenorio-Tagle, G; Diaz, A I; Garcia-Vargas, M L; Garzon, F; Gonzalez-Delgado, R Ma; Mas-Hesse, M; Perez, E; Rodriguez-Espinosa, J M; Terlevich, E; Terlevich, R J; Varela, A M; Vilchez, J M

    1995-01-01

    The stellar content of the Im galaxy NGC 2366 is discussed on the basis of CCD BVR photometry. The three brightest blue and red stars have been used to estimate its distance, obtaining a balue of 2.9 Mpc. The spatial distribution of the young stellar population is discussed in the light of the integrated color indices and the color-magnitude diagrams of different zones of the galaxy. A generalized star formation burst seems to have taken place about 50 Myr ago. The youngest stars are preferentially formed in the South-West part of the bar, where the giant HII complex NGC 2363 is located, being younger and bluer. The bar seems to play a role favouring star formation in one of its extremes. Self-propagation however, does not seem to be triggering star formation at large scale. A small region, populated by very young stars has also been found at the East of the galaxy.

  7. Star Formation in Bright Rimmed Clouds. I. Millimeter and Submillimeter Molecular Line Surveys

    CERN Document Server

    De Vries, C H; Snell, R L; Vries, Christopher H. De; Narayanan, Gopal; Snell, Ronald L.

    2002-01-01

    We present the results of the first detailed millimeter and submillimeter molecular line survey of bright rimmed clouds, observed at FCRAO in the CO (J=1-0), C18O (J=1-0), HCO+ (J=1-0), H13CO+ (J=1-0), and N2H+ (J=1-0) transitions, and at the HHT in the CO (J=2-1), HCO+ (J=3-2), HCO+ (J=4-3), H13CO+ (J=3-2), and H13CO+ (J=4-3) molecular line transitions. The source list is composed of a selection of bright rimmed clouds from the catalog of such objects compiled by Sugitani et al. (1991). We also present observations of three Bok globules done for comparison with the bright rimmed clouds. We find that the appearance of the millimeter CO and HCO+ emission is dominated by the morphology of the shock front in the bright rimmed clouds. The HCO+ (J=1-0) emission tends to trace the swept up gas ridge and overdense regions which may be triggered to collapse as a result of sequential star formation. Five of the seven bright rimmed clouds we observe seem to have an outflow, however only one shows the spectral line blue...

  8. STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LOW SURFACE BRIGHTNESS GALAXIES. II. H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schombert, James [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); McGaugh, Stacy [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Maciel, Tamela, E-mail: jschombe@uoregon.edu, E-mail: stacy.mcgaugh@case.edu, E-mail: tm419@cam.ac.uk [Department of Physics, Cambridge University, Cambridge (United Kingdom)

    2013-08-01

    The luminosities, colors, and H{alpha} emission for 429 H II regions in 54 low surface brightness (LSB) galaxies are presented. While the number of H II regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the size or luminosity function of H II regions differs from other galaxy types. The lower number of H II regions per galaxy is consistent with their lower total star formation rates. The fraction of the total L{sub H{alpha}} contributed by H II regions varies from 10% to 90% in LSB galaxies (the rest of the H{alpha} emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright H II regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same H II luminosity function as spirals. Comparison with stellar population models indicates that the brightest H II regions in LSB galaxies range in cluster mass from a few 10{sup 3} M{sub Sun} (e.g., {rho} Oph) to globular-cluster-sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myr old. The faintest H II regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.

  9. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. III. The frequency of brown dwarfs and giant planets as companions to solar-type stars

    CERN Document Server

    Reggiani, M; Chauvin, G; Vigan, A; Quanz, S P; Biller, B; Bonavita, M; Desidera, S; Delorme, P; Hagelberg, J; Maire, A -L; Boccaletti, A; Beuzit, J -L; Buenzli, E; Carson, J; Covino, E; Feldt, M; Girard, J; Gratton, R; Henning, T; Kasper, M; Lagrange, A -M; Mesa, D; Messina, S; Montagnier, G; Mordasini, C; Mouillet, D; Schlieder, J E; Segransan, D; Thalmann, C; Zurlo, A

    2015-01-01

    In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC...

  10. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere

    CERN Document Server

    Sousa, S G; Mortier, A; Tsantaki, M; Adibekyan, V; Mena, E Delgado; Israelian, G; Rojas-Ayala, B; Neves, V

    2015-01-01

    Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results. We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. ...

  11. Update on the KELT Transit Survey: Hot Planets around Hot, Bright Stars

    Science.gov (United States)

    Gaudi, B. Scott; KELT Collaboration

    2017-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescope located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 60% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. Roughly half of the dwarf stars targeted by KELT are hotter than 6250K; such stars pose novel challenges, but also provide unique opportunities. I will provide an update on the most recent companions discovered by KELT, focusing in detail on a few particularly interesting systems. KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524.

  12. HAT-P-6b: A Hot Jupiter transiting a bright F star

    CERN Document Server

    Noyes, R W; Torres, G; Pal, A; Kovacs, Geza; Latham, D W; Fernández, J M; Fischer, D A; Butler, R P; Marcy, G W; Sipocz, B; Esquerdo, G A; Kovacs, Gabor; Sasselov, D D; Sato, B; Stefanik, R; Holman, M; Lázár, J; Papp, I; Sari, P

    2007-01-01

    In the ongoing HATNet survey we have detected a giant planet, with radius 1.33 +/- 0.06 RJup and mass 1.06 +/- 0.12 MJup, transiting the bright (V = 10.5) star GSC 03466-00819. The planet is in a circular orbit with period 3.852985 +/- 0.000005 days and mid-transit epoch 2,454,035.67575 +/- 0.00028 (HJD). The parent star is a late F star with mass 1.29 +/- 0.06 Msun, radius 1.46 +/- 0.06 Rsun, Teff ~ 6570 +/- 80 K, [Fe=H] = -0.13 +/- 0.08 and age ~ 2.3+/-^{0.5}_{0.7}Gy. With this radius and mass, HAT-P-6b has somewhat larger radius than theoretically expected. We describe the observations and their analysis to determine physical properties of the HAT-P-6 system, and briefly discuss some implications of this finding.

  13. Ground-Based Sub-Millimagnitude CCD Photometry of Bright Stars using Snapshot Observations

    CERN Document Server

    Mann, Andrew W; Aldering, Greg

    2011-01-01

    We demonstrate ground-based sub-millimagnitude (10^7 electrons) to be acquired in a single integration; (iii) pointing the telescope so that all stellar images fall on the same detector pixels; and (iv) using a region of the CCD detector that is free of non-linear or aberrant pixels. We describe semi-automated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2x10^-4 (0.56 mmag) with a 5 minute cadence over a two hour interval. In one experiment, we monitored 8 stars, each separated by several degrees, and achieved sub-mmag precision with a cadence (per star) of ~17 min. Our snapshot technique is suitable for automated searches for planetary transits among multiple, bright-stars.

  14. Bright Metal-Poor Stars from the Hamburg/ESO Survey. II. A Chemodynamical Analysis

    Science.gov (United States)

    Beers, Timothy C.; Placco, Vinicius M.; Carollo, Daniela; Rossi, Silvia; Lee, Young Sun; Frebel, Anna; Norris, John E.; Dietz, Sarah; Masseron, Thomas

    2017-01-01

    We obtain estimates of stellar atmospheric parameters for a previously published sample of 1777 relatively bright (9Survey. The original Frebel et al. analysis of these stars was able to derive estimates of [Fe/H] and [C/Fe] only for a subset of the sample, due to limitations in the methodology then available. A new spectroscopic analysis pipeline has been used to obtain estimates of {T}{eff}, {log} g, [Fe/H], and [C/Fe] for almost the entire data set. This sample is very local—about 90% of the stars are located within 0.5 kpc of the Sun. We consider the chemodynamical properties of these stars in concert with a similarly local sample of stars from a recent analysis of the Bidelman and MacConnell “weak metal” candidates by Beers et al. We use this combined sample to identify possible members of the halo stream of stars suggested by Helmi et al. and Chiba & Beers, as well as stars that may be associated with stripped debris from the putative parent dwarf of the globular cluster Omega Centauri, suggested to exist by previous authors. We identify a clear increase in the cumulative frequency of carbon-enhanced metal-poor (CEMP) stars with declining metallicity, as well as an increase in the fraction of CEMP stars with distance from the Galactic plane, consistent with previous results. We also identify a relatively large number of CEMP stars with kinematics consistent with the metal-weak thick-disk population, with possible implications for its origin.

  15. Bright Metal-Poor Stars from the Hamburg/ESO Survey. II. A Chemodynamical Analysis

    CERN Document Server

    Beers, Timothy C; Carollo, Daniela; Rossi, Silvia; Frebel, Anna; Norris, John E; Dietz, Sarah; Masseron, Thomas

    2016-01-01

    We obtain estimates of stellar atmospheric parameters for a previously published sample of 1777 relatively bright (9 < B < 14) metal-poor candidates from the Hamburg/ESO Survey. The original Frebel et al. analysis of these stars was only able to derive estimates of [Fe/H] and [C/Fe] for a subset of the sample, due to limitations in the methodology then available. A new spectroscopic analysis pipeline has been used to obtain estimates of Teff, log g, [Fe/H], and [C/Fe] for almost the entire dataset. This sample is very local - about 90% of the stars are located within 0.5 kpc of the Sun. We consider the chemodynamical properties of these stars in concert with a similarly local sample of stars from a recent analysis of the Bidelman & MacConnell 'weak-metal' candidates by Beers et al. We use this combined sample to identify possible members of the suggested halo stream of stars by Helmi et al. and Chiba & Beers, as well as stars that may be associated with stripped debris from the putative parent d...

  16. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    Science.gov (United States)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations with amateur and professional astronomer. The ground-based coordinators are: Thomas Eversberg (thomas.eversberg@dlr.de) and, for spectroscopy, Contanze Zwintz (konstanze@ster.kuleuven.be). Detailed

  17. The Visibility of Stars as a Function of Night Sky Brightness

    Science.gov (United States)

    Upgren, A. R.; Loth, A. L.; Stock, J.

    2001-12-01

    The number of stars visible to the naked eye at night varies widely, but is often reported as being near 2500 on a dark night. The true numbers vary widely, depending as they do on the faintest limiting magnitude visible to a particular eye, V', and the extinction coefficient of the sky as a function of haze and the reflection of aerosols in the lower atmosphere due to upward-shining light pollution. We limit our discussion to cloud free moonless nights with a true horizon uncluttered by trees and buildings. For simplicity, we assume a linear extinction coefficient, k, to represent the influence of sky brightness and light pollution. The input to the program consists of the entire Bright Star Catalogue of 9110 stars (essentially complete in photoelectric V magnitude to V > 6) and choices for observer latitude, local sidereal time, k, and V'. Here we present results for the latitude of Middletown, CT (41.5N) and three values of k, representing cases of observation at sea level; these are 0.3 for a clear night in the country far from lights, 0.5 for a typical suburban street, and 0.8 for a city center. It is assumed that no direct glare is present. The limiting magnitude of the faintest visible star, V', varies widely among observers from as faint as 8.0 for some with very keen eyesight, to perhaps 4.5 for elderly observers. Star counts can be derived for any set of input variables. This program allows great flexibility and can be used in a convincing manner to illustrate the damaging effects of light pollution. For the latitude of 41.5N and a local sidereal time of zero hours, we find for extinctions of 0.3, 0.5, and 0.8 magnitudes, about 2350, 1720, and 1100 visible stars, respectively, for the canonical limiting magnitude of 6.0 at the zenith, with little change over the range in sidereal time. Raising V' to 5.0, a more realistic limit for elderly eyes, lowers the counts to about 700, 500, and 320, respectively. These numbers suggest that aging eyes play a greater

  18. Photometry of Very Bright Stars with Kepler and K2 Smear Data

    CERN Document Server

    Pope, Benjamin; Huber, Daniel; Murphy, Simon; Bedding, Tim; Caldwell, Douglas; Sarai, Aleksa; Aigrain, Suzanne; Barclay, Thomas

    2015-01-01

    High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear' measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the delta Scuti variables HD 178875 and 7...

  19. BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Gao He; Ding Xuan; Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang Bing [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Dai Zigao, E-mail: xfwu@pmo.ac.cn, E-mail: zhang@physics.unlv.edu, E-mail: dzg@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-07-10

    If double neutron star mergers leave behind a massive magnetar rather than a black hole, then a bright early afterglow can follow the gravitational wave burst (GWB) even if there is no short gamma-ray burst (SGRB)-GWB association or if there is an association but the SGRB does not beam toward Earth. Besides directly dissipating the proto-magnetar wind, as suggested by Zhang, here we suggest that the magnetar wind could push the ejecta launched during the merger process and, under certain conditions, would reach a relativistic speed. Such a magnetar-powered ejecta, when interacting with the ambient medium, would develop a bright broadband afterglow due to synchrotron radiation. We study this physical scenario in detail and present the predicted X-ray, optical, and radio light curves for a range of magnetar and ejecta parameters. We show that the X-ray and optical light curves usually peak around the magnetar spin-down timescale ({approx}10{sup 3}-10{sup 5} s), reaching brightnesses readily detectable by wide-field X-ray and optical telescopes, and remain detectable for an extended period. The radio afterglow peaks later, but is much brighter than the case without a magnetar energy injection. Therefore, such bright broadband afterglows, if detected and combined with GWBs in the future, would be a probe of massive millisecond magnetars and stiff equations of state for nuclear matter.

  20. The KELT-North Transit Survey: Hot Planets around Hot, Bright Stars

    Science.gov (United States)

    Gaudi, B. Scott; Beatty, Thomas G.; Eastman, Jason D.; Lund, Michael; Penny, Matthew; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert; Stassun, Keivan; Stevens, Daniel J.; KELT-North Collaboration

    2015-01-01

    The KELT-North is a small-aperture, wide-angle automated telescope located in southern Arizona that has been surveying roughly 40% of the northern sky for transiting planets since 2006. By virtue of its small aperture and large field-of-view, KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-10), and thus relatively hot stars. Roughly half of the over 200,000 dwarf stars targeted by KELT are hotter than 6250K; such stars pose novel challenges, but also provide unique opportunities. I will present the first transiting substellar companions discovered by KELT, focusing in detail on a few particularly interesting systems. I will discuss our plans for determining the frequency and demographics of short-period companions to hot stars from KELT; comparison with similar results for cooler stars may provide important constraints on theories of the emplacement and tidal evolution of low-mass stellar companions. Finally, I will speculate on how the lessons learned from KELT may inform the target selection and survey strategies for the TESS mission.This work was supported by NSF CAREER grant AST-1056524.

  1. Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters

    Science.gov (United States)

    Ligi, R.; Creevey, O.; Mourard, D.; Crida, A.; Lagrange, A.-M.; Nardetto, N.; Perraut, K.; Schultheis, M.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-02-01

    Context. Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the Hertzsprung-Russell diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. Aims: We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Methods: Using the VEGA/CHARA interferometer operating in the visible domain, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from Monte Carlo calculations. Results: Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (either from SED fitting or from surface brightness relations) for main sequence (MS) stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary

  2. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    Science.gov (United States)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.

    2010-07-01

    Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.

  3. Observations of an Eclipse of Bright Star b Persei by the Third Star in February 2013 (Abstract)

    Science.gov (United States)

    Collins, D. F.

    2013-12-01

    (Abstract only) b Persei (SAO 24531 = HD 26961, V ~4.52) is a multiple star system consisting of a close ellipsoidal binary with a 1.5-day period and a third star with a 702-day orbit. b Per is a non-thermal radio source, and the evolutionary stage of the close binary is unclear. It may be a non-eclipsing Algol or a precursor to the Algol stage. Observations with the Navy Precision Optical Interferometer showed that the third star has a nearly edge-on orbit about the close binary. Based on this orbit an eclipse of the close binary by the third star was predicted for late January 2013. A call for observations - especially those with equipment to observe bright stars instrumentally - was made via the AAVSO. With the "back yard" convenience of a DSLR camera on a fixed tripod, DFC obtained an observation of the V magnitude of b Persei nearly every clear night in January-February 2013. The DSLR clearly detected the expected eclipse with a drop in of 0.12 V on JD 2456329 and JD 2456330 (Feb 5-6, 2013 and Feb 6-7, 2013). The eclipse was also detected by other AAVSO observers extending to JD 2456331 inclusive. The estimated duration of the eclipse (FWHM) is 2.0 ± 0.3 d. The DSLR also detects the 1.53-day orbital period of the A and B components of b Persei - a variation of 0.05 V magnitude due to the non-eclipsing ellipsoidal star shapes. A concerted campaign should recruit many AAVSO observers to detect the next predicted eclipses in mid-January 2014 (secondary) and early January 2015 (primary) assuming a 702-day cycle. Future photometric observations may aid the understanding of the evolutionary stage of the close binary.

  4. Radii, masses, and ages of 18 bright stars using interferometry. And new estimations of exoplanetary parameters

    CERN Document Server

    Ligi, Roxanne; Mourard, Denis; Crida, Aurélien; Lagrange, Anne-Marie; Nardetto, Nicolas; Perraut, Karine; Schultheis, Mathias

    2015-01-01

    Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the H-R diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Using the VEGA/CHARA interferometer, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from MC calculations. Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameter...

  5. Evolution and constrains in the star formation histories of IR-bright star forming galaxies at high redshift

    Science.gov (United States)

    Sklias, Panos; Schaerer, Daniel; Elbaz, David

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. A large fraction of star formation is dust obscured, so it is crucial to have access to the IR emission of galaxies to properly study them.Utilizing the multi-wavelength photometry from GOODS-Herschel, we perform SED fitting with different variable star formation histories (SFHs), which we constrain thanks to the observed IR luminosities, on a large sample of individually IR-detected sources from z~1 to 4. We explore how (and to which extent) constraining dust attenuation thanks to the IR luminosities allows to reduce the scatter (expected when using variable SFHs, in contrast to IR+UV standard calibrations) in physical properties and relations such as mass-SFR and the so-called star-forming Main Sequence (MS).Although limited at the high-z end, our analysis shows a change of trends in SFHs between low and high z, that follows the established cosmic SFR density, with galaxies found to prefer rising SFRs at z~3-4, and declining SFRs at z≤1. We show that a fraction of galaxies (~20%), mainly at z≤2, can have lower SFRs than IR-inferred, but still being compatible with the observations, indicative of being post-starbursts/undergoing quenching while bright in the IR, in agreement with theoretical work. The IR-constrained stellar population models we obtain also indicate that the two main modes of star formation - MS and starburst - evolve differently with time, with the former being mostly slow evolving and lying on the MS for long lasting periods, and the latter being very recent, rapidly increasing bursts (or on the decline, when belonging to the aforementioned "quenched" category). Finally, we illustrate how spectroscopic observation of nebular emission lines further enables as to constrain effectively the SFHs of galaxies.

  6. Trajectories of bright stars at the Galactic Center as a tool to evaluate a graviton mass

    Science.gov (United States)

    Zakharov, Alexander; Jovanović, Predrag; Borka, Dusko; Jovanović, Vesna Borka

    2016-10-01

    Scientists worked in Saint-Petersburg (Petrograd, Leningrad) played the extremely important role in creation of scientific school and development of general relativity in Russia. Very recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. In the papers reporting about this discovery, the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10-22eV [1, 2]. The authors concluded that their observational data do not show violations of classical general relativity because the graviton mass limit is very small. We show that an analysis of bright star trajectories could bound graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and expected with forthcoming pulsar timing observations for gravitational wave detection. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a tool for an evaluation specific parameters of the black hole and also to obtain constraints on the fundamental gravity law such as a modifications of Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we give a bounds on a graviton mass.

  7. Joint Analysis of near-infrared properties and surface brightness fluctuations of LMC star clusters

    CERN Document Server

    Raimondo, G

    2009-01-01

    Surface brightness fluctuations have been proved to be a very powerful technique to determine the distance and characterize the stellar content in extragalactic systems. Nevertheless, before facing the problem of stellar content in distant galaxies, we need to calibrate the method onto nearby well-known systems. In this paper we analyze the properties at $J$ and $K_s$ bands of a sample of 19 star clusters in the Large Magellanic Cloud (LMC), for which accurate near-infrared (NIR) resolved star photometry, and integrated photometry are available. For the same sample, we derive the SBF measurements in $J$ and $K_s$-bands. We use the multi-purpose stellar population code \\emph{SPoT (Stellar POpulations Tools)} to simulate the color-magnitude diagram, stellar counts, integrated magnitudes, colors, and surface brightness fluctuations of each cluster. The present procedure allows us to estimate the age and metallicity of the clusters in a consistent way, and provides a new calibration of the empirical $s$-parameter...

  8. The Age-Mass-Metallicity-Activity relation of solar-type stars: Comparisons with asteroseismology and the NGC 188 open cluster

    CERN Document Server

    Lorenzo-Oliveira, Diego; Schiavon, Ricardo P

    2016-01-01

    The Mount Wilson Ca II index log$(R'_{\\rm HK})$ is the accepted standard metric of calibration for the chromospheric activity versus age relation of FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than $\\sim$2 Gyr, which would severely hamper its application to date disk stars older than the Sun. We present a new activity-age calibration of the Mt. Wilson index explicitly taking into account mass and $[$Fe/H$]$ biases, implicit in samples of stars selected to have precise ages, that have so far gone unappreciated. We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and $[$Fe/H$]$, augmented with data from the Pleiades, Hyades, M67 clusters, and the Ursa Major moving group. We further test the calibration with extensive new Gemini/GMOS log$(R'_{\\rm HK})$ data of the old, solar $[$Fe/H$]$ clusters ...

  9. The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    CERN Document Server

    Hron, J; Aringer, B; Klotz, D; Lebzelter, T; Paladini, C; Wiedemann, G

    2015-01-01

    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO $\\Delta$v=1 lines near 4.6 $\\mu$m and HCN lines near 3 $\\mu$m in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of...

  10. Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars

    CERN Document Server

    Placco, Vinicius M; Ivans, Inese I; Filler, Dan; Imig, Julie A; Roederer, Ian U; Abate, Carlo; Hansen, Terese; Cowan, John J; Frebel, Anna; Lawler, James E; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer S; Aoki, Wako; Smith, Verne V; Bolte, Michael

    2015-01-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD196944 has been well-studied in the optical region, but we are able to add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD201626 has only a limited number of abundance results based on previous optical work -- here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asympt...

  11. NO TIME FOR DEAD TIME: TIMING ANALYSIS OF BRIGHT BLACK HOLE BINARIES WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse F-31400 (France); Harrison, Fiona A.; Cook, Rick; Grefenstette, Brian W.; Fürst, Felix [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Tomsick, John; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schmid, Christian [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstrasse 7, D-96049 Bamberg (Germany); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, Andrew C.; Kara, Erin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, Poshak [Department of Physics, Durham University, South Road DH1 3LE (United Kingdom); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Maccarone, Thomas J. [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Uttley, Phil, E-mail: matteo.bachetti@irap.omp.eu [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); and others

    2015-02-20

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (∼2.5 msec) and varies event-to-event by a few percent. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be easily modeled with standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cospectrum, the real part of the cross PDS, to obtain a good proxy of the white-noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely, a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal-to-noise ratio relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339–4, Cyg X-1, and GRS 1915+105.

  12. KIC 4768731: a bright long-period roAp star in the Kepler Field

    CERN Document Server

    Smalley, B; Murphy, S J; Lehmann, H; Kurtz, D W; Holdsworth, D L; Cunha, M S; Balona, L A; Briquet, M; Bruntt, H; de Cat, P; Lampens, P; Thygesen, A O; Uytterhoeven, K

    2015-01-01

    We report the identification of 61.45 d^-1 (711.2 mu Hz) oscillations, with amplitudes of 62.6-mu mag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V=9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of T_eff = 8100 +/- 200 K, log g = 4.0 +/- 0.2, [Fe/H] = +0.31 +/- 0.24 and v sin i = 14.8 +/- 1.6 km/s. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in anti-phase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar T_eff and log g. Radial velocities in the literature suggest a significant...

  13. Hysteresis Effect in the Activity Indices of the Atmospheres of the Sun and Solar-Type Stars During the Rising and Falling Phases of Cycles

    Science.gov (United States)

    Bruevich, E. A.; Yakunina, G. V.

    2016-09-01

    The hysteresis effect that shows up as a nonunique relationship among the emissions from the photosphere, chromosphere, and corona during the rising and falling phases of solar and stellar activity is analyzed. The following solar indices are analyzed and compared in different phases of the cycle: the radiative flux in the hydrogen Lyman alpha line FLα, radio emission at 10.7 cm F10.7, the sunspot number SSN, the radiative flux in the 530.0 nm green coronal line F530.3, the solar constant TSI, and the relative flux ratio c/w (ratio of the fluxes in the center and in the wings) for the 280 nm Mg II line. In stars with cycles, a hysteresis effect is observed between the CaII chromospheric S-activity index for stars in the Mount Wilson HK project and the photospheric flux Fph for these stars.

  14. VVV High proper motion stars I. The catalogue of bright Ks < 13.5 stars

    CERN Document Server

    Kurtev, R; Beamin, J C; Folkes, S L; Ramirez, K Pena; Ivanov, V D; Borissova, J; Villanueva, V; Minniti, D; Mendez, R; Lucas, P W; Smith, L C; Pinfield, D J; Kuhn, M A; Jones, H R A; Antonova, A; Yip, A K P

    2016-01-01

    Knowledge of the stellar content near the Sun is important for a broad range of topics ranging from the search for planets to the study of Milky Way structure. The most powerful method for identifying potentially nearby stars is proper motion (PM) surveys. All old optical surveys avoid, or are at least substantially incomplete, near the Galactic plane. The depth and breadth of the "Vista Variables in Via Lactea" (VVV) near-IR survey significantly improves this situation. Taking advantage of the VVV survey database, we have measured PMs in the densest regions of the MW bulge and southern plane in order to complete the census of nearby objects. We have developed a custom PM pipeline based on VVV catalogues from the Cambridge Astronomy Survey Unit (CASU), by comparing the first epoch of JHKs with the multi-epoch Ks-bands acquired later. Taking advantage of the large time baseline between the 2MASS and the VVV observations, we also obtained 2MASS-VVV PMs. We present a near-IR proper motion catalogue for the whole...

  15. Astrophysical false positives in exoplanet transit surveys: why do we need bright stars ?

    CERN Document Server

    Santerne, A; Almenara, J -M; Lethuillier, A; Deleuil, M; Moutou, C

    2013-01-01

    Astrophysical false positives that mimic planetary transit are one of the main limitation to exoplanet transit surveys. In this proceeding, we review the issue of the false positive in transit survey and the possible complementary observations to constrain their presence. We also review the false-positive rate of both Kepler and CoRoT missions and present the basics of the planet-validation technique. Finally, we discuss the interest of observing bright stars, as PLATO 2.0 and TESS will do, in the context of the false positives. According to simulations with the Besan\\c{c}on galactic model, we find that PLATO 2.0 is expected to have less background false positives than Kepler, and thus an even lower false-positive rate.

  16. VVV High proper motion stars I. The catalogue of bright KS ≤ 13.5 stars

    Science.gov (United States)

    Kurtev, R.; Gromadzki, M.; Beamín, J. C.; Folkes, S. L.; Pena Ramirez, K.; Ivanov, V. D.; Borissova, J.; Villanueva, V.; Minniti, D.; Mendez, R.; Lucas, P. W.; Smith, L. C.; Pinfield, D. J.; Kuhn, M. A.; Jones, H. R. A.; Antonova, A.; Yip, A. K. P.

    2016-09-01

    Knowledge of the stellar content near the Sun is important for a broad range of topics ranging from the search for planets to the study of Milky Way structure. The most powerful method for identifying potentially nearby stars is proper motion (PM) surveys. All old optical surveys avoid, or are at least substantially incomplete, near the Galactic plane. The depth and breadth of the "Vista Variables in Vía Láctea" (VVV) near-IR survey significantly improves this situation. Taking advantage of the VVV survey database, we have measured PMs in the densest regions of the MW bulge and southern plane in order to complete the census of nearby objects. We have developed a custom PM pipeline based on VVV catalogues from the Cambridge Astronomy Survey Unit (CASU), by comparing the first epoch of JHKS with the multi-epoch KS-bands acquired later. Taking advantage of the large time baseline between the 2MASS and the VVV observations, we also obtained 2MASS-VVV PMs. We present a near-IR proper motion catalogue for the whole area of the VVV survey, which includes 3003 moving stellar sources. All of these have been visually inspected and are real PM objects. Our catalogue is in very good agreement with the proper motion data supplied in IR catalogues outside the densest zone of the MW. The majority of the PM objects in our catalogue are nearby M-dwarfs, as expected. This new database allow us to identify 57 common proper motion binary candidates, among which are two new systems within 30 pc of the Sun.

  17. The complex environment of the bright carbon star TX Piscium as probed by spectro-astrometry

    Science.gov (United States)

    Hron, J.; Uttenthaler, S.; Aringer, B.; Klotz, D.; Lebzelter, T.; Paladini, C.; Wiedemann, G.

    2015-12-01

    Context. Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods: We obtained CRIRES observations of several CO Δv = 1 lines near 4.6 μm and HCN lines near 3 μm in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0°) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture. Based on observations made with ESO telescopes at La Silla Paranal Observatory under programme IDs 386.D-0091 and 091.D-0094.Appendix A is available in electronic form at http://www.aanda.org

  18. Transiting planets from WASP-South, Euler, and TRAPPIST. WASP-68 b, WASP-73 b, and WASP-88 b, three hot Jupiters transiting evolved solar-type stars

    Science.gov (United States)

    Delrez, L.; Van Grootel, V.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Neveu-VanMalle, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2014-03-01

    Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup, and orbits a V = 10.7 G0-type star (1.24 ± 0.03 M⊙ 1.69-0.06+0.11 R⊙, Teff = 5911 ± 60 K) with a period of 5.084298 ± 0.000015 days. Its size is typical of hot Jupiters with similar masses. The planet WASP-73 bis significantly more massive (1.88-0.06+0.07 MJup) and slightly larger (1.16-0.08+0.12 RJup) than Jupiter. It orbits a V = 10.5 F9-type star (1.34-0.04+0.05 M⊙, 2.07-0.08+0.19 R⊙, Teff = 6036 ± 120 K) every 4.08722 ± 0.00022 days. Despite its high irradiation (~2.3 × 109 erg s-1 cm-2), WASP-73 b has a high mean density (1.20-0.30+0.26 ρJup) that suggests an enrichment of the planet in heavy elements. The planet WASP-88 bis a 0.56 ± 0.08 MJuphot Jupiter orbiting a V = 11.4 F6-type star (1.45 ± 0.05 M⊙, 2.08-0.06+0.12 R⊙, Teff = 6431 ± 130 K) with a period of 4.954000 ± 0.000019 days. With a radius of 1.70-0.07+0.13 RJup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. The star WASP-73 appears to be significantly evolved, close to or already in the subgiant phase. The stars WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. Tables 1-3 are available in electronic form at http://www.aanda.orgThe photometric time-series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A143

  19. Keck Observations of the UV-Bright Star Barnard 29 in the Globular Cluster M13 (NGC 6205)

    Science.gov (United States)

    Dixon, William Van Dyke; Chayer, Pierre; Reid, Iain N.

    2016-06-01

    In color-magnitude diagrams of globular clusters, stars brighter than the horizontal branch and bluer than the red-giant branch are known as UV-bright stars. Most are evolving from the asymptotic giant branch (AGB) to the tip of the white-dwarf cooling curve. To better understand this important phase of stellar evolution, we have analyzed a Keck HIRES echelle spectrum of the UV-bright star Barnard 29 in M13. We begin by fitting the star's H I (Hα, Hβ, and Hγ) and He I lines with a grid of synthetic spectra generated from non-LTE H-He models computed using the TLUSTY code. We find that the shape of the star's Hα profile is not well reproduced with these models. Upgrading from version 200 to version 204M of TLUSTY solves this problem: the Hα profile is now well reproduced. TLUSTY version 204 includes improved calculations for the Stark broadening of hydrogen line profiles. Using these models, we derive stellar parameters of Teff = 21,100 K, log g = 3.05, and log (He/H) = -0.87, values consistent with those of previous authors. The star's Keck spectrum shows photospheric absorption from N II, O II, Mg II, Al III, Si II, Si III, S II, Ar II, and Fe III. The abundances of these species are consistent with published values for the red-giant stars in M13, suggesting that the star's chemistry has changed little since it left the AGB.

  20. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  1. No Time for Dead Time: Timing analysis of bright black hole binaries with NuSTAR

    CERN Document Server

    Bachetti, Matteo; Cook, Rick; Tomsick, John; Schmid, Christian; Grefenstette, Brian W; Barret, Didier; Boggs, Steven E; Christensen, Finn E; Craig, William W; Fabian, Andrew C; Fürst, Felix; Gandhi, Poshak; Hailey, Charles J; Kara, Erin; Maccarone, Thomas J; Miller, Jon M; Pottschmidt, Katja; Stern, Daniel; Uttley, Phil; Walton, Dominic J; Wilms, Jörn; Zhang, William W

    2014-01-01

    Timing of high-count rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count-rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (~2.5 msec), and varies by a few percent event-to-event. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be modeled easily with the standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cross power density spectrum to obtain a good proxy of the white noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this ...

  2. Transiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars

    CERN Document Server

    Delrez, L; Anderson, D R; Collier-Cameron, A; Doyle, A P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Neveu-VanMalle, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2013-01-01

    We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 \\rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins t...

  3. Fine structure of the age-chromospheric activity relation in solar-type stars I: The Ca II infrared triplet: Absolute flux calibration

    CERN Document Server

    Lorenzo-Oliveira, Diego; Dutra-Ferreira, Letícia; Ribas, Ignasi

    2016-01-01

    Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. The Ca II infrared triplet (IRT lines) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures, metallicity, and gravities avoiding the degeneracy present in photo...

  4. An all-sky catalogue of solar-type dwarfs for exoplanetary transit surveys

    Science.gov (United States)

    Nascimbeni, V.; Piotto, G.; Ortolani, S.; Giuffrida, G.; Marrese, P. M.; Magrin, D.; Ragazzoni, R.; Pagano, I.; Rauer, H.; Cabrera, J.; Pollacco, D.; Heras, A. M.; Deleuil, M.; Gizon, L.; Granata, V.

    2016-12-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V ≲ 13) and nearby solar-type stars having a spectral type later than F5. In order to enhance the probability of identifying transits, these surveys must cover a very large area on the sky, because of the intrinsically low areal density of bright targets. Unfortunately, no existing catalogue of stellar parameters is both deep and wide enough to provide a homogeneous input list. As the first Gaia data release exploitable for this purpose is expected to be released not earlier than late 2017, we have devised an improved reduced-proper-motion (RPM) method to discriminate late field dwarfs and giants by combining the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions with AAVSO Photometric All-Sky Survey DR6 photometry, and relying on Radial Velocity Experiment DR4 as an external calibrator. The output, named UCAC4-RPM, is a publicly available, complete all-sky catalogue of solar-type dwarfs down to V ≃ 13.5, plus an extension to log g > 3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; TESS (that will map almost the entire sky) input catalogue and the input catalogue of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  5. Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars

    Science.gov (United States)

    Placco, Vinicius M.; Beers, Timothy C.; Ivans, Inese I.; Filler, Dan; Imig, Julie A.; Roederer, Ian U.; Abate, Carlo; Hansen, Terese; Cowan, John J.; Frebel, Anna; Lawler, James E.; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer S.; Aoki, Wako; Smith, Verne V.; Bolte, Michael

    2015-10-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD 196944 (V=8.40, [Fe/H] = -2.41) and HD 201626 (V=8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD 196944 has been well-studied in the optical region, but we add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P = 1325 days. HD 201626 has only a limited number of abundance results based on previous optical work—here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, with the goal of explaining their origin and evolution. Our best-fitting models for HD 196944 ({M}1,i=0.9{M}⊙ , {M}2,i=0.86{M}⊙ , for [Fe/H] = -2.2), and HD 201626 ({M}1,i=0.9{M}⊙ , {M}2,i=0.76{M}⊙ , for [Fe/H] = -2.2; {M}1,i=1.6{M}⊙ , {M}2,i=0.59{M}⊙ , for [Fe/H] = -1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars. The data presented herein were obtained with the (i) NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. (These observations are associated with program GO-12554, data sets OBQ601010-30 and OBQ602010-30.); and (ii) W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. (The Observatory was made

  6. Identifying Bright Stars in Crowded Environments Using Velocity Dispersion Measurements, and an Application to the Center of M32

    CERN Document Server

    Davidge, T J; McGregor, P J

    2010-01-01

    The identification of individual stars in crowded environments using photometric information alone is confounded by source confusion. However, with the addition of spectroscopic information it is possible to distinguish between blends and areas where the light is dominated by a single star using the widths of absorption features. We describe a procedure for identifying locations in kinematically hot environments where the light is dominated by a single star, and apply this method to spectra with 0.1 arcsec angular resolution covering the 2.1 - 2.3 micron interval in the central regions of M32. Targets for detailed investigation are selected as areas of localized brightness enhancement. Three locations where at least 60% of the K-band light comes from a single bright star, and another with light that is dominated by two stars with very different velocities, are identified. The dominant stars are evolving near the tip of the asymptotic giant branch (AGB), and have M5 III spectral type. The lack of a dispersion ...

  7. KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star

    CERN Document Server

    Bieryla, Allyson; Beatty, Thomas G; Eastman, Jason; Siverd, Robert J; Pepper, Joshua; Gaudi, B Scott; Stassun, Keivan G; Canas, Caleb; Latham, David W; Buchhave, Lars A; Sanchis-Ojeda, Roberto; Winn, Joshua N; Jensen, Eric L N; Kielkopf, John F; McLeod, Kim K; Gregorio, Joao; Colon, Knicole D; Street, Rachel; Ross, Rachel; Penny, Matthew; Mellon, Samuel N; Oberst, Thomas E; Fulton, Benjamin J; Wang, Ji; Berlind, Perry; Calkins, Michael L; Esquerdo, Gilbert A; DePoy, Darren L; Gould, Andrew; Marshall, Jennifer; Pogge, Richard; Trueblood, Mark; Trueblood, Patricia

    2015-01-01

    We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of $1.28 \\pm 0.18$ MJ, radius of $1.53_{-0.047}^{+0.046}$ RJ, and an orbital period of $2.7347749 \\pm 0.0000039$ days. The bright host star (HD33643; KELT-7) is an F-star with $V=8.54$, Teff $=6789_{-49}^{+50}$ K, [Fe/H] $=0.139_{-0.081}^{+0.075}$, and $\\log{g}=4.149 \\pm 0.019$. It has a mass of $1.535_{-0.054}^{+0.066}$ Msun, a radius of $1.732_{-0.045}^{+0.043}$ Rsun, and is the fifth most massive, fifth hottest, and the ninth brightest star known to host a transiting planet. It is also the brightest star around which KELT has discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed characterization given its relatively low surface gravity, high equilibrium temperature, and bright host star. The rapid rotation of the star ($73 \\pm 0.5$ km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude of several hundred m/s. We find that the orbit normal of the planet is likely to be well-aligned with ...

  8. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    Science.gov (United States)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  9. A Limit on the Number of Isolated Neutron Stars Detected in the ROSAT Bright Source Catalog

    CERN Document Server

    Rutledge, R E; Bogosavljevic, M; Mahabal, A A; Rutledge, Robert E.; Fox, Derek W.; Bogosavljevic, Milan; Mahabal, Ashish

    2003-01-01

    The challenge in searching for non-radio-pulsing isolated neutron stars (INSs) is in excluding association with objects in the very large error boxes (~13", 1 sigma radius) typical of sources from the largest X-ray all-sky survey, the ROSAT All-Sky-Survey/Bright Source Catalog (RASS/BSC). We search for candidate INSs using statistical analysis of optical (USNO-A2), infrared (IRAS), and radio (NVSS) sources near the ROSAT X-ray localization, and show that this selection would find 20% of the INSs in the RASS/BSC. This selection finds 32 candidates at declinations greater than -39 deg, among which are two previously known INSs, seventeen sources which we show are not INSs, and thirteen the classification of which are as yet undetermined. These results require a limit of <67 INSs (90% confidence, full sky, assuming isotropy) in the RASS/BSC. This limit modestly constrains a naive and optimistic model for cooling NSs in the galaxy.

  10. Brightness variations of the FUor-type eruptive star V346 Normae

    Science.gov (United States)

    Kóspál, Á.; Ábrahám, P.; Westhues, Ch.; Haas, M.

    2017-01-01

    Decades after the beginning of its FU Orionis-type outburst, V346 Nor unexpectedly underwent a fading event of ΔK = 4.6 mag around 2010. We obtained near-infrared observations and re-analyzed data from the VISTA/VVV survey to outline the brightness evolution. In our VLT/NaCO images, we discovered a halo of scattered light around V346 Nor with a size of about 0".04 (30 au). The VISTA data outlined a well-defined minimum in the light curve in late 2010/early 2011, and tentatively revealed a small-amplitude periodic modulation of 58 days. Our latest data points from 2016 demonstrate that the source is still brightening but has not yet reached the 2008 level. We used a simple accretion disk model with varying accretion rate and line-of-sight extinction to reproduce the observed near-infrared magnitudes and colors. We found that the flux changes of V346 Nor before 2008 were caused by a correlated change of extinction and accretion rate, while the minimum around 2010 was mostly due to decreasing accretion. The source reached a highest accretion rate of ≈ 10-4M⊙ yr-1 in 1992. A combination of accretion and extinction changes has been invoked in the literature to interpret the flux variations of certain embedded young eruptive stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 71.C-0526(A), 179.B-2002, and 381.C-0241(A).

  11. Detection of solar-like oscillations in the bright red giant stars $\\gamma$ Psc and $\\theta^1$ Tau from a 190-day high-precision spectroscopic multisite campaign

    CERN Document Server

    Beck, P G; Hillen, M; Corsaro, E; Van Winckel, H; Moravveji, E; De Ridder, J; Bloemen, S; Saesen, S; Mathias, P; Degroote, P; Kallinger, T; Verhoelst, T; Ando, H; Carrier, F; Acke, B; Oreiro, R; Miglio, A; Eggenberger, P; Sato, B; Zwintz, K; Pápics, P I; Marcos-Arenal, P; Fuentes, S A Sans; Schmid, V S; Waelkens, C; Østensen, R; Matthews, J M; Yoshida, M; Izumiura, H; Koyano, H; Nagayama, S; Shimizu, Y; Okada, N; Okita, K; Sakamoto, A; Yamamuro, T; Aerts, C

    2014-01-01

    Red giants are evolved stars which exhibit solar-like oscillations. Although a multitude of stars have been observed with space telescopes, only a handful of red-giant stars were targets of spectroscopic asteroseismic observing projects. We search for solar-like oscillations in the two bright red-giant stars $\\gamma$ Psc and $\\theta^1$ Tau from time series of ground-based spectroscopy and determine the frequency of the excess of oscillation power $\

  12. CARMA Survey Toward Infrared-bright Nearby Galaxies (STING): Molecular Gas Star Formation Law in NGC4254

    CERN Document Server

    Rahman, Nurur; Wong, Tony; Leroy, Adam K; Walter, Fabian; Rosolowsky, Erik; West, Andrew A; Bigiel, Frank; Ott, Juergen; Xue, Rui; Herrera-Camus, Rodrigo; Jameson, Katherine; Blitz, Leo; Vogel, Stuart N

    2010-01-01

    This study explores the effects of different assumptions and systematics on the determination of the local, spatially resolved star formation law. Using four star formation rate (SFR) tracers ($H\\alpha$ with azimuthally averaged extinction correction, mid-infrared 24 micron, combined $H\\alpha$ and mid-infrared 24 micron, and combined far-ultraviolet and mid-infrared 24 micron), several fitting procedures, and different sampling strategies we probe the relation between SFR and molecular gas at various spatial resolutions and surface densities within the central 6.5 kpc in the disk of NGC4254. We find that in the high surface brightness regions of NGC4254 the form of the molecular gas star formation law is robustly determined and approximately linear and independent of the assumed fraction of diffuse emission and the SFR tracer employed. When the low surface brightness regions are included, the slope of the star formation law depends primarily on the assumed fraction of diffuse emission. In such case, results r...

  13. The angular sizes of dwarf stars and subgiants - Non-linear surface brightness relations in BVRcIc from interferometry

    CERN Document Server

    Kervella, Pierre

    2008-01-01

    Context: The prediction of stellar angular diameters from broadband photometry plays an important role for different applications. In particular, long-baseline interferometry, gravitational microlensing, extrasolar planet transits, and many other observing techniques require accurate predictions of the angular size of stars. These predictions are based on the surface brightness-colour (SBC) relations. Aims: Our goal is to calibrate general-purpose SBC relations using visible colours, the most commonly available data for most stars. Methods: We compiled the existing long-baseline interferometric observations of nearby dwarf and subgiant stars and the corresponding broadband photometry in the Johnson B V and Cousins Rc Ic bands. We then adjusted polynomial SBC models to these data. Results: Due to the presence of spectral features that depend on the effective temperature, the SBC relations are usually not linear for visible colours. We present polynomial fits that can be employed with BVRcIc based colours to pr...

  14. KELT-2Ab: A Hot Jupiter Transiting the Bright (V=8.77) Primary Star of a Binary System

    CERN Document Server

    Beatty, Thomas G; Siverd, Robert J; Eastman, Jason D; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Manner, Mark; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; Collins, Karen; DePoy, Darren L; Esquerdo, Gilbert A; Fulton, Benjamin J; Fűrész, Gábor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Street, Rachel; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M

    2012-01-01

    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V=8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived "blue-hook" stage of evolution, with $\\teff=6151\\pm50{\\rm K}$, $\\log{g_*}=4.030_{-0.028}^{+0.013}$ and $\\feh=-0.018\\pm0.069$. The inferred stellar mass is $M_*=1.308_{-0.025}^{+0.028}$\\msun\\ and the star has a relatively large radius of $R_*=1.828_{-0.034}^{+0.070}$\\rsun. The planet is a typical hot Jupiter with period $4.113791\\pm0.00001$ days and a mass of $M_P=1.522\\pm0.078$\\mj\\ and radius of $R_P=1.286_{-0.047}^{+0.065}$\\rj. This is mildly inflated as compared to models of irradiated giant planets at the $\\sim$4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with $V<9$ host stars, and therefore incre...

  15. Abundances of UV bright stars in globular clusters 1 ROA 5701 in $\\omega$ Centauri and Barnard 29 in M 13

    CERN Document Server

    Möhler, S; Lemke, M; Napiwotzki, R

    1998-01-01

    Two UV brights stars in globular clusters, ROA 5701 (omega Cen) and Barnard 29 (M 13) are analysed from high-resolution UV and optical spectra. The main aim is the measurement of iron abundances from UV spectra obtained with the HST-GHRS. In addition atmospheric parameters and abundances for He, C, N, O, and Si are derived from optical spectra (ESO CASPEC) for ROA 5701 or taken from literature for Barnard 29. Both stars are found to be post-asymptotic giant branch stars. Surprisingly, their iron abundances lie significantly below the cluster abundance in both cases. Barnard 29 lies 0.5 dex below the iron abundance derived for giant stars in M 13 and the iron abundance of ROA 5701 is the lowest of any star in omega Cen analysed so far. Barnard 29 shows the same abundance pattern as the red giant stars in M 13, except for its stronger iron deficiency. The iron depletion could be explained by gas-dust separation in the AGB progenitor's atmosphere, if iron condensed into dust grains which were then removed from t...

  16. A Spitzer Transit of the Most Inflated Planet Known, Around an Extremely Bright Sub-giant Star

    Science.gov (United States)

    Beatty, Thomas; Collins, Karen; Colon, Knicole; James, David; Kriedberg, Laura; Pepper, Joshua; Rodriguez, Joseph; Siverd, Robert; Stassun, Keivan; Stevens, Daniel

    2015-10-01

    KELT-11b is a newly discovered transiting Saturn-mass planet (Mp~0.22MJ) that promises to become a unique benchmark. KELT-11b orbits HD 93396,the second brightest star in the near-IR (K=6.122) and the third brightest star in the optical (V=8.04) to host a transiting giant planet. This makes KELT-11 comparable to the well-studied benchmarks HD 189733 and HD 209458. But unlike these other bright systems, KELT-11b's host star is a sub-giant, with log(g)~3.7. Thus KELT-11b is the first transiting giant planet known around a sub-giant star bright enough for precise follow-up observations. Furthermore, KELT-11b is the most inflated planet known, with the lowest surface gravity (log[g]~2.5) of any transiting planet. This makes it an exciting target for atmospheric characterization and studying the effect of post main-sequence evolution of a host star on a hot Jupiter. But to correctly interpret any follow-up observations, we will first need to measure accurate stellar and planetary parameters for the system via a precise transit observation. Unfortunately, this is effectively impossible to do from the ground. Spitzer's ability to provide high precision continuous photometry provides the only current way in which we may precisely observe a complete transit of KELT-11b. We therefore propose for 15.5 hours, to observe a single transit KELT-11b at 3.6um. This would reduce the uncertainties on the transit depth and stellar density by at least a factor of twenty, and will improve the model-derived stellar mass by at least a factor of ten, compared to ground-based observations. This will serve two goals. First, it will be a valuable legacy to the community, by providing a precise set of system parameters that will enable future observation and interpretation of this unique, bright, system. Second, an observation of a transit will allow us to strongly constrain the mass of KELT-11, and thus help resolve the disagreement over the true masses of the 'retired A stars' radial

  17. Chemical composition of a sample of bright solar-metallicity stars

    CERN Document Server

    Caffau, E; Steffen, M; Bonifacio, P; Strassmeier, K G; Gallagher, A; Faraggiana, R; Sbordone, L

    2015-01-01

    We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from CaII are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.

  18. CARMA Survey Toward Infrared-bright Nearby Galaxies (STING) II: Molecular Gas Star Formation Law and Depletion Time Across the Blue Sequence

    CERN Document Server

    Rahman, Nurur; Xue, Rui; Wong, Tony; Leroy, Adam K; Walter, Fabian; Bigiel, Frank; Rosolowsky, Erik; Fisher, David B; Vogel, Stuart N; Blitz, Leo; West, Andrew A; Ott, Juergen

    2011-01-01

    We present an analysis of the relationship between molecular gas and current star formation rate surface density at sub-kpc and kpc scales in a sample of 14 nearby star-forming galaxies. Measuring the relationship in the bright, high molecular gas surface density ($\\Shtwo\\gtrsim$20 \\msunpc) regions of the disks to minimize the contribution from diffuse extended emission, we find an approximately linear relation between molecular gas and star formation rate surface density, $\

  19. Evidence of Dissipation of Circumstellar Disks from L-band Spectra of Bright Galactic Be Stars

    Science.gov (United States)

    Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; Álvarez, M.; Salas, L.

    2017-01-01

    We present L-band spectra of the Be stars γ Cas, ϕ Per, 28 Tau, θ CrB, 66 Oph, o Her, and 28 Cyg, obtained through use of the CID-InSb spectrograph with the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory. This is the first report of L-band spectra of o Her and θ CrB, and of the data obtained with this spectrograph. We obtain flux ratios of hydrogen lines for these stars, finding that they have optically thin envelopes, except by 66 Oph and θ CrB, which do not show evidence of a circumstellar disk. γ Cas and ϕ Per have flux ratio values of hydrogen lines closer to the optically thick case than the other stars. We use the line flux ratio diagram and optical spectra reported in the literature to study the life cycles of the disks. We find clear evidence of the dissipating process of the envelopes of 66 Oph and 28 Cyg, i.e., they are decaying stars. 28 Tau seems to have passed by a similar process. γ Cas and ϕ Per are stable stars because their circumstellar disks do not show notorious changes for many years. Finally, the stars in a build-up phase, whose envelopes are generated after a decaying phase or for the first time, have not yet been observed in the L-band. It would be useful to monitor more Be stars to observe this class of stars that probably change from a very tenuous envelope to an optically thick circumstellar disk. The line flux ratio diagram seems to confirm that late Be stars have more tenuous disks than early-type Be stars, as they tend to be separated at the left bottom and the top right parts of the diagram, respectively. Larger samples of Be stars are needed to confirm this hypothesis through a statistical analysis.

  20. An inflated massive Hot Jupiter transiting a bright F star followed up with K2.0 observations

    CERN Document Server

    Huang, C X; Bakos, G Á; Penev, K; Bhatti, W; Bieryla, A; de Val-Borro, M; Latham, D W; Buchhave, L A; Csubry, Z; Kovács, G; Béky, B; Falco, E; Berlind, P; Calkins, M L; Esquerdo, G A; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of HAT-P-56b by the HATNet survey, an inflated hot Jupiter transiting a bright F type star in Field 0 of NASA's K2 mission. We combine ground-based discovery and follow-up light curves with high precision photometry from K2, as well as ground-based radial velocities from TRES on the FLWO~1.5m telescope to determine the physical properties of this system. HAT-P-56b has a mass of $M_p \\approx 2.18 M_J$, radius of $R_p \\approx 1.47 R_J$, and transits its host star on a near-grazing orbit with a period of $P\\approx$ 2.7908 d. The radius of HAT-P-56b is among the largest known for a planet with $M_p > 2 M_J$. The host star has a V-band magnitude of 10.9, mass of 1.30 $M_\\odot$, and radius of 1.43 $R_\\odot$. The periodogram of the K2 light curve suggests the star is a $\\gamma$ Dor variable. HAT-P-56b is an example of a ground-based discovery of a transiting planet, where space-based observations greatly improve the confidence in the confirmation of its planetary nature, and also improve the ...

  1. The VLT-FLAMES Tarantula survey XX. The nature of the X-ray bright emission line star VFTS 399

    CERN Document Server

    Clark, J S; Broos, P S; Townsley, L K; Taylor, W D; Walborn, N R; Bird, A J; Sana, H; de Mink, S E; Dufton, P L; Evans, C J; Langer, N; Apellániz, J Maíz; Schneider, F R N; Soszyński, I

    2015-01-01

    The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain. One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity - in this study we aim to determine its physical nature and the cause of this behaviour. We find VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select HeI lines - taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that ...

  2. VizieR Online Data Catalog: Abundances of bright metal-poor stars (Schlaufman+, 2014)

    Science.gov (United States)

    Schlaufman, K. C.; Casey, A. R.

    2016-11-01

    As input to our sample selection, we use the APASS DR6 Catalog, the 2MASS All-Sky Point Source Catalog, and the AllWISE Source Catalog (Henden+ 2012JAVSO..40..430H; Skrutskie+ 2006AJ....131.1163S; Wright+ 2010AJ....140.1868W; Mainzer+ 2011ApJ...731...53M). We followed up our metal-poor star candidates with the Mayall 4m/Echelle, Gemini South/GMOS-S, and Magellan/MIKE telescopes and spectrographs. We observed 98 stars with the Mayall 4m/Echelle on 2013 June 25-27. We observed 90 stars with Gemini South/GMOS-S in service mode from 2014 March to July (R~3700). We observed 416 stars with Magellan/MIKE on 2014 June 21-23 and July 8-10 (R~41000 in the blue and R~35000 in the red). (3 data files).

  3. The Origin of Bright X-Ray Sources in Multiple Stars

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, V V; Eggleton, P P

    2009-04-23

    Luminous X-ray stars are very often found in visual double or multiple stars. Binaries with periods of a few days possess the highest degree of coronal X-ray activity among regular, non-relativistic stars. But the orbital periods in visual double stars are too large for any direct interaction between the companions to take place. We suggest that most of the strongest X-ray components in resolved binaries are yet-undiscovered short-period binaries, and that a few are merged remnants of such binaries. The omnipresence of short-period active stars, e.g. of BY-Dra-type binaries, in multiple systems is explained via the dynamical evolution of triple stars with large mutual inclinations. The dynamical perturbation on the inner pair pumps up the eccentricity in a cyclic manner, a phenomenon known as Kozai cycling. At times of close periapsis, tidal friction reduces the angular momentum of the binary, causing it to shrink. When the orbital period of the inner pair drops to a few days, fast surface rotation of the companions is driven by tidal forces, boosting activity by a few orders of magnitude. If the period drops still further, a merger may take place leaving a rapidly-rotating active dwarf with only a distant companion.

  4. Improving the surface-brightness color relation for early-type stars using optical interferometry

    CERN Document Server

    Challouf, M; Mourard, D; Graczyk, D; Aroui, H; Chesneau, O; Delaa, O; Pietrzyński, G; Gieren, W; Ligi, R; Meilland, A; Perraut, K; Tallon-Bosc, I; McAlister, H; Brummelaar, T ten; Sturmann, J; Sturmann, L; Turner, N; Farrington, C; Vargas, N; Scott, N

    2014-01-01

    The aim of this work is to improve the SBC relation for early-type stars in the $-1 \\leq V-K \\leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disc angular diameters were converted into limb darkened angular diameters and included in a larger sample of twenty four stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also take the opportunity to check the consistency of the SBC relation up to $V-K \\simeq 4$ using 100 additional measurements. We determined the uniform disc angular diameter for the eight following stars: $\\gamma$ Ori, $\\zeta$ Per, $8$ Cyg, $\\iota$ Her, $\\lambda$ Aql, $\\zeta$ Peg, $\\gamma$ Lyr and $\\delta$ Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about $1.5\\%$. Using our total sample of 132 stars with $V-K$ colors index ranging f...

  5. A photometric monitoring of bright high-amplitude delta Scuti stars. II. Period updates for seven stars

    CERN Document Server

    Derekas, A; Székely, P; Alfaro, E J; Csák, B; Mészáros, S; Rodríguez, E; Rolland, A; Sarneczky, K; Szabó, G M; Szatmary, K; Varadi, M; Kiss, C; Meszaros, Sz.; Szabo, Gy.M.; Kiss, Cs.

    2003-01-01

    We present new photometric data for seven high-amplitude delta Scuti stars. The observations were acquired between 1996 and 2002, mostly in the Johnson photometric system. For one star (GW UMa), our observations are the first since the discovery of its pulsational nature from the Hipparcos data.The primary goal of this project was to update our knowledge on the period variations of the target stars. For this, we have collected all available photometric observations from the literature and constructed decades-long O-C diagrams of the stars. This traditional method is useful because of the single-periodic nature of the light variations. Text-book examples of slow period evolution (XX Cyg, DY Her, DY Peg) and cyclic period changes due to light-time effect (LITE) in a binary system (SZ Lyn) are updated with the new observations. For YZ Boo, we find a period decrease instead of increase. The previously suggested LITE-solution of BE Lyn (Kiss & Szatmary 1995) is not supported with the new O-C diagram. Instead o...

  6. Low Surface Brightness Galaxies in the SDSS: the link between environment, star-forming properties and AGN

    CERN Document Server

    Galaz, Gaspar; Garcia-Lambas, Diego; Padilla, Nelson

    2010-01-01

    Using the Sloan Digital Sky Survey (SDSS) data release 4 (DR 4), we investigate the spatial distribution of low and high surface brightness galaxies (LSBs and HSBs, respectively). In particular, we focus our attention on the influence of interactions between galaxies on the star formation strength in the redshift range $0.01 < z < 0.1$. With cylinder counts and projected distance to the first and fifth-nearest neighbor as environment tracers, we found that LSBs tend to have a lack of companions compared to HSBs at small scales ($<2$ Mpc). Regarding the interactions, we have evidence that the fraction of LSBs with strong star formation activity increases when the neighbor is closer than $r_{p}/r_{90} \\sim 4$. The intensity of the effect of the interaction on the star formation strength, measured by the average value of the birthrate parameter $b$, seems to be stronger for HSBs than for LSBs. The analysis of our population of LSBs and HSBs hosting an AGN show that, regardless of the mass range, the fra...

  7. The surface brightness -- color relations based on eclipsing binary stars: toward sub 1% precision in angular diameter predictions

    CERN Document Server

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Storm, Jesper; Nardetto, Nicolas; Gallenne, Alexandre; Maxted, Pierre F L

    2016-01-01

    In this study we investigate the calibration of surface brightness -- color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries having trigonometric parallaxes from Gaia DR1 or Hipparcos, their absolute dimensions known with an accuracy better than 3\\% and lying within 0.3 kpc from the Sun. For the purpose of this study we used mostly homogeneous optical and near-infrared photometry based on Tycho-2 and 2MASS catalogues. We derived geometric angular diameters for all stars in our sample with precision better than 10\\%, and for 11 of them with precision better than 2\\%. At the present moment the precision of individual angular diameters of the eclipsing binary components is limited by the precision of the geometric distances ($\\sim$5\\% on average). However by using a sub-sample of systems with the best agreement between their geometric and photometric distances we derived the precise SBC relations based only on eclipsing binary stars. Those relations h...

  8. The Dearth of UV-Bright Stars in M32: Implications for Stellar Evolution Theory

    CERN Document Server

    Brown, Thomas M; Ferguson, Henry C; Sweigart, Allen V; Kimble, Randy A; Bowers, Charles W

    2008-01-01

    Using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, we have obtained deep far-ultraviolet images of the compact elliptical galaxy M32. When combined with earlier near-ultraviolet images of the same field, these data enable the construction of an ultraviolet color-magnitude diagram of the hot horizontal branch (HB) population and other hot stars in late phases of stellar evolution. We find few post-asymptotic giant branch (PAGB) stars in the galaxy, implying that these stars either cross the HR diagram more rapidly than expected, and/or that they spend a significant fraction of their time enshrouded in circumstellar material. The predicted luminosity gap between the hot HB and its AGB-Manque (AGBM) progeny is less pronounced than expected, especially when compared to evolutionary tracks with enhanced helium abundances, implying that the presence of hot HB stars in this metal-rich population is not due to (Delta Y)/(Delta Z) > 4. Only a small fraction (~2%) of the HB population is hot ...

  9. Discovery of a stripped red giant core in a bright eclipsing binary star

    CERN Document Server

    Maxted, P F L; Burleigh, M R; Collier-Cameron, A; Heber, U; Gänsicke, B T; Geier, S; Kupfer, T; Marsh, T R; Nelemans, G; O'Toole, S J; Østensen, R H; Smalley, B; West, R G; Bloemen, S

    2012-01-01

    We report the serendipitous discovery from WASP archive photometry of a binary star in which an apparently normal A-type star (J0247-25A) eclipses a smaller, hotter subdwarf star (J0247-25B). The kinematics of J0247-25A show that it is a blue-straggler member of the Galactic thick-disk. We present follow-up photometry and spectroscopy from which we derive approximate values for the mass, radius and luminosity for J0247-25B assuming that J0247-25A has the mass appropriate for a normal thick-disk star. We find that the properties of J0247-25B are well matched by models for a red giant stripped of its outer layers and currently in a shell hydrogen-burning stage. In this scenario, J0247-25B will go on to become a low mass white dwarf (M~0.25 solar masses) composed mostly of helium. J0247-25B can be studied in much greater detail than the handful of pre helium white dwarfs (pre-He-WD) identified to-date. These results have been published by Maxted et al., 2011. We also present a preliminary analysis of more recent...

  10. Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

    CERN Document Server

    Handler, G

    2013-01-01

    The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. We acquired 117 h of Stromgren uvy data during 19 nights. Our targets comprised the Beta Cephei stars Kappa and Lambda Sco, the eclipsing binary Mu 1 Sco, and the variable super/hypergiant Zeta 1 Sco. For Kappa Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l, m) = (1, -1) Beta Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For Lambda Sco, we recover the known dominant Beta Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spe...

  11. HAT-P-2b: A Super-Massive Planet in an Eccentric Orbit Transiting a Bright Star

    CERN Document Server

    Bakos, G A; Torres, G; Fischer, D A; Latham, D W; Noyes, R W; Sasselov, D D; Mazeh, T; Shporer, A; Butler, R P; Stefanik, R P; Fernández, J M; Sozzetti, A; Pal, A; Johnson, J; Marcy, G W; Sipocz, B; Lázár, J; Papp, I; Sari, P

    2007-01-01

    We report the discovery of HAT-P-2b, a massive (Mp=8.17+/-0.72 M_Jup) planet transiting the bright (V=8.7) F8 star HD 147506, with an orbital period of 5.63 days and an eccentricity of e=0.5. From the transit light curve we determine that the radius of the planet is Rp = 1.18+/-0.16 R_Jup. HAT-P-2b has a mass about 9 times the average mass of previously-known transiting exoplanets, and a density of rho = 6.6gcm^-3, similar to that of rocky planets like the Earth. Nevertheless, its mass and radius are in accord with theories of structure of massive giant planets composed of pure H and He. The high eccentricity causes a 9-fold variation of insolation of the planet between peri- and apastron.

  12. A Limit on the Number of Isolated Neutron Stars Detected in the ROSAT All-Sky Survey Bright Source Catalog

    CERN Document Server

    Turner, Monica L; Letcavage, Ryan; Shevchuk, Andrew S H; Fox, Derek B

    2010-01-01

    Using new and archival observations made with the Swift satellite and other facilities, we examine 147 X-ray sources selected from the ROSAT All-Sky-Survey Bright Source Catalog (RASS/BSC) to produce a new limit on the number of isolated neutron stars (INSs) in the RASS/BSC, the most constraining such limit to-date. Independent of X-ray spectrum and variability, the number of INSs is <=48 (90% confidence). Restricting attention to soft (having an effective temperature of < 200 eV), non-variable X-ray sources -- as in a previous study -- yields an all-sky limit of <=31 INSs. In the course of our analysis, we identify five new high-quality INS candidates for targeted follow-up observations. A future all-sky X-ray survey with eROSITA, or another mission with similar capabilities, can be expected to increase the detected population of X-ray-discovered INSs from the 8 to 50 in the BSC, to (for a disk population) 240 to 1500, which will enable a more detailed study of neutron star population models.

  13. HAT-P-11b: A Super-Neptune Planet Transiting a Bright K Star in the Kepler Field

    CERN Document Server

    Bakos, G Á; Pál, A; Hartman, J; Kovács, Géza; Noyes, R W; Latham, D W; Sasselov, D D; Sipőcz, B; Esquerdo, G A; Fischer, D A; Johnson, J A; Marcy, G W; Butler, R P; Isaacson, H; Howard, A; Vogt, S; Kovács, Gábor; Fernández, J; Moór, A; Stefanik, R P; Lázár, J; Papp, I; Sári, P

    2009-01-01

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP), and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V=9.59) and metal rich ([Fe=H] = +0.31 +/- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +/- 0.0000071 days and produces a transit signal with depth of 4.2 mmag; the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial-velocity data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 Mearth, 3.8 Rearth) both in mass Mp = 0.081 +/- 0.009 MJup (25.8 +/- 2.9 Mearth) and radius Rp = 0.422 +/- 0.014 RJup (4.73 +/- 0.16 Rearth). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +/- 0.046 and omega = 355.2 +/- 17.3 deg, causing a reflex motion of its parent star with amplitude 11.6 +/- 1.2 m/s, a challen...

  14. Star formation and the interstellar medium in low surface brightness galaxies III. Why they are blue, thin and poor in molecular gas

    NARCIS (Netherlands)

    Gerritsen, JPE; de Blok, WJG

    1999-01-01

    We present N-body simulations of Low Surface Brightness (LSB) galaxies and their Interstellar Medium to investigate the cause for their low star formation rates (SFR). Due to their massive halos, stellar disks of LSB galaxies are very stable and thin. Lack of dust makes the projected edge-on surface

  15. Bright Metal-Poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields

    CERN Document Server

    Frebel, A; Norris, J E; Beers, T C; Bessell, M S; Rhee, J; Fechner, C; Marsteller, B; Rossi, S; Thom, C; Wisotzki, L; Reimers, D

    2006-01-01

    We present a sample of 1777 bright (91.0) metal-poor ([Fe/H]20%) and higher values with increasing distance from the Galactic plane. Although the numbers of stars at low metallicity are falling rapidly at the lowest metallicities, there is evidence that the fraction of carbon-enhanced metal-poor stars is increasing rapidly as a function of declining metallicity. For ~60 objects, high-resolution data have already been obtained; one of these, HE 1327-2326, is the new record holder for the most iron-deficient star known.

  16. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    CERN Document Server

    Ishihara, Daisuke; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2016-01-01

    Context: Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 AU. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods : We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 micron detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks<4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H...

  17. HR 7920: a very bright new Delta Scuti star with possible Gamma Doradus variations

    Science.gov (United States)

    Koen, C.; van Wyk, F.; Laney, C. D.; Kilkenny, D.

    2017-04-01

    We present photometric and high-dispersion spectroscopic measurements that show HR 7920 is a periodic variable. The photometry reveals at least four frequencies higher that 10 d-1, two of which are also probably present in the radial velocity variations. The frequencies are in a range typical of δ Scuti star pulsations. A further low frequency of about 2.8 d-1 may be present in both radial velocities and photometry; if real, this points to γ Doradus variability, which would make HR 7920 a hybrid pulsator. An attempt is made to identify the modes of the δ Scuti pulsations, which include both radial and non-radial modes. A new rotational velocity of 75 km s-1 is derived from co-added spectra, contrasting with published values in the range 128-150 km s-1.

  18. Shocks and Star Formation in Stephan's Quintet. I. Gemini Spectroscopy of H{\\alpha}-bright knots

    CERN Document Server

    Konstantopoulos, I S; Guillard, P; Trancho, G; Cluver, M E; Bastian, N; Charlton, J C; Fedotov, K; Gallagher, S C; Smith, L J; Struck, C J

    2013-01-01

    We present a Gemini-GMOS spectroscopic study of HST-selected H{\\alpha}-emitting regions in Stephan's Quintet (HCG 92), a nearby compact galaxy group, with the aim of disentangling the processes of shock-induced heating and star formation in its intra-group medium. The $\\approx$40 sources are distributed across the system, but most densely concentrated in the $\\sim$kpc-long shock region. Their spectra neatly divide them into narrow- and and broad-line emitters, and we decompose the latter into three or more emission peaks corresponding to spatial elements discernible in HST imaging. The emission line ratios of the two populations of H{\\alpha}-emitters confirm their nature as H II regions (90% of the sample) or molecular gas heated by a shock-front propagating at $\\lesssim$300 km/s. Their redshift distribution reveals interesting three-dimensional structure with respect to gas-phase baryons, with no H II regions associated with shocked gas, no shocked regions in the intruder galaxy NGC 7318B, and a sharp bounda...

  19. Extremely-bright submillimeter galaxies beyond the Lupus-I star-forming region

    CERN Document Server

    Tamura, Y; Shimajiri, Y; Tsukagoshi, T; Nakajima, Y; Oasa, Y; Wilner, D J; Chandler, C J; Saigo, K; Tomida, K; Yun, M S; Taniguchi, A; Kohno, K; Hatsukade, B; Aretxaga, I; Austermann, J E; Dickman, R; Ezawa, H; Goss, W M; Hayashi, M; Hughes, D H; Hiramatsu, M; Inutsuka, S; Ogasawara, R; Ohashi, N; Oshima, T; Scott, K S; Wilson, G W

    2015-01-01

    We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4$-$344318 and MM J154132.7$-$350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 $\\mu$m and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are $z_{\\rm photo} \\simeq$ 4-5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-$z$ ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at $S_{\\rm 1.1mm} \\ge 25$ mJy, combined with other two 1.1-mm brightest sources, are $0.70 ^{+0.56}_{-0.34}$ deg$^{-2}$, which is consistent with a model prediction that accounts for ...

  20. Star formation in bright-rimmed clouds and cluster associated with W5 E H{\\sc ii} region

    CERN Document Server

    Chauhan, Neelam; Ogura, K; Jose, J; Ojha, D K; Samal, M R; Mito, H

    2011-01-01

    The aim of this paper is to present the results of photometric investigations of the central cluster of the W5 E region as well as a follow-up study of the triggered star formation in and around bright-rimmed clouds (BRCs). We have carried out wide field $UBVI_c$ and deep $VI_c$ photometry of the W5 E H{\\sc ii} region. A distance of $\\sim$2.1 kpc and a mean age of $\\sim$1.3 Myr have been obtained for the central cluster. The young stellar objects (YSOs) associated with the region are identified on the basis of near-infrared and mid-infrared observations. We confirmed our earlier results that the average age of the YSOs lying on/inside the rim are younger than those lying outside the rim. The global distribution of the YSOs shows an aligned distribution from the ionising source to the BRCs. These facts indicate that a series of radiation driven implosion processes proceeded from near the central ionising source towards the periphery of the W5 E H{\\sc ii} region. We found that, in general, the age distributions...

  1. Astronomical Science with Laser Guide Star Adaptive Optics: A Brief Review, a Current Snapshot, and a Bright Future

    CERN Document Server

    Liu, M C

    2006-01-01

    We briefly discuss the past, present, and future state of astronomical science with laser guide star adaptive optics (LGS AO). We present a tabulation of refereed science papers from LGS AO, amounting to a total of 23 publications as of May 2006. The first decade of LGS AO science (1995-2004) was marked by modest science productivity (~1 paper/year), as LGS systems were being implemented and commissioned. The last two years have seen explosive science growth (~1 paper/month), largely due to the new LGS system on the Keck II 10-meter telescope, and point to an exciting new era for high angular resolution science. To illustrate the achievable on-sky performance, we present an extensive collection of Keck LGS performance measurements from the first year of our brown dwarf near-IR imaging survey. We summarize the current strengths and weaknesses of LGS compared to Hubble Space Telescope, offer a list of desired improvements, and look forward to a bright future for LGS given its wide-scale implementation on large ...

  2. Surface brightness and color distributions in blue compact dwarf galaxies. I - Haro 2, an extreme example of a star-forming young elliptical galaxy

    Science.gov (United States)

    Loose, Hans-Hermann; Thuan, Trinh X.

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.

  3. Are LGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II: star formation rates and metallicities at z < 1

    CERN Document Server

    Japelj, J; Salvaterra, R; D'Avanzo, P; Mannucci, F; Fernandez-Soto, A; Boissier, S; Hunt, L K; Atek, H; Rodríguez-Muñoz, L; Scodeggio, M; Cristiani, S; Floc'h, E Le; Flores, H; Gallego, J; Ghirlanda, G; Gomboc, A; Hammer, F; Perley, D A; Pescalli, A; Petitjean, P; Puech, M; Rafelski, M; Tagliaferri, G

    2016-01-01

    Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and could thus be a potentially powerful tool to trace cosmic star formation. However, especially at low redshifts (z < 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the impact of the environment on GRB formation. We study host galaxy spectra of the Swift/BAT6 complete sample of 14 z < 1 bright LGRBs. We use the detected nebular emission lines to measure the dust extinction, star formation rate (SFR) and nebular metallicity (Z) of the hosts and supplement the data set with previously measured stellar masses M$_{\\star}$. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M$_{\\star}$ relations) are compared to samples of field star-forming galaxies.We find that LGRB hosts at z < 1 have on average lower SFRs than if they were direct star-formation tracers. By directly comparin...

  4. Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    CERN Document Server

    Marsden, S C; Vélez, J C Ramírez; Alecian, E; Brown, C J; Carter, B D; Donati, J F; Dunstone, N; Hart, R; Semel, M; Waite, I A

    2011-01-01

    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced betwee...

  5. Star formation and the interstellar medium in low surface brightness galaxies - II. Deep CO observations of low surface brightness disk galaxies

    NARCIS (Netherlands)

    de Blok, WJG; van der Hulst, JM

    1998-01-01

    We present deep, pointed (CO)-C-12(J = 2 - 1) observations of three late-type LSB galaxies. The beam-size was small enough that we could probe different environments (HI maximum, HI mininum, star forming region) in these galaxies. No CO was found at any of the positions observed. We argue that the i

  6. Operating an Improved HAT Network to Discover and Characterize Many Planets, from Super-Earths to Super-Jupiters, Transiting Bright Stars

    Science.gov (United States)

    Bakos, Gaspar

    OBJECTIVES The primary objective of this program is to discover many new extrasolar planets that transit stars bright enough to allow in-depth follow-up studies. This program will focus, in particular, on exploring the large, but poorly studied, populations of long period planets as well as Neptunes and super Earths transiting bright stars. We will also provide accurate initial characterization of the newly discovered exoplanets. METHODS We will accomplish these research objectives by continuing the operation of the highly efficient and successful HATNet project in the period of 2013-2016, exploiting its unique capabilities to discover long period as well as small transiting planets. We also propose to replace our inexpensive front-illuminated CCDs with high quality back-illuminated CCDs so as to achieve 1 millimagnitude photometry at 9 minute cadence over a wide field of view for the brightest stars, as demonstrated by a recent experiment. The CCD upgrade, new observing techniques, and highly optimized reduction of the data will increase HATNet's current efficiency towards finding Neptune-sized planets by a factor of 8. With 38 transiting planets published to date, including two of the five well-characterized Neptune-mass planets, and having received more than 750 citations to date, HATNet is one of the world leaders in their discovery. Without further funding HATNet operations will cease. Our team has established a very well working machinery (equipment, personnel, follow-up tools, and expertise) which represents a significant, and highly cost- efficient investment by NASA. The specific methods and techniques we will use are now fully developed, and include: automated monitoring of all bright stars in selected 8x8 degree star fields; identifying candidate transiting planets based on these observations; and conducting follow-up spectroscopic and photometric observations to confirm and characterize those candidates which are real transiting planets. SIGNIFICANCE

  7. CARMA Survey Toward Infrared-bright Nearby Galaxies (STING). II. Molecular Gas Star Formation Law and Depletion Time across the Blue Sequence

    Science.gov (United States)

    Rahman, Nurur; Bolatto, Alberto D.; Xue, Rui; Wong, Tony; Leroy, Adam K.; Walter, Fabian; Bigiel, Frank; Rosolowsky, Erik; Fisher, David B.; Vogel, Stuart N.; Blitz, Leo; West, Andrew A.; Ott, Jürgen

    2012-02-01

    We present an analysis of the relationship between molecular gas and current star formation rate surface density at sub-kiloparsec and kiloparsec scales in a sample of 14 nearby star-forming galaxies. Measuring the relationship in the bright, high molecular gas surface density ({\\Sigma _H_2}\\gtrsim 20 M ⊙ pc-2) regions of the disks to minimize the contribution from diffuse extended emission, we find an approximately linear relation between molecular gas and star formation rate surface density, N mol ~ 0.96 ± 0.16, with a molecular gas depletion time, τmol dep ~ 2.30 ± 1.32 Gyr. We show that in the molecular regions of our galaxies there are no clear correlations between τmol dep and the free-fall and effective Jeans dynamical times throughout the sample. We do not find strong trends in the power-law index of the spatially resolved molecular gas star formation law or the molecular gas depletion time across the range of galactic stellar masses sampled (M * ~ 109.7-1011.5 M ⊙). There is a trend, however, in global measurements that is particularly marked for low-mass galaxies. We suggest that this trend is probably due to the low surface brightness CO J = 1-0, and it is likely associated with changes in CO-to-H2 conversion factor.

  8. What asteroseismology can do for exoplanets: Kepler-410A b is a Small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    CERN Document Server

    Van Eylen, Vincent; Aguirre, Victor Silva; Arentoft, Torben; Kjeldsen, Hans; Albrecht, Simon; Chaplin, William J; Isaacson, Howard; Pedersen, May G; Jessen-Hansen, Jens; Tingley, Brandon W; Christensen-Dalsgaard, Joergen; Aerts, Conny; Campante, Tiago L; Bryson, Stephen T

    2013-01-01

    We confirm the Kepler planet candidate Kepler-410b (KOI-42b) as a Neptune sized exoplanet on a 17.8 day, eccentric orbit around the bright (Kp = 9.4) star Kepler-410A. This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. Via asteroseismology we determine the following stellar and planetary parameters with high precision; M$_\\star = 1.214 \\pm 0.033$ M$_\\odot$, R$_\\star = 1.352 \\pm 0.010$ R$_\\odot$, Age = $2.76 \\pm 0.54$ Gyr, planetary radius ($2.838 \\pm 0.054$ R$_\\oplus$), and orbital eccentricity ($0.17^...

  9. Spectroscopic observations of active solar-analog stars with high X-ray luminosity, as a proxy of superflare stars

    Science.gov (United States)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2017-02-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high-dispersion spectroscopy of 49 nearby solar-analog stars (G-type main-sequence stars with Teff ≈ 5600-6000 K) identified as ROSAT soft X-ray sources, which are not binary stars from previous studies. We expected that these stars could be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters (temperature, surface gravity, and metallicity) are within the range of ordinary solar-analog stars. We measured the intensity of Ca II 8542 and Hα lines, which are good indicators of the stellar chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured v sin i (projected rotational velocity) and lithium abundance for the target stars. Li abundance is a key to understanding the evolution of the stellar convection zone, which reflects the stellar age, mass and rotational history. We confirmed that many of the target stars rapidly rotate and have high Li abundance, compared with the Sun, as suggested by many previous studies. There are, however, also some target stars that rotate slowly (v sin i = 2-3 km s-1) and have low Li abundance like the Sun. These results support that old and slowly rotating stars similar to the Sun could have high activity levels and large starspots. This is consistent with the results of our previous studies of solar-type superflare stars. In the future, it is important to conduct long-term monitoring observations of these active solar-analog stars in order to investigate detailed properties of large starspots from the viewpoint of stellar dynamo theory.

  10. The SW Sex-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    CERN Document Server

    Khruzina, T; Kjurkchieva, D; 10.1051/0004-6361/201220385

    2013-01-01

    We present new photometric and spectral observations of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188. To obtain a light curve solution we used model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. The high mass accr...

  11. A novel high-contrast imaging technique based on optical tunneling to search for faint companions around bright stars at the limit of diffraction

    CERN Document Server

    Derigs, Dominik; Ghosh, Dhriti Sundar; Abel-Tibérini, Laëtitia

    2016-01-01

    We present a novel application of optical tunneling in the context of high-angular resolution, high-contrast techniques with the aim of improving direct imaging capabilities of faint companions in the vicinity of bright stars. In contrast to existing techniques like coronagraphy, we apply well-established techniques from integrated optics to exclusively extinct a very narrow angular direction coming from the sky. This extinction is achieved in the pupil plane and does not suffer from diffraction pattern residuals. We give a comprehensive presentation of the underlying theory as well as first laboratory results.

  12. EPIC 204129699b, a grazing transiting hot Jupiter on an 1.26-day orbit around a bright solar like star

    CERN Document Server

    Grziwa, S; Csizmadia, Sz; Fridlund, M; Parviainen, H; Deeg, H J; Cabrera, J; Djupvik, A A; Albrecht, S; Palle, E B; Pätzold, M; Béjar, V J S; Arranz, J P; Eigmüller, P; Erikson, A; Fynbo, J P U; Guenther, E W; Hatzes, A P; Kiilerich, A; Korth, J; Kuutma, T; Montanés-Rodríguez, P; Nespral, D; Nowak, G; Rauer, H; Saario, J; Sebastian, D; Slumstrup, D

    2015-01-01

    We report the discovery of EPIC 204129699b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. EPIC 204129699b is a 1.8-Jupiter-mass planet on an 1.26-day-orbit around a G7V star (M* = 0.91 Msun, R* = 0.78 Rsun). The planetary radius is poorly constrained (0.7 < Rp < 1.4 RJup ), owing to the grazing transit and the low sampling rate of the K2 photometry. The short orbital period and the brightness of the host star (V = 10.8 mag) make the system amenable to atmospheric characterization.

  13. CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). II. MOLECULAR GAS STAR FORMATION LAW AND DEPLETION TIME ACROSS THE BLUE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nurur; Bolatto, Alberto D.; Fisher, David B.; Vogel, Stuart N. [Department of Astronomy, University of Maryland, College Park, MD (United States); Xue Rui; Wong, Tony [Department of Astronomy, University of Illinois, Urbana-Champaign, IL (United States); Leroy, Adam K. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Walter, Fabian [Max-Planck-Institute fur Astronomie, Heidelberg (Germany); Bigiel, Frank [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Rosolowsky, Erik [I. K. Barber School of the Arts and Science, University of British-Columbia, Kelowna, BC (Canada); Blitz, Leo [Department of Astronomy, University of California, Berkeley, CA (United States); West, Andrew A. [Department of Astronomy, Boston University, Boston, MA (United States); Ott, Juergen, E-mail: nurur@astro.umd.edu [National Radio Astronomy Observatory, Socorro, NM (United States)

    2012-02-01

    We present an analysis of the relationship between molecular gas and current star formation rate surface density at sub-kiloparsec and kiloparsec scales in a sample of 14 nearby star-forming galaxies. Measuring the relationship in the bright, high molecular gas surface density ({Sigma}{sub H{sub 2}}{approx}>20 M{sub Sun} pc{sup -2}) regions of the disks to minimize the contribution from diffuse extended emission, we find an approximately linear relation between molecular gas and star formation rate surface density, N{sub mol} {approx} 0.96 {+-} 0.16, with a molecular gas depletion time, {tau}{sup mol}{sub dep} {approx} 2.30 {+-} 1.32 Gyr. We show that in the molecular regions of our galaxies there are no clear correlations between {tau}{sup mol}{sub dep} and the free-fall and effective Jeans dynamical times throughout the sample. We do not find strong trends in the power-law index of the spatially resolved molecular gas star formation law or the molecular gas depletion time across the range of galactic stellar masses sampled (M{sub *} {approx} 10{sup 9.7}-10{sup 11.5} M{sub Sun }). There is a trend, however, in global measurements that is particularly marked for low-mass galaxies. We suggest that this trend is probably due to the low surface brightness CO J = 1-0, and it is likely associated with changes in CO-to-H{sub 2} conversion factor.

  14. HAT-P-49b: A 1.7 $M_J$ Planet Transiting a Bright 1.5 $M_\\odot$ F-Star

    CERN Document Server

    Bieryla, A; Bakos, G A; Bhatti, W; Kovacs, G; Boisse, I; Latham, D W; Buchhave, L A; Csubry, Z; Penev, K; de Val-Borro, M; Beky, B; Falco, E; Torres, G; Noyes, R W; Berlind, P; Calkins, M C; Esquerdo, G A; Lazar, J; Papp, I; Sari, P

    2014-01-01

    We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54 M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter-McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.

  15. HAT-P-49b: a 1.7 M {sub J} planet transiting a bright 1.5 M {sub ☉} F-star

    Energy Technology Data Exchange (ETDEWEB)

    Bieryla, A.; Latham, D. W.; Buchhave, L. A.; Béky, B.; Falco, E.; Torres, G.; Noyes, R. W.; Berlind, P.; Calkins, M. C.; Esquerdo, G. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Csubry, Z.; Penev, K.; De Val-Borro, M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Kovács, G. [Konkoly Observatory, Budapest 1121 (Hungary); Boisse, I. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Lázár, J.; Papp, I., E-mail: abieryla@cfa.harvard.edu, E-mail: gbakos@astro.princeton.edu [Hungarian Astronomical Association (HAA), Budapest 1461 (Hungary); and others

    2014-04-01

    We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54 M {sub ☉} and a radius of 1.83 R {sub ☉}. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter-McLaughlin follow-up due to the host star's fast rotation, 16 km s{sup –1}. The planetary companion has a period of 2.6915 days, mass of 1.73 M {sub J}, and radius of 1.41 R {sub J}. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M{sub p} and R{sub p} well determined.

  16. KEPLER-21b: A 1.6 R{sub Earth} PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steve B. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Rowe, Jason F.; Bryson, Stephen T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Quinn, Samuel N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Metcalfe, Travis S. [High Altitude Observatory and Scientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Monteiro, Mario J. P. F. G. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Universite Paris XI-CNRS (UMR8617), Batiment 121, 91405 Orsay Cedex (France); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Creevey, Orlagh L. [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Quirion, Pierre-Olivier [Canadian Space Agency, 6767 Boulevard de l' Aeroport, Saint-Hubert, QC, J3Y 8Y9 (Canada); Stello, Denis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Kjeldsen, Hans; Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Garcia, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot-IRFU/SAp, 91191 Gif-sur-Yvette Cedex (France); and others

    2012-02-20

    We present Kepler observations of the bright (V = 8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R{sub Earth} object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequency-power spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34 {+-} 0.06 M{sub Sun} and 1.86 {+-} 0.04 R{sub Sun }, respectively, as well as yielding an age of 2.84 {+-} 0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{sigma}) that the transit event is caused by a 1.64 {+-} 0.04 R{sub Earth} exoplanet in a 2.785755 {+-} 0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of {approx}10 M{sub Earth} (2{sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.

  17. UBV stellar photometry of bright stars in GC M5. I. UV colour-magnitude and colour-colour diagrams and some peculiarities in the HB stellar distribution

    CERN Document Server

    Markov, H; Baev, P V; Markov, Haralambi; Spassova, Nedka; Baev, Plamen

    2001-01-01

    We present stellar photometry in the UBV passbands for the globular cluster M5 = NGC5904. The observations, short-exposured photographic plates and CCD frames, were obtained in the RC-focus of the 2m telescope of the Natl. Astron. Obs. 'Rozhen'. All stars in an annulus with radius 1 < r < 5.5 arcmin were measured. We show that the UV CMDs describe different evolutionary stages in a better manner than the 'classical' (V, B-V) diagram. We use HB stars, with known spectroscopic Teff, to check the validity of the colour zero-point. A review of all known UV-bright star candidates in M5 is made and some of their parameters are catalogued. Six new stars of this kind are suspected on the basis of their position on the CMD. New assessment of the cluster reddening and metallicity is done using the (U-B, B-V) diagram. We find [Fe/H]= -1.38, which confirms the Zinn & West (1984) value contrasting with recent spectroscopic estimates. In an effort to clarify the question of the gap in the BHB stellar distribution...

  18. BRIGHT 'MERGER-NOVA' FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China); Zhang, Bing; Gao, He, E-mail: yuyw@mail.ccnu.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2013-10-20

    A massive millisecond magnetar may survive the merger of a neutron star (NS) binary, which would continuously power the merger ejecta. We develop a generic dynamic model for the merger ejecta with energy injection from the central magnetar. The ejecta emission (the {sup m}erger-nova{sup )} powered by the magnetar peaks in the UV band and the peak of the light curve, progressively shifts to an earlier epoch with increasing frequency. A magnetar-powered merger-nova could have an optical peak brightness comparable to a supernova, which is a few tens or hundreds times brighter than the radioactive-powered merger-novae (the so-called macro-nova or kilo-nova). On the other hand, such a merger-nova would peak earlier and have a significantly shorter duration than that of a supernova. An early collapse of the magnetar could suppress the brightness of the optical emission and shorten its duration. Such millisecond-magnetar-powered merger-novae may be detected from NS-NS merger events without an observed short gamma-ray burst, and could be a bright electromagnetic counterpart for gravitational wave bursts due to NS-NS mergers. If detected, it suggests that the merger leaves behind a massive NS, which has important implications for the equation-of-state of nuclear matter.

  19. Using H-alpha Morphology and Surface Brightness Fluctuations to Age-Date Star Clusters in M83

    CERN Document Server

    Whitmore, Bradley C; Kim, Hwihyun; Kaleida, Catherine; Mutchler, Max; Calzetti, Daniela; Saha, Abhijit; O'Connell, Robert; Balick, Bruce; Bond, Howard E; Carollo, Marcella; Disney, Michael J; Dopita, Michael A; Frogel, Jay A; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; Paresce, Francesco; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Windhorst, Rogier A; Young, Erick T; 10.1088/0004-637X/729/2/78

    2011-01-01

    We use new WFC3 observations of the nearby grand design spiral galaxy M83 to develop two independent methods for estimating the ages of young star clusters. The first method uses the physical extent and morphology of Halpha emission to estimate the ages of clusters younger than tau ~10 Myr. It is based on the simple premise that the gas in very young (tau 10 Myr) clusters. A by-product of this study is the identification of 22 "single-star" HII regions in M83, with central stars having ages ~4 Myr.

  20. Shocks and star formation in Stephan's Quintet. I. Gemini spectroscopy of Hα-bright knots

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S.; Cluver, M. E. [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Appleton, P. N. [NASA Herschel Science Center (NHSC), California Institute of Technology, Pasadena, CA 91125 (United States); Guillard, P. [Institut d' Astrophysique Spatiale, Université Paris-Sud XI, F-91405 Orsay, Cedex (France); Trancho, G. [Giant Magellan Telescope Organisation, Pasadena, CA 91101 (United States); Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Charlton, J. C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Fedotov, K.; Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Smith, L. J. [Space Telescope Science Institute and European Space Agency, Baltimore, MD 21218 (United States); Struck, C. J., E-mail: iraklis@aao.gov.au [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2014-03-20

    We present a Gemini-GMOS spectroscopic study of Hubble Space Telescope (HST)-selected Hα-emitting regions in Stephan's Quintet (HCG 92), a nearby compact galaxy group, with the aim of disentangling the processes of shock-induced heating and star formation in its intra-group medium. The ≈40 sources are distributed across the system, but most densely concentrated in the ∼kiloparsec-long shock region. Their spectra neatly divide them into narrow- and broad-line emitters, and we decompose the latter into three or more emission peaks corresponding to spatial elements discernible in HST imaging. The emission-line ratios of the two populations of Hα-emitters confirm their nature as H II regions (90% of the sample) or molecular gas heated by a shock front propagating at ≲300 km s{sup –1}. Their redshift distribution reveals interesting three-dimensional structure with respect to gas-phase baryons, with no H II regions associated with shocked gas, no shocked regions in the intruder galaxy NGC 7318B, and a sharp boundary between shocks and star formation. We conclude that star formation is inhibited substantially, if not entirely, in the shock region. Attributing those H II regions projected against the shock to the intruder, we find a lopsided distribution of star formation in this galaxy, reminiscent of pileup regions in models of interacting galaxies. The Hα luminosities imply mass outputs, star formation rates, and efficiencies similar to nearby star-forming regions. Two large knots are an exception to this, being comparable in stellar output to the prolific 30 Doradus region. We also examine Stephan's Quintet in the context of compact galaxy group evolution, as a paradigm for intermittent star formation histories in the presence of a rich, X-ray-emitting intra-group medium. All spectra are provided as supplemental materials.

  1. SU Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    Science.gov (United States)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain amore reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favour of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  2. Hubble Space Telescope Near-Ultraviolet Spectroscopy of the Bright CEMP-no Star BD+44 493

    CERN Document Server

    Placco, Vinicius; Roederer, Ian; Cowan, John; Frebel, Anna; Filler, Dan; Ivans, Inese I; Lawler, James E; Schatz, Hendrik; Sneden, Christopher; Sobeck, Jennifer; Aoki, Wako; Smith, Verne

    2014-01-01

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44 493, a 9th magnitude sub-giant with [Fe/H] = -3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for beryllium and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44 493, logeps(B) < -0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we ob...

  3. SU Lyncis, a hard X-ray bright M giant: Clues point to a large hidden population of symbiotic stars

    CERN Document Server

    Mukai, K; Cusumano, G; Segreto, A; Munari, U; Sokoloski, J L; Lucy, A B; Nelson, T; Nunez, N E

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclu...

  4. Modelling the Autocovariance of the Power Spectrum of a Solar-Type Oscillator

    CERN Document Server

    Campante, T L; Chaplin, W J; Elsworth, Y P; Handberg, R; Hekker, S

    2010-01-01

    Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective choices made throughout. A recurring problem is to determine whether a signal in the acoustic spectrum originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful tool in the analysis of the more than one thousand solar-type stars expected to be observed as part of the Kepler As...

  5. OPTICAL POLARIZATION OF SOLAR TYPE STARS WITH DEBRIS DISKS

    Directory of Open Access Journals (Sweden)

    L. García

    2015-01-01

    Full Text Available Se presentan mediciones polarimétricas en el óptico de 34 estrellas de secuencia principal con discos de escombros observables desde el hemisferio sur, junto con 54 estrellas sin evidencia de disco. Estas muestras se combinan con una de 109 estrellas del hemisferio norte de la literatura, para obtener dos conjuntos de 51 y 97 estrellas de tipo solar con y sin disco, respectivamente. Los valores de polarización de ambas muestras no resultan estadísticamente diferentes dentro de la precisión alcanzada. Sin embargo, se identifican 9 estrellas (d ≲ 50 pc con disco que poseen valores de polarización por encima de la media de la muestra con disco y que no reproducen adecuadamente la ley interestelar de Serkowski. Estas estrellas son candidatas a poseer polarización intrínseca. En este caso los discos de escombros de estas estrellas podrían estar poblados por partículas con tamaños de ≈0.1µm.

  6. What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity

    Energy Technology Data Exchange (ETDEWEB)

    Van Eylen, V.; Lund, M. N.; Aguirre, V. Silva; Arentoft, T.; Kjeldsen, H.; Pedersen, M. G.; Jessen-Hansen, J.; Tingley, B.; Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Albrecht, S. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chaplin, W. J.; Campante, T. L. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Isaacson, H. [Department of Astronomy, University of California, Berkeley, CA 94820 (United States); Aerts, C. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee (Belgium); Bryson, S. T., E-mail: vincent@phys.au.dk [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    We confirm the Kepler planet candidate Kepler-410A b (KOI-42b) as a Neptune-sized exoplanet on a 17.8 day, eccentric orbit around the bright (K {sub p} = 9.4) star Kepler-410A (KOI-42A). This is the third brightest confirmed planet host star in the Kepler field and one of the brightest hosts of all currently known transiting exoplanets. Kepler-410 consists of a blend between the fast rotating planet host star (Kepler-410A) and a fainter star (Kepler-410B), which has complicated the confirmation of the planetary candidate. Employing asteroseismology, using constraints from the transit light curve, adaptive optics and speckle images, and Spitzer transit observations, we demonstrate that the candidate can only be an exoplanet orbiting Kepler-410A. We determine via asteroseismology the following stellar and planetary parameters with high precision; M {sub *} = 1.214 ± 0.033 M {sub ☉}, R {sub *} = 1.352 ± 0.010 R {sub ☉}, age =2.76 ± 0.54 Gyr, planetary radius (2.838 ± 0.054 R {sub ⊕}), and orbital eccentricity (0.17{sub −0.06}{sup +0.07}). In addition, rotational splitting of the pulsation modes allows for a measurement of Kepler-410A's inclination and rotation rate. Our measurement of an inclination of 82.5{sub −2.5}{sup +7.5} [°] indicates a low obliquity in this system. Transit timing variations indicate the presence of at least one additional (non-transiting) planet (Kepler-410A c) in the system.

  7. A tale of two cores: Triggered massive star formation in the bright-rimmed cloud SFO 75

    CERN Document Server

    Urquhart, J S; Morgan, L K; Pestalozzi, M R; White, G J; Muna, D N; White, Glenn J.

    2007-01-01

    Abridged: We present a detailed multi-wavelength study of the bright-rimmed cloud SFO 75, including 1.3cm and 1.2mm continuum, and 13CO and ammonia spectral line observations. The 13CO and 1.2 mm emission reveals the presence of a dense core located behind the bright rim of the cloud which is approximately coincident with that of the IRAS point source. From an analysis of the IRAS and 1.2mm fluxes we derive a dust temperature of ~30 K, a luminosity of 1.6x10^4 L\\odot and estimate the core mass to be ~570 M\\odot. The higher resolution ammonia observations resolve the 1.2mm core into two distinct cores, one directly behind the cloud's rim (Core A) and the second located slightly farther back (Core B). Comparing the morphology of Core A with that of the photon-dominated region and ionised boundary layer leaves little doubt that it is being strongly affected by the ionisation front. 2MASS and GLIMPSE archive data which reveal a small cluster of three deeply embedded high- and intermediate-mass young stellar objec...

  8. The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-Violet at R~2500

    CERN Document Server

    Sota, A; Walborn, N R; Alfaro, E J; Barbá, R H; Morrell, N I; Gamen, R C; Arias, J I

    2011-01-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R~2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Ma\\'iz Apell\\'aniz et al. (2004) and Sota et al. (2008). The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B=8 and north of delta = -20 and includes all of the northern objects in Ma\\'iz Apell\\'aniz et al. (2004) that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent invest...

  9. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    Science.gov (United States)

    Graczyk, Dariusz; Konorski, Piotr; Pietrzyński, Grzegorz; Gieren, Wolfgang; Storm, Jesper; Nardetto, Nicolas; Gallenne, Alexandre; Maxted, Pierre F. L.; Kervella, Pierre; Kołaczkowski, Zbigniew

    2017-03-01

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.

  10. Resonances in the Photoionization Cross Sections of Atomic Nitrogen Shape the Far-Ultraviolet Spectrum of the Bright Star in 47 Tucanae

    CERN Document Server

    Dixon, William V

    2013-01-01

    The far-ultraviolet (FUV) spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by LTE models at wavelengths longer than Lyman beta, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) shows broad absorption troughs with sharp edges at 995 and 1010 A and a deep absorption feature at 1072 A, none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s$^2$ 2p$^3$ $^2$D$^0$ and $^2$P$^0$). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon ab...

  11. Milliarcsecond radio structure of weak-lined T Tauri stars

    Science.gov (United States)

    Phillips, R. B.; Lonsdale, C. J.; Feigelson, E. D.

    1991-01-01

    VLBI and VLA observations of six radio-bright weak-lined T Taur (WTT) stars are reported, as well as direct measurements of the sizes of the emitting regions. VLBI measurements established that essentially all the radio emission from these premain-sequence stars originates in regions 15 stellar radii or less in size. Corresponding brightness temperatures ranged from 10 exp 7.5 to not less than 10 exp 9 K, ruling out a thermal process such as free-free bremsstrahlung radiation from a circumstellar wind. The radio luminosity and structure of several stars changed significantly between measurements separated by 1 day. HD 283447 showed intraday radio variability on time scales as short as 1 hr. Corresponding VLBI measurements show a new unresolved component appearing after an increase in flux density, possibly indicating that the driving agent for larger radio flares originates close to the star. The high conformation rate of nonthermal radio emission from this initial sample of radio-bright WTT stars show that these solar-type premain-sequence stars alter their immediate environments via magnetic processes to an extent comparable to that shown by RS CVn or Algol close binaries.

  12. Analysis of MOST light curves of five young stars in Taurus-Auriga and Lupus~3 Star Forming Regions

    CERN Document Server

    Siwak, Michal; Matthews, Jaymie M; Kuschnig, Rainer; Guenther, David B; Moffat, Anthony F J; Sasselov, Dimitar; Weiss, Werner W

    2011-01-01

    Continuous photometric observations of five young stars obtained by the MOST satellite in 2009 and 2010 in the Taurus and Lupus star formation regions are presented. Using light curve modelling under the assumption of internal invariability of spots, we obtained small values of the solar-type differential-rotation parameter (k=0.0005-0.009) for three spotted weak-line T Tau stars, V410 Tau, V987 Tau and Lupus 3-14; for another spotted WTTS, Lupus 3-48, the data are consistent with a rigidly rotating surface (k=0). Three flares of similar rise (4 min 30 sec) and decay (1 h 45 min) times were detected in the light curve of Lupus 3-14. The brightness of the classical T Tau star RY Tau continuously decreased over 3 weeks of its observations with a variable modulation not showing any obvious periodic signal.

  13. Spectroscopic observations of active solar-analog stars having high X-ray luminosity, as a proxy of superflare stars

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high dispersion spectroscopy of 49 nearby solar-analog stars (G-type main sequence stars with $T_{\\rm{eff}}\\approx5,600\\sim6,000$ K) identified as ROSAT soft X-ray sources, which are not binary stars from the previous studies. We expected that these stars can be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters ($T_{\\rm{eff}}$, $\\log g$, and [Fe/H]) are within the range of ordinary solar-analog stars. We measured Ca II 8542 and H$\\alpha$ lines, which are good indicators of the chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured $v\\sin i$ (projected rotational velocity) and Lithium abundan...

  14. A Central Flash at an Occultation of a Bright Star by Pluto Soon Before New Horizons' Flyby

    Science.gov (United States)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Sickafoose, Amanda A.; Person, Michael J.; Abe, Fumio; Suzuki, Daisuke; Nagakane, Masayuki; Tristam, Paul J.

    2015-11-01

    From the Mt. John Observatory, New Zealand, we were so close to the center of the occultation path on 29 June 2015 UTC that we observed a modest central flash from the focusing of starlight from a 12th-magnitude star. The star was one of the brightest ever in our years of continual monitoring that started in 2002. At the time of Pluto's perihelion in 1989, it was feared from models that Pluto's atmosphere might collapse by now, a motivation for the timely launch of New Horizons; some models now allow Pluto to retain its atmosphere throughout its orbit.We used our frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope of Canterbury U. We also observed with a Lowell Obs. infrared camera on the "AAVSO" 0.6-m Optical Craftsman telescope; and obtained 3-color photometry at a slower cadence on a second 0.6-m telescope. We coordinated with the overflight of SOFIA and its 2.5-m telescope, which benefited from last-minute astrometry, and the Auckland Observatory's and other ground-based telescopes.Our light curves show a modest central flash; our tentative geometrical solution shows that we were only about 50 km from the occultation path's centerline. The flash is from rays lower than otherwise accessible in Pluto's atmosphere. Our light curves, at such high cadence that we see spikes caused by atmospheric effects that we had not seen so well since our 2002 Mauna Kea occultation observations, show that Pluto's atmosphere had not changed drastically since our previous year's observations. Our data provide a long-term context for New Horizon's highly-detailed observations of Pluto's atmosphere in addition to providing a chord for the geometrical solution that includes SOFIA's observations.Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We are grateful to Alan Gilmore, Pam Kilmartin, Robert Lucas

  15. WASP-38b: A 6.87 day period exoplanet transiting a bright F-type star

    CERN Document Server

    Barros, S C C; Cameron, A Collier; Lister, T A; McCormac, J; Pollacco, D; Simpson, E K; Smalley, B; Street, R A; Todd, I; Triaud, A H M J; Boisse, I; Bouchy, F; Hebrard, G; Moutou, C; Pepe, F; Queloz, D; Santerne, A; Segransan, D; Udry, S; Bento, J; Butters, O W; Enoch, B; Haswell, C A; Hellier, C; Keenan, F P; Miller, G R M; Moulds, V; Norton, A J; Parley, N; Skillen, I; Watson, C A; West, R G; Wheatley, P J

    2010-01-01

    We report the discovery of WASP-38b, a long period transiting planet in an eccentric $6.871815$ day orbit. The transit epoch is $2455335.92050 \\pm 0.00074$ (HJD) and the transit duration is $4.663$ hours. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded $T_{eff} = 6150 \\pm 80 $K, \\logg$=4.3 \\pm 0.1$, \\vsini=$8.6 \\pm 0.4 $\\kms, $M_*=1.16 \\pm 0.04$\\Msun\\ and $R_* =1.36 \\pm 0.05 $\\Rsun, consistent with a dwarf of spectral type F8. The radial velocity variations and the transit light curves were fitted simultaneously to estimate the orbital and planetary parameters. The planet has a mass of $2.71 \\pm 0.07 $ \\Mjup\\ and a radius of $1.08 \\pm 0.05\\, $\\Rjup\\, giving a density, $ \\rho_p = 2.2 \\pm 0.3 \\rho_J$. The high precision of the eccentricity $e=0.032 \\pm 0.0045$ is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at $1311 \\pm 45$K. WASP-38b is the longest period planet found by WASP-North and with a brigh...

  16. VizieR Online Data Catalog: Spectroscopy of 341 bright A- and B-type stars (Gullikson+, 2016)

    Science.gov (United States)

    Gullikson, K.; Kraus, A.; Dodson-Robinson, S.

    2016-09-01

    The sample is given in Table1. We use several high spectral resolution, cross-dispersed echelle spectrographs for this survey. We use the CHIRON spectrograph on the 1.5m telescope at Cerro Tololo Inter-American Observatory (CTIO) for most southern targets. This spectrograph is an R=λ/Δλ=80000 spectrograph with wavelength coverage from 450-850nm, and is fed by a 2.7'' optical fiber. For the northern targets, we use a combination of the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope (HET), and the Tull coude spectrograph (TS23) and Immersion Grating Infrared Spectrograph (IGRINS), both on the 2.7m Harlan J. Smith Telescope. All three northern instruments are at McDonald Observatory. For the HRS, we use the R=60000 setting with a 2'' fiber, and with wavelength coverage from 410-780nm. For the TS23 spectrograph, we use a 1.2'' slit in combination with the E2 echelle grating (53 grooves/mm, blaze angle 65°), yielding a resolving power of R=60000 and a wavelength coverage from 375-1020nm. IGRINS has a single setting with R=40000. It has complete wavelength coverage from 1475-2480nm, except in the telluric water band from 1810-1930nm. We give the spectroscopic observation log in Table2. As part of the follow-up effort, we used the NIRI instrument behind the Altair adaptive optics system on the Gemini North Telescope. For each star listed in Table3, we obtained 25 images in five dithering positions. We used the K-continuum band centered on 2.2718μm and a variety of exposure times and dates (listed in Table3). We list the companion detections in Table4. (4 data files).

  17. HAT-P-16b: A 4 M J Planet Transiting a Bright Star on an Eccentric Orbit

    Science.gov (United States)

    Buchhave, L. A.; Bakos, G. Á.; Hartman, J. D.; Torres, G.; Kovács, G.; Latham, D. W.; Noyes, R. W.; Esquerdo, G. A.; Everett, M.; Howard, A. W.; Marcy, G. W.; Fischer, D. A.; Johnson, J. A.; Andersen, J.; Fűrész, G.; Perumpilly, G.; Sasselov, D. D.; Stefanik, R. P.; Béky, B.; Lázár, J.; Papp, I.; Sári, P.

    2010-09-01

    We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 ± 0.000003 days, transit epoch Tc = 2455027.59293 ± 0.00031 (BJD10), and transit duration 0.1276 ± 0.0013 days. The host star has a mass of 1.22 ± 0.04 M sun, radius of 1.24 ± 0.05 R sun, effective temperature 6158 ± 80 K, and metallicity [Fe/H] = +0.17 ± 0.08. The planetary companion has a mass of 4.193 ± 0.094 M J and radius of 1.289 ± 0.066 R J, yielding a mean density of 2.42 ± 0.35 g cm-3. Comparing these observed characteristics with recent theoretical models, we find that HAT-P-16b is consistent with a 1 Gyr H/He-dominated gas giant planet. HAT-P-16b resides in a sparsely populated region of the mass-radius diagram and has a non-zero eccentricity of e = 0.036 with a significance of 10σ. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NASA (N018Hr).

  18. The Asteroseismic Potential of TESS: Exoplanet-host Stars

    Science.gov (United States)

    Campante, T. L.; Schofield, M.; Kuszlewicz, J. S.; Bouma, L.; Chaplin, W. J.; Huber, D.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Bossini, D.; North, T. S. H.; Appourchaux, T.; Latham, D. W.; Pepper, J.; Ricker, G. R.; Stassun, K. G.; Vanderspek, R.; Winn, J. N.

    2016-10-01

    New insights on stellar evolution and stellar interior physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the target stars (observed at a 2-minute cadence) and the full-frame-image stars (observed at a 30-minute cadence). A similar exercise is also conducted based on a compilation of known host stars. We predict that TESS will detect solar-like oscillations in a few dozen target hosts (mainly subgiant stars but also in a smaller number of F dwarfs), in up to 200 low-luminosity red-giant hosts, and in over 100 solar-type and red-giant known hosts, thereby leading to a threefold improvement in the asteroseismic yield of exoplanet-host stars when compared to Kepler's.

  19. HAT-P-34b-HAT-P-37b: Four Transiting Planets More Massive than Jupiter Orbiting Moderately Bright Stars

    Science.gov (United States)

    Bakos, G. Á.; Hartman, J. D.; Torres, G.; Béky, B.; Latham, D. W.; Buchhave, L. A.; Csubry, Z.; Kovács, G.; Bieryla, A.; Quinn, S.; Szklenár, T.; Esquerdo, G. A.; Shporer, A.; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Howard, A. W.; Marcy, G. W.; Sato, B.; Penev, K.; Everett, M.; Sasselov, D. D.; Fűrész, G.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2012-07-01

    We report the discovery of four transiting extrasolar planets (HAT-P-34b-HAT-P-37b) with masses ranging from 1.05 to 3.33 M J and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 M J), has a high eccentricity of e = 0.441 ± 0.032 at a period of P = 5.452654 ± 0.000016 days, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A289Hr) and NASA (N167Hr and N029Hr). Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  20. Modelling the autocovariance of the power spectrum of a solar-type oscillator

    DEFF Research Database (Denmark)

    Campante , T.L.; Karoff, Christoffer

    2010-01-01

    originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need...... to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful...

  1. Low surface brightness galaxies

    Science.gov (United States)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  2. The Solar-Type Contact Binary BX Pegasi Revisited

    CERN Document Server

    Lee, Jae Woo; Lee, Chung-Uk; Youn, Jae-Hyuck

    2009-01-01

    We present the results of new CCD photometry for the contact binary BX Peg, made during three successive months beginning on September 2008. As do historical light curves, our observations display an O'Connell effect and the November data by themselves indicate clear evidence for very short-time brightness disturbance. For these variations, model spots are applied separately to the two data set of Group I (Sep.--Oct.) and Group II (Nov.). The former is described by a single cool spot on the secondary photosphere and the latter by a two-spot model with a cool spot on the cool star and a hot one on either star. These are generalized manifestations of the magnetic activity of the binary system. Twenty light-curve timings calculated from Wilson-Devinney code were used for a period study, together with all other minimum epochs. The complex period changes of BX Peg can be sorted into a secular period decrease caused dominantly by angular momentum loss due to magnetic stellar wind braking, a light-travel-time (LTT) ...

  3. The Solar-Type Contact Binary BX Pegasi Revisited

    Science.gov (United States)

    Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Youn, Jae-Hyuck

    2009-12-01

    We present the results of new CCD photometry for the contact binary BX Peg, made during three successive months beginning on 2008 September. As do historical light curves, our observations display an O'Connell effect and the November data by themselves indicate clear evidence for very short-term brightness disturbance. For these variations, model spots are applied separately to the two data sets, Group I (Sep.-Oct.) and Group II (Nov.). The former is described by a single cool spot on the secondary photosphere and the latter by a two-spot model with a cool spot on the cool star and a hot one on either star. These are generalized manifestations of the magnetic activity of the binary system. Twenty light-curve timings calculated from Wilson-Devinney code were used for a period study, together with all other minimum epochs. The complex period changes of BX Peg can be sorted into a secular period decrease caused dominantly by angular momentum loss due to magnetic stellar wind braking, a light-travel time (LTT) effect due to the orbit of a low-mass third companion, and a previously unknown short-term oscillation. This last period modulation could be produced either by a second LTT orbit with a period of about 16 yr due to the existence of a fourth body, or by the effect of magnetic activity with a cycle length of about 12 yr.

  4. Consecutive Bright Pulses in the Vela Pulsar

    CERN Document Server

    Palfreyman, Jim L; Dickey, John M; Young, Timothy G; Hotan, Claire E; 10.1088/2041-8205/735/1/L17

    2011-01-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  5. Measure of the stars

    Energy Technology Data Exchange (ETDEWEB)

    Henbest, N.

    1984-12-13

    The paper concerns the Hertzsprung-Russel (H-R) diagram, which is graph relating the brightness to the surface temperature of the stars. The diagram provides a deep insight into the fundamental properties of the stars. Evolution of the stars; the death of a star; distances; and dating star clusters, are all briefly discussed with reference to the H-R diagram.

  6. Ultra-Close Encounters of Stars With Massive Black Holes: Tidal Disruption Events With Prompt Hyperaccretion

    CERN Document Server

    Evans, Christopher; Eracleous, Michael

    2015-01-01

    A bright flare from a galactic nucleus followed at late times by a $t^{-5/3}$ decay in luminosity is often considered to be the signature of a tidal disruption of a star by a massive black hole. The flare and afterglow are produced when the stream of stellar debris released by the disruption returns to the vicinity of the black hole, self-intersects, and eventually forms an accretion disk or torus. In the canonical scenario of a solar-type star disrupted by a $10^{6}\\; M_\\odot$ black hole, the time between the disruption of the star and the formation of the accretion torus could be years. We present fully general relativistic simulations of a new class of tidal disruption events involving ultra-close encounters of solar-type stars with intermediate mass black holes. In these encounters, a thick disk forms promptly after disruption, on timescales of hours. After a brief initial flare, the accretion rate remains steady and highly super-Eddington for a few days at $\\sim 10^2\\,M_\\odot\\,{\\rm yr}^{-1}$.

  7. Rotating Stars from Kepler Observed with Gaia DR1

    CERN Document Server

    Davenport, James R A

    2016-01-01

    Astrometric data from the recent Gaia Data Release 1 has been matched against the sample of stars from Kepler with known rotation periods. A total of 1,299 bright rotating stars were recovered from the subset of Gaia sources with good astrometric solutions, most with temperatures hotter than 5000 K. From these sources, 894 were selected as lying near the main sequence using their absolute G-band magnitudes. These main sequence stars show a bimodality in their rotation period distribution, centered roughly around a 600 Myr rotation-isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler, but was previously undetected for solar-type stars due to sample contamination by subgiants. A tenuous connection between the rotation period and total proper motion is found, suggesting the period bimodality is due to the age distribution of stars within ~300pc of the Sun, rather than a phase of rapid angular momentum loss. This work emphasizes the unique power for understanding stell...

  8. K2-31B, a Grazing Transiting Hot Jupiter on a 1.26-day Orbit around a Bright G7V Star

    Science.gov (United States)

    Grziwa, Sascha; Gandolfi, Davide; Csizmadia, Szilard; Fridlund, Malcolm; Parviainen, Hannu; Deeg, Hans J.; Cabrera, Juan; Djupvik, Amanda A.; Albrecht, Simon; Palle, Enric B.; Pätzold, Martin; Béjar, Victor J. S.; Prieto-Arranz, Jorge; Eigmüller, Philipp; Erikson, Anders; Fynbo, Johan P. U.; Guenther, Eike W.; Hatzes, Artie P.; Kiilerich, Amanda; Korth, Judith; Kuutma, Teet; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Rauer, Heike; Saario, Joonas; Sebastian, Daniel; Slumstrup, Ditte

    2016-11-01

    We report the discovery of K2-31b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. K2-31b is a 1.8-Jupiter-mass planet on a 1.26-day orbit around a G7 V star ({M}\\star =0.91 M ⊙, {R}\\star =0.78 R ⊙). The planetary radius is poorly constrained (0.7 < R p < 1.4 R Jup),15 owing to the grazing transit and the low sampling rate of the K2 photometry.16

  9. HAT-P-56b: A bright highly inflated massive Hot Jupiter around An F star in K2.0 field

    Science.gov (United States)

    Huang, Xu; Bakos, Gaspar; Hartman, Joel

    2015-08-01

    We report the discovery of HAT-P-56b, a transiting high inflated hot-jupiter orbiting a F type star in the field 0 of the NASA K2 mission, by the HATNet survey. We combine ground-based photometric light curves with the highprecision photometry obervation by the K2 mission, as well as radial velocity to determine the physical properties of this system. HAT-P-56b has a mass around ~2.2 Mjunp, a radius of ~1.5 Rjup, and transits its host star with a period of 2.79d. The host star has a V band magnitude of 10.9, Mass of 1.29 Msun, and radius of 1.433 Rsun. The radius of HAT-P-56b is among one of the largest compare to planets with similar mass, making it an interesting target for following up atmospherical observations.

  10. Research on Records of the Brightness of Stars and Its Variations in Ancient China%中国古代恒星亮度及其变化记录之研究

    Institute of Scientific and Technical Information of China (English)

    王玉民

    2009-01-01

    在对古代典籍中关于恒星亮度、亮变记载全面整理的基础上,对恒星亮度梯度记录作了详细的分析,证明中国古代也有类似6等级的亮度分级方法;对古代所有提到"消失"光变描述的星官,作了现代变星的对比证认,证明这些记载描述的都是大气消光现象,而非古人注意到了星官中有变星存在;对全天三大变星--大陵五、造父一、蒭藁增二的古代光变描述的全面分析,证明中国古代对这三颗最著名的变星都没有明确的光变记载;经全面分析古代记录,得出中国最早的变星记录出自载洪武二十九年(1396年)井宿七的光变记录,其时代虽然较晚,仍然比西方最早的变星记录早了200年.%With a comprehensive study about records of the brightness of stsrs and its variations , this articles analyses the records of the bright gradient of stars and proves that there were also similarly 6-grade brightness classification in ancient China Contrasting the present variables with ancient asterisms that contains "vanished" records, the article concludes that what these descriptions refer to are not the discovery of variables, but all atmospheric extinction phenomena The article also analyses the records of ancient brightness of the three famous variables-β Per, δ Cep and o Cet, then proves there were no reliable bright variations records about them in ancient China The earliest record of variable in China is ζ Gem in 1396, from the book History of the Ming Dynasty, which was 200 years earlier than the earliest record of variable in the west.

  11. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1

    Science.gov (United States)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.

    2016-05-01

    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (zPhase 3 data products and in the GTC archive.

  12. HD 164492C: a rapidly rotating, Hα-bright, magnetic early B star associated with a 12.5 d spectroscopic binary

    Science.gov (United States)

    Wade, G. A.; Shultz, M.; Sikora, J.; Bernier, M.-É.; Rivinius, Th.; Alecian, E.; Petit, V.; Grunhut, J. H.; BinaMIcS Collaboration

    2017-03-01

    We employ high-resolution spectroscopy and spectropolarimetry to derive the physical properties and magnetic characteristics of the multiple system HD 164492C, located in the young open cluster M20. The spectrum reveals evidence of three components: a broad-lined early B star (HD 164492C1), a narrow-lined early B star (HD 164492C2) and a late B star (HD 164492C3). Components C2 and C3 exhibit significant (>100 km s-1) bulk radial velocity variations with a period of 12.5351(7) d that we attribute to eccentric binary motion around a common centre-of-mass. Component C1 exhibits no detectable radial velocity variations. Using constraints derived from modelling the orbit of the C2+C3 binary and from synthesis of the combined spectrum, we determine the approximate physical characteristics of the components. We conclude that a coherent evolutionary solution consistent with the published age of M20 implies a distance to M20 of 0.9 ± 0.2 kpc, corresponding to the smallest published values. We confirm the detection of a strong magnetic field in the combined spectrum. The field is clearly associated with the broad-lined C1 component of the system. Repeated measurement of the longitudinal magnetic field allows the derivation of the rotation period of the magnetic star, Prot = 1.369 86(6) d. We derive the star's magnetic geometry, finding i=63± 6°, β =33± 6° and a dipole polar strength B_d=7.9^{+1.2}_{-1.0} kG. Strong emission - varying according to the magnetic period - is detected in the Hα profile. This is consistent with the presence of a centrifugal magnetosphere surrounding the rapidly rotating magnetic C1 component.

  13. The asteroseismic potential of TESS: exoplanet-host stars

    CERN Document Server

    Campante, T L; Kuszlewicz, J S; Bouma, L; Chaplin, W J; Huber, D; Christensen-Dalsgaard, J; Kjeldsen, H; Bossini, D; North, T S H; Appourchaux, T; Latham, D W; Pepper, J; Ricker, G R; Stassun, K G; Vanderspek, R; Winn, J N

    2016-01-01

    New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology. Throughout the course of the Kepler mission, asteroseismology has also played an important role in the characterization of exoplanet-host stars and their planetary systems. The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will be performing a near all-sky survey for planets that transit bright nearby stars. In addition, its excellent photometric precision, combined with its fine time sampling and long intervals of uninterrupted observations, will enable asteroseismology of solar-type and red-giant stars. Here we develop a simple test to estimate the detectability of solar-like oscillations in TESS photometry of any given star. Based on an all-sky stellar and planetary synthetic population, we go on to predict the asteroseismic yield of the TESS mission, placing emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done for both the ta...

  14. Observational constraints on the X-ray Bright supergiant B[e] stars LHA 115-S18 \\& LHA 120-S 134

    CERN Document Server

    Bartlett, Elizabeth S

    2016-01-01

    We present the preliminary results of an ongoing series of spectroscopic observations of the Small Magellanic Cloud star LHA 115-S 18 (S18), which has demonstrated extreme photospheric and spectroscopic variability that, in some respects, is reminiscent of Luminous Blue Variables (LBVs). In contrast to our previously published results, between 2012-2015 S18 remained in an spectral state intermediate between S18's "hot" and "cool" extremes. In conjunction with contemporaneous OGLE-IV photometric monitoring of S18, these data will be used to determine the characteristic timescale of the variability and search for periodicities, in particular binary modulated periodicity. We also present the results of a pilot study of the LMC star LHA 120-S 134.

  15. Submm-bright X-ray absorbed QSOs at z~2: insights into the co-evolution of AGN and star-formation

    CERN Document Server

    Khan-Ali, A; Page, M J; Stevens, J A; Mateos, S; Symeonidis, M; Orjales, J M Cao

    2015-01-01

    We have assembled a sample of 5 X-ray-absorbed and submm-luminous type 1 QSOs at $z \\sim 2$ which are simultaneously growing their central black holes through accretion and forming stars copiously. We present here the analysis of their rest-frame UV to submm Spectral Energy Distributions (SEDs), including new Herschel data. Both AGN (direct and reprocessed) and Star Formation (SF) emission are needed to model their SEDs. From the SEDs and their UV-optical spectra we have estimated the masses of their black holes $M_{BH}\\sim 10^{9}-10^{10}\\,M_{\\odot}$, their intrinsic AGN bolometric luminosities $L_{BOL}\\sim(0.8 - 20)\\times 10^{13} L_{\\odot}$, Eddington ratios $L_{BOL}/L_{Edd}\\sim 0.1 - 1.1$ and bolometric corrections $L_{BOL}/L_{X,2-10}\\sim 30 - 500$. These values are common among optically and X-ray-selected type 1 QSOs (except for RX~J1249), except for the bolometric corrections, which are higher. These objects show very high far-infrared luminosities $L_{FIR}\\sim$ (2 - 8)$\\times10^{12}\\,M_{\\odot}$ and Star...

  16. HD 164492C: a rapidly-rotating, H$\\alpha$-bright, magnetic early B star associated with a 12.5d spectroscopic binary

    CERN Document Server

    Wade, G A; Sikora, J; Bernier, M -É; Rivinius, Th; Alecian, E; Petit, V; Grunhut, J H

    2016-01-01

    We employ high resolution spectroscopy and spectropolarimetry to derive the physical properties and magnetic characteristics of the multiple system HD 164492C, located in the young open cluster M20. The spectrum reveals evidence of 3 components: a broad-lined early B star (HD 164492C1), a narrow-lined early B star (HD 164492C2), and a late B star (HD 164492C3). Components C2 and C3 exhibit significant ($>100$ km/s) bulk radial velocity variations with a period of $12.5351(7)$ d that we attribute to eccentric binary motion around a common centre-of-mass. Component C1 exhibits no detectable radial velocity variations. Using constraints derived from modeling the orbit of the C2+C3 binary and from synthesis of the combined spectrum, we determine the approximate physical characteristics of the components. We conclude that a coherent evolutionary solution consistent with the published age of M20 implies a distance to the system of $0.9\\pm 0.2$ kpc, corresponding to the smallest published values. We confirm the dete...

  17. A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR

    Science.gov (United States)

    Absil, O.; Defrère, D.; Coudé du Foresto, V.; Di Folco, E.; Mérand, A.; Augereau, J.-C.; Ertel, S.; Hanot, C.; Kervella, P.; Mollier, B.; Scott, N.; Che, X.; Monnier, J. D.; Thureau, N.; Tuthill, P. G.; ten Brummelaar, T. A.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Turner, N.

    2013-07-01

    Context. Dust is expected to be ubiquitous in extrasolar planetary systems owing to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known because of the high contrast and small angular separation with respect to their host star, and yet, a proper characterisation of exozodiacal dust is mandatory for the design of future Earth-like planet imaging missions. Aims: We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. Methods: We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess whether there is an additional, fully resolved circumstellar emission source. Results: Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably associated with hot circumstellar dust, yielding an overall occurrence rate of 28+8-6 for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. Conclusions: This study provides new insight into the phenomenon of bright exozodiacal discs, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. For A-type stars, no

  18. HAT-P-57b: A Short-period Giant Planet Transiting a Bright Rapidly Rotating A8V Star Confirmed Via Doppler Tomography

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Buchhave, L. A.; Torres, G.; Latham, D. W.; Kovács, G.; Bhatti, W.; Csubry, Z.; de Val-Borro, M.; Penev, K.; Huang, C. X.; Béky, B.; Bieryla, A.; Quinn, S. N.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.; Isaacson, H.; Fischer, D. A.; Noyes, R. W.; Falco, E.; Esquerdo, G. A.; Knox, R. P.; Hinz, P.; Lázár, J.; Papp, I.; Sári, P.

    2015-12-01

    We present the discovery of HAT-P-57b, a P = 2.4653 day transiting planet around a V=10.465+/- 0.029 mag, {T}{{eff}}=7500+/- 250 K main sequence A8V star with a projected rotation velocity of v{sin}i=102.1+/- 1.3 {km} {{{s}}}-1. We measure the radius of the planet to be R=1.413+/- 0.054 {R}{{J}} and, based on RV observations, place a 95% confidence upper limit on its mass of M\\lt 1.85 {M}{{J}}. Based on theoretical stellar evolution models, the host star has a mass and radius of 1.47+/- 0.12 {M}⊙ and 1.500+/- 0.050 {R}⊙ , respectively. Spectroscopic observations made with Keck-I/HIRES during a partial transit event show the Doppler shadow of HAT-P-57b moving across the average spectral line profile of HAT-P-57, confirming the object as a planetary system. We use these observations, together with analytic formulae that we derive for the line profile distortions, to determine the projected angle between the spin axis of HAT-P-57 and the orbital axis of HAT-P-57b. The data permit two possible solutions, with -16\\buildrel{\\circ}\\over{.} 7\\lt λ \\lt 3\\buildrel{\\circ}\\over{.} 3 or 27\\buildrel{\\circ}\\over{.} 6\\lt λ \\lt 57\\buildrel{\\circ}\\over{.} 4 at 95% confidence, and with relative probabilities for the two modes of 26% and 74%, respectively. Adaptive optics imaging with MMT/Clio2 reveals an object located 2\\buildrel{\\prime\\prime}\\over{.} 7 from HAT-P-57 consisting of two point sources separated in turn from each other by 0\\buildrel{\\prime\\prime}\\over{.} 22. The H- and {L}\\prime -band magnitudes of the companion stars are consistent with their being physically associated with HAT-P-57, in which case they are stars of mass 0.61+/- 0.10 {M}⊙ and 0.53+/- 0.08 {M}⊙ . HAT-P-57 is the most rapidly rotating star, and only the fourth main sequence A star, known to host a transiting planet. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based in part on observations made with the Keck-I telescope at Mauna

  19. HDO abundance in the envelope of the solar-type protostar IRAS16293-2422

    CERN Document Server

    Parise, B; Castets, A; Ceccarelli, C; Loinard, L; Tielens, A G G M; Bacmann, A; Cazaux, S; Comito, C; Helmich, F; Kahane, C; Schilke, P; Van Dishoeck, E F; Wakelam, V; Walters, A

    2004-01-01

    We present IRAM 30m and JCMT observations of HDO lines towards the solar-type protostar IRAS 16293-2422. Five HDO transitions have been detected on-source, and two were unfruitfully searched for towards a bright spot of the outflow of IRAS 16293-2422. We interpret the data by means of the Ceccarelli, Hollenbach and Tielens (1996) model, and derive the HDO abundance in the warm inner and cold outer parts of the envelope. The emission is well explained by a jump model, with an inner abundance of 1e-7 and an outer abundance lower than 1e-9 (3 sigma). This result is in favor of HDO enhancement due to ice evaporation from the grains in theinner envelope. The deuteration ratio HDO/H2O is found to be f_in=3% and f_out < 0.2% (3 sigma) in the inner and outer envelope respectively and therefore, the fractionation also undergoes a jump in the inner part of the envelope. These results are consistent with the formation of water in the gas phase during the cold prestellar core phase and storage of the molecules on the ...

  20. HAT-P-57b: A Short-Period Giant Planet Transiting A Bright Rapidly Rotating A8V Star Confirmed Via Doppler Tomography

    CERN Document Server

    Hartman, J D; Buchhave, L A; Torres, G; Latham, D W; Kovács, G; Bhatti, W; Csubry, Z; de Val-Borro, M; Penev, K; Huang, C X; Béky, B; Bieryla, A; Quinn, S N; Howard, A W; Marcy, G W; Johnson, J A; Isaacson, H; Fischer, D A; Noyes, R W; Falco, E; Esquerdo, G A; Knox, R P; Hinz, P; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We present the discovery of HAT-P-57b, a P = 2.4653 day transiting planet around a V = 10.465 +- 0.029 mag, Teff = 7500 +- 250 K main sequence A8V star with a projected rotation velocity of v sin i = 102.1 +- 1.3 km s^-1. We measure the radius of the planet to be R = 1.413 +- 0.054 R_J and, based on RV observations, place a 95% confidence upper limit on its mass of M < 1.85 M_J . Based on theoretical stellar evolution models, the host star has a mass and radius of 1.47 +- 0.12 M_sun, and 1.500 +- 0.050 R_sun, respectively. Spectroscopic observations made with Keck-I/HIRES during a partial transit event show the Doppler shadow of HAT-P-57b moving across the average spectral line profile of HAT-P- 57, confirming the object as a planetary system. We use these observations, together with analytic formulae that we derive for the line profile distortions, to determine the projected angle between the spin axis of HAT-P-57 and the orbital axis of HAT-P-57b. The data permit two possible solutions, with -16.7 deg &l...

  1. The Outer Halo of M31: A New Method for Isolating Red Giant Stars and a Measurement of the Brightness Profile and Metallicity Distribution

    CERN Document Server

    Gilbert, K M; Singh-Kalirai, J; Rich, R M; Majewski, S R; Ostheimer, J C; Reitzel, David B; Cenarro, A J; Cooper, M C; Luine, C; Patterson, R J; Gilbert, Karoline M.; Guhathakurta, Puragra; Kalirai, Jasonjot S.; Majewski, Steven R.; Ostheimer, James C.; Reitzel, David B.; Cooper, Michael C.; Luine, Carynn; Patterson, Richard J.

    2006-01-01

    We present a method for isolating a clean sample of red giant branch stars in the outer regions of the Andromeda spiral galaxy (M31) from an ongoing spectroscopic survey using the DEIMOS instrument on the Keck~II 10-m telescope. The survey aims to study the kinematics, global structure, substructure, and metallicity of M31's halo. Although most of our spectroscopic targets were photometrically screened to reject foreground Milky Way dwarf star contaminants, the latter class of objects still constitutes a substantial fraction of the observed spectra in the sparse outer halo. Our likelihood-based method for isolating M31 red giants uses multiple criteria: (1) radial velocity, (2) intermediate-width band photometry through the DDO51 filter centered on the surface-gravity sensitive MgH/Mg b absorption features, (3) strength of the Na I 8190 Angstrom absorption line doublet, (4) location within an (I, V-I) color-magnitude diagram, and (5) comparison of photometric versus spectroscopic metallicity estimates. Traini...

  2. An all-sky catalog of solar-type dwarfs for exoplanetary transit surveys

    CERN Document Server

    Nascimbeni, V; Ortolani, S; Giuffrida, G; Marrese, P M; Magrin, D; Ragazzoni, R; Pagano, I; Rauer, H; Cabrera, J; Pollacco, D; Heras, A M; Deleuil, M; Gizon, L; Granata, V

    2016-01-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; <30%) also makes UCAC4-RPM a useful tool for the past and ongoing ground-based transit surveys, which need to discard candidate signals originating from early-type or giant stars. As an application, we show how UCAC4-RPM may support the preparation of the TESS (that will map almost the entire sky) input catalog and the input catalog of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  3. An observational correlation between stellar brightness variations and surface gravity

    CERN Document Server

    Bastien, Fabienne A; Basri, Gibor; Pepper, Joshua

    2013-01-01

    Surface gravity is one of a star's basic properties, but it is difficult to measure accurately, with typical uncertainties of 25-50 per cent if measured spectroscopically and 90-150 per cent photometrically. Asteroseismology measures gravity with an uncertainty of about two per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for >150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star's surface correlates physically with surface gravity; if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and the root-mean-square brightness variations on timescales of less than eight hours for stars with temperatures ...

  4. 1FGL J1417.7-4407: A gamma-ray bright binary with a massive neutron star and a giant secondary

    CERN Document Server

    Strader, Jay; Cheung, C C; Sand, David J; Donato, Davide; Corbet, Robin; Koeppe, Dana; Edwards, Philip G; Stevens, Jamie; Petrov, Leonid; Salinas, Ricardo; Peacock, Mark; Finzell, Thomas; Reichart, Daniel; Haislip, Joshua

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-LAT unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 M_sun) and a ~ 0.4 M_sun giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H-alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk/magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma-ray to X-ray luminosity (~ 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a g...

  5. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  6. Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA

    CERN Document Server

    Jorgensen, Jes K; Bisschop, Suzanne E; Bourke, Tyler L; van Dishoeck, Ewine F; Schmalzl, Markus

    2012-01-01

    Glycolaldehyde (HCOCH2OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this paper we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH3), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show red-shifted absorption profiles toward one of the components in the binary (IRAS16293B) indicative of infall an...

  7. Heterogeneity in $^{12}$CO/$^{13}$CO Ratios Toward Solar-Type Young Stellar Objects

    CERN Document Server

    Smith, Rachel L; Young, Edward D; Morris, Mark R

    2015-01-01

    This study reports an unusual heterogeneity in [$^{12}$C$^{16}$O]/[$^{13}$C$^{16}$O] abundance ratios of carbon monoxide observed in the gas phase toward seven ~ solar-mass YSOs and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, Vela and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7 $\\mu$m fundamental and 2.3 $\\mu$m overtone rovibrational bands of CO at very high resolution ($\\lambda$/$\\Delta$$\\lambda\\approx 95,000$), observed with the CRIRES spectrograph on the Very Large Telescope. We find [$^{12}$C$^{16}$O]/[$^{13}$C$^{16}$O] values ranging from ~ 85 to 165, significantly higher than those of the local interstellar medium (~ 65 to 69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined Galactic chemical evolution models to explain the $^{12}$C/$^{13}$C discrepancy between the solar system and loca...

  8. Detection of Formamide, the Simplest but Crucial Amide, in a Solar-type Protostar

    Science.gov (United States)

    Kahane, C.; Ceccarelli, C.; Faure, A.; Caux, E.

    2013-02-01

    Formamide (NH2CHO), the simplest possible amide, has recently been suggested to be a central species in the synthesis of metabolic and genetic molecules, the chemical basis of life. In this Letter, we report the first detection of formamide in a protostar, IRAS 16293-2422, which may be similar to the Sun and solar system progenitor. The data combine spectra from the millimeter and submillimeter TIMASSS survey with recent, more sensitive observations at the IRAM 30 m telescope. With an abundance relative to H2 of ~10-10, formamide appears as abundant in this solar-type protostar as in the two high-mass star-forming regions, Orion-KL and SgrB2, where this species has previously been detected. Given the largely different UV-illuminated environments of the three sources, the relevance of UV photolysis of interstellar ices in the synthesis of formamide is therefore questionable. Assuming that this species is formed in the gas phase via the neutral-neutral reaction between the radical NH2 and H2CO, we predict an abundance in good agreement with the value derived from our observations. The comparison of the relative abundance [NH2CHO]/[H2O] in IRAS 16293-2422 and in the coma of the comet Hale-Bopp supports the similarity between interstellar and cometary chemistry. Our results thus suggest that the abundance of some cometary organic volatiles could reflect gas phase rather than grain-surface interstellar chemistry.

  9. Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies

    CERN Document Server

    Smit, R; Labbe, I; Zheng, W; Bradley, L; Donahue, M; Lemze, D; Moustakas, J; Umetsu, K; Zitrin, A; Coe, D; Postman, M; Gonzalez, V; Bartelmann, M; Benitez, N; Broadhurst, T; Ford, H; Grillo, C; Infante, L; Jimenez-Teja, Y; Jouvel, S; Kelson, D D; Lahav, O; Maoz, D; Medezinski, E; Melchior, P; Meneghetti, M; Merten, J; Molino, A; Moustakas, L; Nonino, M; Rosati, P; Seitz, S

    2013-01-01

    Growing observational evidence now indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with lower specific star formation rates. However, corrections for this line emission have been very difficult to perform reliably due to huge uncertainties on the overall strength of such emission at z>~5.5. Here, we present the most direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line emission in Lyman-break galaxies at z~7, while also presenting a strategy for an improved measurement of the sSFR at z~7. We accomplish this through the selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the IRAC 4.5 micron flux provides a clean measurement of the stellar continuum light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a high S/N for our I...

  10. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    Science.gov (United States)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  11. Radial velocity information in solar-type spectra

    Science.gov (United States)

    Merline, W. J.

    1985-01-01

    A criterion is developed for determining the amount of radial velocity information theoretically available at the earth's surface from a star as a function of wavelength and spectral resolution. A description of the study is provided. The wavelength dependence is examined as well as the dependence on resolution, frequency information, and the problem of time-dependent astrophysical phenomena.

  12. Probable Bright Supernova discovered by PSST

    Science.gov (United States)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-09-01

    A bright transient, which is a probable supernova, has been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  13. Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Smit, R.; Bouwens, R. J.; Labbé, I. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Zheng, W.; Lemze, D.; Ford, H. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Bradley, L.; Coe, D.; Postman, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Moustakas, J. [Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P. O. Box 23-141, Taipei 10617, Taiwan (China); Zitrin, A.; Bartelmann, M. [Institut fur Theoretische Astrophysik, ZAH, Albert-Ueberle-Straß e 2, 69120 Heidelberg (Germany); Gonzalez, V. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Benítez, N.; Jimenez-Teja, Y. [Instituto de Astrofisica de Andalucia (CSIC), C/Camino Bajo de Huetor 24, Granada 18008 (Spain); Broadhurst, T. [Department of Theoretical Physics, University of the Basque Country, P. O. Box 644, 48080 Bilbao (Spain); Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Infante, L. [Departamento de Astronoia y Astrofisica, Pontificia Universidad Catolica de Chile, V. Mackenna 4860, Santiago 22 (Chile); and others

    2014-03-20

    Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ∼ 5-7 galaxies. This line emission makes z ∼ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ∼ 7, and we present a strategy for an improved measurement of the sSFR at z ∼ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ∼ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H {sub 160} < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr{sup –1} on the sSFR of our sample based on the mean spectral energy distribution.

  14. Absolute dimensions of solar-type eclipsing binaries III. EW orionis

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Bruntt, H.; Olsen, E. H.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb.......stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb....

  15. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  16. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    Science.gov (United States)

    Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.

    2015-04-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org

  17. Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-type Protostar with ALMA

    Science.gov (United States)

    Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; Bourke, Tyler L.; van Dishoeck, Ewine F.; Schmalzl, Markus

    2012-09-01

    Glycolaldehyde (HCOCH2OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this Letter we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH3), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show redshifted absorption profiles toward one of the components in the binary (IRAS 16293B) indicative of infall and emission at the systemic velocity offset from this by about 0farcs2 (25 AU). We discuss the constraints on the chemical formation of glycolaldehyde and other organic species—in particular, in the context of laboratory experiments of photochemistry of methanol-containing ices. The relative abundances appear to be consistent with UV photochemistry of a CH3OH-CO mixed ice that has undergone mild heating. The order of magnitude increase in line density in these early ALMA data illustrates its huge potential to reveal the full chemical complexity associated with the formation of solar system analogs.

  18. A Survey of Stellar Families Multiplicity of Solar-Type Stars

    Science.gov (United States)

    2010-09-01

    Cb as an M2 dwarf based on its infrared colors, and argued on the basis of prior mass-ratio estimates that it itself is an unresolved binary ( Cb1 , Cb2 ...being the unresolved companion Cb2 noted above due to its larger separation of at least 1.6 AU from the lunar occultations. He tentatively identified

  19. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  20. UBVRI Observations And Analysis Of The Solar Type, Total Eclipsing Binary, TYC 3034-299-1

    Science.gov (United States)

    Faulkner, Danny R.; Blum, N.; Samec, R. G.; Jaso, A.; Smith, P. M.; White, J.; Van Hamme, W.

    2012-01-01

    TYC 3034-299-1 (CVn) is a magnetically active, solar type contact binary and a ROTSE variable. This system was observed as a part of our continuing student/professional collaborative study of interacting binaries. The current UBVRI light curves were taken with the Lowell 0.81-m reflector in Flagstaff on May 10 and May 11, 2010. Four times of minimum light were determined from our observations. They include (with standard errors): HJD I = 2455326.72754±0.00024, 2455327.713303±0.00025, HJD II = 2455326.92427±0.00068, 2455327.91256±0.00060. We also obtained the following timings of minimum light from parabolic fits to the data of Blattler (IBVS number 5699, 2006): HJD I = 2453382.6915, 2453445.4980, 2453502.3800, 2453515.4154, 2453517.3907, HJD II = 2453463.4719, 2453515.607. From these and Nelson's (IBVS numbers 5875 and 5929, 2009) observations, an improved ephemeris was calculated from all the available eclipse timings: J.D. Hel Min I = 2455326.9244±0.0005 + 0.39500870 ± 0.00000016 d*E. Our light curve amplitudes are deep for a contact binary, ranging from 0.85 magnitude in U to 0.66 in I. Time of totality of 7 minutes was detected in the secondary eclipse indicating that this system is a W-type W UMa system (less massive star is hotter). The O'Connell effect ranges from 67 mmag to 36 mmag in U to I, respectively, revealing substantial magnetic activity. A 5-color simultaneous light curve solution was calculated using the Wilson Code. Our model reveals a dark spot region at longitude 58°. The 18% fill-out and the virtually identical temperatures of the two stars show that the system has nearly reached thermal contact. We performed a q-search over the interval from q = 0.3 to 0.8. The mass ratio is 0.46. We wish to thank Lowell Observatory for their allocation of observing time and the American Astronomical Society and the Arizona Space Grant for travel support for this observing run.

  1. H$_\\alpha$-activity and ages for stars in the SARG survey

    CERN Document Server

    Sissa, E; Desidera, S; Fiorenzano, A F Martinez; Bonfanti, A; Carolo, E; Vassallo, D; Claudi, R U; Endl, M; Cosentino, R

    2016-01-01

    Stellar activity influences radial velocity (RV) measurements and can also mimic the presence of orbiting planets. As part of the search for planets around the components of wide binaries performed with the SARG High Resolution Spectrograph at the TNG, it was discovered that HD 200466A shows strong variation in RV that is well correlated with the activity index based on H$_\\alpha$. We used SARG to study the H$_\\alpha$ line variations in each component of the binaries and a few bright stars to test the capability of the H$_\\alpha$ index of revealing the rotation period or activity cycle. We also analysed the relations between the average activity level and other physical properties of the stars. We finally tried to reveal signals in the RVs that are due to the activity. At least in some cases the variation in the observed RVs is due to the stellar activity. We confirm that H$_\\alpha$ can be used as an activity indicator for solar-type stars and as an age indicator for stars younger than 1.5 Gyr.

  2. Detectability of Glycine in Solar-type System Precursors

    CERN Document Server

    Jimenez-Serra, Izaskun; Caselli, Paola; Viti, Serena

    2014-01-01

    Glycine (NH2CH2COOH) is the simplest amino acid relevant for life. Its detection in the interstellar medium is key to understand the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has extensively been searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, and in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant for the study of pre-biotic chemistry in young Solar System analogs. We present 1D spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapour has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (~0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L15...

  3. Sunspot Bright Points

    CERN Document Server

    Choudhary, Debi Prasad

    2010-01-01

    We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around the sunspots. The well isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km. The larger points are mostly associated with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue ba...

  4. Exploring a Threat to Foreign Worlds: Detecting Coronal Mass Ejections on Nearby Stars

    Science.gov (United States)

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen

    2015-01-01

    Coronal mass ejections (CMEs) likely play a significant role in the mass loss and angular momentum evolution of active stars, and may significantly affect exoplanetary magnetospheres and atmospheres. It is difficult to quantitatively predict the magnitude of these effects because there have been no definitive detections of CMEs outside our own solar system. Dynamic radio spectroscopy of stellar flares offers the potential to make such detections. Broadband dynamic spectroscopy has long been used to study coherent radio emission associated with solar CMEs (known as Type II bursts), but such emission has not yet been detected from other stars. Type II bursts sweep downwards in frequency on timescales of tens of minutes, tracing the motion of a CME outwards through the stellar atmosphere into progressively lower plasma densities. I will present JVLA active M dwarf observations showing coherent stellar radio bursts that are extremely bright, comparable in luminosity to the brightest solar Type II bursts ever recorded. These stellar radio bursts are morphologically similar to solar Type II bursts except that the stellar bursts sweep upwards in frequency over time. We interpret these bursts as either bulk plasma motion downwards into the stellar atmosphere or polar auroral radiation modulated by rotation. I will also present progress on the Starburst program, a 3-year nightly observing program using two 27-meter telescopes at the Owens Valley Radio Observatory (the equivalent of a JVLA baseline). The Starburst program will survey stellar coherent radio bursts in order to characterize the rate and energetics of CMEs on nearby stars, combined with complementary observations to image and characterize the detected CMEs.

  5. X-rays from the youngest stars

    Science.gov (United States)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  6. [Bright light therapy].

    Science.gov (United States)

    Poirrier, R; Cambron, L

    2007-01-01

    Bright light therapy is a treatment that emerged in the eighties of the last century. It can be used in different pathologies such as seasonal affective disorders, major depressions, and many disorders of the wake-sleep rhythm, whether they are of primary or secondary origin. Important progress made at the basic neuroscience levels, allows today a sound understanding of the bright light mode of action. Moreover, the main indications are now the subject of consensus reports and meta-analyses which show good levels of evidence-based medicine. Bright light therapy constitutes a first choice indication in seasonal affective disorder. It is also perfectly possible to prescribe bright light therapy in the major depression disorders. It has been demonstrated that the effect size is the same as with antidepressants of reference. It is admitted nowadays that bright light therapy may be at least, an adjunct to pharmacotherapy, in order to accelerate the antidepressant effect onset, or to prolong this effect after withdrawal of the drug. Bright light therapy can also be viewed as an alternative to the pharmacological approach especially when this one is impossible, not tolerated or not accepted by the patient. The contraindications are rare.

  7. Strange nonchaotic stars

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  8. Trumpeting M Dwarfs with CONCH-SHELL: a Catalog of Nearby Cool Host-Stars for Habitable ExopLanets and Life

    CERN Document Server

    Gaidos, E; Lepine, S; Buccino, A; James, D; Ansdell, M; Petrucci, R; Mauas, P; Hilton, E J

    2014-01-01

    We present an all-sky catalog of 2970 nearby ($d \\lesssim 50$ pc), bright ($J< 9$) M- or late K-type dwarf stars, 86% of which have been confirmed by spectroscopy. This catalog will be useful for searches for Earth-size and possibly Earth-like planets by future space-based transit missions and ground-based infrared Doppler radial velocity surveys. Stars were selected from the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra, or a combination of reduced proper motions and photometric colors. From our spectra we determined gravity-sensitive indices, and identified and removed 0.2% of these as interloping hotter or evolved stars. Thirteen percent of the stars exhibit H-alpha emission, an indication of stellar magnetic activity and possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard deviation of 0.22 dex, similar to nearby solar-type stars. We determined stellar effective temperatures by least-squares fitting of spectra to model predictions calibrated by fits to sta...

  9. Magnetic fields on young, moderately rotating Sun-like stars II. EK Draconis (HD 129333)

    CERN Document Server

    Waite, Ian; Carter, Brad; Petit, Pascal; Jeffers, Sandra; Morin, Julien; Vidotto, Aline; Donati, Jean-Francois

    2016-01-01

    The magnetic fields, activity and dynamos of young solar-type stars can be empirically studied using time-series of spectropolarimetric observations and tomographic imaging techniques such as Doppler imaging and Zeeman Doppler imaging. In this paper we use these techniques to study the young Sun-like star EK Draconis (Sp-Type: G1.5V, HD 129333) using ESPaDOnS at the Canada-France-Hawaii Telescope and NARVAL at the T\\`elescope Bernard Lyot. This multi-epoch study runs from late 2006 until early 2012. We measure high levels of chromospheric activity indicating an active, and varying, chromosphere. Surface brightness features were constructed for all available epochs. The 2006/7 and 2008 data show large spot features appearing at intermediate-latitudes. However, the 2012 data indicate a distinctive polar spot. We observe a strong, almost unipolar, azimuthal field during all epochs that is similar to that observed on other Sun-like stars. Using magnetic features, we determined an average equatorial rotational vel...

  10. Detection of doubly-deuterated methanol in the solar-type protostar IRAS 16293-2422

    NARCIS (Netherlands)

    Parise, B; Ceccarelli, C; Tielens, AGGM; Herbst, E; Lefloch, B; Caux, E; Castets, A; Mukhopadhyay, [No Value; Pagani, L; Loinard, L

    2002-01-01

    We report the first detection of doubly-deuterated methanol (CHD(2)OH), as well as firm detections of the two singly-deuterated isotopomers of methanol (CH(2)DOH and CH(3)OD), towards the solar-type protostar IRAS 16293-2422. From the present multifrequency observations, we derive the following abun

  11. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Coutens, Audrey; Persson, M. V.; Jørgensen, J. K.

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic mole...

  12. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  13. Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    CERN Document Server

    Vos, J; Jørgensen, U G; Østensen, R H; Claret, A; Hillen, M; Exter, K

    2012-01-01

    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived w...

  14. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available BACKGROUND: The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. RESULTS: Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI. CONCLUSIONS: The data suggest that perceptions

  15. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  16. CA BrightStor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CA推出的BrightStor系列存储管理解决方案已经成为企业电子商务体系架构管理战略中举足轻重的组成部分。BrightStor是一整套企业级的智能化存储管理解决方案,定位在存储硬件设备和上层应用之间,通过各种集成化的产品和工具为驻留在企业任何位置的数据提供全方位的、有效的存储管理和保护。

  17. Bright Economic Prospects

    Institute of Scientific and Technical Information of China (English)

    Zhang Minqiu

    2004-01-01

    @@ India is expected to register an 8.2% growth rate for the 2003-04 fiscal year. The overall economic situation this year has been satisfactory despite the scaled down 6-6.5% growth rate for the new fiscal year due to oil price hikes, reduced monsoon volume and some 7% inflation. Judging from the following factors, bright prospects are in store for the country down the road.

  18. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    Science.gov (United States)

    Mena-Werth, Jose

    1998-01-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  19. Evolution of bulgeless low surface brightness galaxies

    Science.gov (United States)

    Shao, X.; Hammer, F.; Yang, Y. B.; Liang, Y. C.

    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology, and stellar population of bulgeless low surface-brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and M r LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics, including mergers rather than by their large-scale environment.

  20. The HI dominated Low Surface Brightness Galaxy KKR17

    CERN Document Server

    Lam, Man I; Yang, Ming; Zhou, Zhi-Min; Du, Wei; Zhu, Yi-Nan

    2014-01-01

    We present new narrow-band (H$\\alpha$ and [OIII]) imagings and optical spectrophotometry of HII regions for a gas-rich low surface brightness irregular galaxy, KKR 17. The central surface brightness of the galaxy is $\\mu_0(B)$ = 24.15 $\\pm$0.03 mag~sec$^{-2}$. The galaxy was detected by \\emph{Arecibo Legacy Fast ALFA survey} (ALFALFA), and its mass is dominated by neutral hydrogen (HI) gas. In contrast, both the stellar masses of the bright HII and diffuse stellar regions are small. In addition, the fit to the spectral energy distribution to each region shows the stellar populations of HII and diffuse regions are different. The bright HII region contains a large fraction of O-type stars, revealing the recent strong star formation, whereas the diffuse region is dominated by median age stars, which has a typical age of $\\sim$ 600 Myrs. Using the McGaugh's abundance model, we found that the average metallicity of KKR 17 is 12 + (O/H) = 8.0 $\\pm$ 0.1. The star formation rate of KKR 17 is 0.21$\\pm$0.04 M$_{\\odot}$...

  1. The Spectroscopic Properties of Bright Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G

    2006-01-01

    The properties of bright extragalactic planetary nebulae are reviewed based upon the results of low and high resolution spectroscopy. It is argued that bright extragalactic planetary nebulae from galaxies (or subsystems) with and without star formation have different distributions of central star temperature and ionization structure. As regards the chemical compositions, oxygen and neon are generally found to be unchanged as a result of the evolution of the stellar progenitors. Nitrogen enrichment may occur as a result of the evolution of the progenitors of bright planetary nebulae in all stellar populations, though this enrichment may be (more) random in old stellar populations. Helium abundances appear to be influenced by the chemical evolution of the host galaxy, with planetary nebulae in dwarf spheroidals having systematically elevated abundances. Neither the age nor the metallicity of the progenitor stellar population has a strong effect upon the kinematics observed for nebular shells. Both the range of ...

  2. Dark Skies, Bright Kids Year 8

    Science.gov (United States)

    Bittle, Lauren E.; Wenger, Trey; Johnson, Kelsey E.; Angell, Dylan; Burkhardt, Andrew; Davis, Blair; Firebaugh, Ariel; Hancock, Danielle; Richardson, Whitney; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; McNair, Shunlante; Prager, Brian; Pryal, Matthew; Troup, Nicholas William

    2017-01-01

    We present activities from the eighth year of Dark Skies Bright Kids (DSBK), an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Over the past seven years, our primary focus has been hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools, and over the past several years, we have partnered with local businesses to host our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows. This past summer we expanded our reach through a new initiative to bring week-long summer day camps to south and southwest Virginia, home to some of the most underserved communities in the commonwealth.

  3. EVOLUTION OF A 30 SOLAR MASS, POPULATION I STAR,

    Science.gov (United States)

    STARS, MATHEMATICAL MODELS, THERMONUCLEAR REACTIONS, EQUATIONS OF STATE, HEAT TRANSFER, TEMPERATURE, BRIGHTNESS, LIFE EXPECTANCY(SERVICE LIFE), GRAVITY, HYDROGEN, HELIUM, CARBON, OXYGEN, NEUTRINOS, THESES.

  4. Testing planet formation theories with Giant stars

    CERN Document Server

    Pasquini, Luca; Hatzes, A; Setiawan, J; Girardi, L; da Silva, L; De Medeiros, J R

    2008-01-01

    Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10 %) that are more massive compared to solar-type main sequence stars. The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dilution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they su...

  5. The Origin of Superflares on G-Type Dwarf Stars of Various Ages

    CERN Document Server

    Katsova, M M

    2015-01-01

    We analyze new observations of superflares on G-stars discovered in the optical and near IR ranges with the Kepler mission. An evolution of solar-type activity is discussed. We give an estimate of the maximal total energy, $E_{tot} = 10^{34}\\;\\mbox{erg}$ of a flare that can occur on the young Sun at its age of 1 Gyr when the cycle was formed. We believe that the main source of the flare optical continuum is a low-temperature condensation forming in the course of the response of the chromosphere to an impulsive heating. For a superflare on the young Sun, we adopt the accelerated electron flux, $F_e (E>\\mbox{20 keV}) = 3 \\times 10^{11} \\: \\mbox{erg} \\; \\mbox{cm}^{-2} \\; \\mbox{s}^{-1}$, that is limited by the return current, and obtain the area of the optical continuum source on a G star, $S \\approx 10^{19} \\:\\mbox{cm}^2$. This value is close to the area of the $H_\\alpha$-ribbons in the largest solar flares, while the area of bright patches of a white-light flare on the contemporary Sun is smaller by about two o...

  6. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars...

  7. Operational Performance Improvements to BRIght Target Explorer Constellation

    Science.gov (United States)

    Choi, Seung Yun

    The BRIght Target Explorer (BRITE)-Constellation is composed of six nano-satellites funded by Austria, Canada, and Poland, and each of them is equipped with an optical telescope that observes stars with visual magnitude +3.5 or brighter. BRITE-Constellation has provided numerous images of bright stars from Low Earth Orbit, which will eventually lead to investigation of origin of the Universe. This thesis presents the contribution of the author to BRITE mission, especially in BRITE Operations. The author performed antenna steering experiments on UniBRITE and BRITE-Toronto, to improve data downlink. To improve scientific data collection from BRITE satellites, the author computed available observation time for multiple targets every orbit, which resulted in collection of twice the amount of scientific data. Also, the author increased the available observation time for each target from 32 minutes to 48 minutes by improving the performance of the star tracker on-board BRITE-Toronto.

  8. First Star I See.

    Science.gov (United States)

    Caffrey, Jaye Andras

    This children's novel tells the story of a young girl with attention deficit disorder (ADD) without hyperactivity and her younger brother who has ADD with hyperactivity. Trying to win a school writing contest on the topic of space and stars helps bright, imaginative Paige Bradley realize that fixing her "focusing knob" will compensate for her ADD.…

  9. Spectral evolution of bright NS LMXBs

    CERN Document Server

    Paizis, A; Mainardi, L I; Titarchuk, L

    2010-01-01

    Theoretical and observational support suggests that the spectral evolution of neutron-star LMXBs, including transient hard X-ray tails, may be explained by the interplay between thermal and bulk motion Comptonization. In this framework, we developed a new model for the X-ray spectral fitting XSPEC package which takes into account the effects of both thermal and dynamical (i.e. bulk) Comptonization, CompTB. Using data from the INTEGRAL satellite, we tested our model on broad band spectra of a sample of persistently low magnetic field bright neutron star Low Mass X-ray Binaries, covering different spectral states. The case of the bright source GX 5-1 is presented here. Particular attention is given to the transient powerlaw-like hard X-ray (above 30 keV) tail that we interpret in the framework of the bulk motion Comptonization process, qualitatively describing the physical conditions of the environment in the innermost part of the system.

  10. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    CERN Document Server

    Mohanty, Subhanjoy; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850um observations for 7 very low mass stars (VLMS) and brown dwarfs (BDs): 3 in Taurus, 4 in the TWA, and all classical T Tauri (cTT) analogs. We detect 2 of the 3 Taurus disks, but none of the TWA ones. Our 3sigma limits correspond to a dust mass of 1.2 MEarth in Taurus and a mere 0.2 MEarth in the TWA (3--10x deeper than previous work). We combine our data with other sub-mm/mm surveys of Taurus, rho Oph and the TWA to investigate trends in disk mass and grain growth during the cTT phase. We find : (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is 100 AU for intermediate-mass stars, solar-types and VLMS, and 20 AU for BDs. (2) While the upper envelope of disk masses increases with Mstar from BDs to VLMS to solar-types, no increase is seen from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate masses. (3) Many disks around Taurus and rho Oph intermediate-mass and solar-type stars evin...

  11. Hα-activity and ages for stars in the SARG survey

    Science.gov (United States)

    Sissa, E.; Gratton, R.; Desidera, S.; Martinez Fiorenzano, A. F.; Bonfanti, A.; Carolo, E.; Vassallo, D.; Claudi, R. U.; Endl, M.; Cosentino, R.

    2016-12-01

    Stellar activity influences radial velocity (RV) measurements and can also mimic the presence of orbiting planets. As part of the search for planets around the components of wide binaries performed with the SARG High Resolution Spectrograph at the TNG, it was discovered that HD 200466A shows strong variation in RV that is well correlated with the activity index based on Hα. We used SARG to study the Hα line variations in each component of the binaries and a few bright stars to test the capability of the Hα index of revealing the rotation period or activity cycle. We also analysed the relations between the average activity level and other physical properties of the stars. We finally tried to reveal signals in the RVs that are due to the activity. At least in some cases the variation in the observed RVs is due to the stellar activity. We confirm that Hα can be used as an activity indicator for solar-type stars and as an age indicator for stars younger than 1.5 Gyr. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.A table of the individual Hα measurements is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A76

  12. History of the solar-type protostar IRAS16293-2422 as told by the cyanopolyynes

    CERN Document Server

    Jaber, A A; Kahane, C; Viti, S; Balucani, N; Caux, E; Faure, A; Lefloch, B; Lique, F; Mendoza, E; Quenard, D; Wiesenfeld, L

    2016-01-01

    Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the ISM, as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, since their abundance is predicted to be a strong function of time. We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS16293-2422 based on TIMASSS IRAM-30m observations. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS16293-2422. We detect several lines from HC3N and HC5N, and report the first detection of DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant (~1.3x10^(-11)) in the outer cold envelope of IRAS16293-2422, and it increases by about a factor 100 in the inner region where Tdust>80K. The HC5N has an abun...

  13. Kepler Exoplanet Candidate Host Stars are Preferentially Metal Rich

    CERN Document Server

    Schlaufman, Kevin C

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal-rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H--g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ~150,000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J-H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4-sigma redder than the average color of the stars in the control sample. At the same time, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J-H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host ...

  14. The RAVE Survey: Rich in Very Metal-poor Stars

    NARCIS (Netherlands)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-01-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars w

  15. The RAVE Survey : Rich in Very Metal-poor Stars

    NARCIS (Netherlands)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-01-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars w

  16. How Bright Is the Sun?

    Science.gov (United States)

    Berr, Stephen

    1991-01-01

    Presents a sequence of activities designed to allow eighth grade students to deal with one of the fundamental relationships that govern energy distribution. Activities guide students to measure light bulb brightness, discover the inverse square law, compare light bulb light to candle light, and measure sun brightness. (two references) (MCO)

  17. Brightness and color of the integrated starlight at celestial, ecliptic and galactic poles

    CERN Document Server

    Nawar, S; Mikhail, J S; Morcos, A B

    2010-01-01

    From photoelectric observations of night sky brightness carried out at Abu-Simbel, Asaad et al. (1979) have obtained values of integrated starlight brightness at different Galactic latitudes. These data have been used in the present work to obtain the brightness and color of the integrated starlight at North and South Celestial, Ecliptic and Galactic Poles. The present values of the brightness are expressed in S10 units and mag/arcsec2. Our results have been compared with that obtained by other investigators using photometric and star counts techniques. The B-V and B-R have been calculated and the results are compared with that obtained by other investigators.

  18. Electron beams and Langmuir turbulence in solar type III radio bursts observed in the interplanetary medium

    Science.gov (United States)

    Lin, R. P.

    1990-01-01

    Results are presented of in situ observations of electron beams, plasma waves, and associated solar type II radio emission in the interplanetary medium near 1 AU, which were provided by the ISEE-3 spacecraft. It is shown that electron beams are formed by the faster electrons arriving before the slower ones, following an impulsive injection at the sun. The resulting bump-on-tail in the reduced 1D distribution function is unstable to the growth of electrostatic electron plasma (Langmuir) waves. The Langmuir waves are observed to be highly impulsive in nature. The onset and temporal variations of the observed plasma waves are in good qualitative agreement with the wave growth expected from the evolution of the measured 1D distribution function. The lack of obvious plateauing of the bump-on-tail suggests that the waves were removed from resonance with the beam electrons by some wave-wave interaction.

  19. The census of complex organic molecules in the solar type protostar IRAS16293-2422

    CERN Document Server

    Jaber, Ali A; Kahane, C; Caux, E

    2014-01-01

    Complex Organic Molecules (COMs) are considered crucial molecules, since they are connected with organic chemistry, at the basis of the terrestrial life. More pragmatically, they are molecules in principle difficult to synthetize in the harsh interstellar environments and, therefore, a crucial test for astrochemical models. Current models assume that several COMs are synthesised on the lukewarm grain surfaces ($\\gtrsim$30-40 K), and released in the gas phase at dust temperatures $\\gtrsim$100 K. However, recent detections of COMs in $\\lesssim$20 K gas demonstrate that we still need important pieces to complete the puzzle of the COMs formation. We present here a complete census of the oxygen and nitrogen bearing COMs, previously detected in different ISM regions, towards the solar type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Six COMs, out of the 29 searched for, were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ...

  20. Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273

    NARCIS (Netherlands)

    T.L. Campante; R. Handberg; S. Mathur; T. Appourchaux; T.R. Bedding; W.J. Chaplin; B. Mosser; O. Benomar; A. Bonanno; E. Corsaro; S.T. Fletcher; P. Gaulme; S. Hekker; C. Karoff; D. Salabert; G.A. Verner; T.R. White; G. Houdek; I.M. Brandao; O.L. Creevey; G. Dogan; M. Bazot; J. Christensen-Dalsgaard; M.S. Cunha; Y. Elsworth; D. Huber; H. Kjeldsen; M. Lundkvist; J. Molenda-Zakowicz; M.J.P.F.G. Monteiro; D. Stello; B.D. Clarke; F.R. Girouard; J.R. Hall; R.A. Garcia; C. Regulo

    2011-01-01

    Context. The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the

  1. Star Formation in MUSCEL Galaxies

    Science.gov (United States)

    Young, Jason; Kuzio de Naray, Rachel; Wang, Sharon Xuesong

    2017-01-01

    We present preliminary star-formation histories for a subset of the low surface brightness (LSB) galaxies in the MUSCEL (MUltiwavelength observations of the Structure, Chemistry, and Evolution of LSB galaxies) program. These histories are fitted against ground-based IFU spectra in tandem with space-based UV and IR photometry. MUSCEL aims to use these histories along with kinematic analyses to determine the physical processes that have caused the evolution of LSB galaxies to diverge from their high surface brightness counterparts.

  2. HETEROGENEITY IN {sup 12}CO/{sup 13}CO ABUNDANCE RATIOS TOWARD SOLAR-TYPE YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rachel L. [North Carolina Museum of Natural Sciences, 121 West Jones Street, Raleigh, NC 27603 (United States); Pontoppidan, Klaus M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Young, Edward D. [Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, 595 Charles E. Young Drive East, Geology Building, Los Angeles, CA 90095-1567 (United States); Morris, Mark R., E-mail: rachel.smith@naturalsciences.org, E-mail: smithrl2@appstate.edu [Division of Astronomy and Astrophysics, Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States)

    2015-11-10

    This study reports an unusual heterogeneity in [{sup 12}C{sup 16}O]/[{sup 13}C{sup 16}O] abundance ratios of carbon monoxide observed in the gas phase toward seven ∼solar-mass young stellar objects (YSOs) and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, and Vela, and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7 μm fundamental and 2.3 μm overtone rovibrational bands of CO at very high spectral resolution (λ/Δλ ≈ 95,000), observed with the Cryogenic Infrared Echelle Spectrograph (CRIRES) on the Very Large Telescope. We find [{sup 12}C{sup 16}O]/[{sup 13}C{sup 16}O] values ranging from ∼85 to 165, significantly higher than those of the local interstellar medium (ISM) (∼65–69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined galactic chemical evolution models to explain the {sup 12}C/{sup 13}C discrepancy between the solar system and local ISM. The oxygen isotope ratios are consistent with isotopologue-specific photodissociation by CO self-shielding toward the disks, VV CrA N and HL Tau, further substantiating models predicting CO self-shielding on disk surfaces. However, we find that CO self-shielding is an unlikely general explanation for the high [{sup 12}C{sup 16}O]/[{sup 13}C{sup 16}O] ratios observed in this study. Comparison of the solid CO against gas-phase [{sup 12}C{sup 16}O]/[{sup 13}C{sup 16}O] suggests that interactions between CO ice and gas reservoirs need to be further investigated as at least a partial explanation for the unusually high [{sup 12}C{sup 16}O]/[{sup 13}C{sup 16}O] observed.

  3. Astrobiologically Interesting Stars within 10 parsecs of the Sun

    CERN Document Server

    De Mello, G F P; Ghezzi, L

    2006-01-01

    The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity and Galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We determine their state of evolution, masses, ages and space velocities, and produce an optimized list of candidates that merit serious scientific consideration by the future space-based interferometry probes aimed at directly detecting Earth-sized extrasolar planets and seeking spectroscopic infrared biomarkers as evidence of photosynthetic life. The initially selected stars number 33 solar-type within the population of 182 stars (excluding late M-dwarfs) closer than 10 pc. A comprehensive and detailed data compilation fo...

  4. An All-Sky Catalog of Bright M Dwarfs

    CERN Document Server

    Lépine, Sébastien

    2011-01-01

    We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J40 mas/yr, supplemented on the bright end with the TYCHO-2 catalog. Completeness tests which account for kinematic (proper motion) bias suggest that our catalog represents ~75% of the estimated ~11,900 M dwarfs with J<10 expected to populate the entire sky. Our catalog is, however, significantly more complete for the Northern sky (~90%) than it is for the South (~60%). Stars are identified as cool, red M dwarfs from a combination of optical and infrared color cuts, and are distinguished from background M giants and highly-reddened stars using either existing parallax measurements or, if such measurements are lacking, on their location in an optical-to-infrared reduced proper motion diagram. These bright M dwarfs are all prime targets for exoplanet surveys using the Doppler radial velocity or transit methods; the combination of low-mass and bright apparent magnitude should make possible the detection of Earth-size planets on sh...

  5. Sky catalogue 2000.0. Volume 2: Double stars, variable stars and nonstellar objects.

    Science.gov (United States)

    Hirshfeld, A.; Sinnott, R. W.

    This is a re-issue of a book first published in 1985 (see Abstr. 39.002.019). This is a standard reference work for telescope users which gives positional and other data for galaxies, double and variable stars, and star clusters. It includes tables on 20,000 objects. Comprehensive treatment is given for each object: position for epoch 2000.0, magnitudes in the UBV photometric system, color index, surface brightness and Hubble classification for galaxies. Contents: Glossary of selected astronomical names. Index to letter names of variable stars. Double and multiple stars. Visual binary stars. Spectroscopic binary stars. Variable stars. Suspected variable stars. Open clusters. Open cluster cross index. Globular clusters. Bright nebulae. Dark nebulae. Planetary nebulae. Galaxies. Quasi-stellar objects (QSO's). Radio sources. X-ray sources.

  6. Aftereffect of Adaptation to Illusory Brightness

    OpenAIRE

    Xinguang Cao; Hiroyuki Ito

    2011-01-01

    Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours) for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of t...

  7. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  8. Stars, Galaxies and Quasars

    Directory of Open Access Journals (Sweden)

    Patrick Das Gupta

    2009-05-01

    Full Text Available This article provides a brief introduction to the basics of stars, galaxies and Quasi-stellar objects (QSOs. In stars, the central pressure and temperature must be high in order to halt the stellar gravitational collapse. High temperature leads to thermonuclear fusion in the stellar core, releasing thereby enormous amount of nuclear energy, making the star shine brilliantly. On the other hand, the QSOs are very bright nuclei lying in the centres of some galaxies. Many of these active galactic nuclei, which appear star-like when observed through a telescope and  whose power output are more than 1011 times that of the Sun, exhibit rapid time variability in their X-ray emissions.  Rapid variability along with the existence of a maximum speed limit, c, provide a strong argument in favour of a compact central engine model for QSOs in which a thick disc of hot gas going around a supermassive blackhole is what makes a QSO appear like a bright point source. Hence, unlike stars, QSOs are powered by gravitational potential energy.

  9. GOMOS bright limb ozone data set

    Directory of Open Access Journals (Sweden)

    S. Tukiainen

    2015-01-01

    Full Text Available We have created a daytime ozone profile data set from the measurements of the Global Ozone Monitoring by Occultation of Stars (GOMOS instrument on board the Envisat satellite. This so-called GOMOS bright limb (GBL data set contains ~ 358 000 stratospheric daytime ozone profiles measured by GOMOS in 2002–2012. The GBL data set complements the widely used GOMOS night-time data based on stellar occultation measurements. The GBL data set is based on the GOMOS daytime occultations but instead of the transmitted star light, we use limb scattered solar light. The ozone profiles retrieved from these radiance spectra cover 18–60 km tangent height range and have approximately 2–3 km vertical resolution. We show that these profiles are generally in better than 10% agreement with the NDACC (Network for the Detection of Atmospheric Composition Change ozone sounding profiles and with the GOMOS night-time, MLS (Microwave Limb Sounder, and OSIRIS (Optical Spectrograph, and InfraRed Imaging System satellite measurements. However, there is a 10–13% negative bias at 40 km tangent height and a 10–50% positive bias at 50 km when the solar zenith angle > 75°. These biases are most likely caused by stray light which is difficult to characterize and remove entirely from the measured spectra. Nevertheless, the GBL data set approximately doubles the amount of useful GOMOS ozone profiles and improves coverage of the summer pole.

  10. CHARACTERIZING TWO SOLAR-TYPE KEPLER SUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, G.; Metcalfe, T. S.; Mathur, S. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Deheuvels, S.; Pinsonneault, M. [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Di Mauro, M. P. [INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Eggenberger, P. [Geneva Observatory, University of Geneva, Maillettes 51, 1290 Sauverny (Switzerland); Creevey, O. L. [Universite de Nice, Laboratoire Cassiopee, CNRS UMR 6202, Observatoire de la Cote d' Azur, BP 4229, F-06304 Nice Cedex 4 (France); Monteiro, M. J. P. F. G.; Sousa, S. G.; Brandao, I. M.; Campante, T. L. [Centro de Astrofisica and DFA-Faculdade de Ciencias, Universidade do Porto (Portugal); Frasca, A. [INAF, Osservatorio Astrofisico di Catania, via S. Sofia 78, I-95123 Catania (Italy); Karoff, C.; Handberg, R.; Thygesen, A. O.; Bruntt, H. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Biazzo, K. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Niemczura, E. [Instytut Astronomiczny, Uniwersytet Wroclawski, ul. Kopernika 11, 51-622 Wroclaw (Poland); Bedding, T. R., E-mail: gulnur@ucar.edu [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); and others

    2013-01-20

    Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC 10920273 and KIC 11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC 10920273 is a one-solar-mass star (M = 1.00 {+-} 0.04 M {sub Sun }), but much older than our Sun (t = 7.12 {+-} 0.47 Gyr), while KIC 11395018 is significantly more massive than the Sun (M = 1.27 {+-} 0.04 M {sub Sun }) with an age close to that of the Sun (t = 4.57 {+-} 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation, and activity relations as potential age diagnostics.

  11. Variable stars in the classroom

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Bajo, F [Departamento de Electronica e IngenierIa Electromecanica, Escuela de IngenierIas Industriales, Universidad de Extremadura, Avda de Elvas s/n, 06071 Badajoz (Spain); Vaquero, J M [Departamento de Fisica, Escuela Politecnica, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Caceres (Spain)

    2006-05-01

    Variable stars offer interesting possibilities from the point of view of educational applications, from the experimental collection of data to analysis to obtain physical information. In this paper, brightness measurements of two periodic variable stars easily accessible with small telescopes are presented and analysed. This practical experiment is highly appropriate for educational use in undergraduate physics and astrophysics laboratories and allows students to approximate scientific research.

  12. Detection of glycolaldehyde towards the solar-type protostar NGC1333 IRAS2A

    CERN Document Server

    Coutens, Audrey; Jørgensen, Jes K; Wampfler, Susanne F; Lykke, Julie M

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer towards the Class 0 young stellar object NGC1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde) and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 -higher than in the Class 0 source IRAS 16293-2422 (~1), but comparable to the lower limits derived in comets ($\\geq$3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars could be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusio...

  13. Phase Coupling Between Spectral Components of Collapsing Langmuir Solitons in Solar Type III Radio Bursts

    Science.gov (United States)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    We present the high time resolution observations of one of the Langmuir wave packets obtained in the source region of a solar type III radio burst. This wave packet satisfies the threshold condition of the supersonic modulational instability, as well as the criterion of a collapsing Langmuir soliton, i.e., the spatial scale derived from its peak intensity is less than that derived from its short time scale. The spectrum of t his wave packet contains an intense spectral peak at local electron plasma frequency, f(sub pe) and relatively weaker peaks at 2f(sub pe) and 3f(sub pe). We apply the wavelet based bispectral analysis technique on this wave packet and compute the bicoherence between its spectral components. It is found that the bicoherence exhibits two peaks at (approximately f(sub pe), approximately f(sub pe)) and (approximately f(sub pe) approximately 2f(sub pe)), which strongly suggest that the spectral peak at 2f(sub pe) probably corresponds to the second harmonic radio emission, generated as a result of the merging of antiparallel propagating Langmuir waves trapped in the collapsing Langmuir soliton, and, the spectral peak at 3f(sub pe) probably corresponds to the third harmonic radio emission, generated as a result of merging of a trapped Langmuir wave and a second harmonic electromagnetic wave.

  14. Evidence for Langmuir Envelope Solitons in Solar Type III Burst Source Regions

    Science.gov (United States)

    Thejappa, G.; Goldstein, M. L.; MacDowall, R. J.; Papadopoulos, K.; Stone, R. G.

    1998-01-01

    We present observational evidence for the generation of Langmuir envelope solitons in the source regions of solar type III radio bursts. The solitons appear to be formed by electron beams which excite either the modulational instability or oscillating two-stream instability (OTSI). Millisecond data from the Ulysses Unified Radio and Plasma Wave Experiment (URAP) show that Langmuir waves associated with type III bursts occur as broad intense peaks with time scales ranging from 15 to 90 milliseconds (6 - 27 km). These broad field structures have the properties expected of Langmuir envelope solitons, viz.: the normalized peak energy densities, W(sub L)/n(sub e)T(sub e) approximately 10(exp -5), are well above the modulational instability threshold; the spatial scales, L, which range from 1 - 5 Langmuir wavelengths, show a high degree of inverse correlation with (W(sub L)/n(sub e)T(sub e))(sup 1/2); and the observed widths of these broad peaks agree well with the predicted widths of envelope solitons. We show that the orientation of the Langmuir field structures is random with respect to the ambient magnetic field, indicating that they are probably isotropic structures that have evolved from initially pancake-like solitons. These observations suggest that strong turbulence processes, such as the modulational instability or the OTSI, stabilize the electron beams that produce type III bursts.

  15. OO Aquilae: a solar-type contact binary with intrinsic light curve changes

    Science.gov (United States)

    Li, Hua-Li; Wei, Jian-Yan; Yang, Yuan-Gui; Dai, Hai-Feng

    2016-01-01

    New multi-color photometry of the solar-type contact binary OO Aql was obtained in 2012 and 2013, using the 60 cm telescope at Xinglong Station of the National Astronomical Observatories, Chinese Academy of Sciences. From two sets of light curves LC1 and LC2, photometric models were performed by using the 2003 version of the Wilson-Devinney code. The overcontact factor of the binary system was determined to be f = 37.0(±0.5)%. The intrinsic variability of this binary occurs in light maxima and minima, which could result from a possible third component and magnetic activity of the late type components. Based on all available light minimum times, the orbital period may change in a complicated mode, i.e., sudden period jumps or continuous period variations. The period of OO Aql may possibly undergo a secular period decrease with a rate of dP/dt = -3.63(±0.30) × 10-8 d yr-1, superimposed by two possible cyclic variations in the O - C curve. The long-term period decrease may be interpreted as conserved mass transfer from the more massive component to the less massive one. The 21.5-yr oscillation may be attributed to cyclic magnetic activity, and the 69.3-yr one may result from the light-time effect of an unseen tertiary body.

  16. Cold DUst around NEarby Stars (DUNES). First results. A resolved exo-Kuiper belt around the solar-like star ζ2 Ret

    NARCIS (Netherlands)

    Eiroa, C.; Fedele, D.; Maldonado, J.; Gonzalez-Garcia, B. M.; Rodmann, J.; Heras, A. M.; Pilbratt, G. L.; Augereau, J. -Ch.; Mora, A.; Montesinos, B.; Ardila, D.; Bryden, G.; Liseau, R.; Stapelfeldt, K.; Launhardt, R.; Solano, E.; Bayo, A.; Absil, O.; Arevalo, M.; Barrado, D.; Beichmann, C.; Danchi, W.; del Burgo, C.; Ertel, S.; Fridlund, M.; Fukagawa, M.; Gutierrez, R.; Gruen, E.; Kamp, I.; Krivov, A.; Lebreton, J.; Loehne, T.; Lorente, R.; Marshall, J.; Martinez-Arnaiz, R.; Meeus, G.; Montes, D.; Morbidelli, A.; Mueller, S.; Mutschke, H.; Nakagawa, T.; Olofsson, G.; Ribas, I.; Roberge, A.; Sanz-Forcada, J.; Thebault, P.; White, G. J.; Wolf, S.; Walker, H.

    2010-01-01

    We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts

  17. Stars resembling the Sun

    Science.gov (United States)

    Cayrel de Strobel, G.

    stars tightly neighbouring the Sun in mass, chemical composition and state of evolution. The surprising result is that the stars occupy in this HR Diagram a rather extended region around the Sun, many of them seem more evolved and older than the Sun, and only 4 of the evolved stars seem younger. The age of some stars in the sample is also discussed in terms of chromospheric activity and Li-content. Our conclusion is much the same as that contained in previous papers we have written on the subject: in spite of a much larger number of stars, we have not been able to nominate a single star of the sample for a ``perfect good solar twin''. Another aim in beginning, 25 years ago, this search for solar analogues, was to have ready a bunch of stars resembling the Sun and analysed spectroscopically in detail, in order that, when planets hunters of solar type stars, finally would have found such a specimen, we would have been able to immediately compare the physical parameters of this star to those of the Sun. We have been lucky enough: one of the good solar analogues we present herewith, is 51 Pegasi (HD 217014) which, according to the very recent observations by Mayor and Queloz (1995), has a planet orbiting around it. And what is more: two other stars possessing planets: 47 Ursae Majoris (HD 95128) and 70 Virginis (HD 117176), have just been discovered by Marcy and Butler (187th Meeting of the AAS, January 1996). One of them, 47 Ursae Majoris, is also included in the list of photometric solar analogues. The other star, 70 Virginis, has only been included after the ``Planets News'', because the colour index (B-V) of this star is slightly higher than the prescribted limit of the selection, (B-V = 0.71, instead, 0.69). It would have been a pity to leave the third '' planet star out of the competition.

  18. Young Stellar Population of the Bright-Rimmed Clouds BRC 5, BRC 7 and BRC 39

    CERN Document Server

    Panwar, Neelam; Pandey, A K; Samal, M R; Ogura, K; Ojha, D K; Jose, J; Bhatt, B C

    2014-01-01

    Bright-rimmed clouds (BRCs), illuminated and shaped by nearby OB stars, are potential sites of recent/ongoing star formation. Here we present an optical and infrared photometric study of three BRCs: BRC 5, BRC 7 and BRC 39 to obtain a census of the young stellar population, thereby inferring the star formation scenario, in these regions. In each BRC, the Class I sources are found to be located mostly near the bright rim or inside the cloud, whereas the Class II sources are preferentially outside, with younger sources closer to the rim. This provides strong support to sequential star formation triggered by radiation driven implosion due to the UV radiation. Moreover, each BRC contains a small group of young stars being revealed at its head, as the next-generation stars. In particular, the young stars at the heads of BRC 5 and BRC 7 are found to be intermediate/high mass stars, which, under proper conditions, may themselves trigger further star birth, thereby propagating star formation out to long distances.

  19. Asteroseismology of Exoplanet-Host Stars in the Kepler Era

    CERN Document Server

    Campante, Tiago L

    2015-01-01

    New insights on stellar evolution and stellar interior physics are being made possible by asteroseismology, the study of stars by the observation of their natural, resonant oscillations. Asteroseismology is making significant contributions to our understanding of solar-type stars, in great part due to the exquisite data that have been made available by NASA's Kepler space telescope. Of particular interest is the synergy between asteroseismology and exoplanetary science. Herein I will review recent contributions from asteroseismology to the determination of fundamental properties of Kepler exoplanet-host stars and stress its potential in constraining the spin-orbit alignment of exoplanet systems.

  20. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  1. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    OpenAIRE

    Meunier, N.; Lagrange, A. -M.; Kabuiku, L. Mbemba; Alex, M; Mignon, L.; Borgniet, S.

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this ...

  2. History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes

    Science.gov (United States)

    Jaber Al-Edhari, A.; Ceccarelli, C.; Kahane, C.; Viti, S.; Balucani, N.; Caux, E.; Faure, A.; Lefloch, B.; Lique, F.; Mendoza, E.; Quenard, D.; Wiesenfeld, L.

    2017-01-01

    Context. Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the interstellar medium (ISM), as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, since their abundance is predicted to be a strong function of time. Finally, cyanopolyynes can potentially contain a large portion of molecular carbon. Aims: We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS 16293-2422. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS 16293-2422 by comparing the observations with the predictions of a chemical model. Methods: We analysed the data from the IRAM-30 m unbiased millimeter and submillimeter spectral survey towards IRAS 16293-2422 named TIMASSS. The derived spectral line energy distribution (SLED) of each detected cyanopolyyne was compared with the predictions from the radiative transfer code GRenoble Analysis of Protostellar Envelope Spectra (GRAPES) to derive the cyanopolyyne abundances across the envelope of IRAS 16293-2422. Finally, the derived abundances were compared with the predictions of the chemical model UCL_CHEM. Results: We detect several lines from cyanoacetylene (HC3N) and cyanodiacetylene (HC5N), and report the first detection of deuterated cyanoacetylene, DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant ( 1.3 × 10-11) in the outer cold envelope of IRAS 16293-2422, and it increases by about a factor 100 in the inner region where the dust temperature exceeds 80 K, namely when the volcano ice desorption is predicted to occur. The HC5N has an abundance similar to HC3N in the outer envelope and about a factor of ten lower in the inner region. The comparison with the chemical

  3. Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope

    CERN Document Server

    Bowler, R A A; McLure, R J; McLeod, D J

    2016-01-01

    We present new Hubble Space Telescope/Wide Field Camera 3 imaging of 25 extremely luminous (-23.2 600A). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (f_multi > 0.4) in bright z ~ 7 galaxies, and ubiquitous at the very bright end (M_UV 1000 similarly bright galaxies at z ~ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.

  4. In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    Science.gov (United States)

    Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.

    2012-01-01

    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.

  5. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, E. [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France)

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  6. The Census of Complex Organic Molecules in the Solar-type Protostar IRAS16293-2422

    Science.gov (United States)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-01

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (gsim30-40 K) and released in the gas phase at dust temperatures of gsim100 K. However, recent detections of COMs in lsim20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (lsim30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10-10. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  7. Kepler super-flare stars: what are they?

    CERN Document Server

    Wichmann, R; Wolter, U; Nagel, E

    2014-01-01

    The Kepler mission has led to the serendipitous discovery of a significant number of `super flares' - white light flares with energies between 10^33 erg and 10^36 erg - on solar-type stars. It has been speculated that these could be `freak' events that might happen on the Sun, too. We have started a programme to study the nature of the stars on which these super flares have been observed. Here we present high-resolution spectroscopy of 11 of these stars and discuss our results. We find that several of these stars are very young, fast-rotating stars where high levels of stellar activity can be expected, but for some other stars we do not find a straightforward explanation for the occurrence of super flares.

  8. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)

    M. Das

    2013-03-01

    Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in star formation and hence low in surface brightness. They often have bright bulges that are similar to those found in early type galaxies. The bulges can host low luminosity Active Galactic Nuclei (AGN) that have relatively low mass black holes. GLSB galaxies are usually isolated systems and are rarely found to be interacting with other galaxies. In fact many GLSB galaxies are found under dense regions close to the edges of voids. These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and the slower rate of evolution in these galaxies.

  9. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    Science.gov (United States)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  10. Shutter heating system of Antarctic bright star survey telescope

    Science.gov (United States)

    Chen, Jie; Dong, Shucheng; Jiang, Fengxin; Zhang, Hongfei; Wang, Jian

    2016-07-01

    A heat preservation system for mechanical shutter in Antarctic is introduced in the paper. The system consists of the heat preservation chamber, the host controller STM32F103C8T6 with peripheral circuit and the control algorithm. The whole design is carried out on the basis of the low temperature requirement, including the cavity structure and thermal insulation. The heat preservation chamber is used to keep the shutter warm and support the weight of the camera. Using PT100 as the temperature sensor, the signal processing circuit converts the temperature to the voltage which is then digitized by the 12 bit ADC in the STM32. The host controller transforms the voltage data into temperature, and through the tuning of the Fussy PID algorithm which controls the duty cycle of the MOSFET, the temperature control of chamber is realized. The System has been tested in the cryogenic environment for a long time, with characteristic of low temperature resistance, small volume, high accuracy of temperature control as well as remote control and detection.

  11. Three Kings and the Bright Star of Fame

    OpenAIRE

    Emalyn J. Bullis

    2013-01-01

    Many phenomena in music history as well as in American history have helped develop and shape the types of music listened to today, but none have been so fresh as looking back to twentieth-century popular music and the several key individuals that “ruled” in this area. These “rulers” were hailed as “kings” firstly as a media ploy, but the American public did nothing but encourage the titles. This is somewhat confusing considering American’s pride in their democratic political system but histor...

  12. Three Kings and the Bright Star of Fame

    Directory of Open Access Journals (Sweden)

    Emalyn J. Bullis

    2013-12-01

    Full Text Available Many phenomena in music history as well as in American history have helped develop and shape the types of music listened to today, but none have been so fresh as looking back to twentieth-century popular music and the several key individuals that “ruled” in this area. These “rulers” were hailed as “kings” firstly as a media ploy, but the American public did nothing but encourage the titles. This is somewhat confusing considering American’s pride in their democratic political system but history shows that in several key American cultural changes the “Kings” crowned in the music sphere are representative of these changes. While not difficult to determine who these individuals are, as most of them were hailed and recognized as “Kings” to their respective audiences. Benny Goodman, the King of Swing, in the 1920’s and 30’s helped usher in and popularize the Swing movement. Elvis Presley, the King of Rock and Roll, capitalized (intentionally or not on the move towards combining African-American sounds such as blues and jazz with folk, gospel, and soul, thus creating a whole new and extremely popular sound. Michael Jackson, the King of Pop, was practically born into fame with his involvement with the ‘Jackson 5,’ but that did not stop him from rising up the ladder of fame in his solo career to change the face of pop music forever. There were also many artists that surrounded these “kings,” a court, if you will, that allowed their new styles to proliferate throughout American culture, and sometimes even surpassed them musically. However, as icons, these men stand on their own for their achievements in music and their ability to change and adapt to the culture around them. By looking at the three Kings of American pop culture’s past, it is possible to see the direction of America’s culture in general from the 1920’s on and perhaps see the trajectory of music of the USA today

  13. Dark Skies, Bright Kids! Year 3

    Science.gov (United States)

    Whelan, David G.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R. L.; Borish, J.; Corby, J. F.; Dorsey, G.; Gugliucci, N. E.; Prager, B. J.; Ries, P. A.; Romero, C. E.; Sokal, K. R.; Tang, X.; Walker, L. M.; Yang, A. J.; Zasowski, G.

    2012-01-01

    Dark Skies, Bright Kids! (DSBK) is a program that brings astronomy education to elementary schools throughout central Virginia. In a relaxed, out-of-classroom atmosphere, we are able to foster the innate curiosity that young students have about science and the world around them. We target schools that are under-served due to their rural locale or special needs students, demonstrating that science is a fun and creative process to a segment of the population that might not otherwise be exposed to astronomy. Families are included in the learning experience during semi-annual `star parties'. Since last January, we have expanded the breadth and depth of our educational capabilities. We have developed new programs for use in our digital planetarium. We held the first Central Virginia Star Party, providing an atmosphere where local children from multiple schools were able to share their love for astronomy. Local government and University officials were also invited so that they could experience our focused science outreach. Most recently, we have become part of Ivy Creek School's Club Day activities, bringing our program to a new segment of the elementary school system in Albemarle County: those that have `low-incidence' disabilities, requiring special attention. We continue to develop a curriculum for after-school programs that functions as either a series of one-time activities or several months of focused outreach at one school. Many of these activities are provided on our website, http://www.astro.virginia.edu/dsbk/, for the wider astronomical community, including the new planetarium work. We have extended our book project to include two bilingual astronomy books called `Snapshots of the Universe,' one in Spanish and English, the other in French and English. These books introduce young people to some of the many wonders of the Universe through art and captions developed by DSBK volunteers.

  14. A Swarm of Ancient Stars

    Science.gov (United States)

    1999-01-01

    This stellar swarm is M80 (NGC 6093), one of the densest of the 147 known globular star clusters in the Milky Way galaxy. Located about 28,000 light-years from Earth, M80 contains hundreds of thousands of stars, all held together by their mutual gravitational attraction. Globular clusters are particularly useful for studying stellar evolution, since all of the stars in the cluster have the same age (about 15 billion years), but cover a range of stellar masses. Every star visible in this image is either more highly evolved than, or in a few rare cases more massive than, our own Sun. Especially obvious are the bright red giants, which are stars similar to the Sun in mass that are nearing the ends of their lives.

  15. Evidence for four- and three-wave interactions in solar type III radio emissions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2013-08-01

    Full Text Available The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10−3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe − fS, are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves. In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe, appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1 the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2 the coalescence

  16. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  17. Evolution of Exoplanets and their Parent Stars

    CERN Document Server

    Guillot, Tristan; Morel, Pierre; Havel, Mathieu; Parmentier, Vivien

    2014-01-01

    Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets a...

  18. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  19. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  20. Cold dust around nearby stars (DUNES). First results: A resolved exo-Kuiper belt around the solar-like star zeta^2 Ret

    CERN Document Server

    Eiroa, C; Maldonado, J; González-García, B M; Rodmann, J; Heras, A M; Pilbratt, G L; Augereau, J -Ch; Mora, A; Montesinos, B; Ardila, D; Bryden, G; Liseau, R; Stapelfeldt, K; Launhardt, R; Solano, E; Bayo, A; Absil, O; Ar?evalo, M; Barrado, D; Beichmann, C; Danchi, W; del Burgo, C; Ertel, S; Fridlund, M; Fukagawa, M; Gutiérrez, R; Grün, E; Kamp, I; Krivov, A; Lebreton, J; Löhne, T; Lorente, R; Marshall, J; Martínez-Arnáiz, R; Meeus, G; Montes, D; Morbidelli, A; Müller, S; Mutschke, H; Nakagawa, T; Olofsson, G; Ribas, I; Roberge, A; Sanz-Forcada, J; Thébault, P; Walker, H; White, G J; Wolf, S

    2010-01-01

    We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta^2 Ret, taken within the context of the DUNES Herschel Open Time Key Programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 um fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than Ldust/Lstar ~ 5 x 10^-7 (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of ~ 100 AU in size is detected around zeta^2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with Ldust/Lstar ~ 10^-5.

  1. The evolution of the stellar populations in low surface brightness galaxies

    NARCIS (Netherlands)

    van den Hoek, LB; de Blok, WJG; van der Hulst, JM; de Jong, T

    2000-01-01

    We investigate the star formation history and chemical evolution of low surface brightness (LSB) disk galaxies by modelling their observed spectro-photometric and chemical properties using a galactic chemical and photometric evolution model incorporating a detailed metallicity dependent set of stell

  2. The evolution of the stellar populations in low surface brightness galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; Hulst, J. M. van der; Jong, T. de

    2000-01-01

    Abstract: We investigate the star formation history and chemical evolution of low surface brightness (LSB) disk galaxies by modelling their observed spectro-photometric and chemical properties using a galactic chemical and photometric evolution model incorporating a detailed metallicity depen dent s

  3. Seoul National University Bright Quasar Survey in Optical (SNUQSO) I: First Phase Observations and Results

    CERN Document Server

    Lee, Induk; Kim, Minjin; Kang, Eugene; Shim, Hyunjin; Richards, Gordon T; Edge, Alastair C; Lee, Myung Gyoon; Park, Changbom; Park, Myeong-Gu

    2008-01-01

    We present results from the first phase of the Seoul National University Bright Quasar Survey in Optical (SNUQSO) as well as its basic observational setup. Previous and current large-area surveys have been successful in identifying many quasars, but they could have missed bright quasars due to their survey design. In order to help complete the census of bright quasars, we have performed spectroscopic observations of new bright quasar candidates selected from various methods based on optical colors, near-infrared colors, radio, and X-ray data. In 2005/2006, we observed 55 bright quasar candidates using the Bohyunsan Optical Echelle Spectrograph (BOES) on the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea. We identify 14 quasars/Seyferts from our observation, including an optically bright quasar with i=14.98 mag at z=0.092 (SDSS J003236.59-091026.2). Non-quasar/Seyfert objects are found to be mostly stars, among which there are five M-type stars and one cataclysmic variable. Our result ...

  4. Do Baryons Alter the Halos of Low Surface Brightness Galaxies?

    CERN Document Server

    de Naray, Rachel Kuzio

    2011-01-01

    High-quality observations of dark matter-dominated low surface brightness (LSB) galaxies indicate that, in contrast to the triaxial, centrally-concentrated cuspy halos formed in collisionless simulations of halo assembly, these galaxies reside in round, roughly constant density cored halos. In order to reconcile these data with galaxy formation in the context of LCDM, processes that alter the shape and density structure of the inner halo are required. We compile observational properties of LSB galaxies to evaluate the plausibility that a previously higher baryonic mass content and feedback from star formation can modify the dark matter halos of these galaxies. We also compare the properties of bulgeless disk galaxies formed in recent simulations to the LSB galaxy sample. We find that observational constraints on LSB galaxy star formation histories, structure, and kinematics make it difficult for baryonic physics to sphericalize and decrease the central density of the dark matter halos of LSB galaxies.

  5. Abundances in Stars with Debris Disks

    CERN Document Server

    Ritchey, Adam M; Stone, Myra; Wallerstein, George

    2013-01-01

    We present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least...

  6. Dark Stars: A Review

    CERN Document Server

    Freese, Katherine; Spolyar, Douglas; Valluri, Monica

    2015-01-01

    Dark Stars (DS) are stellar objects made (almost entirely) of ordinary atomic material but powered by the heat from Dark Matter (DM) annihilation (rather than by fusion). Weakly Interacting Massive Particles (WIMPs), among the best candidates for DM, can be their own antimatter and can accumulate inside the star, with their annihilation products thermalizing with and heating the DS. The resulting DSs are in hydrostatic and thermal equilibrium. The first phase of stellar evolution in the history of the Universe may have been dark stars. Though DM constituted only $10^6 M_\\odot$), very bright ($>10^9 L_\\odot$), and potentially detectable with the James Webb Space Telescope (JWST). Once the DM runs out and the dark star dies, it may collapse to a black hole; thus DSs can provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The curre...

  7. Superflare G and K Stars and the Lithium abundance

    CERN Document Server

    Katsova, M M; Mishenina, T V; Nizamov, B A

    2016-01-01

    We analyzed here the connection of superflares and the lithium abundance in G and K stars based on Li abundance determinations conducted with the echelle spectra of a full set of 280 stars obtained with the ELODIE spectrograph. For high-active stars we show a definite correlation between $\\log A(Li)$ and the chromosphere activity. We show that sets of stars with high Li abundance and having superflares possess common properties. It relates, firstly, to stars with activity saturation. We consider the X-ray data for G, K, and M stars separately, and show that transition from a saturation mode to solar-type activity takes place at values of rotation periods 1.1, 3.3, and 7.2 days for G2, K4 and M3 spectral types, respectively. We discuss bimodal distribution of a number of G and K main-sequence stars versus an axial rotation and location of superflare stars with respect to other Kepler stars. We conclude that superflare G and K stars are mainly fast rotating young objects, but some of them belong to stars with s...

  8. Star Clusters

    OpenAIRE

    Gieles, M.

    1993-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  9. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  10. Dark Skies, Bright Kids! Year 4

    Science.gov (United States)

    Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.

    2013-01-01

    Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning

  11. VERITAS Observations under Bright Moonlight

    CERN Document Server

    ,

    2015-01-01

    The presence of moonlight is usually a limiting factor for imaging atmospheric Cherenkov telescopes due to the high sensitivity of the camera photomultiplier tubes (PMTs). In their standard configuration, the extra noise limits the sensitivity of the experiment to gamma-ray signals and the higher PMT currents also accelerates PMT aging. Since fall 2012, observations have been carried out with VERITAS under bright moonlight (Moon illumination $> 35\\%$), in two observing modes, by reducing the voltage applied to the PMTs and with UV bandpass filters, which allow observations up to $\\sim80\\%$ Moon illumination resulting in $29\\%$ more observing time over the course of the year. In this presentation, we provide details of these new observing modes and their performance relative to the standard VERITAS observations.

  12. Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy

    DEFF Research Database (Denmark)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann

    2016-01-01

    for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis...

  13. A Solar-type Stellar Companion to a Deep Contact Binary in a Quadruple System

    CERN Document Server

    Zhou, X; Zhang, J; Jiang, L -Q; Zhang, B; Kreiner, J

    2016-01-01

    The four-color ($B$ $V$ $R_c$ $I_c$) light curves of V776 Cas are presented and analyzed using the Wilson-Devinney (W-D) method. It is discovered that V776 Cas is an early F-type (F2V) overcontact binary with a very high contact degree ($ f=64.6\\,\\%$) and an extremely low mass ratio ($q=0.130$), which indicate that it is at the final evolutionary stage of cool short-period binaries. The mass of the primary and secondary stars are calculated to be $M_1 = 1.55(\\pm0.04)M_\\odot$, $M_2 = 0.20(\\pm0.01)M_\\odot$. V776 Cas is supposed to be formed from an initially detached binary system via the loss of angular momentum due to the magnetic wind. The initial mass of the present primary and secondary components are calculated to be $M_{1i} = 0.86(\\pm0.10)M_\\odot$ and $M_{2i} = 2.13(\\pm0.04)M_\\odot$. The observed-calculated ($O$-$C$) curve exhibits a cyclic period variation, which is due to the light-travel time effect (LTTE) caused by the presence of a third component with a period of 23.7 years. The mass of the third c...

  14. Aftereffect of Adaptation to Illusory Brightness

    Directory of Open Access Journals (Sweden)

    Xinguang Cao

    2011-05-01

    Full Text Available Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of the tested square area was physically unchanged. The results show that when the black surround inducing brightness contrast suddenly became gray (i.e., vanished, the center gray square tended to look darker than a control gray square. Similarly, after viewing a subjective square consisting of black-line terminations, the square area tended to look darker than the control even though the afterimage of the lines could not be seen. These results indicate that induced or illusory brightness causes an aftereffect in brightness regardless of the appearance of negative afterimages of the illusion-inducing components.

  15. High-Resolution Spectroscopy of some very Active Southern Stars

    Science.gov (United States)

    Soderblom, David R.; King, Jeremy R.; Henry, Todd J.

    1998-01-01

    We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.

  16. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    other stars as well. A team of astronomers, led by Fabio Favata, from ESA's European Space Research and Technology Centre, The Netherlands, has monitored a small number of solar-type stars since the beginning of the XMM-Newton mission in 2000. The X-ray brightness of HD 81809, a star located 90 light years away in the constellation Hydra (the water snake), has varied by more than 10 times over the past two and a half years, reaching a well defined peak in mid 2002. The star has shown the characteristic X-ray modulation (brightening and dimming) typical of the solar cycle. "This is the first clear sign of a cyclic pattern in the X-ray emission of stars other than the Sun," said Favata. Furthermore, the data show that these variations are synchronised with the starspot cycle. If HD 81809 behaves like the Sun, its X-ray brightness can vary by a factor of one hundred over a few years. "We might well have caught HD 81809 at the beginning of an X-ray activity cycle," added Favata. The existence of starspot cycles on other stars had already been established long ago, thanks to observations that began in the 1950s. However, scientists did not know whether the X-ray radiation would also vary with the number of starspots. ESA's XMM-Newton has now shown that this is indeed the case and that this cyclic X-ray pattern is not typical of the Sun alone. "This suggests that our Sun's behaviour is probably nothing exceptional," said Favata. Besides its interest for scientists, the Sun's cyclical behaviour can have an influence on everyone on Earth. Our climate is known to be significantly affected by the high-energy radiation emitted by the Sun. For instance, a temporary disappearance of the solar cycle in the 18th century corresponded with an exceptionally cold period on Earth. Similarly, in the early phases of the lifetime of a planet, this high-energy radiation has a strong influence on the conditions of the atmosphere, and thus potentially on the development of life. Finding out

  17. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  18. Predicted Space Motions for Hypervelocity and Runaway Stars: Proper Motions and Radial Velocities for the GAIA Era

    CERN Document Server

    Kenyon, Scott J; Brown, Warren R; Geller, Margaret J

    2014-01-01

    We predict the distinctive three dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10~kpc, unbound stars are rare; however, proper motions isolate bound HVSs and runaways from indigenous halo stars. Towards the Galactic Center, high proper motion stars are a unique signature of HVSs or runaways. At larger distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g <= 20 stars with GAIA should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  19. GMRT H I study of giant low surface brightness galaxies

    Science.gov (United States)

    Mishra, A.; Kantharia, N. G.; Das, M.; Omar, A.; Srivastava, D. C.

    2017-01-01

    We present H I observations of four giant low surface brightness (GLSB) galaxies UGC 1378, UGC 1922, UGC 4422 and UM 163 using the Giant Meterwave Radio Telescope. We include H I results on UGC 2936, UGC 6614 and Malin 2 from literature. H I is detected from all the galaxies and the extent is roughly twice the optical size; in UM 163, H I is detected along a broken disc encircling the optical galaxy. We combine our results with those in literature to further understand these systems. The main results are the following: (1) the peak H I surface densities in GLSB galaxies are several times 1021 cm-2. The H I mass is between 0.3 and 4 × 1010 M⊙; dynamical mass ranges from a few times 1011 M⊙ to a few times 1012 M⊙. (2) The rotation curves of GLSB galaxies are flat to the outermost measured point with rotation velocities of the seven GLSB galaxies being between 225 and 432 km s-1. (3) Recent star formation traced by near-ultraviolet emission in five GLSB galaxies in our sample appears to be located in rings around the galaxy centre. We suggest that this could be due to a stochastic burst of star formation at one location in the galaxy being propagated along a ring over a rotation period. (4) The H I is correlated with recent star formation in five of the seven GLSB galaxies.

  20. GMRT HI study of giant low surface brightness galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, N. G.; Das, M.; Omar, A.; Srivastava, D. C.

    2016-10-01

    We present HI observations of four giant low surface brightness (GLSB) galaxies UGC 1378, UGC 1922, UGC 4422 and UM 163 using the Giant Meterwave Radio Telescope (GMRT). We include HI results on UGC 2936, UGC 6614 and Malin 2 from literature. HI is detected from all the galaxies and the extent is roughly twice the optical size; in UM 163, HI is detected along a broken disk encircling the optical galaxy. We combine our results with those in literature to further understand these systems. The main results are the following: (1) The peak HI surface densities in GLSB galaxies are several times 1021 cm-2. The HI mass is between 0.3 - 4 × 1010 M⊙, dynamical mass ranges from a few times 1011 M⊙ to a few times 1012 M⊙. (2) The rotation curves of GLSB galaxies are flat to the outermost measured point with rotation velocities of the seven GLSB galaxies being between 225 and 432 km s-1. (3) Recent star formation traced by near-ultraviolet emission in five GLSB galaxies in our sample appears to be located in rings around the galaxy centre. We suggest that this could be due to a stochastic burst of star formation at one location in the galaxy being propagated along a ring over a rotation period. (4) The HI is correlated with recent star formation in five of the seven GLSB galaxies.

  1. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  2. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  3. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies. Th

  4. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  5. CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Science.gov (United States)

    Suárez-Andrés, L.; Israelian, G.; González Hernández, J. I.; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.

    2017-03-01

    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims: We aim to present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods: We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300 Å was performed with the spectral synthesis codes MOOG and FITTING. Results: We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion Conclusions: We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300 Å. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID 72.C-0488, 082.C-0212, and 085.C-0063).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A96

  6. VizieR Online Data Catalog: WISE and HIP 22um excess stars (Wu+, 2013)

    Science.gov (United States)

    Wu, C.-J.; Wu, H.; Lam, M.-I.; Yang, M.; Wen, X.-Q.; Li, S.; Zhang, T.-J.; Gao, L.

    2013-11-01

    In this paper, we present a catalog that includes 141 bright candidates (search for extra-solar planets; we cross-match our catalog with known IR-excess stars with planets but found no matches. Finally, we give the fraction of stars showing excess IR for different spectral types of main-sequence stars. (2 data files).

  7. Galaxy selection and the surface brightness distribution

    CERN Document Server

    McGaugh, S S; Schombert, J M

    1995-01-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney (1976) suggested that the constancy of disk central surface brightness noticed by Freeman (1970) was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (\\ie approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity ...

  8. Vega is a rapidly rotating star

    CERN Document Server

    Peterson, D M; Pauls, T A; Armstrong, J T; Benson, J A; Gilbreath, G C; Hindsley, R B; Hutter, D J; Johnston, K J; Mozurkewich, D; Schmitt, H R

    2006-01-01

    Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visibile spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93% of breakup speed. In addition to explaining the unusual brightness and line shape pecularities, this result leads to the prediction of an excess of near-infra...

  9. Pulsating Star Mystery Solved

    Science.gov (United States)

    2010-11-01

    evolution of stars. This embarrassing discrepancy has been known since the 1960s. To resolve this mystery, astronomers needed to find a double star containing a Cepheid where the orbit happened to be seen edge-on from Earth. In these cases, known as eclipsing binaries, the brightness of the two stars dims as one component passes in front of the other, and again when it passes behind the other star. In such pairs astronomers can determine the masses of the stars to high accuracy [3]. Unfortunately neither Cepheids nor eclipsing binaries are common, so the chance of finding such an unusual pair seemed very low. None are known in the Milky Way. Wolfgang Gieren, another member of the team, takes up the story: "Very recently we actually found the double star system we had hoped for among the stars of the Large Magellanic Cloud. It contains a Cepheid variable star pulsating every 3.8 days. The other star is slightly bigger and cooler, and the two stars orbit each other in 310 days. The true binary nature of the object was immediately confirmed when we observed it with the HARPS spectrograph on La Silla." The observers carefully measured the brightness variations of this rare object, known as OGLE-LMC-CEP0227 [4], as the two stars orbited and passed in front of one another. They also used HARPS and other spectrographs to measure the motions of the stars towards and away from the Earth - both the orbital motion of both stars and the in-and-out motion of the surface of the Cepheid as it swelled and contracted. This very complete and detailed data allowed the observers to determine the orbital motion, sizes and masses of the two stars with very high accuracy - far surpassing what had been done before for a Cepheid. The mass of the Cepheid is now known to about 1% and agrees exactly with predictions from the theory of stellar pulsation. However, the larger mass predicted by stellar evolution theory was shown to be significantly in error. The much-improved mass estimate is only one

  10. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  11. Bright Streaks and Dark Fans

    Science.gov (United States)

    2007-01-01

    The south polar region of Mars is covered every year by a layer of carbon dioxide ice. In a region called the 'cryptic terrain,' the ice is translucent and sunlight can penetrate through the ice to warm the surface below. The ice layer sublimates (evaporates) from the bottom. The dark fans of dust seen in this image come from the surface below the layer of ice, carried to the top by gas venting from below. The translucent ice is 'visible' by virtue of the effect it has on the tone of the surface below, which would otherwise have the same color and reflectivity as the fans. Bright streaks in this image are fresh frost. The CRISM team has identified the composition of these streaks to be carbon dioxide. Observation Geometry Image PSP_003113_0940 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 26-Mar-2007. The complete image is centered at -85.8 degrees latitude, 106.0 degrees East longitude. The range to the target site was 244.9 km (153.0 miles). At this distance the image scale is 49.0 cm/pixel (with 2 x 2 binning) so objects 147 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 06:20 PM and the scene is illuminated from the west with a solar incidence angle of 79 degrees, thus the sun was about 11 degrees above the horizon. At a solar longitude of 207.6 degrees, the season on Mars is Northern Autumn.

  12. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  13. Olivier Chesneau's work on massive stars

    CERN Document Server

    Millour, Florentin

    2016-01-01

    Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon in 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.

  14. A New Method to Calibrate the Stellar Color/Surface-Brightness Relation

    CERN Document Server

    Gould, Andrew

    2014-01-01

    I show that the standard microlensing technique to measure the angular radius of a star using color/surface-brightness relations can be inverted, via late-time proper motion measurements, to calibrate these relations. The method is especially useful for very metal-rich stars because such stars are in short supply in the solar neighborhood where other methods are most effective, but very abundant in Galactic bulge microlensing fields. I provide a list of eight spectroscopically identified high-metallicity bulge stars with the requisite finite-source effects, seven of which will be suitable calibrators when the Giant Magellan Telescope comes on line. Many more such sources can be extracted from current and future microlensing surveys.

  15. The world's biggest star catalogue

    Science.gov (United States)

    Villard, Ray

    1989-12-01

    The Hubble Space Telescope (HST) Guide Star Catalog (GSC), an enormous inventory of the sky, is introduced as the product of eight years of intensive effort by astronomers, computer programmers, and analysts at the Space Telescope Science Institute. For every star in the SAO Catalog the GSC has 60, thus containing almost 19 million entries. The GSC is organized into 9,537 regions, each with a few thousand objects. Each object carries a 10-digit identification number. The first five digits encode the catalog region, and the last five specify the star number within the region. Additional data in the catalog include each object's celestial coordinates, brightness in magnitudes, and classification (stellar or nonstellar).

  16. Space Brightness Evaluation for a Daylit Room

    Directory of Open Access Journals (Sweden)

    Takashi Maruyama

    2011-05-01

    Full Text Available One of the most important problems for lighting design is how to reduce an electric energy. One way to solve this problem is use of daylight, but little is known how to perceive a brightness of a room illuminated by daylight come in through a window and artificial light. Although the horizontal illuminance increases because of daylight, we would not perceive the room as bright as brightness estimated by the illuminance. The purpose of this study is to measure the space brightness for daylit room and to propose a evaluation method. The experiment was conducted with a couple of miniature office rooms, standard room and test room. Test room has several types of windows and standard room has no window. Subject was asked to evaluate the brightness of the test room relative to the standard room with method of magnitude estimation. It was found that brightness of daylit room did not increase simply with horizontal illuminance. Subject perceived a daylit room darker than a room illuminated only by the artificial light even if horizontal illuminance of these room was same. The effect of daylight on space brightness would vary with the window size and intensity of daylight or artificial light.

  17. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    CERN Document Server

    Campante, T L; Lund, M N; Huber, D; Hekker, S; García, R A; Corsaro, E; Handberg, R; Miglio, A; Arentoft, T; Basu, S; Bedding, T R; Christensen-Dalsgaard, J; Davies, G R; Elsworth, Y P; Gilliland, R L; Karoff, C; Kawaler, S D; Kjeldsen, H; Lundkvist, M; Metcalfe, T S; Aguirre, V Silva; Stello, D

    2014-01-01

    We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  18. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  19. 'Peony Nebula' Star Settles for Silver Medal

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array

  20. The spectacular 200 kpc-wide disk of the Malin 1 giant low surface brightness galaxy

    Science.gov (United States)

    Boissier, Samuel

    2017-03-01

    Malin 1 is the best example among giant low surface brightness galaxies. New observations of this object in 6 broad-bands allow us for the first time to perform a pan-chromatic study of the stellar population in its 200 kpc wide disk. We observe a spiral structure revealing a star forming disk. The colors indicate a long history with a low efficiency of star formation. It is well reproduced by a model of disk galaxy making it similar to the disk of the Milky Way or other nearby spirals, except for its extremely large angular momentum.

  1. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  2. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band.

  3. Properties of Galaxies in the Disc Central Surface Brightness Gap

    CERN Document Server

    Sorce, Jenny G; Libeskind, Noam I

    2015-01-01

    Intermediate surface brightness (ISB) galaxies are less numerous than their counterparts at high and low surface brightness (HSB and LSB). Investigating ISB characteristics from a sample from the S4G survey, complete down to M_B=-16, we find that they have intermediate stellar, gas and baryonic masses and on average as much gas as stars. They lie on the (baryonic) Tully-Fisher relation between HSBs and LSBs, although they present a higher scatter than the latter. Their stellar to baryonic mass ratios have intermediate values unlike their condensed baryonic fractions. By comparing their environments, as classified by the eigenvalues of the velocity shear tensor of local constrained simulations, ISBs have a 5-10% probability higher (smaller) to be in sheets (filaments) with respect to HSBs and LSBs. Additionally, for galaxies in filaments (with close neighbors), the mass and mu_0 are correlated at 2.5 (2) sigma more than for those in sheets. ISBs live in regions where the divergence of the velocity field is sma...

  4. Properties of galaxies in the disc central surface brightness gap

    Science.gov (United States)

    Sorce, Jenny G.; Creasey, Peter; Libeskind, Noam I.

    2016-01-01

    Intermediate surface brightness (ISB) galaxies are less numerous than their counterparts at high and low surface brightness (HSB and LSB). Investigating ISB characteristics from a sample from the Spitzer Survey of Stellar Structure in Galaxies survey, complete down to MB = -16, we find that they have intermediate stellar, gas and baryonic masses and on average as much gas as stars. They lie on the (baryonic) Tully-Fisher relation between HSBs and LSBs, although they present a higher scatter than the latter. Their stellar to baryonic mass ratios have intermediate values unlike their condensed baryonic fractions. By comparing their environments, as classified by the eigenvalues of the velocity shear tensor of local constrained simulations, ISBs have a 5-10 per cent probability higher (smaller) to be in sheets (filaments) with respect to HSBs and LSBs. Additionally, for galaxies in filaments (with close neighbours), the mass and μ0 are correlated at 2.5 (2)σ more than for those in sheets. ISBs live in regions where the divergence of the velocity field is smaller than where HSBs and LSBs live, a result at more than 50 per cent significance. ISBs may exist as an unstable transition state between LSBs and HSBs, the low flow activity environment maximally encouraging their formation. Interaction events altering the central baryon fraction could happen at a lower rate in these less dense environment, whilst in the higher density environments the LSBs are primarily satellite galaxies, whose accretion is sufficiently constrained that it fails to promote them to HSBs.

  5. Bright PanSTARRS Nuclear Transients – what are they?

    Directory of Open Access Journals (Sweden)

    Smartt S.

    2012-12-01

    Full Text Available We present an initial analysis of 49 bright transients occurring in the nuclei of galaxies with no previous known Active Galactic Nucleus (AGN. They have been discovered as part of the PanSTARRs 3π survey, and followed up with the Liverpool Telescope. Based on colours, light curve shape, and a small number with optical spectra, these transients seem to fall into three groups. Red/fast transients are nuclear supernovae of various types. Some bright nuclear transients are blue and decay on a timescale of a few months; these may be candidates for tidal disruption events. However most of the events we have found are blue and are either still rising or decaying slowly, on a timescale of years; the few spectra we have show AGN at z ∼ 1. We argue that these transients are background AGN microlensed by stars in foreground galaxies by a factor 10–100. Monitoring such events gives us very promising prospects for measuring the structure of AGN and so testing current theories.

  6. X-ray bright groups and their galaxies

    CERN Document Server

    Helsdon, S F; Helsdon, Stephen F.; Ponman, Trevor J.

    2002-01-01

    Combining X-ray data from the ROSAT PSPC and optical data drawn from the literature, we examine in detail the relationship between the X-ray and optical properties of X-ray bright galaxy groups. We find a relationship between optical luminosity and X-ray temperature consistent with that expected from self-similar scaling of galaxy systems, L_B \\propto T^{1.6 +/- 0.2}. The self-similar form and continuity of the L_B : T relation from clusters to groups and the limited scatter seen in this relation, implies that the star formation efficiency is rather similar in all these systems. We find that the bright extended X-ray components associated with many central galaxies in groups appear to be more closely related to the group than the galaxy itself, and we suggest that these are group cooling flows rather than galaxy halos. In addition we find that the optical light in these groups appears to be more centrally concentrated than the light in clusters. We also use the optical and X-ray data to investigate whether ea...

  7. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  8. Brightness of synchrotron radiation from wigglers

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2014-01-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called `depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. I...

  9. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    CERN Document Server

    Alonso-Herrero, A; Roche, P F; Hernan-Caballero, A; Aretxaga, I; Martinez-Paredes, M; Almeida, C Ramos; Pereira-Santaella, M; Diaz-Santos, T; Levenson, N A; Packham, C; Colina, L; Esquej, P; Gonzalez-Martin, O; Ichikawa, K; Imanishi, M; Espinosa, J M Rodriguez; Telesco, C

    2016-01-01

    We investigate the evolutionary connection between local IR-bright galaxies ($\\log L_{\\rm IR}\\ge 11.4\\,L_\\odot$) and quasars. We use high angular resolution ($\\sim$ 0.3-0.4 arcsec $\\sim$ few hundred parsecs) $8-13\\,\\mu$m ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear $11.3\\,\\mu$m PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or...

  10. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhanjoy; Mortlock, Daniel [Imperial College London, 1010 Blackett Lab, Prince Consort Rd., London SW7 2AZ (United Kingdom); Greaves, Jane [SUPA, Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pascucci, Ilaria; Apai, Daniel [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Scholz, Aleks [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Thompson, Mark [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Lodato, Giuseppe [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Looper, Dagny, E-mail: s.mohanty@imperial.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)

    2013-08-20

    We present SCUBA-2 850 {mu}m observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3{sigma} limits correspond to a dust mass of 1.2 M{sub Circled-Plus} in Taurus and a mere 0.2 M{sub Circled-Plus} in the TWA (3-10 Multiplication-Sign deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, {rho} Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is {approx}100 AU for intermediate-mass stars, solar types, and VLMS, and {approx}20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M{sub *} from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and {rho} Oph intermediate-mass and solar-type stars evince an opacity index of {beta} {approx} 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 {mu}m fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A

  11. The analogy between stereo depth and brightness.

    Science.gov (United States)

    Brookes, A; Stevens, K A

    1989-01-01

    Apparent depth in stereograms exhibits various simultaneous-contrast and induction effects analogous to those reported in the luminance domain. This behavior suggests that stereo depth, like brightness, is reconstructed, ie recovered from higher-order spatial derivatives or differences of the original signal. The extent to which depth is analogous to brightness is examined. There are similarities in terms of contrast effects but dissimilarities in terms of the lateral inhibition effects traditionally attributed to underlying spatial-differentiation operators.

  12. Observations and diagnostics in high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Cianchi, A., E-mail: alessandro.cianchi@roma2.infn.it [University of Rome Tor Vergata and INFN-Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Anania, M.P.; Bisesto, F.; Castellano, M.; Chiadroni, E.; Pompili, R.; Shpakov, V. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The brightness is a figure of merit largely used in the light sources, like FEL (Free Electron Lasers), but it is also fundamental in several other applications, as for instance Compton backscattering sources, beam driven plasma accelerators and THz sources. Advanced diagnostics are essential tools in the development of high brightness beams. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement.

  13. Star Wreck

    OpenAIRE

    Kusenko, Alexander; Shaposhnikov, Mikhail E.; Tinyakov, P. G.; Tkachev, Igor I.

    1998-01-01

    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the or...

  14. Star polygons

    OpenAIRE

    Riosa, Blažka

    2014-01-01

    In mathematics we often encounter polygons, such us triangle, square, hexagon, etc., but we hardly encounter star polygons. Despite the fact that we do not meet them so often in mathematics, in nature they can be traced almost on every step. In this paper the emphasis is on the geometric meaning of regular star polygons. Star polygon is a generalization of the concept of regular polygons. In star polygons also non-adjacent sides intersect. Up to similarity they are determined by Schläfli symb...

  15. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    nebular emission. The reproduced brightness is proportional to the square-root of the actual intensity; this increases the "dynamical range" of the image, i.e. it shows better areas of very different brightness. PR Photo 09b/03 is a similar reproduction of the sky area with the nebula near the Wolf-Rayet (WR) star BAT99-2 in the LMC. The filters are the same, but the exposure times were 60, 5 and 5 min for the blue, green and red exposures, respectively. PR Photo 09c/03 shows, in the same way, the nebula around the hot double star BAT99-49 in the LMC. The filters are the same, but the exposure times were 45, 5 and 5 min for the blue, green and red exposures, respectively. Finally, PR Photo 09d/03 shows the N44C nebula in the LMC, photographed through the same optical filters with exposure times of 20, 5 and 5 min for the blue, green and red exposures, respectively. The sky field measures 208 x 208 arcsec2. The above collection of impressive VLT colour photos is unique. They show some of the highest excitation nebulae in the Magellanic Clouds (MCs), two satellite galaxies of our own Milky Way. They may be enjoyed for their beauty alone. However, each of them also carries a message about the depicted objects, their properties and evolutionary state. In fact, they represent the spectacular and visible result of a dedicated research programme begun by an international team of astronomers from Belgium and the United States of America [1], and aimed at unravelling the secrets of unsually hot nebulae. What makes them shine? From where come the enormous energies needed to make these nebulae glow in the light of ionized helium atoms? Emission nebulae Nebulae are huge clouds of gas and dust, the cosmic material from which stars and planets form, cf. the Appendix. Many of them emit their own light, and are then called emission nebulae. Astronomers distinguish between Planetary Nebulae (PNe), Supernova Remnants (SNRs) and "normal" emission nebulae or "HII regions" (pronounced "Eitch

  16. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    Science.gov (United States)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  17. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    Very Large Telescope Finds Planet-Sized Transiting Star Summary An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey. The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days. This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets. In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers. PR Photo 06a/05: Brightness "Dip" and Velocity Variations of OGLE-TR-122. PR Photo 06b/05: Properties of Low-Mass Stars and Planets. PR Photo 06c/05: Comparison Between OGLE-TR-122b, Jupiter and the Sun. The OGLE Survey When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star's light from our view [1]. These "planetary transits" are of great interest as they allow astronomers to measure in a unique way the mass and the radius of exoplanets. Several surveys are therefore underway which attempt to find these faint signatures of other worlds. One of these programmes is the OGLE survey which was originally devised to detect microlensing

  18. Stellar magnetic cycles in the solar-like stars Kepler-17 and Kepler-63

    CERN Document Server

    Estrela, Raissa

    2016-01-01

    The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field, and can characterise the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterise the magnetic activity of stars. Here, we studied two solar-type stars Kepler-17 and Kepler-63 using two methods to estimate the magnetic cycle length. The first one characterises the spots (radius, intensity, and location) by fitting the small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit lightcurves. This excess is obt...

  19. Photometry of some neglected bright cataclysmic variables and candidates

    CERN Document Server

    Bruch, Albert

    2016-01-01

    As part of an effort to better characterize bright cataclysmic variables (CVs) which have received little attention in the past light curves of four confirmed systems (CZ Aql, BO Cet, V380 Oph and EF Tuc) and one candidate (Lib 3) are analyzed. For none of these stars time resolved photometry has been published previously. While no variability was found in the case of Lib 3, which thus cannot be confirmed as a CV, the light curves of all other targets are dominated by strong flickering. Modulations on hourly time scales superimposed on the flickering can probably be related to orbital variations in BO Cet and V380 Oph, but not in CZ Aql and EF Tuc. Variations on the time scale of 10 minutes in CZ Aql, while not yet constituting convincing evidence, together with previous suspicions of a magnetically channeled accretion flow may point at an intermediate polar nature of this star. Some properties of the flickering are quantified in an effort to enlarge the data base for future comparative flickering studies in ...

  20. Low and High Surface Brightness Galaxies at Void Walls

    CERN Document Server

    Ceccarelli, L; Lambas, D G; Galaz, G; Padilla, N D

    2012-01-01

    We study the relative fraction of low and high surface brightness galaxies (LSBGs and HSBGs) at void walls in the SDSS DR7. We focus on galaxies in equal local density environments. We assume that the host dark-matter halo mass (for which we use SDSS group masses) is a good indicator of local density. This analysis allows to examine the behavior of the abundance of LSBG and HSBG galaxies at a fixed local density and distinguish the large-scale environment defined by the void geometry. We compare galaxies in the field, and in the void walls; the latter are defined as the volume of void shells of radius equal to that of the void. We find a significant decrement, a factor $\\sim 4$, of the relative fraction of blue, active star-forming LSBGs in equal mass groups at the void walls and the field. This decrement is consistent with an increase of the fraction of blue, active star-forming HSBGs. By contrast, red LSBGs and HSBGs show negligible changes. We argue that these results are consistent with a scenario where L...

  1. STAR Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, W W, E-mail: jacobsw@indiana.ed [Indiana University Cyclotron Facility and Department of Physics, 2401 Milo B. Sampson Lane, Bloomington IN 47408 (United States)

    2009-04-01

    The main STAR calorimeters comprise a full Barrel EMC and single Endcap EMC plus a Forward Meson Spectrometer. Together they give a nearly complete coverage over the range -1 < pseudorapidity < 4 and provide EM readout and triggering that help drive STAR physics capabilities. Their description, status, performance and operations (and a few physics anecdotes) are briefly presented and discussed.

  2. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  3. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  4. On the Hipparcos parallaxes of O stars

    Science.gov (United States)

    Schröder, S. E.; Kaper, L.; Lamers, H. J. G. L. M.; Brown, A. G. A.

    2004-12-01

    We compare the absolute visual magnitude of the majority of bright O stars in the sky as predicted from their spectral type with the absolute magnitude calculated from their apparent magnitude and the Hipparcos parallax. We find that many stars appear to be much fainter than expected, up to five magnitudes. We find no evidence for a correlation between magnitude differences and the stellar rotational velocity as suggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whose small sample of stars is partly included in ours. Instead, by means of a simulation we show how these differences arise naturally from the large distances at which O stars are located, and the level of precision of the parallax measurements achieved by Hipparcos. Straightforwardly deriving a distance from the Hipparcos parallax yields reliable results for one or two O stars only. We discuss several types of bias reported in the literature in connection with parallax samples (Lutz-Kelker, Malmquist) and investigate how they affect the O star sample. In addition, we test three absolute magnitude calibrations from the literature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth & Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) and find that they are consistent with the Hipparcos measurements. Although O stars conform nicely to the simulation, we notice that some B stars in the sample of \\citeauthor{La97} have a magnitude difference larger than expected.

  5. Hesiod's calendar and the star Spica

    CERN Document Server

    Antonello, Elio

    2013-01-01

    In Hesiod's calendar, circa 8th century BCE, the harvest times of cereals were indicated by the heliacal rising of Pleiades (harvest) and by that of Orion (thresh). We tried to verify which risings and settings of the brightest stars could have been used as indicators in the previous millennia, taking into account the precession and the dependence of the heliacal dates on the latitude. In the second half of the 9th millennium BCE there was essentially one bright star that could have been used both for the harvest (heliacal setting of the star) and for the thresh (heliacal rising of the star): Spica, i.e. ear (in Latin) of cereals. According to archaeologists, the domestication of barley and wheat occurred in Near East at the end of the 9th millennium BCE. Given the importance of the bright stars and asterisms for ancient farming activities, we have therefore proposed that the identification of the star alpha Virginis with an ear should date back to the beginning of Neolithic, possibly well before the identifi...

  6. Active Longitudes and Flip-Flops in Binary Stars

    Science.gov (United States)

    Korhonen, Heidi; Järvinen, Silva P.

    2007-08-01

    In many active stars the spots concentrate on two permanent active longitudes which are 180 degrees apart. In some of these stars the dominant part of the spot activity changes the longitude every few years. This so-called flip-flop phenomenon was first reported in the early 1990's in the single, late type giant FK Com. Since then flip-flops have been reported also on binary stars, young solar type stars and the Sun itself. Even though this phenomenon has been detected on many different kinds of active stars, still less than ten stars are known to exhibit this effect. Therefore no statistically significant correlation between the stellar parameters and the flip-flop phenomenon can be carried out. Here we present results from investigation where we have studied the long-term photometry of several magnetically active RS CVn binaries to see whether or not they show permanent active longitudes and the flip-flop phenomenon. We find that it is very common for the active regions to occur on permanent active longitudes, and some of these stars also show clear flip-flop phenomenon.

  7. Search for bright nearby M dwarfs with virtual observatory tools

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Caballero, J. A.; Montesinos, B.; Gálvez-Ortiz, M. C.; Solano, E.; Martín, E. L. [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain)

    2014-08-01

    Using Virtual Observatory tools, we cross-matched the Carlsberg Meridian 14 and the 2MASS Point Source catalogs to select candidate nearby bright M dwarfs distributed over ∼25,000 deg{sup 2}. Here, we present reconnaissance low-resolution optical spectra for 27 candidates that were observed with the Intermediate Dispersion Spectrograph at the 2.5 m Isaac Newton Telescope (R≈ 1600). We derived spectral types from a new spectral index, R, which measures the ratio of fluxes at 7485-7015 Å and 7120-7150 Å. We also used VOSA, a Virtual Observatory tool for spectral energy distribution fitting, to derive effective temperatures and surface gravities for each candidate. The resulting 27 targets were M dwarfs brighter than J = 10.5 mag, 16 of which were completely new in the Northern hemisphere and 7 of which were located at less than 15 pc. For all of them, we also measured Hα and Na I pseudo-equivalent widths, determined photometric distances, and identified the most active stars. The targets with the weakest sodium absorption, namely, J0422+2439 (with X-ray and strong Hα emissions), J0435+2523, and J0439+2333, are new members in the young Taurus-Auriga star-forming region based on proper motion, spatial distribution, and location in the color-magnitude diagram, which reopens the discussion on the deficit of M2-4 Taurus stars. Finally, based on proper motion diagrams, we report on a new wide M dwarf binary system in the field, LSPM J0326+3929EW.

  8. Environments of massive stars and the upper mass limit

    CERN Document Server

    Crowther, Paul A

    2012-01-01

    The locations of massive stars (> 8 Msun) within their host galaxies is reviewed. These range from distributed OB associations to dense star clusters within giant HII regions. A comparison between massive stars and the environments of core-collapse supernovae and long duration Gamma Ray Bursts is made, both at low and high redshift. We also address the question of the upper stellar mass limit, since very massive stars (VMS, Minit >> 100 Msun) may produce exceptionally bright core-collapse supernovae or pair instability supernovae.

  9. B- and A-Type Stars in the Taurus-Auriga Star Forming Region

    CERN Document Server

    Mooley, Kunal P; Rebull, Luisa M; Padgett, Deborah L; Knapp, Gillian R

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral type B. The second group consists of early-type stars compiled from (i) literature listings in SIMBAD; (ii) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud; (iii) magnitude- and color-selected point sources from the 2MASS; and (iv) spectroscopically identified early-type stars from the SDSS coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emiss...

  10. Laser Guide Star Adaptive Optics without Tip-tilt

    CERN Document Server

    Davies, R; Lidman, C; Louarn, M Le; Kasper, M; Förster-Schreiber, N M; Roccatagliata, V; Ageorges, N; Amico, P; Dumas, C; Mannucci, F

    2008-01-01

    Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

  11. Brightness discrimination in budgerigars (Melopsittacus undulatus.

    Directory of Open Access Journals (Sweden)

    Olle Lind

    Full Text Available Birds have excellent spatial acuity and colour vision compared to other vertebrates while spatial contrast sensitivity is relatively poor for unknown reasons. Contrast sensitivity describes the detection of gratings of varying spatial frequency. It is unclear whether bird brightness discrimination between large uniform fields is poor as well. Here we show that budgerigars (Melopsittacus undulatus need a Michelson contrast of 0.09 to discriminate between large spatially separated achromatic fields in bright light conditions. This is similar to the peak contrast sensitivity of 10.2 (0.098 Michelson contrast for achromatic grating stimuli established in earlier studies. The brightness discrimination threshold described in Weber fractions is 0.18, which is modest compared to other vertebrates.

  12. Rising Star

    OpenAIRE

    Worley, Christiana

    2012-01-01

    Rising Star is a novel about appearances. Thailand Allen is a girl who thinks she understands what she sees. But when what she sees are cracks in her perfect world, maturation and new sight are not far off. Before growth can occur, Thailand must undergo a painful process of learning that carries with it embarrassment, sorrow, anger and confusion. Thailand lives with her mother in a small Texas town called Rising Star. Rising Star is like every other small town with its community gather...

  13. The SDSS view of the Palomar-Green bright quasar survey

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.; Green, Richard F.; Schmidt, Maarten; Hall, Patrick B.; Strauss, Michael A.; Vanden Berk, Daniel E.; Stoughton, Chris; Gunn, James E.; Brinkmann, Jon; Kent, Stephen M.; Smith, J.Allyn; Tucker, Douglas, L.; Yanny, Brian; /Fermilab /Penn State U., Astron. Astrophys. /Princeton U.

    2005-02-01

    The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.

  14. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  15. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  16. VizieR Online Data Catalog: Young star groups in NGC 300 (Rodriguez+, 2016)

    Science.gov (United States)

    Rodriguez, M. J.; Baume, G.; Feinstein, C.

    2016-08-01

    Fundamental characteristics of 1147 young star groups identified in 6 ACS/WFC fields of the galaxy NGC 300. For each group: field of the ACS/WFC, equatorial coordinates, radius, number of stars (the suffix bri indicates bright stars with F555W<25, the suffix dct indicate stars belonging to the decontaminated region, the suffixes blue and red refer to blue and red stars respectively), the magnitude of the brightest star in the group, PDMF slope with its error, and galactocentric distance. (1 data file).

  17. The historical investigation of cometary brightness

    Science.gov (United States)

    Hughes, David W.

    1998-12-01

    The interpretation of the way in which the brightness of a comet varied as a function of both its heliocentric and geocentric distance was essentially started by Isaac Newton in his book Philosophiae Naturalis Principia Mathematica, published in 1687. Astronomers have argued about the form of this variability ever since, and for many years it was regarded as an important clue as to the physical nature of the cometary nucleus and its decay process. This paper reviews our understanding of the causes of cometary brightness variability between about 1680 and the 1950s.

  18. Mass loss from red giant stars. II. Carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Wannier, P.G.; Sahai, R.; Andersson, B.G.; Johnson, H.R. (JPL, Pasadena, CA (USA) Goteborg Universitet (Sweden) Indiana Univ., Bloomington (USA))

    1990-07-01

    A millimeter-wave survey has been made of bright relatively unobscured, carbon stars, chosen on the basis of their optical properties. Out of 26 program objects, (J = 2-1)CO emission is detected from 15. Most of these had not been previously detected. There are many differences among the observed objects, but one rather interesting trend emerges: a positive correlation, at moderate IR excesses, between the IR dust emission and the expansion velocity of the dense wind. A similar, positive correlation with the mass-loss rate implies that stars with larger mass fluxes also accelerate them to larger velocities. At high-IR excesses, both correlations break down, and the momentum rate may be limited by the momentum rate of the stellar radiation. All these effects could be ascribed to differences in the gas-to-dust ratio, assuming that radiation pressure initiates and accelerates the wind. 38 refs.

  19. Mass loss from red giant stars. II - Carbon stars

    Science.gov (United States)

    Wannier, P. G.; Sahai, R.; Andersson, B.-G.; Johnson, H. R.

    1990-01-01

    A millimeter-wave survey has been made of bright relatively unobscured, carbon stars, chosen on the basis of their optical properties. Out of 26 program objects, (J = 2-1)CO emission is detected from 15. Most of these had not been previously detected. There are many differences among the observed objects, but one rather interesting trend emerges: a positive correlation, at moderate IR excesses, between the IR dust emission and the expansion velocity of the dense wind. A similar, positive correlation with the mass-loss rate implies that stars with larger mass fluxes also accelerate them to larger velocities. At high-IR excesses, both correlations break down, and the momentum rate may be limited by the momentum rate of the stellar radiation. All these effects could be ascribed to differences in the gas-to-dust ratio, assuming that radiation pressure initiates and accelerates the wind.

  20. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    Science.gov (United States)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  1. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  2. Rock Stars

    Institute of Scientific and Technical Information of China (English)

    张国平

    2000-01-01

    Around the world young people are spending unbelievable sums of money to listen to rock music. Forbes Magazine reports that at least fifty rock stars have incomes between two million and six million dollars per year.

  3. A Mysterious Population of Stars With Weak CN Absorption in the Disk of M31

    Science.gov (United States)

    Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Guhathakurta, Puragra; Hays, Jon; Rosenfield, Philip; SPLASH Collaboration; PHAT Collaboration

    2017-01-01

    From our study of certain stars in the Andromeda Galaxy, we found stars with clear evidence of the molecule cyanogen (CN) alongside molecules typically in oxygen-rich stars (TiO, Calcium) in their atmospheres. The juxtaposition of these molecules is amplified by our observation that stars do not normally simultaneously exhibit carbonaceous and oxygenaceous molecules. Due to the less apparent presence of CN in these stars compared to carbon stars, we initially named these stars ‘weak CN’ stars and assumed a relationship between these stars and carbon stars. To further deepen our understanding of the characteristics of these stars, we measured and analyzed their spectroscopic data, position on Color Magnitude Diagrams, variations in velocity, and placement in evolutionary stellar models. While spectra of weak CN and carbon stars indicated a shared presence of CN in both star groups, the placements of these stars on color magnitude diagrams suggested that these two populations are unrelated due to variations in brightness and temperature. Additional analyses of velocity, based on an observed correlation between velocity dispersion and age of a star (Dorman 2015), further implied that these weak CN stars are a younger and clearly separate group of stars. Finally, using stellar models to track changes in temperature and luminosity of stars over time, we mapped positions of weak CN stars to a region on the evolutionary path of massive stars. Based on our knowledge of this region, we found sufficient evidence to conclude that weak CN stars are part of a relatively unknown, young evolutionary phase of massive stars called red core Helium burning (RCHeB) stars. Over the course of our research, we also built a detection program to identify other weak CN stars based on their subtle spectral features. In the future, we hope to apply other limitations based on our knowledge of red core Helium burning stars to refine our search and expand our knowledge on this population of

  4. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  5. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  7. The Unusual Photometric Variability of the PMS Star GM Cep

    Science.gov (United States)

    Semkov, E. H.; Ibryamov, S. I.; Peneva, S. P.; Milanov, T. R.; Stoyanov, K. A.; Stateva, I. K.; Kjurkchieva, D. P.; Dimitrov, D. P.; Radeva, V. S.

    2015-03-01

    Results from UBVRI photometric observations of the pre-main sequence star GM Cep obtained in the period 2011 April-2014 August are reported in the paper. Presented data are a continuation of our photometric monitoring of the star started in 2008. GM Cep is located in the field of the young open cluster Trumpler 37 and over the past years it has been an object of intense photometric and spectral studies. The star shows a strong photometric variability interpreted as a possible outburst from EXor type in previous studies. Our photometric data for a period of over six years show a large amplitude variability (ΔV ~ 2.3 mag) and several deep minimums in brightness are observed. The analysis of the collected multicolour photometric data show the typical of UX Ori variables a colour reversal during the minimums in brightness. The observed decreases in brightness have a different shape, and evidences of periodicity are not detected. At the same time, high amplitude rapid variations in brightness typical for the classical T Tauri stars also present on the light curve of GM Cep. The spectrum of GM Cep shows the typical of classical T Tauri stars wide Hα emission line and absorption lines of some metals. We calculate the outer radius of the Hα emitting region as 10.4 ± 0.5 R⊙ and the accretion rate as 1.8 × 10- 7 M⊙ yr- 1.

  8. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by

  9. CNO behaviour in planet-harbouring stars. I Nitrogen abundances in stars with planets

    CERN Document Server

    Suárez-Andrés, L; Hernández, J I González; Adibekyan, V Zh; Mena, E Delgado; Santos, N C; Sousa, S G

    2016-01-01

    Carbon, nitrogen, and oxygen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. We present a detailed spectroscopic analysis of 74 solar-type stars, 42 of which are known to harbour planets. We determine the nitrogen abundances of these stars and investigate a possible connection between N and the presence of planetary companions. We used VLT/UVES to obtain high-resolution near-UV spectra of our targets. Spectral synthesis of the NH band at 3360A was performed with the spectral synthesis codes MOOG and FITTING. We identify several spectral windows from which accurate N abundance can be obtained. Nitrogen distributions for stars with and without planets show that planet hosts are nitrogen-rich when compared to single stars. However, given the linear trend between [N/Fe] vs [Fe/H], this fact can be explained as being due to the metal-rich nature of planet hosts. We conclude that reliable N abundances can be ...

  10. Brightness of synchrotron radiation from wigglers

    Science.gov (United States)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-01-01

    According to the literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so-called 'depth-of-field' effects. In fact, the particle beam cross-section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. We exemplify this formalism in simple limiting cases. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in the literature.

  11. Bright Future for Petroleum Development Cooperation

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenqing

    1996-01-01

    @@ China's oil prospects look bright, since reform and opening speed up. The oil production of 1995 is 148 million tons and the confirmed reserves of oil and gas only occupy one-fifth of those possible to be verified, the petroleum exploration will be deepened to locate and confirm the remaining reserves.

  12. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.

    1996-01-01

    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that L

  13. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P

    1997-01-01

    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB galaxie

  14. A photometric investigation of a bright Geminid

    NARCIS (Netherlands)

    Degewij, J.; Diggelen, Johannes van

    1968-01-01

    Photographic observations of meteors in the Netherlands started with a bright Geminid of photographic magnitude −8 observed on December 11, 1955, 21h39m55s by M. Alberts. From the assumed radiant and velocity we have constructed the trajectory of the bolide. The luminosity of the trail has been dete

  15. Alberta Associations for Bright Children Members' Handbook.

    Science.gov (United States)

    Alberta Association for Bright Children, Edmonton.

    This handbook is designed to provide information to parents of gifted children in Alberta, Canada. The handbook outlines the mission and objectives of the Alberta Associations for Bright Children and describes the structure of the non-profit organization. The booklet then addresses: (1) the characteristics of gifted children; (2) the rights of…

  16. Brightness and darkness as perceptual dimensions.

    Directory of Open Access Journals (Sweden)

    Tony Vladusich

    2007-10-01

    Full Text Available A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D space varying from bright to dark. The results of many previous psychophysical studies suggest, by contrast, that achromatic colors are represented as points in a color space composed of two or more perceptual dimensions. The nature of these perceptual dimensions, however, presently remains unclear. Here we provide direct evidence that brightness and darkness form the dimensions of a two-dimensional (2-D achromatic color space. This color space may play a role in the representation of object surfaces viewed against natural backgrounds, which simultaneously induce both brightness and darkness signals. Our 2-D model generalizes to the chromatic dimensions of color perception, indicating that redness and greenness (blueness and yellowness also form perceptual dimensions. Collectively, these findings suggest that human color space is composed of six dimensions, rather than the conventional three.

  17. Carmencita, The CARMENES Input Catalogue of Bright, Nearby M Dwarfs

    Science.gov (United States)

    Caballero, J. A.; Cortés-Contreras, M.; Alonso-Floriano, F. J.; Montes, D.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Abellan, F. J.; Béjar, V. J. S.; Brinkmöller, M.; Czesla, S.; Dorda, R.; Gallardo, I.; González-Álvarez, E.; Hidalgo, D.; Holgado, G.; Jeffers, S. V.; Kim, M.; Klutsch, A.; Lamert, A.; Llamas, M.; López-Santiago, J.; Martínez-Rodríguez, H.; Morales, J. C.; Mundt, R.; Passegger, V. M.; Schöfer, P.; Seifert, W.; Zechmeister, M.

    2016-08-01

    CARMENES, the brand-new, Spanish-German, two-channel, ultra-stabilised, high-resolution spectrograph at the 3.5 m Calar Alto telescope, started its science survey on 01 Jan 2016. In one shot, it covers from 0.52 to 1.71 μm with resolution R = 94,600 (λ 0.96 μm). During guaranteed time observations, CARMENES carries out the programme for which the instrument was designed: radial-velocity monitoring of bright, nearby, low-mass dwarfs with spectral types be- tween M0.0 V and M9.5 V. Carmencita is the "CARMEN(ES) Cool dwarf Information and daTa Archive", our input catalogue, from which we select the about 300 targets being observed during guaranteed time. Besides that, Carmencita is perhaps the most comprehensive database of bright, nearby M dwarfs ever built, as well as a useful tool for forthcoming exo-planet hunters: ESPRESSO, HPF, IRD, SPIRou, TESS or even PLATO. Carmencita contains dozens of parameters measured by us or compiled from the literature for about 2,200 M dwarfs in the solar neighbourhood brighter than J = 11.5 mag: accurate coordinates, spectral types, photometry from ultraviolet to mid-infrared, parallaxes and spectro-photometric distances, rotational and radial velocities, Hα pseudo-equivalent widths, X-ray count rates and hardness ratios, close and wide multiplicity data, proper motions, Galactocentric space velocities, metallicities, full references, homogeneously derived astrophysical parameters, and much more. In my talk at Cool Stars 19, I explained how we build Carmencita standing on the shoulders of giants and observing with 2-m class telescopes, and produce a dozen MSc theses and several PhD theses in the process (http://carmenes.caha.es).

  18. Three Temperate Neptunes Orbiting Nearby Stars

    CERN Document Server

    Fulton, Benjamin J; Weiss, Lauren M; Sinukoff, Evan; Petigura, Erik A; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W; Henry, Gregory W; Grunblatt, Samuel K; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S; Kane, Stephen R; Wittrock, Justin; Horch, Elliott P; Ciardi, David R; Howell, Steve B; Wright, Jason T; Ford, Eric B

    2016-01-01

    We present the discovery of three modestly-irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of $15.4 \\pm 2.4$ M$_{\\oplus}$, a semi-major axis of 0.55 AU, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 ($\\rho$ CrB). The new planet orbiting HD 164922 has a minimum mass of $12.9 \\pm 1.6$ M$_{\\oplus}$ and orbits interior to the previously known Jovian mass planet orbiting at 2.1 AU. HD 164922 c has a semi-major axis of 0.34 AU and an equilibrium temperature of 418 K. HD 143761 c orbits with a semi-major axis of 0.44 AU, has a minimum mass of $25 \\pm 2$ M$_{\\oplus}$, and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photom...

  19. New Surface Brightness Fluctuations Spectroscopic Technique: NGC4449 and its Stellar Tidal Stream

    CERN Document Server

    Toloba, Elisa; Romanowsky, Aaron; Brodie, Jean; Martinez-Delgado, David; Arnold, Jacob; Ramachandran, Neel; Theakanath, Kuriakose

    2016-01-01

    We present a new spectroscopic technique based in part on targeting the upward fluctuations of the surface brightness for studying the internal stellar kinematics and metallicities of low surface brightness galaxies and streams beyond the Local Group. The distance to these systems makes them unsuitable for targeting individual red giant branch (RGB) stars (tip of RGB at $I\\gtrsim24$~mag) and their surface brightness is too low ($\\mu_r\\gtrsim 25$~mag~arcsec$^{-2}$) for integrated light spectroscopic measurements. This technique overcomes these two problems by targeting individual objects that are brighter than the tip of the RGB. We apply this technique to the star-forming dwarf galaxy NGC 4449 and its stellar stream. We use Keck/DEIMOS data to measure the line-of-sight radial velocity out to $\\sim7$~kpc in the East side of the galaxy and $\\sim8$~kpc along the stream. We find that the two systems are likely gravitationally bound to each other and have heliocentric radial velocities of $227.3\\pm10.7$~km/s and $...

  20. Unveiling extremely veiled T Tauri stars

    CERN Document Server

    Gahm, G F; Stempels, H C; Petrov, P P; Herczeg, G J

    2008-01-01

    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars at several epochs photometrically and spectroscopically. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived ...