WorldWideScience

Sample records for bright extragalactic planetary

  1. The Catalog of Positions of Optically Bright Extragalactic Radio Sources OBRS-1

    Science.gov (United States)

    Petrov, L.

    2011-01-01

    It is expected that the European Space Agency mission Gaia will make it possible to determine coordinates in the optical domain of more than 500,000 quasars. In 2006, a radio astrometry project was launched with the overall goal of making comparisons between coordinate systems derived from future space-born astrometry instruments and the coordinate system constructed from analysis of global very long baseline interferometry (VLBI) more robust. Investigation of the rotation, zonal errors, and non-alignment of the radio and optical positions caused by both radio and optical structures is needed to validate both techniques. In order to support these studies, the densification of the list of compact extragalactic objects that are bright in both radio and optical ranges is desirable. A set of 105 objects from the list of 398 compact extragalactic radio sources with decl. > -10deg was observed with the Very Long Baseline Array and European VLBI Network (EVN) with the primary goal of producing images with milliarcsecond resolution. These sources are brighter than 18 mag in the V band, and they were previously detected by the EVN. In this paper, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these VLBI observations using an absolute astrometry method. The catalog of positions for 105 target sources is presented. The accuracies of source coordinates are in the range of 0.3.7 mas, with a median of 1.1 mas.

  2. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  3. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    Science.gov (United States)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.

  4. Stellar candles for the extragalactic distance scale

    CERN Document Server

    Gieren, Wolfgang

    2003-01-01

    This volume reviews the current status with respect to both theory and observation of the extragalactic distance scale. A sufficient accuracy is required both for a precise determination of the cosmological parameters and also in order to achieve a better understanding of physical processes in extragalactic systems. The "standard candles", used to set up the extragalactic distance scale, reviewed in this book include cepheid variables, RR Lyrae variables, novae, Type Ia and Type II supernovae as well as globular clusters and planetary nebulae.

  5. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    Science.gov (United States)

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  7. A selection of AKARI FIS BSC extragalactic objects

    Science.gov (United States)

    Marton, G.; Tóth, L. V.; Balázs, L. G.; Zahorecz, S.; Bagoly, Z.; Horváth, I.; Rácz, I. I.; Nagy, A.

    The point sources in the Bright Source Catalogue (BSC) of the AKARI Far-Infrared Surveyor (FIS) were classified based on their far-IR and mid-IR fluxes and colours using Quadratic Discriminant Analysis method (QDA) and Support Vector Machines (SVM). The reliability of our results show that we can successfully separate galactic and extragalactic AKARI point sources in the multidimensional space of fluxes and colours. However, differentiating among the extragalactic sub-types needs further information.

  8. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  9. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  10. A catalogue of AKARI FIS BSC extragalactic objects

    Science.gov (United States)

    Marton, Gabor; Toth, L. Viktor; Gyorgy Balazs, Lajos

    2015-08-01

    We combined photometric data of about 70 thousand point sources from the AKARI Far-Infrared Surveyor Bright Source Catalogue with AllWISE catalogue data to identify galaxies. We used Quadratic Discriminant Analysis (QDA) to classify our sources. The classification was based on a 6D parameter space that contained AKARI [F65/F90], [F90/F140], [F140/F160] and WISE W1-W2 colours along with WISE W1 magnitudes and AKARI [F140] flux values. Sources were classified into 3 main objects types: YSO candidates, evolved stars and galaxies. The training samples were SIMBAD entries of the input point sources wherever an associated SIMBAD object was found within a 30 arcsecond search radius. The QDA resulted more than 5000 AKARI galaxy candidate sources. The selection was tested cross-correlating our AKARI extragalactic catalogue with the Revised IRAS-FSC Redshift Catalogue (RIFSCz). A very good match was found. A further classification attempt was also made to differentiate between extragalactic subtypes using Support Vector Machines (SVMs). The results of the various methods showed that we can confidently separate cirrus dominated objects (type 1 of RIFSCz). Some of our “galaxy candidate” sources are associated with 2MASS extended objects, and listed in the NASA Extragalactic Database so far without clear proofs of their extragalactic nature. Examples will be presented in our poster. Finally other AKARI extragalactic catalogues will be also compared to our statistical selection.

  11. Fast Radio Bursts from Extragalactic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi [John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: manasvi@seas.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  12. A bright millisecond radio burst of extragalactic origin.

    Science.gov (United States)

    Lorimer, D R; Bailes, M; McLaughlin, M A; Narkevic, D J; Crawford, F

    2007-11-02

    Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3 degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

  13. HEAO A-2 extragalactic results

    Science.gov (United States)

    Boldt, E. A.

    1979-01-01

    The all-sky surveys made with the A-2 instrument aboard HEAO-1 involved spectroscopy over a broad enough band width, with sufficient resolution, to obtain the basic spectral characteristics for two extreme aspects of the extragalactic X-ray sky. The overall spectrum (above 3 KeV) is remarkably well decribed by a thermal model. At the other extreme, the detailed broad-band observations of individual sources are restricted to objects within the present epoch. The objects include several individual active galaxies studied in detail for the first time as well as clusters of galaxies. Relating these results to the vast spatially unresolved hard X-ray flux measured with this instruments as well as the softer X-rays (at less than 3 keV) spatially resolved to high redshifts with the Einstein Observatory remains a challenge.

  14. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  15. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  16. A Renewed Look at the Planetary Nebula Luminosity Function: Circumstellar Extinction and Contamination From Compact Supernova Remnants

    Science.gov (United States)

    Davis, Brian; Ciardullo, Robin; Feldmeier, John; Jacoby, George H.; McCarron, Adam; Herrmann, Kimberly

    2018-01-01

    The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since 1988, but there are still unsolved problems associated with its use. The two most serious involve PNLF distances beyond ~ 10 Mpc, which tend to be slightly smaller than those of other methods, and the lack of a theoretical explanation for the technique. We investigate these questions using a combination of narrow-band imaging data from the KPNO 4-m telescope, and recent LRS2 spectroscopy from the Hobby-Eberly Telescope.For the first project, we consider the implications of spectroscopic investigations by Kreckel et al. (2017), who found that in M74, several of the brightest planetary nebula (PN) candidates found by Herrmann et al. (2008) are actually compact supernova remnants (SNRs). First, we measure the [O III] and H-alpha fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 8 Mpc. We also obtain spectroscopy of bright PN candidates in the Fireworks Galaxy, NGC 6946, to test for PN/SNR confusion via the strengths of the [N II] and [S II] emission lines. Both experiments suggest that compact supernova remnants are not an important source of contamination in photometric surveys for extragalactic PNe.For the second project, we, for the first time, determine the de-reddened PNLF of an old stellar population. By performing spectroscopy of the brightest PN in M31’s bulge and measuring the objects’ Balmer decrements, we remove the effects of circumstellar extinction and derive the true location of the PNLF’s bright-end cutoff. In future studies, these data can be used to directly test the latest PNLF models, which combine modern post-AGB stellar evolutionary tracks with the physics of expanding nebulae.

  17. Planetary Nebulae Beyond the Milky Way

    CERN Document Server

    Stanghellini, L; Douglas, N. G; Proceedings of the ESO Workshop held at Garching, Germany, 19-21 May, 2004

    2006-01-01

    In the last decade extra-galactic planetary nebulae (PNe) have gained increasing importance. Improved observational capabilities have allowed fainter and fainter PNe to be studied in galaxies well beyond the Milky Way. Planetary nebulae can be detected to at least 30Mpc. They are found in galaxies of all types and also between the galaxies in nearby galaxy clusters. They are valuable as probes, both for providing the velocity of their host stars and also the evolutionary status and relation to the stellar population from which they formed. This book contains the proceedings of a workshop held at ESO headquarters in Garching in 2004, the first meeting devoted entirely to Extra-galactic Planetary Nebulae. A wide range of topics is covered, from stellar and nebular astrophysics to galactic dynamics and galaxy clusters, making this volume a unique and timely reference of broad astrophysical interest.

  18. Optical variability of the medium-bright quasar sample

    International Nuclear Information System (INIS)

    Huang, K.; Mitchell, K.J.; Usher, P.D.

    1990-01-01

    A variability study of the 32-member Medium-Bright Quasar Sample is reported. It is found that the star US 1953 has undergone a noticeable variation in the course of 26 hr. Apparent variations in the extragalactic object US 3498 may be illusory, owing to its partially resolved appearance. No other evidence for variability was detected. 34 refs

  19. Extragalactic Astronomy: The Universe Beyond Our Galaxy.

    Science.gov (United States)

    Jacobs, Kenneth Charles

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in…

  20. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    International Nuclear Information System (INIS)

    Baushev, A. N.

    2013-01-01

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute ∼12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed (∼600 km s –1 ), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow (∼20 km s –1 ). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s –1 ), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  1. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  2. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  3. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  4. Investigation of some galactic and extragalactic gravitational phenomena

    Directory of Open Access Journals (Sweden)

    Jovanović P.

    2012-01-01

    Full Text Available Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe

  5. Extragalactic sources in Cosmic Microwave Background maps

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. De; Castex, G. [SISSA, via Bonomea 265, 34136 Trieste (Italy); González-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, 33007 Oviedo (Spain); Lopez-Caniego, M. [European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid (Spain); Negrello, M.; Clemens, M. [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Cai, Z.-Y. [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Delabrouille, J. [APC, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Herranz, D.; Bonavera, L. [Instituto de Física de Cantabria (CSIC-UC), avda. los Castros s/n, 39005 Santander (Spain); Melin, J.-B. [DSM/Irfu/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Tucci, M. [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Serjeant, S. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bilicki, M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch (South Africa); Andreani, P., E-mail: gianfranco.dezotti@oapd.inaf.it, E-mail: gcastex@sissa.it, E-mail: gnuevo@uniovi.es, E-mail: marcos.lopez.caniego@sciops.esa.int [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748, Garching (Germany); and others

    2015-06-01

    We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that

  6. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  7. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  8. Unresolved Blazar Component of the Extragalactic Gamma-Ray Background

    Science.gov (United States)

    Stecker, Floyd W.; Venters, T. M.

    2011-01-01

    We present new theoretical estimates of the relative contribution of unresolved blazars and star forming galaxies to the extragalactic gamma-ray background and discuss constraints on the contributions from other possible components. We find that the Fermi data do not rule out a scenario in which the extragalactic gamma-ray background is dominated by emission from unresolved blazars. The spectrum of unresolved FSRQs, when accounting for the energy dependent effects of source confusion, could be consistent with the combined spectrum of the low energy EGRET extragalactic gamma-ray background measurements and the Fermi-LAT measurements above 200 MeV.

  9. Multiwavelength and parsec-scale properties of extragalactic jets. Doctoral Thesis Award Lecture 2015

    Science.gov (United States)

    Müller, C.

    2016-07-01

    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the γ-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and γ-ray brightest extragalactic jets in the southern sky, below -30o declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904 , which can be classified either as an atypical blazar or a γ-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.

  10. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  11. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  12. Planetary Rings

    Science.gov (United States)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  13. In situ acceleration in extragalactic radio jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  14. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  15. Planetary atomspheres

    International Nuclear Information System (INIS)

    Lal, D.; Rao, M.N.

    1986-01-01

    Salient features of the atmosheres of Venus and Mars are described and compared with those of the earth. Their temperature profiles are given. Degassing of planetary interiors by volcanic and plate tectonic processes is described. Noble gas abundances in the atmospheres of these planets are compared. Information provided by Pioneer, Venera space probes and the Viking-landers on Mars is studied. (B.G.W.)

  16. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  17. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  18. WFIRST Extragalactic Potential Observations (EXPO) Science Investigation Team

    Science.gov (United States)

    Robertson, Brant

    The Wide-Field InfraRed Survey Telescope (WFIRST) holds tremendous promise as a space observatory for extragalactic astrophysics beyond cosmological surveys. The WFIRST Extragalactic Potential Observations (EXPO) Science Investigation Team will identify the most pressing and scientifically compelling Guest Investigator and Guest Observer projects with WFIRST to address a range of exciting outstanding issues in galaxy formation, from the epoch of reionization to galaxy-galaxy lensing, the discovery of exotic supernovae and luminous active galaxies, and charting the chemical evolution of galaxies. The identified EXPO GI projects will help maximize the scientific return of the WFIRST cosmological surveys, and supply innovative ideas and methods for archival research that leverages the WFIRST dataset. The EXPO team will also evaluate the science payoff of translating previous successful space telescope surveys to the era of WFIRST, helping us to realize the full power of WFIRST for extragalactic astronomy through the competed GO programs. The WFIRST-EXPO team consists of world-wide experts in designing and executing space-based extragalactic programs, multi-object spectroscopic campaigns in the optical and infrared, and theoretical modeling of galaxy formation, exotic supernovae, and reionization. In support of WFIRST before Critical Design Review, WFIRST-EXPO will 1) develop and publicly release tools to generate mock catalogs for planning extragalactic astrophysics investigations with the HLS (GI) and GO community programs, 2) simulate images for modeling medium- and ultra-deep extragalactic GO programs, 3) develop and publicly release work flows for planning and evaluating the science return of potential extragalactic GI/GO programs, 4) perform case studies of medium- and ultra-deep imaging and spectroscopic GO/GI programs, 5) evaluate WFIRST design choices that influence extragalactic science return, and 6) serve as liaisons to James Webb Space Telescope, Large

  19. ON THE ORIGIN OF THE METALLICITY DEPENDENCE IN DYNAMICALLY FORMED EXTRAGALACTIC LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.; Avendano Nandez, J. L.; Sivakoff, G. R. [Department of Physics, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Fragos, T.; Kim, D.-W.; Fabbiano, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lombardi, J. C. [Department of Physics, Allegheny College, Meadville, PA 16335 (United States); Voss, R. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Jordan, A., E-mail: nata.ivanova@ualberta.ca [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, 7820436 Macul, Santiago (Chile)

    2012-12-01

    Globular clusters (GCs) effectively produce dynamically formed low-mass X-ray binaries (LMXBs). Observers detect {approx}100 times more LMXBs per stellar mass in GCs compared to stars in the fields of galaxies. Observationally, metal-rich GCs are about three times more likely to contain an X-ray source than their metal-poor counterparts. Recent observations have shown that this ratio holds in extragalactic GCs for all bright X-ray sources with L{sub X} between 2 Multiplication-Sign 10{sup 37} and 5 Multiplication-Sign 10{sup 38} erg s{sup -1}. In this Letter, we propose that the observed metallicity dependence of LMXBs in extragalactic GCs can be explained by the differences in the number densities and average masses of red giants in populations of different metallicities. Red giants serve as seeds for the dynamical production of bright LMXBs via two channels-binary exchanges and physical collisions-and the increase of the number densities and masses of red giants boost LMXB production, leading to the observed difference. We also discuss a possible effect of the age difference in stellar populations of different metallicities.

  20. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  1. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  2. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced....... The analysis indicates that the extragalactic emission is well described by a power-law photon spectrum with an index of -(2.10 +/- 0.03) in the 30 MeV to 100 GeV energy range. No large-scale spatial anisotropy or changes in the energy spectrum are observed in the deduced extragalactic emission. The most......The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...

  3. The nature of solar brightness variations

    Science.gov (United States)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  4. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  5. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  6. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  7. Stellar and Extragalactic Radiation at the Earth's Surface Jean ...

    Indian Academy of Sciences (India)

    ipi × dex (−0.4 mi). (7). We will use these formulae in estimating the stellar and extragalactic contributions. 3. Stellar radiation. We have used the data given by the CDS, Strasbourg for N = 2,552,323 stars. The data are available in tables grouping stars in magnitude intervals of m = 0.25, either in BT or VT magnitudes.

  8. Extragalactic Gamma Ray Excess from Coma Supercluster Direction ...

    Indian Academy of Sciences (India)

    1984) did a review on γ rays from galaxy clusters; they claimed that a significant γ ray signal from galaxy clusters from a distance of about. 590 Mpc is detectable. They also mentioned that the intensity of extragalactic gamma rays above 35 MeV is ...

  9. On the extragalactic origin of gamma-ray bursts

    International Nuclear Information System (INIS)

    Johnson, M.; Teller, E.

    1984-01-01

    A theory to explain the origin of extragalactic gamma ray bursts is presented. Collisions of black dwarf and neutron stars with a subsequent fragmentation of the dwarf producing relativistic particle accelerations toward the neutron star and a resulting turbulent flow of material at the neutron star surface is postulated

  10. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    ... galactic diffuse gamma ray intensity or to consider the contribution of other extragalactic structures while surveying a specific portion of the sky. More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ...

  11. Variability of Extragalactic Objects in Relation to Redshift, Color ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Logo of the Indian Academy of Sciences ... Variability of Extragalactic Objects in Relation to Redshift, Color, Radio Spectral Index and Absorption Lines ... on relationships between variability and various observed properties of the objects, viz., redshift, color indices, radio spectral index and absorption lines.

  12. Planetary compositions

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1988-01-01

    The present study of the density, major-element and trace-element compositions, oxygen isotopes, and noble gases of the metal, sulfide, and silicate components of meteorites shows that these properties do not match those of the terrestrial planets, and thereby suggests that there was not much lateral mixing in the solar nebula during planetary accretion. The planets would then have accumulated from narrow concentric zones, and the current zonal structure of the asteroid belt may be analogous to the structure of the inner portions of the solar nebula during the terrestrial planets' accretion. Localized heating during the material's infall to the median plane of the nebula is suggested to have occurred. 64 references

  13. BrightFocus Foundation

    Science.gov (United States)

    ... announcement by Bill Gates of his $50 million investment in the Dementia Discovery Fund. A charitable act ... under section 501(c)(3) of the Internal Revenue Code of the United States.Copyright 2017 BrightFocus ...

  14. Probing Planets in Extragalactic Galaxies Using Quasar Microlensing

    OpenAIRE

    Dai, Xinyu; Guerras, Eduardo

    2018-01-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fek...

  15. Flicker of extragalactic radio sources and refractive interstellar scintillation

    International Nuclear Information System (INIS)

    Blandford, R.; Narayan, R.; Romani, R.W.

    1986-01-01

    Recent work has identified variability of flat-spectrum extragalactic radio sources at lambdaroughly-equal10 cm with rms amplitude of approx.2%--3% and time scale of days. We show that this ''flicker'' is consistent with intensity fluctuations caused by refractive scintillation in an extended interstellar medium in our Galaxy. Further observation of flicker may allow the structure of suitable sources to be partially resolved on angular scales smaller than those probed by VLBI

  16. SMC SMP 24: A Newly Radio-Detected Planetary Nebula in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Bojicic, I. S.

    2010-12-01

    Full Text Available In this paper we report a new radio-continuum detection of an extragalactic planetary nebula (PN: SMC~SMP~24. We show the radio-continuum image of this PN and present the measured radio data. The newly reduced radio observations are consistent with the multi-wavelength data and derived parameters found in the literature. SMC~SMP~24 appears to be a young and compact PN, optically thick at frequencies below 2~GHz.

  17. SMC SMP 24: A newly radio-detected planetary nebula in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Bojičić I.S.

    2010-01-01

    Full Text Available In this paper we report a new radio-continuum detection of an extragalactic planetary nebula (PN: SMC SMP 24. We show the radio-continuum image of this PN and present the measured radio data. The newly reduced radio observations are consistent with the multi-wavelength data and derived parameters found in the literature. SMC SMP 24 appears to be a young and compact PN, optically thick at frequencies below 2 GHz.

  18. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  19. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  20. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.

    1976-01-01

    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  1. The current research of planetary nebulae distance measurement

    Science.gov (United States)

    Yang, Yuan-yuan; Zhu, Hui; Tian, Wen-wu; Wu, Dan

    2015-08-01

    Planetary Nebula is an important tracer of Galactic chemical history and evolution, star and interstellar evolution. Distance as a basic physical parameter of planetary nebula, is crucial to study its size, luminosity, ionized mass, formation rate, space density and Galactic distribution. Distance of planetary nebula has been studied for several decades, but most of their distances are not well determined, e.g. only thirty-one planetary nebulae have distance measurement with uncertainty within 20%. We summarize major distance measurement methods of planetary nebulae, i.e., trigonometric parallax, cluster member, expansion parallax, spectroscopic parallax, reddening, Na D absorption, determinations of central star gravities, Shklovsky method, kinematics method, and then discuss the limitations and applications scope of each method in detail. Actually, applying different methods to the same planetary nebulae can have a huge difference in distance, and even the same method can lead to great difference for the same planetary nebula. We focus on the kinematics method applied to planetary nebulae either seriously effected by Galactic extinction or having no observable centra star but being radio bright. The kinematics distance has been used in our on-going project of radio planetary nebulae distance measurement.

  2. Spectrophotometry of Very Bright Stars in the Southern Sky

    Science.gov (United States)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Kelarek, Bethany; Bonar, Kyle; Stenzel, Joshua

    2017-05-01

    We obtained spectra of 20 bright stars in the southern sky, including Sirius, Canopus, Betelgeuse, Rigel, Bellatrix, and Procyon, using the 1.5-m telescope at Cerro Tololo Inter-American Observatory and its grating spectrograph RCSPEC. A 7.5 magnitude neutral density filter was used to keep from saturating the CCD. Our spectra are tied to a Kurucz model of Sirius with T = 9850 K, log g = 4.30, and [Fe/H] = +0.4. Because Sirius is much less problematic than using Vega as a fundamental calibrator, the synthetic photometry of our stars constitutes a Sirius-based system that could be used as a new anchor for stellar and extragalactic photometric measurements.

  3. Extragalactic origin of gamma-ray bursts. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.; Teller, E.

    1984-01-01

    Detectors of gamma-rays carried by satellites and later by high-flying balloons showed the existence of events lasting from fifteen milliseconds to about a hundred seconds, arriving from all directions in space. A few hundred events have been observed in a little more than a decade. The energy of gamma-rays range from a few kilovolts to millions of volts. Recent evidence indicates that considerable energy may be carried at least in some cases even above 10 MeV. But the bulk of the energy appeared to be emitted between 100 and 200 keV. The observed intensities range between 10 -3 and 10 -7 ergs/cm 2 . The simple facts about intensity distribution are compatible with two extreme assumptions but exclude intermediate hypotheses. Either the events occur in our own galaxy in a region smaller than the thickness of the galaxy or they are of extragalactic origin and come from distant galaxies. Practically all attempted explanations have made the former explanation which requires that a mass of approximately 10 20 grams impinges on a neutron star (assuming a near to 100% conversion of gravitational energy available on the surface of the neutron star or 10 20 ergs/gram into gamma-rays which, of course, is unrealistic). In case of an extragalactic origin, the neutron star must attract and convert, as we shall see, about 2 x 10 30 grams or 10 -3 of the solar mass. It is perhaps the size of such events which deterred a detailed discussion of this alternative. Montgomery Johnson and I have tried to assume these big collisions, explore the consequences, and I shall talk about this extragalactic hypothesis

  4. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    Science.gov (United States)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the

  5. Extragalactic magnetic fields unlikely generated at the electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de [Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany)

    2016-01-01

    In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.

  6. ON AN ALTERNATIVE STATISTICAL DISTANCE SCALE FOR PLANETARY-NEBULAE

    NARCIS (Netherlands)

    VANDESTEENE, GC; ZIJLSTRA, AA

    We propose to use the correlation between the distance-independent radio continuum brightness temperature and the distance-dependent radius to determine statistical distances to planetary nebulae. This correlation satisfies two objective criteria which define a statistical distance scale: (1) We

  7. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  8. ON AN ALTERNATIVE STATISTICAL DISTANCE SCALE FOR PLANETARY-NEBULAE - CATALOG WITH STATISTICAL DISTANCES TO PLANETARY-NEBULAE

    NARCIS (Netherlands)

    VANDESTEENE, GC; ZIJLSTRA, AA

    1994-01-01

    We have proposed a statistical method to determine distances to planetary nebulae. The method is based on an empirical correlation between the radio-continuum brightness temperature and radius. Here we present a catalog of distance determinations calculated using this method.

  9. THE EXTRAGALACTIC DISTANCE DATABASE: ALL DIGITAL H I PROFILE CATALOG

    International Nuclear Information System (INIS)

    Courtois, Helene M.; Bonhomme, Nicolas; Tully, R. Brent; Zavodny, Maximilian; Barnes, Austin; Fisher, J. Richard

    2009-01-01

    An important component of the Extragalactic Distance Database is a group of catalogs related to the measurement of H I line profile parameters. One of these is the All Digital H I catalog which contains an amalgam of information from new data and old. The new data result from observations with Arecibo and Parkes Telescopes and with the Green Bank Telescope, including continuing input since the award of the NRAO Cosmic Flows Large Program. The old data have been collected from archives, wherever available, particularly the Cornell University Digital H I Archive, the Nancay Telescope extragalactic H I archive, and the Australia Telescope H I archive. The catalog currently contains information on ∼15, 000 profiles relating to ∼13, 000 galaxies. The channel-flux per channel files, from whatever source, is carried through a common pipeline. The derived parameter of greatest interest is W m50 , the profile width at 50% of the mean flux. After appropriate adjustment, the parameter W mx is derived, the line width that statistically approximates the peak-to-peak maximum rotation velocity before correction for inclination, 2V max sini.

  10. Minimal model for extragalactic cosmic rays and neutrinos

    Science.gov (United States)

    Kachelrieß, M.; Kalashev, O.; Ostapchenko, S.; Semikoz, D. V.

    2017-10-01

    We aim to explain in a unified way the experimental data on ultrahigh-energy cosmic rays (UHECRs) and neutrinos, using a single source class and obeying limits on the extragalactic diffuse gamma-ray background. If UHECRs only interact hadronically with gas around their sources, the resulting diffuse cosmic-ray (CR) flux can be matched well to the observed one, providing at the same time large neutrino fluxes. Since the required fraction of heavy nuclei is, however, rather large, the maxima of air showers in the Earth's atmosphere induced by UHECRs with energies E ≳3 ×1018 eV would be too high. Therefore, additional photohadronic interactions of UHECRs close to the accelerator have to be present, in order to modify the nuclear composition of CRs in a relatively narrow energy interval. We thus include both photon and gas backgrounds and combine the resulting CR spectra with the high-energy part of the Galactic CR fluxes predicted by the escape model. As result, we find a good description of experimental data on the total CR flux, the mean shower maximum depth Xmax and its width r m s (Xmax) in the whole energy range above E ≃1017 eV . The predicted high-energy neutrino flux matches IceCube measurements, while the contribution to the extragalactic diffuse gamma ray background is of order 30%.

  11. Space Infrared Extragalactic Surveys : Results from ISO and Future Prospects

    Science.gov (United States)

    Vaccari, Mattia

    2004-02-01

    This Thesis deals with the exploitation of space infrared extragalactic surveys as a powerful tool for astronomical investigation. More precisely, it deals with the development of a new method (LARI Method) for the reduction and analysis of data obtained by an infrared satellite (ISO), the application of this method to data obtained within the most ambitious extragalactic survey carried out with this satellite (ELAIS), the first scientific results obtained through this application, and finally the possible applications of such technical and scientific contributions to an infrared satellite which has recently started operations (Spitzer) as well as to future infrared missions. As a testimony to the particularly heterogeneous nature of the skills that are necessary in order to realize a successful space project, the Thesis stands at the boundary between several significantly different disciplines, such as detector physics, signal analysis and image processing, software engineering, galaxy formation and evolution and observational cosmology. Although focusing on a particular mission (ISO), throughout an attempt was made at putting the work into an "historical" perspective, with a keen eye both for the efforts of the "pioneers" of infrared astronomy and for the exciting prospects that space missions will offer to this dicipline in the years to come.

  12. An Optical View of Extragalactic γ-Ray Emitters

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Simona [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua (Italy); Falomo, Renato [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Landoni, Marco [Osservatorio Astronomico di Brera (INAF), Merate (Italy); Treves, Aldo [Università degli Studi dell' Insubria, Varese (Italy); Scarpa, Riccardo, E-mail: simona.paiano@oapd.inaf.it [Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife (Spain); Departamento de Astrofsica, Universidad de La Laguna, San Cristóbal de La Laguna (Spain)

    2017-11-23

    The Fermi Gamma-ray Observatory discovered about a thousand extragalactic sources emitting energy from 100 MeV to 100 GeV. The majority of these sources belong to the class of blazars characterized by a quasi-featureless optical spectrum (BL Lac Objects). This hampers the determination of their redshift and therefore hinders the characterization of this class of objects. To investigate the nature of these sources and to determine their redshift, we are carrying out an extensive campaign using the 10 m Gran Telescopio Canarias to obtain high S/N ratio optical spectra. These observations allow us to confirm the blazar nature of the targets, to find new redshifts or to set stringent limits on the redshift based on the minimum equivalent width of specific absorption features that can be measured in the spectrum and are expected from their host galaxy, assuming it is a massive elliptical galaxy. These results are of importance for the multi-frequencies emission models of the blazars, to test their extreme physics, to shed light on their cosmic evolution and abundance in the far Universe. These gamma emitters are also of great importance for the characterization of the extragalactic background light through the absorption by the IR-optical background photons.

  13. Large Bright Ripples

    Science.gov (United States)

    2004-01-01

    3 February 2004 Wind is the chief agent of change on Mars today. Wind blows dust and it can move coarser sediment such as sand and silt. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows bright ripples or small dunes on the floors of troughs northeast of Isidis Planitia near 31.1oN, 244.6oW. The picture covers an area 3 km (1.9 mi) wide; sunlight illuminates the scene from the lower left.

  14. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  15. Bright point study

    International Nuclear Information System (INIS)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona

  16. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  17. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps

    Science.gov (United States)

    De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  18. The Extragalactic Background Light in the Fermi Era

    Science.gov (United States)

    Desai, Abhishek A.; Ajello, Marco; Paliya, Vaidehi; Dominguez, Alberto; Finke, Justin; Helgason, Kari; Hartmann, Dieter; Fermi LAT Collaboration

    2018-01-01

    The extragalactic background light (EBL), from ultra-violet to infrared, that encodes the emission from all stars, galaxies and actively accreting black holes in the observable Universe is critically important to probe models of star formation and galaxy evolution, but remains at present poorly constrained. The Large Area Telescope (LAT), on board Fermi, produced an unprecedented measurement (relying on 750 blazars and the first 9 years of Pass 8 data) of the EBL optical depth at 12 different epochs from redshift 0 up to a redshift of 3. In this talk, we will present the measurement and how it constrains the EBL energy density and its evolution with cosmic time. We will also discuss how this paves the road to the first point-source-independent determinations of the star-formation history of the Universe.

  19. Extragalactic and galactic sources: New evidence, new challenges, new opportunities

    Directory of Open Access Journals (Sweden)

    Kusenko Alexander

    2013-06-01

    Full Text Available Recent data bring in sharper focus the issue of relative contributions of galactic and extragalactic sources of ultrahigh-energy cosmic rays. On the one hand, there is some new evidence, from gamma-ray observations of blazars, that cosmic rays are, indeed, accelerated in AGNs. On the other hand, recent measurements of composition reported by Pierre Auger Observatory can be explained by a contribution of transient galactic sources, such as past GRBs and hypernovae, if nuclei accelerated in such events get trapped in the turbulent galactic magnetic fields. The likely contamination of UHECR data by the nuclei from past galactic stellar explosions creates new challenges for cosmic-ray astronomy. At the same time, it creates new opportunities for reconstructing galactic magnetic fields, understanding the history of transient galactic phenomena, and for using gamma rays to identify astrophysical nuclear accelerators outside Milky Way.

  20. Flicker of extragalactic radio sources at two epochs

    International Nuclear Information System (INIS)

    Simonetti, J.H.; Cordes, J.M.

    1990-01-01

    The flicker of compact extragalactic sources on day-like time scales is investigated. At 1410 MHz the flat-spectrum sources show larger intensity variations than do the steep-spectrum sources. At 820 MHz measurement noise dominates the source variations, so that observations yield an upper limit to the flicker amplitude at this frequency. The flicker amplitude appears to be weakly dependent upon observing wavelength, possibly increasing with increasing wavelength. No dependence of the intensity or time scale of flicker on galactic coordinates is apparent in this data set, but the number of flat spectrum sources observed may be too small to show any such effects. Evidence is presented that flicker is approximately stable in its characteristics over time scales at least as large as 2 yr. 12 refs

  1. WFIRST: Extragalactic Science over Twelve Billion Years of Cosmic History

    Science.gov (United States)

    Dickinson, Mark; Robertson, Brant; Ferguson, Henry C.; Furlanetto, Steve; Greene, Jenny; Madau, Piero; Marrone, Dan; Shapley, Alice; Stark, Daniel P.; Wechsler, Risa; Woosley, Stan; WFIRST-EXPO Science Investigation Team

    2018-01-01

    WFIRST’s infrared multiband imaging and spectroscopy from space over thousands of square degrees will revolutionize our understanding of galaxy formation and evolution. When combined with unique guest observer programs that provide ultradeep IR imaging and spectroscopy over areas >100x larger than achieved by Hubble Space Telescope, WFIRST will provide the first complete picture of star formation and stellar mass build-up in galaxies over twelve billion years of cosmic history. The WFIRST Extragalactic Potential Observations (WFIRST-EXPO) Science Investigation Team has identified a host of guest observer and archival programs where WFIRST can transform our views of the connections between the star formation, environment, morphology, stellar mass, and dark matter halo properties of galaxies, and determined how WFIRST can singularly probe the connection between early galaxies and the process of cosmic reionization. We present these WFIRST capabilities, and discuss how the science from WFIRST relates to other major forthcoming space- and ground-based facilities.

  2. High brightness electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1995-07-01

    High energy physics accelerators and free electron lasers put increased demands on the electron beam sources. This paper describes the present research on attaining intense bright electron beams using photoinjectors. Recent results from the experimental programs will be given. The performance advantages and difficulties presently faced by researchers will be discussed, and the following topics will be covered. Progress has been made in photocathode materials, both in lifetime and quantum efficiency. Cesium telluride has demonstrated significantly longer lifetimes than cesium antimonide at 10{sup {minus}8} torr. However, the laser system is more difficult because cesium telluride requires quadrupled YLF instead of the doubled YLF required for cesium antimonide. The difficulty in using photoinjectors is primarily the drive laser, in particular the amplitude stability. Finally, emittance measurements of photoinjector systems can be complicated by the non-thermal nature of the electron beam. An example of the difficulty in measuring beam emittance is given.

  3. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  4. Gamma-ray observations under bright moonlight with VERITAS

    Science.gov (United States)

    Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Bouvier, A.; Buchovecky, M.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Hütten, M.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Trepanier, S.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Williams, D. A.; Zitzer, B.

    2017-05-01

    Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations.

  5. Escape from planetary neighbourhoods

    NARCIS (Netherlands)

    Waalkens, H.; Burbanks, A.; Wiggins, S.

    2005-01-01

    In this paper we use recently developed phase-space transport theory coupled with a so-called classical spectral theorem to develop a dynamically exact and computationally efficient procedure for studying escape from a planetary neighbourhood. The ‘planetary neighbourhood’ is a bounded region of

  6. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  7. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  8. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    International Nuclear Information System (INIS)

    Odell, C.R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts

  9. Extragalactic molecular line surveys: the starburst galaxy NGC253

    Science.gov (United States)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  10. Dynamics and luminosity of extragalactic and galactic nebulas. Dinamika i svechenie vnegalakticheskikh i galakticheskikh tumannostei

    Energy Technology Data Exchange (ETDEWEB)

    Katlova, T.E. (ed.)

    1973-01-01

    Quasi-steadiness criteria of dissipating systems, scattering of light from stars and extragalactic sources by interstellar dust in the Galaxy, and applications of fiber-optical elements in astronomical devices are among the topics covered in papers concerned with recent extragalactic and galactic nebula research. Other topics covered include the existence of diffuse media in globular clusters, peripheral disturbances, in globular clusters, and observation techniques and precision for remote cosmic objects.

  11. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  12. Extragalactic circuits, transmission lines, and CR particle acceleration

    CERN Document Server

    Kronberg, Philipp P

    2014-01-01

    A non-negligible fraction of a Supermassive Black Hole's (SMBH) rest mass energy gets transported into extragalactic space by a remarkable process in jets which are incompletely understood. What are the physical processes which transport this energy? It is likely that the energy flows electromagnetically, rather than via a particle beam flux. The deduced electromagnetic fields may produce particles of energy as high as $\\sim 10^{20}$ eV. The energetics of SMBH accretion disk models and the electromagnetic energy transfer imply that a SMBH should generate a $10^{18} - 10^{19}$ Amp\\`eres current close to the black hole and its accretion disk. We describe the so far best observation-based estimate of the magnitude of the current flow along the axis of the jet extending from the nucleus of the active galaxy in 3C303. The current is measured to be $I \\sim 10^{18}$ Amp\\`eres at $\\sim 40$ kpc away from the AGN. This indicates that organized current flow remains intact over multi-kpc distances. The electric current $...

  13. MODELING EXTRAGALACTIC EXTINCTION THROUGH GAMMA-RAY BURST AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Alberto; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Cecchi-Pestellini, Cesare, E-mail: azonca@oa-cagliari.inaf.it, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: garesu@oa-cagliari.inaf.it, E-mail: cecchi-pestellini@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2016-09-20

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp{sup 2}, and sp{sup 3} carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  14. Evolution of Extragalactic Radio Sources and Quasar/Galaxy Unification

    Science.gov (United States)

    Onah, C. I.; Ubachukwu, A. A.; Odo, F. C.; Onuchukwu, C. C.

    2018-04-01

    We use a large sample of radio sources to investigate the effects of evolution, luminosity selection and radio source orientation in explaining the apparent deviation of observed angular size - redshift (θ - z) relation of extragalactic radio sources (EGRSs) from the standard model. We have fitted the observed θ - z data with standard cosmological models based on a flat universe (Ω0 = 1). The size evolution of EGRSs has been described as luminosity, temporal and orientation-dependent in the form DP,z,Φ ≍ P±q(1 + z)-m sinΦ, with q=0.3, Φ=59°, m=-0.26 for radio galaxies and q=-0.5, Φ=33°, m=3.1 for radio quasars respectively. Critical points of luminosity, logPcrit=26.33 WHz-1 and logDc=2.51 kpc (316.23 kpc) of the present sample of radio sources were also observed. All the results were found to be consistent with the popular quasar/galaxy unification scheme.

  15. Components of the Extragalactic Gamma-Ray Background

    Science.gov (United States)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  16. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  17. Star Formation History, Dust Attenuation, and Extragalactic Background Light

    Science.gov (United States)

    Khaire, Vikram; Srianand, Raghunathan

    2015-05-01

    At any given epoch, the extragalactic background light (EBL) carries imprints of integrated star formation activities in the universe until that epoch. On the other hand, in order to estimate the EBL when direct observations are not possible, one requires an accurate estimation of the star formation rate density (SFRD) and the dust attenuation ({{A}ν }) in galaxies. Here, we present a “progressive fitting method” that determines the global average SFRD(z) and {{A}ν }(z) for any given extinction curve by using the available multiwavelength, multiepoch galaxy luminosity function measurements. Using the available observations, we determine the best-fit combinations of SFRD(z) and {{A}ν }(z), in a simple fitting form, up to z∼ 8 for five well-known extinction curves. We find, irrespective of the extinction curve used, the z at which the SFRD(z) peaks is higher than the z above which {{A}ν }(z) begins to decline. For each case, we compute the EBL from ultraviolet to the far-infrared regime and the optical depth ({{τ }γ }) encountered by the high-energy γ-rays due to pair production upon collisions with these EBL photons. We compare these with measurements of the local EBL, γ-ray horizon, and {{τ }γ } measurements using Fermi-Large Area Telescope. All these and the comparison of independent SFRD(z) and {{A}ν }(z) measurements from the literature with our predictions favor an extinction curve similar to that of the Large Magellanic Cloud Supershell.

  18. Extragalactic circuits, transmission lines, and CR particle acceleration

    Directory of Open Access Journals (Sweden)

    Kronberg Philipp P.

    2015-01-01

    Full Text Available A non-negligible fraction of a Supermassive Black Hole's (SMBH rest mass energy gets transported into extragalactic space by a remarkable process in jets which are incompletely understood. What are the physical processes which transport this energy? It is likely that the energy flows electromagnetically, rather than via a particle beam flux. The deduced electromagnetic fields may produce particles of energy as high as ∼ 1020 eV. The energetics of SMBH accretion disk models and the electromagnetic energy transfer imply that a SMBH should generate a 1018 − 1019 Ampères current close to the black hole and its accretion disk. We describe the so far best observation-based estimate of the magnitude of the current flow along the axis of the jet extending from the nucleus of the active galaxy in 3C303. The current is measured to be I ∼ 1018 Ampères at ∼ 40 kpc away from the AGN. This indicates that organised current flow remains intact over multi-kpc distances. The electric current I transports electromagnetic power into free space, P = I2Z, where Z ∼ 30 Ohms is related to the impedance of free space, and this points to the existence of cosmic electric circuit. The associated electric potential drop, V = IZ, is of the order of that required to generate Ultra High Energy Cosmic Rays (UHECR. We also explore further implications, including disruption/deflection of the power flow and also why such measurements, exemplified by those on 3C303, are currently very difficult to make and to unambiguously interpret. This naturally leads to the topic of how such measurements can be extended and improved in the future. We describe the analogy of electromagnetically dominated jets with transmission lines. High powered jets in vacuo can be understood by approximate analogy with a waveguide. The importance of inductance, impedance, and other laboratory electrical concepts are discussed in this context.

  19. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  20. Airships for Planetary Exploration

    Science.gov (United States)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  1. Evolution of the plasma universe: I. Double radio galaxies, quasars, and extragalactic jets

    International Nuclear Information System (INIS)

    Peratt, A.L.

    1986-01-01

    Cosmic plasma physics and our concept of the universe is in a state of rapid revision. This change started with in-situ measurements of plasmas in Earth's ionosphere, cometary atmospheres, and planetary magnetospheres; the translation of knowledge from laboratory experiments to astrophysical phenomena; discoveries of helical and filamentary plasma structures in the Galaxy and double radio sources; and the particle simulation of plasmas not accessible to in-situ measurement. Because of these, Birkeland (field-aligned) currents, double layers, and magnetic-field-aligned electric fields are now known to be far more important to the evolution of space plasma, including the acceleration of charged particles to high energies, than previously thought. This paper and its sequel investigate the observational evidence for a plasma universe threaded by Birkeland currents or filaments. This model of the universe was inspired by the advent of three-dimensional fully electromagnetic particle simulations and their application to the study of laboratory z pinches. This study resulted in totally unexpected phenomena in the data post-processed from the simulation particle, field, and history dumps. In particular, when the simulation parameters were scaled to galactic dimensions, the interaction between pinched filaments led to synchrotron radiation whose emission properties were found to share the following characteristics with double radio galaxies and quasars: power magnitude, isophotal morphology, spectra, brightness along source, polarization, and jets. The evolution of these pinched synchrotron emitting plasmas to elliptical, peculiar, and spiral galaxies by continuing the simulation run is addressed in a sequel paper

  2. Bright Light Treatment in Psychiatry

    Directory of Open Access Journals (Sweden)

    Pinar Guzel Ozdemir

    2017-06-01

    Full Text Available Bright light treatment is a treatment modality that leads elevation of mood due to attenuation in depressive symptoms, regulation in circadian rhythm activity, increase the effect of antidepressants and amelioration in sleep quality. Bright light treatment is considered among the first-line treatments for seasonal affective disorder because of high response rates. Additionally, bright light treatment being extended to other conditions, including non-seasonal mood disorders, Alzheimer's disease, circadian rhythm sleep disorders, eating disorders, attention deficit hyperactivity disorder and other behavioral syndromes is likely to have a far reached use. Side effects are often temporary and can generally be overcome by reducing exposure time. The central focus on this paper is to review the action mechanisms, efficacy, usage areas, the ways of administration and side effects of the light treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(2.000: 177-188

  3. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  4. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  5. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  6. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  7. A survey of HC3N in extragalactic sources Is HC3N a tracer of activity in ULIRGs?

    NARCIS (Netherlands)

    Lindberg, J. E.; Aalto, S.; Costagliola, F.; Perez Beaupuits, Juan; Monje, R.; Muller, S.

    Context. HC3N is a molecule that is mainly associated with Galactic star-forming regions, but it has also been detected in extragalactic environments. Aims. To present the first extragalactic survey of HC3N, when combining earlier data from the literature with six new single-dish detections, and to

  8. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  9. Planetary seismology and interiors

    Science.gov (United States)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  10. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  11. The NuSTAR Extragalactic Surveys: Overview And Catalog From The Cosmos Field

    DEFF Research Database (Denmark)

    Civano, F.; Hickox, R. C.; Puccetti, S.

    2015-01-01

    To provide the census of the sources contributing to the X-ray background peak above 10 keV, Nuclear Spectroscopic Telescope Array (NuSTAR) is performing extragalactic surveys using a three-tier "wedding cake" approach. We present the NuSTAR survey of the COSMOS field, the medium sensitivity, and...

  12. A comprehensive study of high-metallicity giant extragalactic H II regions: ionizing populations

    OpenAIRE

    Castellanos, M.; Díaz, Angeles I.; Terlevich, E.

    2002-01-01

    This is an electronic version of an article published in Revista Mexicana de Astronomía y Astrofísica. Castellanos, M., Díaz, A.I., and E. Terlevich. A comprehensive study of high-metallicity giant extragalactic H II regions: ionizing populations. Revista Mexicana de Astronomía y Astrofísica 12 (2002): 255

  13. A comprehensive study of high metallicity giant extragalactic H II regions: chemical abundances

    OpenAIRE

    Castellanos, Marcelo; Díaz, Angeles I.

    2002-01-01

    This is an electronic version of an article published in Revista Mexicana de Astronomía y Astrofísica. Castellanos, Marcelo, and Angeles I. Díaz. A comprehensive study of high-metallicity giant extragalactic H II regions: chemical abundances. Revista Mexicana de Astronomía y Astrofísica 12 (2002): 238-239

  14. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  15. Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System

    Science.gov (United States)

    Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.

    1998-01-01

    H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.

  16. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I. Survey Description

    NARCIS (Netherlands)

    Calzetti, D.; Lee, J.C.; Sabbi, E.; Adamo, A.; Smith, L.J.; Andrews, J.E.; Ubeda, L.; Bright, S.N.; Thilker, D.; Aloisi, A.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; da Silva, R.; de Mink, S.E.; Dobbs, C.; Elmegreen, B.G.; Elmegreen, D.M.; Evans, A.S.; Fumagalli, M.; Gallagher III, J.S.; Gouliermis, D.A.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Kim, H.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Ryon, J.E.; Schaerer, D.; Schiminovich, D.; Tosi, M.; Van Dyk, S.D.; Walterbos, R.; Whitmore, B.C.; Wofford, A.

    2015-01-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ~kiloparsec-size clustered structures.

  17. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Wechsler, Risa H.

    2018-03-01

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z ≲0.03 ), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, these extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N -body cosmological simulation and demonstrate that the limits are robust, at O (1 ) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.

  18. A Deep Extragalactic Survey with the ART-XC Telescope of the Spectrum-RG Observatory: Simulations and Expected Results

    Science.gov (United States)

    Mereminskiy, I. A.; Filippova, E. V.; Burenin, R. A.; Sazonov, S. Yu.; Pavlinsky, M. N.; Tkachenko, A. Yu.; Lapshov, I. Yu.; Shtykovskiy, A. E.; Krivonos, R. A.

    2018-02-01

    To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum-Röntgen-Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5-11 and 8-24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that "arrived" from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10-14 erg s-1 cm-2 (5-11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.

  19. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  20. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  1. Physics, astronomy and astrophysics: interstellar matter and extragalactic light

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1979-01-01

    Analyses of two experimental programs designed to estimate the density of the universe are reported. First, the Copernicus satellite was used to observe hydrogen and deuterium absorption in local interstellar matter. Secondly, two far-ultraviolet spectrometers were used to study galactic plane light scattered off interstellar dust, in order to measure the scattering properties of the dust, and also to detect cosmic background radiation. The interstellar absorption spectra were obtained using bright, close stars as light sources. The density and temperature of interstellar hydrogen and deuterium along the line of sight to each target star were obtained by fitting appropriate models to the data. A set of acceptable densities and temperatures is presented for each star. Generally, the measurements were insufficiently precise to infer spatial variations in the deuterium/hydrogen ratio. A far ultraviolet spectrometer aboard the Apollo 17 lunar mission was used to observe two dusty fields at low galactic latitudes. Virtually all of the observed signal is believed due to emission by field stars. The absence of diffuse galactic light implies the interstellar dust is an extremely poor backscattering medium in the far ultraviolet. If the albedo a of the grains is 0.5, then the scattering parameter g greater than or equal to 0.9

  2. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  3. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    Correlations between optical surface brightness and the radio properties of spiral galaxies are investigated. It is found that galaxies with high surface brightness are more likely to be strong continuum radio sources and that galaxies with low surface brightness have high 21-cm line emission. (author)

  4. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  5. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  6. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  7. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  8. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    The Indian Space Research Organisation (ISRO) has taken a number of initiatives to plan for a National. Research Programme in the area of planetary science and exploration. This announcement solicits proposals in the field of planetary science. Universities, research and educational institutions may submit proposals ...

  9. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    Science.gov (United States)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  10. Book review: “Extragalactic astronomy and cosmology—an introduction”

    International Nuclear Information System (INIS)

    Cappi, Alberto

    2015-01-01

    This is the second edition of a textbook conceived to be used in an introductory course on extragalactic astronomy and cosmology (the author is professor at Bonn University and a well-known specialist in gravitational lensing). A new edition is fully justified because, as Schneider () explains in the preface, the field has been evolving rapidly during the years which have passed since the first edition (published in 2006), with the advent of new observational facilities and new surveys.

  11. Exploring Cosmic Origins with CORE: Extragalactic sources in Cosmic Microwave Background maps

    OpenAIRE

    De Zotti, G.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernandez-Monteagudo, C.; Delabrouille, J.; Cai, Z. -Y.; Bonato, M.; Achucarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.

    2016-01-01

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resol...

  12. At what particle energy do extragalactic cosmic rays start to predominate?

    International Nuclear Information System (INIS)

    Wibig, Tadeusz; Wolfendale, Arnold W

    2005-01-01

    We have previously argued (e.g. Szabelski et al 2002 Astropart. Phys. 17 125) that the well-known 'ankle' in the cosmic ray energy spectrum, at log E (eV) ∼ 18.7-19.0, marks the transition from mainly galactic sources at lower energies to mainly extragalactic above. Recently, however, there have been claims for lower transitional energies, specifically from log E (eV) ∼ 17.0 (Thompson et al 2004 Proc. Catania Cosmic Ray Conf.) via 17.2-17.8 (Berezinsky et al 2004 Astropart. Phys. 21 617) to 18.0 (Hillas 2004 Proc. Leeds Cosmic Ray Conf.). In our model the ankle arises naturally from the sum of simple power law-spectra with slopes differing by Δγ ∼ 1.8; from differential slope γ = -3.8 for galactic particles (near log E = 19) to γ ∼ -2.0 for extragalactic sources. In the other models, on the other hand, the ankle is intrinsic to the extragalactic component alone, and arises from the shape of the rate of energy loss versus energy for the (assumed) protons interacting with the cosmic microwave background (CMB). Our detailed analysis of the world's data on the ultra-high energy spectrum shows that taken together, or separately, the resulting mean sharpness of the ankle (second derivative of the log(intensity x E 3 ) with respect to log E) is consistent with our 'mixed' model. For explanation in terms of extragalactic particles alone, however, the ankle will be at the wrong energy-for reasonable production models and of insufficient magnitude if, as seems likely, there is still a significant fraction of heavy nuclei at the ankle energy

  13. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  14. Linking GAIA proper motions to the extragalactic reference system by QSO observations

    Science.gov (United States)

    Schilbach, Elena; Scholz, R.-D.

    1995-01-01

    A direct link to an extragalactic reference system is considered as being a principle aim of the global astrometric interferometer for astrophysics (GAIA) mission. The data available from an extragalactic data base and a quasi stellar object (QSO) catalog were used to obtain an estimation of the number of QSO link candidates. The quality of presently available data and the expected accuracy of the extragalactic link are discussed. It is concluded that at least 150 QSO's must be observed by GAIA in order to guarantee an accuracy of better than 1 microarcsec/year for the link. New observations will be needed before the GAIA launch in order to reduce uncertainties in the positions, magnitudes and redshifts for some known quasars. The variability of QSO's with magnitudes near the GAIA observation limit can raise a potential problem. The motions of nearby QSO's are expected to be much smaller than 2 microarcsec/year, and therefore, will not affect the accuracy of the link in the proposed GAIA mission.

  15. Planetary heat flow measurements.

    Science.gov (United States)

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  16. Extra-Solar Planetary Imager (ESPI) for Space Based Jovian Planetary Detection

    Science.gov (United States)

    Lyon, Rick G.; Melnick, Gary J.; Nisenson, Peter; Papaliolios, Costa; Ridgeway, Steve; Friedman, Edward; Gezari, Dan Y.; Harwit, Martin; Graf, Paul

    2002-01-01

    We report on out Extra-Solar Planetary Imager (ESPI) study for a recent Midex (NASA Medium Class Explorer Mission) proposal. Proposed for ESPI was a 1.5 x 1.5 square meter Jacquinot apodized square aperture telescope. The combination of apodization and a square aperture telescope significantly reduces the diffracted light from a bright central source over much of the telescope focal plane. As a result, observations of very faint astronomical objects next to bright sources with angular separations as small as 0.32 arcseconds become possible. This permits a sensitive search for exo-planets in reflected light. The system is capable of detecting a Jupiter-like planet in a relatively long-period orbit around as many as 160 to 175 stars with a signal-to-noise ratio greater than 5 in observations lasting maximally 100 hours per star. We discuss the effects of wavefront error, mirror speckle, pointing error and signal-to-noise issues, as well as the scalability of our ESPI study with respect to NASA's Terrestrial Planet Finder mission.

  17. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  18. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  19. Aftereffect of Adaptation to Illusory Brightness

    Directory of Open Access Journals (Sweden)

    Xinguang Cao

    2011-05-01

    Full Text Available Several figures are known to induce illusory brightness. We tested whether adaptation to illusory brightness produced an aftereffect in brightness. After viewing a gray square area having illusory brightness (e.g., due to brightness contrast or illusory contours for ten seconds, the illusion-inducing surround vanished. After three seconds, subjects reported whether the square area was seen as brighter than, darker than, or the same brightness as a control gray square area. The luminance of the tested square area was physically unchanged. The results show that when the black surround inducing brightness contrast suddenly became gray (i.e., vanished, the center gray square tended to look darker than a control gray square. Similarly, after viewing a subjective square consisting of black-line terminations, the square area tended to look darker than the control even though the afterimage of the lines could not be seen. These results indicate that induced or illusory brightness causes an aftereffect in brightness regardless of the appearance of negative afterimages of the illusion-inducing components.

  20. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  1. The internal kinematics of the planetary nebula NGC 650/1

    International Nuclear Information System (INIS)

    Taylor, K.

    1979-01-01

    Hα and [N II], lambda 6584 line profiles from the bright lobes of planetary nebula NGC 650/1 have been obtained. These emission lines show a very strong symmetrical triple-peak velocity structure, not observed previously to the author's knowledge in planetary nebulae. Models are tentatively proposed to explain both the velocity data and the nebula's optical appearance. The velocity splitting amounts to approximately 62 km/s and the rest frame of the nebula is found to have a heliocentric radial velocity of -19 +- 2 km/s. (author)

  2. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  3. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  4. In Situ Planetary Geochronology Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — This project's purpose was to determine whether a Pulsed Neutron Generator (PNG) could be used in an instrument that could perform in situ age dating of planetary...

  5. Kinematics of giant low surface brightness galaxies

    NARCIS (Netherlands)

    Pickering, TE; Davies, JI; Impey, C; Phillipps, S

    1999-01-01

    High sensitivity H I observations now exist for six giant low surface brightness (LSB) disk galaxies including the two prototypes, Malin 1 (Bothun et al. 1987; Impey & Bothun 1989) and F568-6 (also known as Malin 2; Bothun et al. 1990). Their H I surface brightnesses are generally low, but

  6. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  7. Spectrophotometric study of five bright meteors

    International Nuclear Information System (INIS)

    Saidov, K.Kh.; Zolowa, O.F.

    1971-01-01

    The results of 200 spectrophotometric study of five bright meteors and indentification of spectral lines are given. Distribution of energy for different points of the paths of meteors is found. Masses of meteor particles are determined on the base of integrated curves of brightness

  8. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  9. Infrared-Bright Interacting Galaxies

    Science.gov (United States)

    Rojas Ruiz, Sofia; Murphy, Eric Joseph; Armus, Lee; Smith, John-David; Bradford, Charles Matt; Stierwalt, Sabrina

    2018-01-01

    We present the mid-infrared spectral mapping of eight LIRG-class interacting galaxies: NGC 6670, NGC 7592, IIZw 96, IIIZw 35, Arp 302, Arp 236, Arp 238, Arp 299. The properties of galaxy mergers, which are bright and can be studied at high resolutions at low-z, provide local analogs for sources that may be important contributors to the Far Infrared Background (FIRB.) In order to study star formation and the physical conditions in the gas and dust in our sample galaxies, we used the Spitzer InfraRed Spectrograph (IRS) to map the galaxies over the 5-35 μm window to trace the PAH, molecular hydrogen, and atomic fine structure line emission on scales of 1.4 – 5.3 kpc. Here we present the reduction for low and high-resolution data, and preliminary results in the analysis of fine structure line ratios and dust features in the two nuclei and interacting regions from one of our sample galaxies, NGC 6670.

  10. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  11. Accounting for planet-shaped planetary nebulae

    Science.gov (United States)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  12. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  13. An autopsy of dead planetary systems with COS

    Science.gov (United States)

    Debes, John

    2014-10-01

    We propose to use HST/COS to conduct autopsies of dead planetary systems around UV bright hydrogen-white dwarfs (WDs), which have dust disks found via their mid-IR emission in excess of that expected from the photosphere. As part of a WISE survey, and followed up with a combination of NASA Keck HIRES/Magellan MIKE optical spectroscopy, we have identified three new systems that are accreting dust. These WDs are bright in the mid-IR and UV, gold-standard targets for studies with HST/COS and later with JWST. The dusty material is debris resulting from the tidal disruption of exo-asteroids that accrete onto the WD surface. Many atomic elements from the accreted and dissociated dust particles are detectable with COS, enabling abundance determinations of exo-asteroidal material. Moreover, the photospheric abundances of this material can be directly compared with a determination of the dust mineralogy obtained with future JWST mid-IR spectroscopy-our proposed UV observations provide complementary constraints on mineralogical compositions of the accreting dust particles. UV spectroscopy is crucial for cataloging elemental abundances for these exo-asteroids. For the majority of WDs, optical spectroscopy reveals only a couple of lines of Ca or Mg, while UV spectroscopy captures lines from Al, Fe, Si, C, Ni, O, S, Cr, P, and Ti. Obtaining the elemental abundances of exo-asteroids is comparable to the spectroscopic characterization of transiting exoplanets or protoplanetary disks-all of these techniques determine how the chemical diversity of planetary systems translate into planetary architectures and the probability of habitable planets around solar-type stars.

  14. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  15. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  16. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  17. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  18. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  19. Capabilities of the NASA/IPAC extragalactic database in the era of a global virtual observatory

    Science.gov (United States)

    Mazzarella, Joseph M.; Madore, Barry F.; Helou, George

    2001-11-01

    We review the capabilities of the NASA/IPAC Extragalactic Database (NED, http://ned.ipac.caltech.edu) for information retrieval and knowledge discovery in the context of a globally distributed virtual observatory. Since it's inception in 1990, NED has provided astronomers world-wide with the results of a systematic cross-correlation of catalogs covering all wavelengths, along with thousands of extragalactic observations culled from published journal articles. NED is continuously being expanded and revised to include new catalogs and published observations, each undergoing a process of cross-identification to capture the current state of knowledge about extragalactic sources in a panchromatic fashion. In addition to assimilating data from the literature, the team in incrementally folding in millions of observations from new large-scale sky surveys such as 2MASS, NVSS, APM, and SDSS. At the time of writing the system contains over 3.3 million unique objects with 4.2 million cross-identifications. We summarize the recent evolution of NED from its initial emphasis on object name-, position-, and literature-based queries into a research environment that also assists statistical data exploration and discovery using large samples of objects. Newer capabilities enable intelligent Web mining of entries in geographically distributed astronomical archives that are indexed by object names and positions in NED, sample building using constraints on redshifts, object types and other parameters, as well as image and spectral archives for targeted or serendipitous discoveries. A pilot study demonstrates how NED is being used in conjunction with linked survey archives to characterize the properties of galaxy classes to form a training set for machine learning algorithms; an initial goal is production of statistical likelihoods that newly discovered sources belong to known classes, represent statistical outliers, or candidates for fundamentally new types of objects. Challenges and

  20. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  1. Active extragalactic sources - Nearly simultaneous observations from 20 centimeters to 1400 A

    Science.gov (United States)

    Landau, R.; Golisch, B.; Jones, T. J.; Jones, T. W.; Pedelty, J.; Rudnick, L.; Sitko, M. L.; Kenney, J.; Roellig, T.; Salonen, E.

    1986-01-01

    IRAS, IUE, and ground-based optical, NIR, mm and submm, and radio observations obtained mainly on Apr. 9-23, 1983, are reported for 19 active extragalactic sources and eight control sources. The overall spectra of the compact active sources are shown to be well represented by continuous-curvature functions such as parabolas. The spectra are found to be consistent with models involving continuous particle injection (with synchrotron losses) or first-order Fermi acceleration (with escape and synchrotron losses), but not with models using relativistic Maxwellian electron distributions.

  2. The width of jets in powerful edge-brightened extragalactic double radio sources

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1987-01-01

    The widths of primary and secondary jets are derived from a sample of 14 double hotspots in powerful extended extragalactic double radio sources. In the model employed, the primary jet extends from the core to the more compact primary hotspot and the secondary jet emerges from the primary hotspot and dissipates to form the diffuse secondary hotspot. Mean values of hotspot size/jet extent imply that the primary and secondary jets, if free, must be 2 0 and > 27 0 wide, respectively. (author)

  3. The Green Bank Third GB3 Survey of Extragalactic Radio Sources at 1400-MHZ

    Science.gov (United States)

    Rys, S.; Machalski, J.

    The NRAO 91-m telescope was used to make a 1400 MHz sky survey covering an area of 0.0988 sr at declinations 70° ≤ δ1950 ≤ 76°.8 with 10.1×10.5 arcmin resolution. This survey ends the series of smaller than 1-sr surveys made at 1400 MHz with that telescope. A catalogue of 502 radiosources is presented, statistically complete to 112 mJy, which is about five times the rms noise and extragalactic confusion. The observations and data reduction are briefly summarized; the position and flux density errors are discussed.

  4. Bright Streaks and Dark Fans

    Science.gov (United States)

    2007-01-01

    The south polar region of Mars is covered every year by a layer of carbon dioxide ice. In a region called the 'cryptic terrain,' the ice is translucent and sunlight can penetrate through the ice to warm the surface below. The ice layer sublimates (evaporates) from the bottom. The dark fans of dust seen in this image come from the surface below the layer of ice, carried to the top by gas venting from below. The translucent ice is 'visible' by virtue of the effect it has on the tone of the surface below, which would otherwise have the same color and reflectivity as the fans. Bright streaks in this image are fresh frost. The CRISM team has identified the composition of these streaks to be carbon dioxide. Observation Geometry Image PSP_003113_0940 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 26-Mar-2007. The complete image is centered at -85.8 degrees latitude, 106.0 degrees East longitude. The range to the target site was 244.9 km (153.0 miles). At this distance the image scale is 49.0 cm/pixel (with 2 x 2 binning) so objects 147 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 06:20 PM and the scene is illuminated from the west with a solar incidence angle of 79 degrees, thus the sun was about 11 degrees above the horizon. At a solar longitude of 207.6 degrees, the season on Mars is Northern Autumn.

  5. Designers predict a bright future

    International Nuclear Information System (INIS)

    Statton, T.D.

    1996-01-01

    As power plant designers and builders, there is a bright future for the industry. The demand for electricity will continue to grow, and the need for new plants will increase accordingly. But companies that develop and supply these plants must adapt to new ways of doing business if they expect to see the dawn of this new age. Several factors will have a profound effect on the generation and use of electricity in future years. Instant communications now reach all corners of the globe, making people everywhere aspire to a higher standard of living. The economic surge needed to satisfy these appetites will, in turn, be fed by a network of suppliers who are themselves restructuring to serve global markets, unimpeded by past nationalistic barriers to trade. The strong correlation between economic progress and the growing demand for electricity is well recognized. A ready supply of affordable electricity is a necessary underpinning for any economic expansion. As economies advance and jobs increase, electric demand grows geometrically, fueled by an ever-improving quality of life. Coupled with increasing demand is the worldwide trend toward privatization of the generation industry. The reasons may vary in different parts of the world, but the effect is the same--companies are battling intensely for the right to build or purchase generating facilities. Those companies, like the industry they serve, are themselves in a period of transition. Once a closed, monopolistic group of owners in a predominantly services-based market, they are, thanks to competitive forces, being driven steadily toward a product-based structure

  6. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  7. Galaxy Selection and the Surface Brightness Distribution

    Science.gov (United States)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  8. The structure of bright zinc coatings

    Directory of Open Access Journals (Sweden)

    MIODRAG STOJANOVIC

    2000-11-01

    Full Text Available The structures of bright zinc coatings obtained from acid sulfate solutions in the presence of dextrin/salicyl aldehyde mixture were examined. It was shown by the STM technique that the surfaces of bright zinc coatings are covered by hexagonal zinc crystals, the tops of planes of which are flat and mutually parallel and which exhibit smoothness on the atomic level. X-Ray diffraction (XRD analysis of the bright zinc coatings showed that the zinc crystallites are oriented in the (110 plane only.

  9. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  10. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  11. The fragility of planetary systems

    Science.gov (United States)

    Portegies Zwart, S. F.; Jílková, Lucie

    2015-07-01

    We specify the range to which perturbations penetrate a planetesimal system. Such perturbations can originate from massive planets or from encounters with other stars. The latter can have an origin in the star cluster in which the planetary system was born, or from random encounters once the planetary system has escaped its parental cluster. The probability of a random encounter, either in a star cluster or in the Galactic field depends on the local stellar density, the velocity dispersion and the time spend in that environment. By adopting order of magnitude estimates, we argue that the majority of planetary systems born in open clusters will have a Parking zone, in which planetesimals are affected by encounters in their parental star cluster but remain unperturbed after the star has left the cluster. Objects found in this range of semimajor axis and eccentricity preserve the memory of the encounter that last affected their orbits, and they can therefore be used to reconstruct this encounter. Planetary systems born in a denser environment, such as in a globular cluster are unlikely to have a Parking zone. We further argue that some planetary systems may have a Frozen zone, in which orbits are not affected either by the more inner massive planets or by external influences. Objects discovered in this zone will have preserved information about their formation in their orbital parameters.

  12. Extragalactic adventure

    International Nuclear Information System (INIS)

    Heidmann, J.

    1982-01-01

    The subject is covered in chapters, entitled: our galaxy and its hundred billion stars; galaxies, population of the Universe; radioastronomy, a deeper foray in space; spectra, valuable messengers; the expansion of the Universe and the Big Bang; Einstein's General Relativity Theory or gravitation by the curvature of space; curved spaces, surprising worlds; models of the Universe; space-time; cosmological horizons, limits of the Universe; the past of the Universe, from the primeval soup to us; the future of the Universe; anomalous spectral redshifts; quasars, at the boundaries of space; the Space Telescope, a new leap in knowledge; black holes and their fantastic properties; extraterrestrials. (U.K.)

  13. Nimbus-5 ESMR Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  14. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  15. New Self-lensing Models of the Small Magellanic Cloud: Can Gravitational Microlensing Detect Extragalactic Exoplanets?

    Science.gov (United States)

    Mróz, Przemek; Poleski, Radosław

    2018-04-01

    We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.

  16. Extragalactic diffuse γ-rays from dark matter annihilation: revised prediction and full modelling uncertainties

    Science.gov (United States)

    Hütten, M.; Combet, C.; Maurin, D.

    2018-02-01

    Recent high-energy data from Fermi-LAT on the diffuse γ-ray background have been used to set among the best constraints on annihilating TeV cold dark matter candidates. In order to assess the robustness of these limits, we revisit and update the calculation of the isotropic extragalactic γ-ray intensity from dark matter annihilation. The emission from halos with masses >= 1010 Msolar provides a robust lower bound on the predicted intensity. The intensity including smaller halos whose properties are extrapolated from their higher mass counterparts is typically 5 times higher, and boost from subhalos yields an additional factor ~ 1.5. We also rank the uncertainties from all ingredients and provide a detailed error budget for them. Overall, our fiducial intensity is a factor 5 lower than the one derived by the Fermi-LAT collaboration in their latest analysis. This indicates that the limits set on extragalactic dark matter annihilations could be relaxed by the same factor. We also calculate the expected intensity for self-interacting dark matter in massive halos and find the emission reduced by a factor 3 compared to the collisionless counterpart. The next release of the CLUMPY code will provide all the tools necessary to reproduce and ease future improvements of this prediction.

  17. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  18. Observations and diagnostics in high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Cianchi, A., E-mail: alessandro.cianchi@roma2.infn.it [University of Rome Tor Vergata and INFN-Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Anania, M.P.; Bisesto, F.; Castellano, M.; Chiadroni, E.; Pompili, R.; Shpakov, V. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The brightness is a figure of merit largely used in the light sources, like FEL (Free Electron Lasers), but it is also fundamental in several other applications, as for instance Compton backscattering sources, beam driven plasma accelerators and THz sources. Advanced diagnostics are essential tools in the development of high brightness beams. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement.

  19. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  20. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  1. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  2. Future Looks Bright for Interferometry

    Science.gov (United States)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  3. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  4. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  5. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  6. GTR Component of Planetary Precession

    Indian Academy of Sciences (India)

    detection of gravitational waves has only augmented their en- thusiasm about the General Theory of Relativity ... the GTR advance of the perihelion of planetary motion about the sun. 1. Introduction. When you throw an ... cury's orbit was estimated to advance by about 565 seconds of an arc per Earth-century. It is also now ...

  7. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  8. White Paper on the Status and Future of Ground-based Gamma-Ray Astronomy - Extragalactic Science Working Group

    Science.gov (United States)

    Krawczynski, H.; Coppi, P.; Dermer, C.; Dwek, E.; Georganopoulos, M.; Horan, D.; Jones, T.; Krennrich, F.; Mukherjee, R.; Perlman, E.; Vassiliev, V.

    2007-04-01

    In fall 2006, the Division of Astrophysics of the American Physical Society requested a white paper about the status and future of ground based gamma-ray astronomy. The white paper will largely be written in the year 2007. Interested scientists are invited to join the science working groups. In this contribution, we will report on some preliminary results of the extragalactic science working group. We will discuss the potential of future ground based gamma-ray experiments to elucidate how supermassive black holes accrete matter, form jets, and accelerate particles, and to study in detail the acceleration and propagation of cosmic rays in extragalactic systems like infrared galaxies and galaxy clusters. Furthermore, we discuss avenues to constrain the spectrum of the extragalactic infrared to optical background radiation, and to measure the extragalactic magnetic fields based on gamma-ray observations. Eventually, we discuss the potential of ground based experiments for conducting gamma-ray source surveys. More information about the white paper can be found at: http://cherenkov.physics.iastate.edu/wp/

  9. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up

    NARCIS (Netherlands)

    Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Caleb, M.; Eatough, R.P.; Flynn, C.; Green, J.A.; Jankowski, F.; Kramer, M.; Krishnan, V Venkatraman; Morello, V.; Possenti, A.; Stappers, B.; Tiburzi, C.; van Straten, W.; Andreoni, I.; Butterley, T.; Chandra, P.; Cooke, J.; Corongiu, A.; Coward, D.M.; Dhillon, V.S.; Dodson, R.; Hardy, L.K.; Howell, E.J.; Jaroenjittichai, P.; Klotz, A.; Littlefair, S.P.; Marsh, T.R.; Mickaliger, M.; Muxlow, T.; Perrodin, D.; Pritchard, D.; Sawangwit, U.; Terai, T.; Tominaga, N.; Torne, P.; Totani, T.; Trois, A.; Turpin, D.; Niino, Y.; Wilson, R.W.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzocca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major

  10. A semianalytical method for calculating the parameters of the electromagnetic halos around extragalactic gamma-ray sources

    NARCIS (Netherlands)

    Kel'ner, [No Value; Khangulyan, DV; Aharonian, FA

    2004-01-01

    The ultrahigh-energy (>20 TeV) gamma rays emitted by active galactic nuclei can be absorbed in intergalactic space through the production of electron-positron pairs during their interaction with extragalactic background photon fields. The electrons and positrons produced by this interaction form an

  11. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. Proxy magnetometry of the photosphere: why are G-band bright points so bright?

    NARCIS (Netherlands)

    Rutten, R.J.; Kiselman, Dan; Voort, Luc Rouppe van der; Plez, Bertrand

    2000-01-01

    We discuss the formation of G-band bright points in terms of standard uxtube modeling, in particular the 1D LTE models constructed by Solanki and coworkers. Combined with LTE spectral synthesis they explain observed G-band bright point contrasts quite well. The G-band contrast increase over the

  13. Identification of extragalactic sources of the highest energy EGRET photons by correlation analysis

    CERN Document Server

    Gorbunov, D.S.; Tkachev, I.I.; Troitsky, Sergey V.

    2005-01-01

    We found significant correlations between the arrival directions of the highest energy photons (E>10 GeV) observed by EGRET and positions of the BL Lac type objects (BL Lacs). The observed correlations imply that not less than three per cent of extragalactic photons at these energies originate from BL Lacs. Some of the correlating BL Lacs have no counterparts in the EGRET source catalog, i.e. do not coincide with strong emitters of gamma-rays at lower energy. The study of correlating BL Lacs suggests that they may form a subset which is statistically different from the total BL Lac catalog; we argue that they are prominent candidates for TeV gamma-ray sources. Our results demonstrate that the analysis of positional correlations is a powerful approach indispensable in cases when low statistics limits or even prohibits the standard case-by-case identification.

  14. IceCube searches for neutrino emission from galactic and extragalactic sources

    Directory of Open Access Journals (Sweden)

    Palczewski Tomasz Jan

    2015-01-01

    Full Text Available The IceCube Neutrino Observatory, located near the geographic South Pole, is currently the world’s largest neutrino telescope. IceCube is principally designed to detect high-energy neutrinos from galactic and extragalactic sources. The detector comprises more than a cubic-kilometer of glacial ice instrumented with 86 vertical strings, each with 60 optical sensors, and a square-kilometer array at the surface. IceCube sensors detect Cherenkov radiation from charged particles produced in all neutrino flavor interactions in the ice. We discuss the recent results from searches for high-energy neutrinos, including the first detection of a diffuse flux of extraterrestrial origin with energies between about 30 TeV and 2 PeV. The events with energies above 1 PeV are the highest energy neutrinos ever observed.

  15. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Aller, H. D.

    2016-01-01

    ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1......Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous.......5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations...

  16. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  17. Radio variability in complete samples of extragalactic radio sources at 1.4 GHz

    Science.gov (United States)

    Rys, S.; Machalski, J.

    1990-09-01

    Complete samples of extragalactic radio sources obtained in 1970-1975 and the sky survey of Condon and Broderick (1983) were used to select sources variable at 1.4 GHz, and to investigate the characteristics of variability in the whole population of sources at this frequency. The radio structures, radio spectral types, and optical identifications of the selected variables are discussed. Only compact flat-spectrum sources vary at 1.4 GHz, and all but four are identified with QSOs, BL Lacs, or other (unconfirmed spectroscopically) stellar objects. No correlation of degree of variability at 1.4 GHz with Galactic latitude or variability at 408 MHz has been found, suggesting that most of the 1.4-GHz variability is intrinsic and not caused by refractive scintillations. Numerical models of the variability have been computed.

  18. On the origin of near-infrared extragalactic background light anisotropy.

    Science.gov (United States)

    Zemcov, Michael; Smidt, Joseph; Arai, Toshiaki; Bock, James; Cooray, Asantha; Gong, Yan; Kim, Min Gyu; Korngut, Phillip; Lam, Anson; Lee, Dae Hee; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Roudier, Gael; Tsumura, Kohji; Wada, Takehiko

    2014-11-07

    Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history and may contain faint, extended components missed in galaxy point-source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR) or, alternately, intrahalo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts and therefore a substantial contribution to the energy contained in photons in the cosmos. Copyright © 2014, American Association for the Advancement of Science.

  19. Metre-wavelength fine structure in 30 extragalactic radio sources with sizes of a few arcsec

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.; Pramesh Rao, A.

    1983-01-01

    Interplanetary scintillation (IPS) observations at 327 MHz of an unbiased sample of 30 extragalactic radio sources having overall sizes between 1 and 4 arcsec, and flux densities greater than 1 Jy at 327 MHz are reported. From VLBI observations, these sources have been reported to contain compact components of sizes < approx.= to 0.02 arcsec contributing on an average about 25 per cent of the total emission at 5 HGz. The IPS observations show that about 45 per cent of the total emission at 327 MHz arises from structures of sizes between 0.05 and 0.5 arcsec (corresponding typically to 0.5 to 5 kpc). A comparison of the VLBI and IPS results indicates that the VLBI and IPS components probably refer to the same physical features in these sources. (author)

  20. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  1. Planetary polarisation measurements with small telescopes

    Science.gov (United States)

    Masding, Philip; Rossi, Loic; Miles, Phil

    2017-04-01

    We have developed a method for measuring the linear polarisation of planets which is accessible to experienced amateur astronomers. The method requires a telescope with an aperture of about 20cm or more together with a linear polarising filter and a planetary imaging camera. Many suitable cameras are available and they can record uncompressed video at frame rates of 10 to 60 per second. Typically this rate will depend on the brightness of the source and size of the telescope. An ideal camera will be monochrome and is used with separate colour filters and a polarising filter. The method is to attach the colour and polarising filters to the camera and record a series of video clips. After recording each video clip the camera and filters are rotated by about 20 degrees until the total rotation is over 180 degrees. Each video clip is then stacked to produce a single low noise image. Most stacking software can sort the video frames according to quality, so the stack is based on a selected percentage of the best frames. There are several freeware stacking programs available which are primarily used for planetary imaging in general but are very suitable for polarisation. Original videos are mostly 8 bit but noise allows the combined stack to have a higher effective resolution and it is saved in 16 bit format. The stacked images are currently processed in Matlab, although the algorithms are being incorporated in Winjupos which is freeware. Results so far have been primarily for Jupiter, but we also have some data for Venus. The Matlab code is used to register the stacked frames (removing any camera rotation) and in the case of Jupiter, compensate for rotation of the planet during the video capture process. Accurate image registration is crucial for this method. A disk function is also applied to allow for the changing illumination angle as the planet rotates. A least squares function calculates the best fit cos squared curve for the variation of light at each point in the

  2. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    Science.gov (United States)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  3. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  4. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  5. Optical counterpart positions of extragalactic radio sources and connecting optical and radio reference frames

    Science.gov (United States)

    Aslan, Z.; Gumerov, R.; Jin, W.; Khamitov, I.; Maigurova, N.; Pinigin, G.; Tang, Z.; Wang, S.

    2010-01-01

    We discuss the results of an investigation of astrometric positions of extragalactic radio sources from a list for the International Celestial Reference Frame. About 300 fields around extragalactic radio sources were observed during the years 2000-2003. The observations were performed mainly using two telescopes equipped with CCD cameras at TUG, Turkey (Russian-Turkish Telescope - RTT150) and at YAO (1 m telescope), (Kunming, China). The mean accuracies of the measured positions are 38 mas in right ascension and 35 mas in declination. A comparison between the measured optical positions determined using the UCAC2 catalog and the radio positions from the current ICRF shows that the overall optical-minus- radio offsets are -4 and +15 mas for right ascension and declination, respectively. The formal internal errors of these mean offsets are 4 mas. The results of optical positions with respect to the reference catalogue 2MASS are also given. A search for a relation between optical and radio reference frames indicates that the orientation angles are near zero within their accuracy of about 5 mas. The link accuracy becomes 3 mas when our observations are combined with other studies. Tables 2 and 3 giving the positions are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A10Present address: İstanbul Kültür University, Ataköy Yerleşkesi, 34156 Istanbul, Turkey

  6. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Norman A.; Ferguson, Henry C.; Koekemoer, Anton M.; Brown, Thomas M.; Casertano, Stefano [Space Telescope Science Institute, Baltimore, MD (United States); Kocevski, Dale D.; Faber, S. M. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Acquaviva, Viviana [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ (United States); Alexander, David M. [Department of Physics, Durham University, Durham (United Kingdom); Almaini, Omar [The School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Barden, Marco [Institute of Astro- and Particle Physics, University of Innsbruck, Innsbruck (Austria); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Bournaud, Frederic [CEA-Saclay/DSM/DAPNIA/Service d' Astrophysique, Gif-sur-Yvette (France); Caputi, Karina I. [Institute for Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Cassata, Paolo [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Castellano, Marco [INAF, Osservatorio Astronomico di Roma, Rome (Italy); Challis, Peter [Harvard College Observatory, Cambridge, MA (United States); Chary, Ranga-Ram [U.S. Planck Data Center, California Institute of Technology, Pasadena, CA (United States); and others

    2011-12-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10{sup 9} M{sub Sun} to z Almost-Equal-To 2, reaching the knee of the ultraviolet luminosity function of galaxies to z Almost-Equal-To 8. The survey covers approximately 800 arcmin{sup 2} and is divided into two parts. The CANDELS/Deep survey (5{sigma} point-source limit H = 27.7 mag) covers {approx}125 arcmin{sup 2} within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5{sigma} point-source limit of H {approx}> 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered 'wedding-cake' approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.

  7. STARS4ALL Night Sky Brightness Photometer

    Directory of Open Access Journals (Sweden)

    Jaime Zamorano

    2017-06-01

    Full Text Available We present the main features of TESS-W, the first version of a series of inexpensive but reliable photometers that will be used to measure night sky brightness. The bandpass is extended to the red with respect of that of the Sky Quality Meter (SQM. TESS-W connects to a router via WIFI and it sends automatically the brightness values to a data repository using Internet of Things protocols. The device includes an infrared sensor to estimate the cloud coverage. It is designed for fixed stations to monitor the evolution of the sky brightness. The photometer could also be used in local mode connected to a computer or tablet to gather data from a moving vehicle. The photometer is being developed within STARS4ALL project, a collective awareness platform for promoting dark skies in Europe, funded by the EU. We intend to extend the existing professional networks to a citizen-based network of photometers. 

  8. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  9. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  10. Richard Bright and his neurological studies.

    Science.gov (United States)

    Pearce, J M S

    2009-01-01

    Richard Bright was one of the famous triumvirate of Guy's Hospital physicians in the Victorian era. Remembered for his account of glomerulonephritis (Bright's disease) he also made many important and original contributions to medicine and neurology. These included his work on cortical epileptogenesis, descriptions of simple partial (Jacksonian) seizures, infantile convulsions, and a variety of nervous diseases. Most notable were his reports of neurological studies including papers on traumatic tetanus, syringomyelia, arteries of the brain, contractures of spinal origin, tumours of the base of the brain, and narcolepsy. His career and these contributions are outlined. Copyright 2009 S. Karger AG, Basel.

  11. The Bright SHARC Survey: The Cluster Catalog

    OpenAIRE

    Romer, A. K; Nichol, R. C.; Holden, B. P.; Ulmer, M. P.; Pildis, R. A.; Merrelli, A. J.; Adami, C.; Burke, D. J.; Collins, C. A.; Metevier, A. J.; Kron, R. G.; Commons, K.

    1999-01-01

    We present the Bright SHARC (Serendipitous High-Redshift Archival ROSAT Cluster) Survey, which is an objective search for serendipitously detected extended X-ray sources in 460 deep ROSAT PSPC pointings. The Bright SHARC Survey covers an area of 178.6 deg2 and has yielded 374 extended sources. We discuss the X-ray data reduction, the candidate selection and present results from our on-going optical follow-up campaign. The optical follow-up concentrates on the brightest 94 of the 374 extended ...

  12. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  13. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  14. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  15. The PSA: Planetary Science Archive

    Science.gov (United States)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, SMART-1 and Huygens missions. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels

  16. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  17. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  18. Planetary rovers and data fusion

    OpenAIRE

    Masuku, Anthony Dumisani

    2012-01-01

    This research will investigate the problem of position estimation for planetary rovers. Diverse algorithmic filters are available for collecting input data and transforming that data to useful information for the purpose of position estimation process. The terrain has sandy soil which might cause slipping of the robot, and small stones and pebbles which can affect trajectory. The Kalman Filter, a state estimation algorithm was used for fusing the sensor data to improve the p...

  19. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  20. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  1. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available . In this paper, diurnal brightness temperatures received from the METEOSAT Second Generation (MSG) satellite were interpolated for missing data based on a model, and a performance test was performed by comparing a new approach based on robust modelling...

  2. A Magnetic Bright Point Case Study

    Czech Academy of Sciences Publication Activity Database

    Utz, D.; Jurčák, Jan; Bellot Rubio, L.; del Toro Iniesta, J.C.; Thonhofer, S.; Hanslmeier, A.; Veronig, A.; Muller, R.; Lemmerer, B.

    2013-01-01

    Roč. 37, č. 2 (2013), s. 459-470 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA MŠk(CZ) MEB061109 Institutional support: RVO:67985815 Keywords : solar magnetic field * magnetic bright points * sunrise/IMaX Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Microwave brightness temperature imaging and dielectric properties ...

    Indian Academy of Sciences (India)

    material collected by former Soviet Union robots and Apollo astronauts. With the completion of the first round of lunar exploration by human beings, the study of lunar microwave brightness tempe- rature was completely forgotten. Accompanied by a new upcoming era of lunar exploration and the development of science and ...

  4. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...

  5. A Bright Future for Magnetic Resonance

    Indian Academy of Sciences (India)

    IAS Admin

    Does magnetic resonance have a bright future? Ever since magnetic resonance in condensed phase started in 1945, questions about its future prospects (or its imminent doom) have been asked time and again. Some, like Nicolaas Bloembergen, left the field at an early stage because they felt there was no hope to gather ...

  6. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.

    1996-01-01

    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that

  7. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P

    1997-01-01

    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  8. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  9. IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778

    Energy Technology Data Exchange (ETDEWEB)

    García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio [Instituto de Astrofísica de Canarias, E-38200, La Laguna, Tenerife (Spain); Monteiro, Hektor [Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303-Pinheirinho, 37500-903, Itajubá (Brazil)

    2016-06-20

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  10. Conservation of an ion beam brightness. Study of a non brightness disturbing lens

    International Nuclear Information System (INIS)

    Bernard, P.

    1966-11-01

    Experimental studies of ion sources prove that large initial brightnesses can be obtained by using the plasma expansion principle. However these brightnesses are usually spoiled by the beam focusing and accelerating systems. A high intensity focusing set up is first theoretically studied, then numerically determined by use of a 7094 IBM computer. Aberrations have been minimized. It has then been possible to construct a set up conserving the source initial brightness. For a 100 mA beam the focusing voltage is 150 kV, the beam study has been done for 350 keV beam final energy. Given is a discussion of results. (author) [fr

  11. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  12. “Real-Time” Cosmology with Extragalactic Proper Motions: the Secular Aberration Drift and Evolution of Large-Scale Structure

    Science.gov (United States)

    Truebenbach, Alexandra; Darling, Jeremy

    2018-01-01

    We present the VLBA Extragalactic Proper Motion Catalog, a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ~ 24 microarcsec/yr, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. We detect the secular aberration drift – the apparent motion of extragalactic objects caused by the solar system's acceleration around the Galactic Center – at 6.3 sigma significance with an amplitude of 1.69 +/- 0.27 microarcsec/yr and an apex consistent with the Galactic Center (275.2 +/- 10.0 deg, -29.4 +/- 8.8 deg). Our dipole model detects the aberration drift at a higher significance than some previous studies (e.g., Titov & Lambert 2013), but at a lower amplitude than expected or previously measured. We then use the correlated relative proper motions of extragalactic objects to place upper limits on the rate of large-scale structure collapse (e.g., Quercellini et al. 2009; Darling 2013). Pairs of small separation objects that are in gravitationally interacting structures such as filaments of large-scale structure will show a net decrease in angular separation (> - 15.5 microarcsec/yr) as they move towards each other, while pairs of large separation objects that are gravitationally unbound and move with the Hubble expansion will show no net change in angular separation. With our catalog, we place a 3 sigma limit on the rate of convergence of large-scale structure of -11.4 microarcsec/yr for extragalactic objects within 100 comoving Mpc of each other. We also confirm that large separation objects (> 800 comoving Mpc) move with the Hubble flow to within ~ 2.2 microarcsec/yr. In the future, we plan to incorporate the upcoming Gaia proper motions into our catalog to achieve a higher precision measurement of the average relative proper motion of gravitationally interacting extragalactic objects and to refine our

  13. OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    OpenAIRE

    Christophe, Bruno; Spilker, Linda J.; Anderson, John D.; André, Nicolas; Asmar, Sami W.; Aurnou, Jonathan; Banfield, Don; Barucci, Antonella; Bertolami, Orfeu; Bingham, Robert; Brown, Patrick; Cecconi, Baptiste; Courty, Jean-Michel; Dittus, Hansjörg; Fletcher, Leigh N.

    2011-01-01

    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere a...

  14. Study of galactic light, extragalactic light, and galactic structure using pioneer 10 observations of background starlight

    International Nuclear Information System (INIS)

    Toller, G.N.

    1981-01-01

    An observational and theoretical study of the diffuse astronomical background sky brightness (background starlight) is carried out. The brightness is determined over 95% of the sky using Pioneer 10 photometric measurements in sky regions where the zodiacal light is negligible (heliocentric distances approx. greater than or equal to 3. A.U.). Brightness levels are presented at blue (3950 to 4850 A) and red (5900 to 6800 A) wavelengths. The B-R color index distribution is established over the celestial sphere. Pioneer 10 results are compared with previous star count and ground based photometric studies to separate background starlight into its constituent parts: integrated starlight, diffuse galactic light (DGL), and cosmic light. Significant errors are found in published star count results at low galactic latitudes. The galactic latitude (b'') and longitude (1'') dependences of integrated starlight and the variation of DGL with b'' are determined. An upper limit of 3.9 S 10 (V)/sub G2V/ at the 90% confidence level is deduced for the cosmic light brightness at blue wavelengths near the galactic poles. The integrated light from discrete galaxies adequately explains this component of the background starlight

  15. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  16. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  17. X-ray Variability In Extragalactic Jets as Seen by Chandra

    Science.gov (United States)

    Trevor, Max; Meyer, Eileen; Georganopoulos, Markos; Aubin, Sam; Hewitt, Jennifer; DeNigris, Natalie; Whitley, Kevin

    2018-01-01

    The unrivaled spatial resolution of Chandra has lead to the detection of over 100 extragalactic jetsemitting X-rays on kiloparsec scales, far from the central AGN. These jets are understood to be powerful redistributors of energy on galactic and extragalactic scales, with important effects on galaxy evolution and cluster heating. However, we lack an understanding of many important jet properties, including the particle makeup, particle acceleration characteristics, and total energy content, and even how fast the jet is at kpc scales. In the most powerful jets, a persistently open question is the nature of the emission mechanism for the Chandra-observed X-rays. While inverse Compton upscattering of CMB photons (IC/CMB) by a still-relativistic jet is widely adopted, our group has very recently ruled it out in several cases, suggesting that the X-rays from powerful sources, like the low-power jets, have a synchrotron origin, albeit one with unknown origins, requiring in-situ lepton acceleration at least up to 100 TeV. A very efficient way to extend this result to many more sources is to check for variability of the large scale jet X-ray emission, something that is definitively not expected in the case of IC/CMB due to the extremely long cooling times of the electrons responsible for the emission, but it is plausible if the X-rays are of synchrotron nature. Based on previously published observations of X-ray variability in the jets of M87 and Pictor A, as well as preliminary results suggesting variability in two more powerful jets, we have examined archival observations of over 40 jets which have been imaged twice or more with Chandra for variability, with timescales of a few to nearly 14 years. This analysis has two main goals, namely (i) to confirm a synchrotron origin for the X-rays in powerful sources, as variability is inconsistent with the competing IC/CMB model and (ii) to use the timescales and characteristics (e.g., spectral changes) of any detected X

  18. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it

    Science.gov (United States)

    Unger, Michael; Farrar, Glennys R.; Anchordoqui, Luis A.

    2015-12-01

    The sharp change in slope of the ultrahigh energy cosmic ray (UHECR) spectrum around 1 018.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically, without fine-tuning. We propose a mechanism whereby photo-disintegration of ultrahigh energy nuclei in the region surrounding a UHECR accelerator accounts for the observed spectrum and inferred composition at Earth. For suitable source conditions, the model reproduces the spectrum and the composition over the entire extragalactic cosmic ray energy range, i.e. above 1 017.5 eV . Predictions for the spectrum and flavors of neutrinos resulting from this process are also presented.

  19. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  20. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  1. Two distant brown dwarfs in the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey Data Release 2

    OpenAIRE

    Lodieu, N.; Dobbie, P. D.; Deacon, N. R.; Venemans, B. P.; Durant, M.

    2009-01-01

    We present the discovery of two brown dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Deep Extragalactic Survey (DXS) Data Release 2. Both objects were selected photometrically from six square degrees in DXS for their blue J-K colour and the lack of optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82. Additional optical photometry provided by the Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS) corroborated the possible substellarity of these candidates. Subseque...

  2. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    Science.gov (United States)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  3. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  4. Sealed Planetary Return Canister (SPRC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  5. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  6. Sealed Planetary Return Canister (SPRC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  7. Public Participation in Planetary Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    In the past several years The Planetary Society has created several innovative opportunities for general public participation in the exploration of the solar system and the search for extraterrestrial life. The conduct of such exploration has traditionally been the province of a few thousand, at most, of professionally involved scientists and engineers. Yet the rationale for spending resources required by broad and far-reaching exploration involves a greater societal interest - it frequently being noted that the rationale cannot rely on science alone. This paper reports on the more notable of the opportunities for general public participation, in particular: 1) Visions of Mars: a CD containing the works of science fiction about Mars, designed to be placed on Mars as the first library to be found by eventual human explorers; 2) MAPEX: a Microelectronics And Photonics Experiment, measuring the radiation environment for future human explorers of Mars, and containing a electron beam lithograph of names of all the members of The Planetary Society at a particular time; 3) Naming of spacecraft: Involvement in the naming of spacecraft: Magellan, Sojourner; 4) The Mars Microphone: the first privately funded instrument to be sent to another world; 5) Red Rover Goes to Mars: the first commercial-education partnership on a planetary mission; 6) Student designed nanoexperiments: to fly on a Mars lander; and 7) SETI@home: a tool permitting millions to contribute to research and data processing in the search for extraterrestrial intelligence. A brief description of each of the projects will be given, and the opportunity it provided for public participation described. The evolving complexity of these projects suggest that more opportunities will be found, and that the role of public participation can increase at the same time as making substantive contributions to the flight missions. It will be suggested that these projects presage the day that planetary exploration will be truly

  8. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  9. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  10. REDSHIFT-INDEPENDENT DISTANCES IN THE NASA/IPAC EXTRAGALACTIC DATABASE: METHODOLOGY, CONTENT, AND USE OF NED-D

    Energy Technology Data Exchange (ETDEWEB)

    Steer, Ian [268 Adelaide St. E., Ste. 188, Toronto, ON M5R 2G2 (Canada); Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Mazzarella, Joseph M.; Schmitz, Marion; Chan, Ben H. P.; Ebert, Rick; Helou, George; Baker, Kay; Chen, Xi; Frayer, Cren; Jacobson, Jeff; Lo, Tak; Ogle, Patrick; Pevunova, Olga; Terek, Scott [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Corwin, Harold G., E-mail: steer@bell.net, E-mail: barry@obs.carnegiescience.edu [68 The Common, Williamsville, NY 14221 (United States)

    2017-01-01

    Estimates of galaxy distances based on indicators that are independent of cosmological redshift are fundamental to astrophysics. Researchers use them to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006 the NASA/IPAC Extragalactic Database (NED) began making available a comprehensive compilation of redshift-independent extragalactic distance estimates. A decade later, this compendium of distances (NED-D) now contains more than 100,000 individual estimates based on primary and secondary indicators, available for more than 28,000 galaxies, and compiled from over 2000 references in the refereed astronomical literature. This paper describes the methodology, content, and use of NED-D, and addresses challenges to be overcome in compiling such distances. Currently, 75 different distance indicators are in use. We include a figure that facilitates comparison of the indicators with significant numbers of estimates in terms of the minimum, 25th percentile, median, 75th percentile, and maximum distances spanned. Brief descriptions of the indicators, including examples of their use in the database, are given in an appendix.

  11. TC4 AMPR BRIGHTNESS TEMPERATURE (TB) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TC4 AMPR Brightness Temperature (TB) dataset consists of brightness temperature data from July 19, 2007 through August 8, 2007. The Tropical Composition, Cloud...

  12. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus

    1988-01-01

    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  13. Australia 31-GHz brightness temperature exceedance statistics

    Science.gov (United States)

    Gary, B. L.

    1988-01-01

    Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.

  14. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  15. High-brightness H/sup -/ accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rational and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed

  16. Measuring night sky brightness: methods and challenges

    Science.gov (United States)

    Hänel, Andreas; Posch, Thomas; Ribas, Salvador J.; Aubé, Martin; Duriscoe, Dan; Jechow, Andreas; Kollath, Zoltán; Lolkema, Dorien E.; Moore, Chadwick; Schmidt, Norbert; Spoelstra, Henk; Wuchterl, Günther; Kyba, Christopher C. M.

    2018-01-01

    Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earth's atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the "Sky Quality Meter" continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.

  17. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  18. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  19. Periodic Light Variability in Twelve Carbon-rich Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.; Lu, Wenxian; Maupin, Richard E.; Spitzbart, Bradley D.

    2009-09-01

    We present the results of a long-term (14 year) photometric monitoring program of 12 carbon-rich proto-planetary nebulae (PPNs). PPNs are objects in the evolutionary transition between the AGB and planetary nebula phases. These 12 have bright central stars (V = 8-14 mag) with F-G spectral types and faint nebulae (as seen with the HST). All of the objects show a periodicity in their light variations, although there is also evidence for multiple periods or small period changes. The pulsation periods range from 35 to 153 days, with the longer periods correlated with later spectral types. In fact, a tight correlation is seen between the period and effective temperature. The light variations range from 0.15 to 0.7 mag and are larger for the cooler objects.

  20. The Bright SHARC Survey: The Cluster Catalog

    Science.gov (United States)

    Romer, A. K.; Nichol, R. C.; Holden, B. P.; Ulmer, M. P.; Pildis, R. A.; Merrelli, A. J.; Adami, C.; Burke, D. J.; Collins, C. A.; Metevier, A. J.; Kron, R. G.; Commons, K.

    2000-02-01

    We present the Bright SHARC (Serendipitous High-Redshift Archival ROSAT Cluster) Survey, which is an objective search for serendipitously detected extended X-ray sources in 460 deep ROSAT PSPC pointings. The Bright SHARC Survey covers an area of 178.6 deg2 and has yielded 374 extended sources. We discuss the X-ray data reduction, the candidate selection and present results from our on-going optical follow-up campaign. The optical follow-up concentrates on the brightest 94 of the 374 extended sources and is now 97% complete. We have identified 37 clusters of galaxies, for which we present redshifts and luminosities. The clusters span a redshift range of 0.0696Bright SHARC clusters have not been listed in any previously published catalog. We also report the discovery of three candidate ``fossil groups'' of the kind proposed by Ponman et al. Based on data taken at the European Southern Observatory, Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, Canada-France-Hawaii, and Apache Point Observatory.

  1. Possible Bright Starspots on TRAPPIST-1

    Science.gov (United States)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-04-01

    The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.

  2. Personal audio with a planar bright zone.

    Science.gov (United States)

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Pedersen, Jan Abildgaard

    2014-10-01

    Reproduction of multiple sound zones, in which personal audio programs may be consumed without the need for headphones, is an active topic in acoustical signal processing. Many approaches to sound zone reproduction do not consider control of the bright zone phase, which may lead to self-cancellation problems if the loudspeakers surround the zones. Conversely, control of the phase in a least-squares sense comes at a cost of decreased level difference between the zones and frequency range of cancellation. Single-zone approaches have considered plane wave reproduction by focusing the sound energy in to a point in the wavenumber domain. In this article, a planar bright zone is reproduced via planarity control, which constrains the bright zone energy to impinge from a narrow range of angles via projection in to a spatial domain. Simulation results using a circular array surrounding two zones show the method to produce superior contrast to the least-squares approach, and superior planarity to the contrast maximization approach. Practical performance measurements obtained in an acoustically treated room verify the conclusions drawn under free-field conditions.

  3. Brightness illusion in the guppy (Poecilia reticulata).

    Science.gov (United States)

    Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo

    2016-02-01

    A long-standing debate surrounds the issue of whether human and nonhuman species share similar perceptual mechanisms. One experimental strategy to compare visual perception of vertebrates consists in assessing how animals react in the presence of visual illusions. To date, this methodological approach has been widely used with mammals and birds, while few studies have been reported in distantly related species, such as fish. In the present study we investigated whether fish perceive the brightness illusion, a well-known illusion occurring when 2 objects, identical in physical features, appear to be different in brightness. Twelve guppies (Poecilia reticulata) were initially trained to discriminate which rectangle was darker or lighter between 2 otherwise identical rectangles. Three different conditions were set up: neutral condition between rectangle and background (same background used for both darker and lighter rectangle); congruent condition (darker rectangle in a darker background and lighter rectangle in a lighter background); and incongruent condition (darker rectangle in a lighter background and lighter rectangle in a darker background). After reaching the learning criterion, guppies were presented with the illusory pattern: 2 identical rectangles inserted in 2 different backgrounds. Guppies previously trained to select the darker rectangle showed a significant choice of the rectangle that appears to be darker by human observers (and vice versa). The human-like performance exhibited in the presence of the illusory pattern suggests the existence of similar perceptual mechanisms between humans and fish to elaborate the brightness of objects. (c) 2016 APA, all rights reserved).

  4. ON THE NATURE OF HARD X-RAY EXTRAGALACTIC SOURCES OBSERVED WITH XMM-NEWTON

    International Nuclear Information System (INIS)

    Jiménez-Bailón, E.; Huerta, E. M.; Krongold, Y.; Chavushyan, V.; Schartel, N.; Santos-Lleó, M.

    2012-01-01

    Over the last decade, X-ray surveys have provided outstanding new results due to the lack of the common selection effects present at other wavelengths. Here, we have selected a sample of unidentified sources from the XMM-Newton Slew Survey Catalog, likely to be extragalactic. Five of them were observed with the XMM-Newton observatory. In this work, we present the results of the spectral analysis of these objects in the X-ray and optical bands. Only three of them had useful spectroscopic X-ray data, and follow up observations were carried out in the optical range to determine their coordinates, classification, and redshift. The sources are different types of active galactic nuclei (AGNs) with redshifts ranging from 0.059 to 0.386. The properties at both spectral ranges (X-rays and optical) are compatible with the common properties of their types of AGNs. Although the sources were selected by their hard X-ray properties, none of the three detected objects turned out to be an obscured AGN.

  5. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Bergin, E. A. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Goicoechea, J. R.; Cernicharo, J. [Grupo de Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (CSIC) E-28049 Madrid (Spain); Gerin, M.; Gusdorf, A. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, F-75005, Paris (France); Lis, D. C. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Schilke, P., E-mail: nindriolo@stsci.edu [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2017-02-10

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel /HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel /PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5≤ J{sub u} ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas.

  6. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    Science.gov (United States)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  7. Constraints on decaying dark matter from the extragalactic gamma-ray background

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2015-02-01

    If dark matter is unstable and the mass is within GeV-TeV regime, its decays produce high-energy photons that give contribution to the extragalactic gamma-ray background (EGRB). We constrain dark matter decay by analyzing the 50-month EGRB data measured with Fermi satellite, for different decay channels motivated with several supersymmetric scenarios featuring R-parity violation. We adopt the latest astrophysical models for various source classes such as active galactic nuclei and star-forming galaxies, and take associated uncertainties properly into account. The lower limits for the lifetime are very stringent for a wide range of dark matter mass, excluding the lifetime shorter than 10 28 s for mass between a few hundred GeV and ∝1TeV, e.g., for b anti b decay channel. Furthermore, most dark matter models that explain the anomalous positron excess are also excluded. These constraints are robust, being little dependent on astrophysical uncertainties, unlike other probes such as Galactic positrons or anti-protons.

  8. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /INFN, Naples /Naples U.; Aminaei, A.; /Nijmegen U., IMAPP; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, IST

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  9. On Spatial Distribution of Short Gamma-Ray Bursts from Extragalactic Magnetar Flares

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2002-03-01

    Full Text Available Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs. If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (T90 of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift {z'}, i.e. f> z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of . A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small zmax.

  10. The Unresolved Star-Forming Galaxy Component of the Extragalactic Gamma Ray Background

    Science.gov (United States)

    Venters, Tonia M.; Stecker, F. W.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  11. The TeV blazar measurement of the extragalactic background light

    Energy Technology Data Exchange (ETDEWEB)

    Reesman, Rebecca; Walker, T.P., E-mail: rreesman@physics.osu.edu, E-mail: twalker@mps.ohio-state.edu [Department of Physics, The Ohio State University, Columbus, OH, 43210 (United States)

    2013-12-01

    Gamma-rays propagating through space are likely to be extinguished via electron-positron pair production off of the ambient extragalactic background light (EBL). The spectrum of the EBL is produced by starlight (and starlight reprocessed by dust) from all galaxies throughout the history of the Universe. The attenuation of 40–400 GeV gamma-rays has been observed by Fermi and used to measure the EBL spectrum over energies 1 eV–10 eV out to redshift z ∼ 1. Measurements of several TeV blazers are consistent with attenuation, attributed to the EBL at redshift z ∼ 0.1. Here we simultaneously analyze a set of TeV blazers at z ∼ 0.1 to measure the optical depth for 100 GeV–10 TeV gamma-rays, which interact with EBL of energies 0.05 eV–5 eV. Using a suite of models for the EBL, we show that the optical depth indicated by TeV blazar attenuation is in good agreement with the optical depths measured by Fermi at lower gamma-ray energies and higher redshifts.

  12. Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Globus, Noemie; Piran, Tsvi [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Allard, Denis; Parizot, Etienne [Laboratoire Astroparticule et Cosmologie, Université Paris Diderot/CNRS, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)

    2017-04-20

    GeV–TeV gamma-rays and PeV–EeV neutrino backgrounds provide a unique window on the nature of the ultra-high-energy cosmic rays (UHECRs). We discuss the implications of the recent Fermi -LAT data regarding the extragalactic gamma-ray background and related estimates of the contribution of point sources as well as IceCube neutrino data on the origin of the UHECRs. We calculate the diffuse flux of cosmogenic γ -rays and neutrinos produced by the UHECRs and derive constraints on the possible cosmological evolution of UHECR sources. In particular, we show that the mixed-composition scenario considered in Globus et al., which is in agreement with both (i) Auger measurements of the energy spectrum and composition up to the highest energies and (ii) the ankle-like feature in the light component detected by KASCADE-Grande, is compatible with both the Fermi -LAT measurements and with current IceCube limits. We also discuss the possibility for future experiments to detect associated cosmogenic neutrinos and further constrain the UHECR models, including possible subdominant UHECR proton sources.

  13. Evolution of the NASA/IPAC Extragalactic Database (NED) into a Data Mining Discovery Engine

    Science.gov (United States)

    Mazzarella, Joseph M.; NED Team

    2017-06-01

    We review recent advances and ongoing work in evolving the NASA/IPAC Extragalactic Database (NED) beyond an object reference database into a data mining discovery engine. Updates to the infrastructure and data integration techniques are enabling more than a 10-fold expansion; NED will soon contain over a billion objects with their fundamental attributes fused across the spectrum via cross-identifications among the largest sky surveys (e.g., GALEX, SDSS, 2MASS, AllWISE, EMU), and over 100,000 smaller but scientifically important catalogs and journal articles. The recent discovery of super-luminous spiral galaxies exemplifies the opportunities for data mining and science discovery directly from NED's rich data synthesis. Enhancements to the user interface, including new APIs, VO protocols, and queries involving derived physical quantities, are opening new pathways for panchromatic studies of large galaxy samples. Examples are shown of graphics characterizing the content of NED, as well as initial steps in exploring the database via interactive statistical visualizations.

  14. Safeguarding Old and New Journal Tables for the VO: Status for Extragalactic and Radio Data

    Directory of Open Access Journals (Sweden)

    Heinz Andernach

    2009-03-01

    Full Text Available Independent of established data centers, and partly for my own research, since 1989 I have been collecting the tabular data from over 2600 articles concerned with radio sources and extragalactic objects in general. Optical character recognition (OCR was used to recover tables from 740 papers. Tables from only 41 percent of the 2600 articles are available in the CDS or CATS catalog collections, and only slightly better coverage is estimated for the NED database. This fraction is not better for articles published electronically since 2001. Both object databases (NED, SIMBAD, LEDA as well as catalog browsers (VizieR, CATS need to be consulted to obtain the most complete information on astronomical objects. More human resources at the data centers and better collaboration between authors, referees, editors, publishers, and data centers are required to improve data coverage and accessibility. The current efforts within the Virtual Observatory (VO project, to provide retrieval and analysis tools for different types of published and archival data stored at various sites, should be balanced by an equal effort to recover and include large amounts of published data not currently available in this way.

  15. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  16. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  17. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  18. Estimation of the space density of low surface brightness galaxies

    NARCIS (Netherlands)

    Briggs, FH

    1997-01-01

    The space density of low surface brightness and tiny gas-rich dwarf galaxies are estimated for two recent catalogs: the Arecibo Survey of Northern Dwarf and Low Surface Brightness Galaxies and the Catalog of Low Surface Brightness Galaxies, List II. The goals are (1) to evaluate the additions to the

  19. 7 CFR 51.2000 - Clean and bright.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean and bright. 51.2000 Section 51.2000 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2000 Clean and bright. Clean and bright...

  20. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  1. Active Processes: Bright Streaks and Dark Fans

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 In a region of the south pole known informally as 'Ithaca' numerous fans of dark frost form every spring. HiRISE collected a time lapse series of these images, starting at Ls = 185 and culminating at Ls = 294. 'Ls' is the way we measure time on Mars: at Ls = 180 the sun passes the equator on its way south; at Ls = 270 it reaches its maximum subsolar latitude and summer begins. In the earliest image (figure 1) fans are dark, but small narrow bright streaks can be detected. In the next image (figure 2), acquired at Ls = 187, just 106 hours later, dramatic differences are apparent. The dark fans are larger and the bright fans are more pronounced and easily detectable. The third image in the sequence shows no bright fans at all. We believe that the bright streaks are fine frost condensed from the gas exiting the vent. The conditions must be just right for the bright frost to condense. Observation Geometry Image PSP_002622_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 16-Feb-2007. The complete image is centered at -85.2 degrees latitude, 181.5 degrees East longitude. The range to the target site was 246.9 km (154.3 miles). At this distance the image scale is 49.4 cm/pixel (with 2 x 2 binning) so objects 148 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 05:46 PM and the scene is illuminated from the west with a solar incidence angle of 88 degrees, thus the sun was about 2 degrees above the horizon. At a solar longitude of 185.1 degrees, the season on Mars is Northern Autumn.

  2. The Star Formation Rate and Gas Surface Density Relation in the Milky Way: Implications for Extragalactic Studies

    Science.gov (United States)

    Heiderman, Amanda L.; Evans, N. J., II; Allen, L. E.; Huard, T.; Heyer, M.

    2011-01-01

    We investigate the relation between star formation rate (SFR) and gas surface densities in Galactic star forming regions using a sample of YSOs and massive clumps. Our YSO sample consists of objects located in 20 molecular clouds from the Spitzer c2d and Gould's Belt surveys. We estimate the gas surface density (Sigma_gas) from Av maps and YSO SFR surface densities (Sigma_SFR) from the number of YSOs, assuming a mean mass and lifetime. We also divide the clouds into contour levels of Av, counting only the youngest Class I and Flat SED YSOs. For a sample of massive star forming clumps, we derive SFRs from the infrared luminosity and use HCN gas maps to estimate Sigma_gas. We find that Galactic clouds lie above the extragalactic relations (e.g., Kennicutt-Schmidt Law) by factors up to 17. Cloud regions with high Sigma_gas lie above extragalactic relations up to a factor of 54 and overlap with massive clumps. We use 12CO and 13CO gas maps of the Perseus and Ophiuchus clouds to estimate Sigma_gas and compare to Sigma_gas from Av maps. We find that 13CO, underestimates the Av-based mass by factors of 4-5. 12CO may underestimate the total gas mass at Sigma_gas > 200 Msun pc^-2 by > 30%; however, this does not explain the large discrepancy between Galactic and extragalactic relations. We find evidence for a threshold of star formation (Sigma_th) at 129+-14 Msun pc^-2. At Sigma_gas > Sigma_th, the Galactic relation is linear. A possible reason for the difference between Galactic and extragalactic relations is that all the CO-emitting gas, including Sigma_gas below Sigma_th, is measured in extragalactic studies. If the Kennicutt-Schmidt relation (Sigma_SFR Sigma_gas^1.4) and a linear relation between dense gas and star formation is assumed, the fraction of dense gas (f_dense) increases as Sigma_gas^0.4. When Sigma_gas reaches 300Sigma_th, f_dense is 1.

  3. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  4. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  5. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  6. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  7. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  8. Planetary CubeSats Come of Age

    Science.gov (United States)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  9. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  10. Interferometric observations of planetary nebulae

    International Nuclear Information System (INIS)

    Atherton, P.D.

    1978-01-01

    Studies of the velocity field of planetary nebulae can be used to derive important information concerning their structure and dynamics. A description is given of the design, construction and operation of a servo-controlled Fabry Perot Interferometer, for the Cassegrain focus, which was built to perform these studies. New evidence is presented concerning the structure and internal motions of NGC 3242, NGC 6720 and NGC 7027. A technique is described which uses the velocity field to map variations in the electron temperature and density along the line of sight as well as across the face of the nebula. It is shown how a Fabry Perot may be used in conjunction with multi-element array detectors to facilitate this technique. Finally some extensions to the technique of capacitance micrometry are discussed which allow the operation of a single air-spaced etalon over a wide range of capacitor gaps

  11. Visualization Tools for Planetary Data

    Science.gov (United States)

    DeWolfe, Alexandria; Larsen, Kristopher; Brain, David; Chaffin, Michael; Harter, Bryan; Putnam, Brian

    2017-04-01

    We have developed a set of software tools for displaying and analyzing data from the MAVEN and MMS missions. In order to better visualize the science data and models, we have constructed 3D visualizations of MAVEN orbiting Mars and MMS orbiting Earth using the CesiumJS library. These visualizations allow viewing of not only spacecraft orientation and position over time, but also scientific data from the spacecraft, and atmospheric models as well. We have also developed a Python toolkit which replicates the functionality of the widely-used IDL "tplot" toolkit for analyzing planetary atmospheric data. We use the bokeh and matplotlib libraries to generate interactive line plots and spectrograms, providing additional functionality beyond the capabilities of IDL graphics. These Python tools are generalized to work with missions beyond MAVEN, and our open-source software is available on Github.

  12. Planetary accretion in circumstellar disks

    Science.gov (United States)

    Lissauer, Jack J.; Stewart, Glen R.

    1993-01-01

    The formation of terrestrial planets and the cores of Jovian planets is reviewed in the framework of the planetesimal hypothesis, wherein planets are assumed to grow via the pairwise accumulation of small solid bodies. Emphasis is placed on the dynamics of solid body accretion from kilometer size planetesimals to terrestrial type planets. This stage of planetary growth is least dependent on the characteristics of the evolutionary state of the central star. It is concluded that the evolution of the planetesimal size distribution is determined by the gravitationally enhanced collision cross-section, which favors collisions between planetesimals with smaller velocities. Runaway growth of the largest planetesimal in each accretion zone appears to be a likely outcome. The subsequent accumulation of the resulting protoplanets leads to a large degree of radial mixing in the terrestrial planet region, and giant impacts are probable.

  13. Sonic anemometry of planetary atmospheres

    Science.gov (United States)

    Cuerva, Alvaro; Sanz-Andrés, Angel; Lorenz, Ralph D.

    2004-02-01

    Sonic anemometers are robust, fast and reliable wind sensors which are able to measure the complete wind speed vector at high sampling rates. All these characteristics make sonic anemometers to be ideal candidates for atmospheric applications. Since sonic anemometers have not moving parts and they can be designed to have loss mass and power consumption, they have become adequate for planetary exploration purposes, both for atmosphere studies and for flying robot control. However, some challenges must be undertaken before implementing their use. Problems such as sound attenuation in different atmospheres, sensor/air acoustic impedance matching as well as flow/fluid dependence of sonic measurements have to be considered when these sensors are used in other atmospheres.

  14. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  15. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  16. Investigating the Bright End of LSST Photometry

    Science.gov (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  17. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Schukraft, Anne

    2013-01-01

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  18. An exceptionally bright, compact starburst nucleus

    Science.gov (United States)

    Margon, Bruce; Anderson, Scott F.; Mateo, Mario; Fich, Michel; Massey, Philip

    1988-01-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies.

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    Science.gov (United States)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z performed through a fully automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  20. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    International Nuclear Information System (INIS)

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko

    2013-01-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10 19 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E −1 ) due to pulsar spin down and a maximum energy E max ∼ Z 10 19 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10 16 and 10 18 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy

  1. Pulsed Laser Techniques to Determine Lattice and Radiative Thermal Conductivity of Deep Planetary Materials at Extreme Pressure-Temperature Conditions

    Science.gov (United States)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.

    2017-12-01

    Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.

  2. UBVR Imaging of UV Bright Interacting Galaxies

    Science.gov (United States)

    Nelson, C. H.; Weistrop, D.; Angione, R.; Cruzen, S.; Kaiser, M. E.

    1997-12-01

    Interacting galaxies are often found to contain UV-bright knots which are the sites of very recent or ongoing star-formation. To investigate the stellar populations of these complexes we have obtained UBVR images of several interacting or morphologically disturbed UV bright galaxies (NGC 3395/6, NGC 3991/4/5, NGC 4194, NGC 6090). Images of IRAS 15179+3956, an interacting galaxy in the Bootes Void, were also obtained. The images were made with the 2048x 2048 CCD camera on the 1-meter telescope at the Mount Laguna Observatory. Colors and magnitudes of star-forming regions in these objects will be presented and used to study how their properties change with age and position within each galaxy and how star-formation propagates through the system. This is part of an ongoing study of starburst galaxies that will include STIS (Space Telescope Imaging Spectrograph) longslit spectroscopy of a subset of these galaxies. Mount Laguna Observatory is operated jointly by San Diego State University and the University of Illinois. This research is supported in part by NASA under contract NAS 5-31231.

  3. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  4. Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?

    Science.gov (United States)

    Bauer, Ben

    2009-01-01

    Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…

  5. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  6. Gravitational effects on planetary neutron flux spectra

    Science.gov (United States)

    Feldman, W. C.; Drake, D. M.; O'Dell, R. D.; Brinkley, F. W., Jr.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  7. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  8. Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest...... and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Planck's uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum...

  9. The Orbital and Planetary Phase Variations of Jupiter-sized Planets: Characterizing Present and Future Giants

    Science.gov (United States)

    Mayorga, Laura C.; Jackiewicz, Jason; Rages, Kathy; West, Robert; Knowles, Ben; Lewis, Nikole K.; Marley, Mark S.

    2018-01-01

    Knowledge of how the brightness and color of a planet varies with viewing angle is essential for the design of future direct imaging missions and deriving constraints on atmospheric properties. However, measuring the phase curves for the solar system gas giants is impossible from the ground. Using data Cassini/ISS obtained during its flyby of Jupiter, I measured Jupiter's phase curve in six bands spanning 400-1000 nm. I found that Jupiter's brightness is less than that of a Lambertian scatterer and that its color varies more with phase angle than predicted by theoretical models. For hot Jupiters, the light from the planet cannot be spatially isolated from that of the star. As a result, determining the planetary phase curve requires removing the phase-dependent contributions from the host star. I consider the effect of varying the stellar model and present a parameterization of the Doppler beaming amplitude that depends upon the planetary mass, orbital period, and the stellar temperature. I consider the detectability of Doppler beaming amplitudes with data from TESS and find that TESS will be less sensitive to this signal than Kepler. This work was supported by the National Science Foundation Graduate Research Fellowship Program and the New Mexico Higher Education Department Graduate Scholarship Program.

  10. Revisiting the EC/CMB model for extragalactic large scale jets

    Science.gov (United States)

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  11. Extension of Einstein's Planetary Theory Based on Generalized ...

    African Journals Online (AJOL)

    In this article, the generalized Einstein's radial equation of motion in the equatorial plane of the Sun is transformed to obtain additional correction terms to all order of C2 to Einstein's planetary equation of motion and hence to the planetary parameters. Keywords: Radial Equation; Planetary Equation; Planetary parameters ...

  12. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  13. Observatory for Planetary Investigations from the Stratosphere

    Data.gov (United States)

    National Aeronautics and Space Administration — The Observatory for Planetary Investigation from the Stratosphere (OPIS) project demonstrated the ability of the Wallops Arc Second Pointing (WASP) system to provide...

  14. Planetary Impacts by Clustered Quark Matter Strangelets

    OpenAIRE

    Labun, Lance; Rafelski, Jan

    2011-01-01

    We propose a model of clustered u-d-s quark matter that leads to stable bulk strange quark matter. We discuss qualitatively consequences of impacts by sub-planetary mass strangelets on rocky solar system bodies.

  15. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  16. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  17. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  18. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  19. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  20. TRACING MOLECULAR GAS MASS IN EXTREME EXTRAGALACTIC ENVIRONMENTS: AN OBSERVATIONAL STUDY

    International Nuclear Information System (INIS)

    Zhu Ming; Papadopoulos, Padeli P.; Xilouris, Emmanuel M.; Kuno, Nario; Lisenfeld, Ute

    2009-01-01

    We present a new observational study of the 12 CO(1-0) line emission as an H 2 gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H 2 , H I, and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC 3310, and the quiescent spiral NGC 157. Our study maintains a robust statistical notion of the so-called X = N(H 2 )/I CO factor (i.e., a large ensemble of clouds is involved) while exploring its dependence on the very different average ISM conditions prevailing within these two systems. These are constrained by fully sampled 12 CO(3-2) and 12 CO(1-0) observations, at a matched beam resolution of half-power beam width ∼15'', obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea (Hawaii) and the 45 m telescope of the Nobeyama Radio Observatory in Japan, combined with sensitive 850 μm and 450 μm dust emission and H I interferometric images which allow a complete view of all the neutral ISM components. Complementary 12 CO(2-1) observations were obtained with the JCMT toward the center of the two galaxies. We found an X factor varying by a factor of 5 within the spiral galaxy NGC 157 and about two times lower than the Galactic value in NGC 3310. In addition, the dust emission spectrum in NGC 3310 shows a pronounced submillimeter 'excess'. We tried to fit this excess by a cold dust component but very low temperatures were required (T C ∼ 5-11 K) with a correspondingly low gas-to-dust mass ratio of ∼5-43. We furthermore show that it is not possible to maintain the large quantities of dust required at these low temperatures in this starburst galaxy. Instead, we conclude that the dust properties need to be different from Galactic dust in order to fit the submillimeter 'excess'. We show that the dust spectral energy

  1. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    Science.gov (United States)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    RESUMEN. Chorros Extragalacticos (CE) y Fuentes Radio Extendidas (FRE) son locales de ricos y complejos procesos de plasma magnetizado. Recien tes observaciones indican que esas fuentes son estructuradas en filamen tos. Nos concentramos aqui en el analisis de dos problemas: 1) el prob[e ma de injecci6n,queespropuesto porlas teorias de aceleraci6n de p ? las en plasmas de CE e FRE, que necesitan partfculas que ya tengan ener gfas moderadamente relativisticas para que los procesos de Fermi sean efectivos; y 2) la reciente evidencia observacional de la ausencia de partfculas termicas en CE. El presente modelo pone en evidencia que ambos problemas estan 1ntimamente relacionados uno con el otro. Jafelice y Opher (1987a) (Astrophys. Space Sci. 137, 303) muestram que es espera da una abundante generaci6n de olas Alf cineticas (OAC) en CE y FRE. En el presente trabajo estudiamos Ia cadena de procesos: a) OAC aceleran electrons termicos al largo del campo magnetico de fondo producien- do electrones supratermicos fugitivos; b) que generan olas Langmuir; y c) las cuales por su vez aceleran una fraccion de los electrones fugi- tivos hasta energias moderadamente relativfsticas. Mostramos que supo - niendo que no haya otra fuente de poblaci6n termica a no ser la , la secuencia de procesos arriba puede encargarse delconsumo de los elec- trones termicos en una escala de tiempo %de vida de la fuente. ABSTRACT: Extragalactic Jets (EJ) and Extended Radio Sources (ERS) are sites of rich and complex magnetized plasma processes.Recent observa - tions indicate that these sources are filamentary structured. We concentrate here on the analysis of two problems:i) the injection problem, faced by theories of particle acceleration in EJ and ERS plasmas, which need particles with already moderately relativistic energies for the Fer mi processes `to be effective; and 2) the recent observational evidence of the abscence of thermal particles within EJ. The present model makes evident that both

  2. Recent Advances and Coming Attractions in the NASA/IPAC Extragalactic Database

    Science.gov (United States)

    Mazzarella, Joseph M.; Baker, Kay; Pan Chan, Hiu; Chen, Xi; Ebert, Rick; Frayer, Cren; Helou, George; Jacobson, Jeffery D.; Lo, Tak M.; Madore, Barry; Ogle, Patrick M.; Pevunova, Olga; Steer, Ian; Schmitz, Marion; Terek, Scott

    2017-01-01

    We review highlights of recent advances and developments underway at the NASA/IPAC Extragalactic Database (NED). Extensive updates have been made to the infrastructure and processes essential for scaling NED for the next steps in its evolution. A major overhaul of the data integration pipeline provides greater modularity and parallelization to increase the rate of source cross-matching and data integration. The new pipeline was used recently to fold in data for nearly 300,000 sources published in over 900 recent journal articles, as well as fundamental parameters for 42 million sources in the Spitzer Enhanced Imaging Products Source List. The latter has added over 360 million photometric measurements at 3.6, 4.5, 5.8. 8.0 (IRAC) and 24 microns (MIPS) to the spectral energy distributions of affected objects in NED. The recent discovery of super-luminous spiral galaxies (Ogle et al. 2016) exemplifies the opportunities for science discovery and data mining available directly from NED’s unique data synthesis, spanning the spectrum from gamma ray through radio frequencies. The number of references in NED has surpassed 103,000. In the coming year, cross-identifications of sources in the 2MASS Point Source Catalog and in the AllWISE Source Catalog with prior objects in the database (including GALEX) will increase the holdings to over a billion distinct objects, providing a rich resource for multi-wavelength analysis. Information about a recent surge in growth of redshift-independent distances in NED is presented at this meeting by Steer et al. (2017). Website updates include a ’simple search’ to perform common queries in a single entry field, an interface to query the image repository with options to sort and filter the initial results, connectivity to the IRSA Finder Chart service, as well as a program interface to query images using the international virtual observatory Simple Image Access protocol. Graphical characterizations of NED content and completeness are

  3. The many facets of extragalactic radio surveys: towards new scientific challenges

    Science.gov (United States)

    2015-10-01

    Radio continuum surveys are a powerful tool to detect large number of objects over a wide range of redshifts and obtain information on the intensity, polarization and distribution properties of radio sources across the sky. They are essential to answer to fundamental questions of modern astrophysics. Radio astronomy is in the midst of a transformation. Developments in high-speed digital signal processing and broad-band optical fibre links between antennas have enabled significant upgrades of the existing radio facilities (e-MERLIN, JVLA, ATCA-CABB, eEVN, APERTIF), and are leading to next-generation radio telescopes (LOFAR, MWA, ASKAP, MeerKAT). All these efforts will ultimately lead to the realization of the Square Kilometre Array (SKA), which, owing to advances in sensitivity, field-of-view, frequency range and spectral resolution, will yield transformational science in many astrophysical research fields. The purpose of this meeting is to explore new scientific perspectives offered by modern radio surveys, focusing on synergies allowed by multi-frequency, multi-resolution observations. We will bring together researchers working on wide aspects of the physics and evolution of extra-galactic radio sources, from star-forming galaxies to AGNs and clusters of galaxies, including their role as cosmological probes. The organization of this conference has been inspired by the recent celebration of the 50th anniversary of the Northern Cross Radio Telescope in Medicina (BO), whose pioneering B2 and B3 surveys provided a significant contribution to radio astronomical studies for many decades afterwards. The conference was organized by the Istituto di Radioastronomia (INAF), and was held at the CNR Research Area in Bologna, on 20-23 October 2015. This Conference has received support from the following bodies and funding agencies: National Institute for Astrophysics (INAF), ASTRON, RadioNet3 (through the European Union’s Seventh Framework Programme for research

  4. Explosive Growth and Advancement of the NASA/IPAC Extragalactic Database (NED)

    Science.gov (United States)

    Mazzarella, Joseph M.; Ogle, P. M.; Fadda, D.; Madore, B. F.; Ebert, R.; Baker, K.; Chan, H.; Chen, X.; Frayer, C.; Helou, G.; Jacobson, J. D.; LaGue, C.; Lo, T. M.; Pevunova, O.; Schmitz, M.; Terek, S.; Steer, I.

    2014-01-01

    The NASA/IPAC Extragalactic Database (NED) is continuing to evolve in lock-step with the explosive growth of astronomical data and advancements in information technology. A new methodology is being used to fuse data from very large surveys. Selected parameters are first loaded into a new database layer and made available in areal searches before they are cross-matched with prior NED objects. Then a programmed, rule-based statistical approach is used to identify new objects and compute cross-identifications with existing objects where possible; otherwise associations between objects are derived based on positional uncertainties or spatial resolution differences. Approximately 62 million UV sources from the GALEX All-Sky Survey and Medium Imaging Survey catalogs have been integrated into NED using this new process. The December 2013 release also contains nearly half a billion sources from the 2MASS Point Source Catalog accessible in cone searches, while the large scale cross-matching is in progress. Forthcoming updates will fuse data from All-WISE, SDSS DR12, and other very large catalogs. This work is progressing in parallel with the equally important integration of data from the literature, which is also growing rapidly. Recent updates have also included H I and CO channel maps (data cubes), as well as substantial growth in redshifts, classifications, photometry, spectra and redshift-independent distances. The By Parameters search engine now incorporates a simplified form for entry of constraints, and support for long-running queries with machine-readable output. A new tool for exploring the environments of galaxies with measured radial velocities includes informative graphics and a method to assess the incompleteness of redshift measurements. The NED user interface is also undergoing a major transformation, providing more streamlined navigation and searching, and a modern development framework for future enhancements. For further information, please visit our

  5. The VIMOS Public Extragalactic Redshift Survey. Measuring the growth rate of structure around cosmic voids

    Science.gov (United States)

    Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.

    2017-11-01

    We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in

  6. The liner brightness temperature measurement by two channel optical pyrometer

    Science.gov (United States)

    Kulish, M. I.; Dudin, S. V.; Ushnurtsev, A. E.; Mintsev, V. B.

    2018-01-01

    Measurability of liner inner surface brightness temperature by two channel optical pyrometer is shown. Liner is compressed by detonation products in large-scale experiment. Absolute radiant intensity values were obtained by measuring optical system channel calibration involving tungsten and xenon radiation sources. Three ways of surface brightness temperature measurement are presented at wavelengths of 620 and 850 nm. Using the developed procedure copper and steel liners behavior (brightness temperature, average speed) under compression by detonation products are evaluated.

  7. Very-High-Brightness Picosecond Electron Source

    International Nuclear Information System (INIS)

    Bluem, H.

    2003-01-01

    Bright, RF photocathode electron guns are the source of choice for most high-performance research accelerator applications. Some of these applications are pushing the performance boundaries of the present state-of-the-art guns. Advanced Energy Systems is developing a novel photocathode RF gun that shows excellent promise for extending gun performance. Initial gun simulations with only a short booster accelerator easily break the benchmark emittance of one micron for 1 nC of bunch charge. The pulse length in these simulations is less than 2 ps. It is expected that with more detailed optimization studies, the performance can be further improved. The performance details of the gun will be presented. In addition, we will discuss the present design concept along with the status of the project

  8. Bioinspired bright noniridescent photonic melanin supraballs.

    Science.gov (United States)

    Xiao, Ming; Hu, Ziying; Wang, Zhao; Li, Yiwen; Tormo, Alejandro Diaz; Le Thomas, Nicolas; Wang, Boxiang; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2017-09-01

    Structural colors enable the creation of a spectrum of nonfading colors without pigments, potentially replacing toxic metal oxides and conjugated organic pigments. However, significant challenges remain to achieve the contrast needed for a complete gamut of colors and a scalable process for industrial application. We demonstrate a feasible solution for producing structural colors inspired by bird feathers. We have designed core-shell nanoparticles using high-refractive index (RI) (~1.74) melanin cores and low-RI (~1.45) silica shells. The design of these nanoparticles was guided by finite-difference time-domain simulations. These nanoparticles were self-assembled using a one-pot reverse emulsion process, which resulted in bright and noniridescent supraballs. With the combination of only two ingredients, synthetic melanin and silica, we can generate a full spectrum of colors. These supraballs could be directly added to paints, plastics, and coatings and also used as ultraviolet-resistant inks or cosmetics.

  9. Galaxy dynamics with the Planetary Nebula Spectrograph

    OpenAIRE

    Napolitano, N. R.; Romanowsky, A. J.; Douglas, N. G.; Capaccioli, M.; Arnaboldi, M.; Kuijken, K.; Merrifield, M. R.; Freeman, K. C.; Gerhard, O.

    2004-01-01

    The Planetary Nebula Spectrograph is a dedicated instrument for measuring radial velocity of individual Planetary Nebulae (PNe) in galaxies. This new instrument is providing crucial data with which to probe the structure of dark halos in the outskirts of elliptical galaxies in particular, which are traditionally lacking of easy interpretable kinematical tracers at large distance from the center. Preliminary results on a sample of intermediate luminosity galaxies have shown little dark matter ...

  10. International Planetary Data Alliance (IPDA) Information Model

    Science.gov (United States)

    Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.

    2007-01-01

    This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.

  11. Migration-induced architectures of planetary systems.

    Science.gov (United States)

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  12. Automatic Feature Extraction from Planetary Images

    Science.gov (United States)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  13. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  14. CLPX-Satellite: AMSR-E Brightness Temperature Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Aqua Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) passive microwave brightness temperatures gridded to the...

  15. A COMPREHENSIVE CHARACTERIZATION OF THE 70 VIRGINIS PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Hinkel, Natalie R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Boyajian, Tabetha S.; Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Feng, Y. Katherina; Wright, Jason T. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Braun, Kaspar von [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001 (United States); Howard, Andrew W., E-mail: skane@sfsu.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-06-10

    An on-going effort in the characterization of exoplanetary systems is the accurate determination of host star properties. This effort extends to the relatively bright host stars of planets discovered with the radial velocity method. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is aiding in these efforts as part of its observational campaign for exoplanet host stars. One of the first known systems is that of 70 Virginis, which harbors a jovian planet in an eccentric orbit. Here we present a complete characterization of this system with a compilation of TERMS photometry, spectroscopy, and interferometry. We provide fundamental properties of the host star through direct interferometric measurements of the radius (1.5% uncertainty) and through spectroscopic analysis. We combined 59 new Keck HIRES radial velocity measurements with the 169 previously published from the ELODIE, Hamilton, and HIRES spectrographs, to calculate a refined orbital solution and construct a transit ephemeris for the planet. These newly determined system characteristics are used to describe the Habitable Zone of the system with a discussion of possible additional planets and related stability simulations. Finally, we present 19 years of precision robotic photometry that constrain stellar activity and rule out central planetary transits for a Jupiter-radius planet at the 5σ level, with reduced significance down to an impact parameter of b = 0.95.

  16. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  17. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    International Nuclear Information System (INIS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  18. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    Directory of Open Access Journals (Sweden)

    Marinelli Antonio

    2016-01-01

    Full Text Available The last IceCube catalog of High Energy Starting Events (HESE obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1 and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than 5σ. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model a extra-Galactic component derived from the astrophysical muonic neutrinos reconstructed in the Northern hemisphere. A good agreement between the expected astrophysical neutrino flux and the IceCube data is found for the full sky as well as for the Galactic plane region.

  19. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  20. The Impact of Electromagnetic Cascades of Very-high Energy Gamma Rays on the Extragalactic Gamma-ray Background

    Science.gov (United States)

    Venters, Tonia

    2012-01-01

    As very high energy (VHE) photons propagate through the extragalactic background light (EBL), they interact with the soft photons of the EBL and initiate electromagnetic cascades of photons and electrons. The collective intensity of a cosmological population emitting at VHEs (such as blazars) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. As such, depending on the space density and spectra of the sources and the model of the EBL, cascade radiation can provide a significant contribution to the extragalactic gamma-ray background (EGB). Through deflections of the charged particles of the cascade, an intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the EGB. The impact of a strong IGMF is to isotropize lower energy cascade photons, inducing a modulation in the anisotropy energy spectrum of the EGB. We discuss the implications of cascade radiation for the origins of the EGB and the nature of the IGMF, as well as insight that will be provided by data from the Fermi Large Area Telescope in the upcoming years.

  1. Constraint on dark matter annihilation with dark star formation using Fermi extragalactic diffuse gamma-ray background data

    International Nuclear Information System (INIS)

    Yuan, Qiang; Yue, Bin; Chen, Xuelei; Zhang, Bing

    2011-01-01

    It has been proposed that during the formation of the first generation stars there might be a ''dark star'' phase in which the power of the star comes from dark matter annihilation. The adiabatic contraction process to form the dark star would result in a highly concentrated density profile of the host halo at the same time, which may give enhanced indirect detection signals of dark matter. In this work we investigate the extragalactic γ-ray background from dark matter annihilation with such a dark star formation scenario, and employ the isotropic γ-ray data from Fermi-LAT to constrain the model parameters of dark matter. The results suffer from large uncertainties of both the formation rate of the first generation stars and the subsequent evolution effects of the host halos of the dark stars. We find, in the most optimistic case for γ-ray production via dark matter annihilation, the expected extragalactic γ-ray flux will be enhanced by 1-2 orders of magnitude. In such a case, the annihilation cross section of the supersymmetric dark matter can be constrained to the thermal production level, and the leptonic dark matter model which is proposed to explain the positron/electron excesses can be well excluded. Conversely, if the positron/electron excesses are of a dark matter annihilation origin, then the early Universe environment is such that no dark star can form

  2. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  3. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  4. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  5. Local extragalactic velocity field, the local mean mass density, and biased galaxy formation

    International Nuclear Information System (INIS)

    Brown, M.E.; Peebles, P.J.E.

    1987-01-01

    In this paper, a relationship is derived between the local mass density and the perturbation of the local Hubble flow. The local mass density is estimated by the method used in the Virgocentric flow. The infrared Tully-Fisher relation of Aaronson et al. (1982) is used to find limits on the gravitational perturbation to the local Hubble flow and bright galaxy counts (N) are used to estimate the local galaxy concentration. It is concluded that if mass is proportional to N, with no fluctuations, and the local mass per galaxy is a fair sample, then the density parameter is roughly 0.1, consistent with other dynamical estimates and inconsistent with the naive interpretation of biasing which accounts for the low apparent mass density derived from clustering dynamics by the assumption that the mass per galaxy is unusually low in the regions of high density where clustering has been studied. 17 references

  6. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  7. The halo of M 49 and its environment as traced by planetary nebulae populations

    Science.gov (United States)

    Hartke, J.; Arnaboldi, M.; Longobardi, A.; Gerhard, O.; Freeman, K. C.; Okamura, S.; Nakata, F.

    2017-07-01

    Context. The galaxy M 49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light (IGL). Aims: We aim to present a photometric survey of PNe in the galaxy's extended halo to characterise its PN population, as well as the surrounding IGL of the subcluster B. Methods: PNe were identified based on their bright [OIII]5007 Å emission and absence of a broad-band continuum through automated detection techniques. Results: We identify 738 PNe out to a radius of 155 kpc from M 49's centre from which we define a complete sample of 624 PNe within a limiting magnitude of m5007,lim = 28.8. Comparing the PN number density to the broad-band stellar surface brightness profile, we find a variation of the PN-specific frequency (α-parameter) with radius. The outer halo beyond 60kpc has a 3.2 times higher α-parameter compared to the main galaxy halo (α2.5,innerM 49 = (3.20 ± 0.43) × 10-9 PN L-1⊙,bol), which is likely due to contribution from the surrounding blue IGL. We use the planetary nebulae luminosity function (PNLF) as an indicator of distance and stellar population. Its slope, which correlates empirically with galaxy type, varies within the inner halo. In the eastern quadrant of M 49, the PNLF slope is shallower, indicating an additional localised, bright PN population following an accretion event, likely that of the dwarf irregular galaxy VCC1249. We also determined a distance modulus of μPNLF = 31.29+ 0.07-0.08 for M 49, corresponding to a physical distance of 18.1 ± 0.6 Mpc, which agrees with a recent surface-brightness fluctuations distance. Conclusions: The PN populations in the outer halo of M 49 are consistent with the presence of a main Sérsic galaxy halo with a slight (B - V) colour gradient of 10-4 mag arcsec-1 surrounded by IGL with a very blue colour of (B - V) = 0.25 and a constant

  8. Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties

    Science.gov (United States)

    Eide, Marius B.; Gronke, Max; Dijkstra, Mark; Hayes, Matthew

    2018-04-01

    Lyα is a powerful astrophysical probe. Not only is it ubiquitous at high redshifts, it is also a resonant line, making Lyα photons scatter. This scattering process depends on the physical conditions of the gas through which Lyα propagates, and these conditions are imprinted on observables such as the Lyα spectrum and its surface brightness profile. In this work, we focus on a less-used observable capable of probing any scattering process: polarization. We implement the density matrix formalism of polarization into the Monte Carlo radiative transfer code tlac. This allows us to treat it as a quantum mechanical process where single photons develop and lose polarization from scatterings in arbitrary gas geometries. We explore static and expanding ellipsoids, biconical outflows, and clumpy multiphase media. We find that photons become increasingly polarized as they scatter and diffuse into the wings of the line profiles, making scattered Lyα polarized in general. The degree and orientation of Lyα polarization depends on the kinematics and distribution of the scattering H I gas. We find that it generally probes spatial or velocity space asymmetries and aligns itself tangentially to the emission source. We show that the mentioned observables, when studied separately, can leave similar signatures for different source models. We conclude by revealing how a joint analysis of the Lyα spectra, surface brightness profiles, and polarization can break these degeneracies and help us extract unique physical information on galaxies and their environments from their strongest, most prominent emission line.

  9. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  10. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    It is observed that Johnson SB function is the best continuous distribution function in explaining the histogram of infrared brightness temperatures of the convective clouds. The best fit is confirmed by Kolmogorov–Smirnov statistic. Johnson SB's distribution of histogram of infrared brightness temperatures clearly ...

  11. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    Science.gov (United States)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  12. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    And Johnson SB parameters are observed to be best in discriminating the Johnson SB distribution of infrared brightness temperatures of deep convective systems for each season. Due to these properties of Johnson SB function, it can be utilized in the modelling of the histogram of infrared brightness temperature of deep ...

  13. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    galaxies: ISM—galaxies: spiral—cosmology: dark matter. 1. Introduction. Giant Low Surface Brightness (GLSB) galaxies are some of the largest spiral galax- ies in our nearby universe. However, for decades these galaxies remained undetected in galaxy surveys. This is because their optically dim stellar disks have a bright-.

  14. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2006-01-01

    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  15. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  16. Henrietta Leavitt - A Bright Star of Astronomy; Resonance June 2001

    Indian Academy of Sciences (India)

    Leavitt discovered around a thousand variable stars in these clouds. Among these, she found 25. Cepheid variables in the small Magellanic cloud and noted that the period of these variable stars were correlated with the peak brightness. The brighter the star was, the longer it took to vary its brightness. In other words, the.

  17. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but a...

  18. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  19. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  20. Planetary life: why and how?

    Science.gov (United States)

    Pratt, Andy; Kerr, William

    2012-07-01

    Understanding life in an astrobiological context requires that we understand why and how life emerged on earth. We report on the elaboration and preliminary testing of our recent model for the origin of life (Pratt, 2011). This model identifies key components, including availability of chemicals and geochemical energy sources, required for the emergence of planetary life. The model is based on the theory (Russell and Kanik, 2010) that life emerged as a mechanism for the dissipation of the intrinsic geochemical energy gradient of the planet. It proposes that life is founded on an ongoing chemical energy flux that can be harnessed more efficiently by autocatalytic networks of reactions than by direct chemical processes. Feedback and selection mechanisms are required to foster the apparently irreducible complexity found in cells. We posit that selective solubilisation in a hydrothermal flow system was a key mechanism that underpinned the emergence of life. Amongst other things, earthly cells are dependent on a combination of organic molecules, iron (for electron-transfer and catalysis) and phosphate (e.g. for digital information). Soluble aqueous systems that include all these components are constrained by precipitation chemistry (de Zwart et al., 2004). We propose that in situ abiological carbon fixation produced organic molecules that, in turn, led to more active carbon fixation catalysts and hence more efficient reduction of carbon oxides. By encapsulating free iron ions, these organic molecules also facilitated the solubilisation of phosphate species which thereby became integrated within this expanding autocatalytic network. We have evaluated the competitive solubility of phosphate species in the presence of iron and organic moieties to test this theory and provide evidence that this could act as positive feedback loop for a form of prebiological evolution that underpinned the emergence of complex cells. References, Pratt, A. J. (2011) Prebiological Evolution and

  1. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  2. Structure of bright-rimmed molecular clouds

    International Nuclear Information System (INIS)

    Wootten, A.; Sargent, A.; Knapp, G.; Huggins, P.J.

    1983-01-01

    Five bright-rimmed molecular clouds, NGC 1977, IC 1396, IC 1848 A, B35, and NGC 7822, have been mapped with 30'' resolution in the J = 2--1 lines of 12 co. For the first three, 13 CO maps have also been made. The spatial distributions of temperature, density, and molecular abundance in these clouds have been determined, particularly in the vicinity of the rims. In general, the gas densities increase close to the rims, but temperature enhancements occur over comparatively extended regions. Near the rims the gas kinematics is varied: velocity gradients are observed in several regions, and in IC 1396 line broadening is distinguishable. A detailed study of the excitation of 13 CO demonstrates that near the well-resolved rim in NGC 1977 where C I and carbon recombination lines have been observed, there is a definite decline in the CO abundance. These molecular clouds span a variety of stages of star formation, but in none does the interaction with the adjacent H II region appear to have substantially affected the course of the star-forming history of the cloud

  3. Bright visible light emission from graphene.

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  4. Dark Skies, Bright Kids Year 9

    Science.gov (United States)

    Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  5. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  6. Intercomparisons of Nine Sky Brightness Detectors

    Directory of Open Access Journals (Sweden)

    Henk Spoelstra

    2011-10-01

    Full Text Available Nine Sky Quality Meters (SQMs have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  7. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  8. Engaging Audiences in Planetary Science Through Visualizations

    Science.gov (United States)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  9. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  10. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  11. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  12. A Systematic Review of Bright Light Therapy for Eating Disorders.

    Science.gov (United States)

    Beauchamp, Marshall T; Lundgren, Jennifer D

    2016-10-27

    Bright light therapy is a noninvasive biological intervention for disorders with nonnormative circadian features. Eating disorders, particularly those with binge-eating and night-eating features, have documented nonnormative circadian eating and mood patterns, suggesting that bright light therapy may be an efficacious stand-alone or adjunctive intervention. The purpose of this systematic literature review, using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, was (1) to evaluate the state of the empirical treatment outcome literature on bright light therapy for eating disorders and (2) to explore the timing of eating behavior, mood, and sleep-related symptom change so as to understand potential mechanisms of bright light therapy action in the context of eating disorder treatment. A comprehensive literature search using PsycInfo and PubMed/MEDLINE was conducted in April 2016 with no date restrictions to identify studies published using bright light therapy as a treatment for eating disorders. Keywords included combinations of terms describing disordered eating (eating disorder, anorexia nervosa, bulimia nervosa, binge eating, binge, eating behavior, eating, and night eating) and the use of bright light therapy (bright light therapy, light therapy, phototherapy). After excluding duplicates, 34 articles were reviewed for inclusion. 14 published studies of bright light therapy for eating disorders met inclusion criteria (included participants with an eating disorder/disordered-eating behaviors; presented as a case study, case series, open-label clinical trial, or randomized/nonrandomized controlled trial; written in English; and published and available by the time of manuscript review). Results suggest that bright light therapy is potentially effective at improving both disordered-eating behavior and mood acutely, although the timing of symptom response and the duration of treatment effects remain unknown. Future research should

  13. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  14. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  15. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  16. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  17. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  18. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  19. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  20. The GPM Common Calibrated Brightness Temperature Product

    Science.gov (United States)

    Stout, J.; Chou, J.

    2010-12-01

    The Global Precipitation Measurement (GPM) project will provide a core satellite carrying the GPM Microwave Imager (GMI) and will use microwave observations from a constellation of other satellites. Each partner with a satellite in the constellation will have a calibration that meets their own requirements and will decide on the format to archive their brightness temperature (Tb) record in GPM. However, GPM multi-sensor precipitation algorithms need to input intercalibrated Tb's in order to avoid differences among sensors introducing artifacts into the longer term climate record of precipitation. The GPM Common Calibrated Brightness Temperature Product is intended to address this problem by providing intercalibrated Tb data, called "Tc" data, where the "c" stands for common. The precipitation algorithms require a Tc file format that is both generic and flexible enough to accommodate the different passive microwave instruments. The format provides detailed information on the processing history in order to allow future researchers to have a record of what was done. The format is simple, including the main items of scan time, latitude, longitude, incidence angle, sun glint angle, and Tc. It also provides a quality flag, spacecraft orientation, spacecraft location, orbit, and instrument scan type (cross-track or conical). Another simplification is to store data in real numbers, avoiding the ambiguity of scaled data. Finally, units and descriptions will be provided in the product. The format is built on the concept of a swath, which is a series of scans that have common geolocation and common scan geometry. Scan geometry includes pixels per scan, sensor orientation, scan type, and incidence angles. The format includes 3 space saving methods: first rounding variables written as floats to their needed accuracy to achieve good compression, second writing sun glint angle as a one byte variable, and third storing only unique incidence angles but allowing access via a mapping

  1. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  2. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  3. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  4. Technology for NASA's Planetary Science Vision 2050.

    Science.gov (United States)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  5. Dark Skies, Bright Kids: Year 2

    Science.gov (United States)

    Carlberg, Joleen K.; Johnson, K.; Lynch, R.; Walker, L.; Beaton, R.; Corby, J.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Kingery, A.; Layman, S.; Murphy, E.; Richardson, W.; Ries, P.; Romero, C.; Sivakoff, G.; Sokal, K.; Trammell, G.; Whelan, D.; Yang, A.; Zasowski, G.

    2011-01-01

    The Dark Skies, Bright Kids (DSBK) outreach program brings astronomy education into local elementary schools in central Virginia's Southern Albemarle County through an after-school club. Taking advantage of the unusually dark night skies in the rural countryside, DSBK targets economically disadvantaged schools that tend to be underserved due to their rural locale. The goals of DSBK are to foster children's natural curiosity, demonstrate that science is a fun and creative process, challenge students' conceptions of what a scientist is and does, and teach some basic astronomy. Furthermore, DSBK works to assimilate families into students' education by holding family observing nights at the school. Now in its third semester, DSBK has successfully run programs at two schools with very diverse student populations. Working with these students has helped us to revise our activities and to create new ones. A by-product of our work has been the development of lesson plans, complete with learning goals and detailed instructions, that we make publically available on our website. This year we are expanding our repertoire with our new planetarium, which allows us to visualize topics in novel ways and supplements family observing on cloudy nights. The DSBK volunteers have also created a bilingual astronomy artbook --- designed, written, and illustrated by UVa students --- that we will publish and distribute to elementary schools in Virginia. Our book debuted at the last AAS winter meeting, and since then it has been extensively revised and updated with input from many individuals, including parents, professional educators, and a children's book author. Because the club is currently limited to serving a few elementary schools, this book will be part of our efforts to broaden our impact by bringing astronomy to schools we cannot go to ourselves and reaching out to Spanish-speaking communities at the same time.

  6. Dark Skies, Bright Kids! Year 3

    Science.gov (United States)

    Whelan, David G.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R. L.; Borish, J.; Corby, J. F.; Dorsey, G.; Gugliucci, N. E.; Prager, B. J.; Ries, P. A.; Romero, C. E.; Sokal, K. R.; Tang, X.; Walker, L. M.; Yang, A. J.; Zasowski, G.

    2012-01-01

    Dark Skies, Bright Kids! (DSBK) is a program that brings astronomy education to elementary schools throughout central Virginia. In a relaxed, out-of-classroom atmosphere, we are able to foster the innate curiosity that young students have about science and the world around them. We target schools that are under-served due to their rural locale or special needs students, demonstrating that science is a fun and creative process to a segment of the population that might not otherwise be exposed to astronomy. Families are included in the learning experience during semi-annual `star parties'. Since last January, we have expanded the breadth and depth of our educational capabilities. We have developed new programs for use in our digital planetarium. We held the first Central Virginia Star Party, providing an atmosphere where local children from multiple schools were able to share their love for astronomy. Local government and University officials were also invited so that they could experience our focused science outreach. Most recently, we have become part of Ivy Creek School's Club Day activities, bringing our program to a new segment of the elementary school system in Albemarle County: those that have `low-incidence' disabilities, requiring special attention. We continue to develop a curriculum for after-school programs that functions as either a series of one-time activities or several months of focused outreach at one school. Many of these activities are provided on our website, http://www.astro.virginia.edu/dsbk/, for the wider astronomical community, including the new planetarium work. We have extended our book project to include two bilingual astronomy books called `Snapshots of the Universe,' one in Spanish and English, the other in French and English. These books introduce young people to some of the many wonders of the Universe through art and captions developed by DSBK volunteers.

  7. Dark Skies, Bright Kids! Year 4

    Science.gov (United States)

    Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.

    2013-01-01

    Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning

  8. Optical microvariability of bright type 2 quasars

    Science.gov (United States)

    Polednikova, Jana; Ederoclite, Alessandro; Cepa, Jordi; de Diego Onsurbe, José Antonio; González-Serrano, José Ignacio

    2014-07-01

    We present results from a project focused on searching optical microvariabilty (also known as ``intra-night'' variability) in type 2 - obscured - quasars. Optical microvariability can be described as very small changes in the flux, typically in the order of hundredths of magnitude, which can be observed on timescales of hours. Such studies have been so far conducted for samples of blazars and type 1, unobscured, AGNs, where the optical microvariability was detected with success. We have focused on obscured targets which would pose a challenge to the AGN standard model. In the present work, however, we have observed a sample of three bright (g mag < 17) type 2 quasar, based on the catalog of type 2 quasars from SDSS of Reyes et al. (2008). The observations were carried out with the 1.5 meter telescope at San Pedro Martir observatory in Mexico. The sample was observed during an observation period of four days in Johnsons V filter, resulting in at least two continuous intervals of observations per target during the observational run. We have obtained differential light curves for our sources as well as for the comparison stars. They were analyzed using one-way analysis of variance statistical test (ANOVA), which has been repeatedly used in the past for studies of unobscured targets. Based on the results from the statistical analysis, we show that at least two out of three observed targets appear to be variable on time scales of hours. So far, this is the first study which confirmed existence of optical microvariability in type 2 quasars.

  9. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The decline of cosmic star formation: quenching, mass, and environment connections

    Science.gov (United States)

    Cucciati, O.; Davidzon, I.; Bolzonella, M.; Granett, B. R.; De Lucia, G.; Branchini, E.; Zamorani, G.; Iovino, A.; Garilli, B.; Guzzo, L.; Scodeggio, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Franzetti, P.; Fritz, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Blaizot, J.; Coupon, J.; Hawken, A.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Gargiulo, A.

    2017-06-01

    We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of the environment on the evolution of galaxies between z = 0.5 and z = 0.9. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the fifth nearest neighbour. This is performed by using a volume-limited sub-sample of galaxies complete up to z = 0.9, but allows us to attach a value of local density to all galaxies in the full VIPERS magnitude-limited sample to I web site is http://www.vipers.inaf.it/

  10. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  11. Foveal to peripheral extrapolation of brightness within objects.

    Science.gov (United States)

    Toscani, Matteo; Gegenfurtner, Karl R; Valsecchi, Matteo

    2017-08-01

    Peripheral viewing is characterized by poor resolution and distortions as compared to central viewing; nevertheless, when we move our gaze around, the visual scene does not appear to change. One possible mechanism leading to perceptual uniformity would be that peripheral appearance is extrapolated based on foveal information. Here we investigate foveal-to-peripheral extrapolation in the case of the perceived brightness of an object's surface. While fixating a spot on the rendered object, observers were asked to adjust the brightness of a disc to match a peripherally viewed target area on the surface of the same object. Being forced to fixate a better illuminated point led to brighter matches as compared to fixating points in the shadow, indicating that foveal brightness information was extrapolated. When observers fixated additional points outside of the object on the scene's background, fixated brightness had no effect on the brightness match. Results indicate that our visual system uses the brightness of the foveally viewed surface area to estimate the brightness of areas in the periphery. However, this mechanism is selectively applied within an object's boundary.

  12. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  13. ECR Ion Source for a High-Brightness Cyclotron

    Science.gov (United States)

    Comeaux, Justin; McIntyre, Peter; Assadi, Saeed

    2011-10-01

    New technology is being developed for high-brightness, high-current cyclotrons with performance benefits for accelerator-driven subcritical fission power, medical isotope production, and proton beam cancer therapy. This paper describes the design for a 65 kV electron cyclotron resonance (ECR) ion source that will provide high-brightness beam for injection into the cyclotron. The ion source is modeled closely upon the one that is used at the Paul Scherrer Institute. Modifications are being made to provide enhanced brightness and compatibility for higher-current operation.

  14. SMALL PLANETARY SATELLITE COLORS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  15. Planetary Protection Technology Definition Team: Tasks, Status, and Feedback

    Science.gov (United States)

    Meyer, M. A.; Rummel, J. D.

    2016-10-01

    A Planetary Protection and Technology Definition Team will assess challenges to meeting planetary protection requirements to instruments and will suggest technological solutions. Status and initial findings will be reported.

  16. Spectropolarimeter for planetary exploration (SPEX) : Performance measurements with a prototype

    NARCIS (Netherlands)

    Voors, R.; Moon, S.G.; Hannemann, S.; Rietjens, J.H.H.; Harten, G. van; Snik, F.; Smit, M.; Stam, D.M.; Keller, C.U.; Laan, E.C.; Verlaan, A.L.; Vliegenthart, W.A.; Horst, R. ter; Navarro, R.; Wielinga, K.

    2011-01-01

    SPEX (Spectropolarimeter for Planetary Exploration) was developed in close cooperation between scientific institutes and space technological industries in the Netherlands. It is used for measuring microphysical properties of aerosols and cloud particles in planetary atmospheres. SPEX utilizes a

  17. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Science.gov (United States)

    2012-04-06

    ... Needs for Planetary Protection --Planetary Protection for Icy Bodies in the Solar System --Current... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Protection Subcommittee... and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the...

  18. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  19. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  20. Keplerian planetary orbits in multidimensional Euclidian spaces ...

    African Journals Online (AJOL)

    Newton's laws of motion are three physical laws that together, laid the foundation for classical three dimensional mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. Kepler's laws of planetary motion are also three scientific laws describing the ...

  1. Detection of transient events on planetary bodies .

    Science.gov (United States)

    Di Martino, M.; Carbognani, A.

    Transient phenomena on planetary bodies are defined as luminous events of different intensities, which occur in planetary atmospheres and surfaces, their duration spans from about 0.1 s to some hours. They consist of meteors, bolides, lightning, impact flashes on solid surfaces, auroras, etc. So far, the study of these phenomena has been very limited, due to the lack of an ad hoc instrumentation, and their detection has been performed mainly on a serendipitous basis. Recently, ESA has issued an announcement of opportunity for the development of systems devoted to the detection of transient events in the Earth atmosphere and/or on the dark side of other planetary objects. One of such a detector as been designed and a prototype (\\textit{Smart Panoramic Optical Sensor Head}, SPOSH) has been constructed at Galileo Avionica S.p.A (Florence, Italy). For sake of clarity, in what follows, we classify the transient phenomena in ``Earth phenomena'' and ``Planetary phenomena'', even though some of them originate in a similar physical context.

  2. Equations Governing Kepler's Laws of Planetary Motion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Equations Governing Kepler's Laws of Planetary Motion. Renuka Ravindran. General Article Volume 14 Issue 12 December 2009 pp 1166-1170. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. 1. Why Planetary Orbits are Closed

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 12. Planetary Orbits as Simple Harmonic Motion. Bikram Phookun. Classroom Volume 8 Issue 12 December 2003 pp 83-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/12/0083-0091 ...

  4. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  5. Hypersonic and planetary entry flight mechanics

    Science.gov (United States)

    Vinh, N. X.; Busemann, A.; Culp, R. D.

    1980-01-01

    The book treats hypersonic flight trajectories and atmospheric entry flight mechanics in light of their importance for space shuttle entry. Following a review of the structures of planetary atmospheres and aerodynamic forces, equations are derived for flight over a spherical planet, and the performance of long-range hypervelocity vehicles in extra-atmospheric flight is analyzed. Consideration is then given to vehicle trajectories in the powered and atmospheric reentry phases of flight, and several first-order solutions are derived for various planetary entry situations. The second-order theory of Loh for entry trajectories is presented along with the classical theories of Yaroshevskii and Chapman for entry into planetary atmospheres, and the thermal problems encountered in hypersonic flight are analyzed. A unified theory for entry into planetary atmospheres is then introduced which allows the performance of a general type of lifting vehicle to be studied, and applied to the analysis of orbit contraction due to atmospheric drag, flight with lift modulation and lateral maneuvers.

  6. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  7. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  8. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  9. Abundances in planetary nebulae : Hb 5

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.

    The ISO spectra of the bilobal planetary nebula Hb 5 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated in several ways. First by directly

  10. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  11. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    Energy Technology Data Exchange (ETDEWEB)

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Pepe, Francesco; Udry, Stéphane; Lovis, Christophe [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Versoix (Switzerland); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Molinari, Emilio; Boschin, Walter [INAF-Fundación Galileo Galilei, Rambla José Ana Fernández Pérez, 7, E-38712 Breña Baja (Spain); Matthews, Jaymie M. [University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Cameron, Chris [Cape Breton University, 1250 Grand Lake Road, Sydney NS B1P 6L2 (Canada); Law, Nicholas [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Bowler, Brendan P. [California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, Christoph, E-mail: avanderburg@cfa.harvard.edu [University of Hawai' i at Mānoa, Hilo, HI 96720 (United States); and others

    2015-02-10

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R {sub *} = 0.716 ± 0.024 R {sub ☉} and mass M {sub *} = 0.775 ± 0.027 M {sub ☉}. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R{sub p} = 2.53 ± 0.18 R {sub ⊕}. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M {sub ⊕} planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

  12. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    International Nuclear Information System (INIS)

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David; Pepe, Francesco; Udry, Stéphane; Lovis, Christophe; Cameron, Andrew Collier; Molinari, Emilio; Boschin, Walter; Matthews, Jaymie M.; Cameron, Chris; Law, Nicholas; Bowler, Brendan P.; Baranec, Christoph

    2015-01-01

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R * = 0.716 ± 0.024 R ☉ and mass M * = 0.775 ± 0.027 M ☉ . The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R p = 2.53 ± 0.18 R ⊕ . Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M ⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars

  13. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of the proposed effort is maximizing the brightness of fiber coupled laser diode pump sources at a minimum cost. The specific innovation proposed is to...

  14. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — NSIDC produces daily gridded brightness temperature data from orbital swath data generated by the Special Sensor Microwave/Imager (SSM/I) aboard the Defense...

  15. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  16. SMEX02 SSM/I Brightness Temperature Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometric system. Data are brightness...

  17. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. ... Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ...

  18. Millimeter-wave Imaging Radiometer Brightness Temperatures, Wakasa Bay, Japan

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes calibrated brightness temperatures measured over Wakasa Bay in the Sea of Japan in January and February 2003. The MIR was carried on a...

  19. CLEMENTINE LWIR BRIGHTNESS TEMPERATURE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This volume contains the archive of Lunar brightness temperature data derived from images acquired by the Clementine Long Wavelength Infrared (LWIR) camera. The LWIR...

  20. Nimbus-1/HRIR Level 1 Brightness Temperature V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-1 High Resolution Infrared Radiometer (HRIR) Level 1 Brightness Temperature Data Product (HRIRN1L1) contains infrared radiances converted to equivalent...

  1. CLPX-Satellite: AVHRR/HRPT Brightness Temperatures and Reflectances

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes AVHRR/HRPT (Advanced Very High Resolution Radiometer/High Resolution Picture Transmission) brightness temperatures and reflectances over the...

  2. AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — This document pertains to two data sets: AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures (NSIDC-0301) and AMSR-E/Aqua Daily Global Quarter-Degree Gridded...

  3. Nimbus-7 SMMR Pathfinder Daily EASE-Grid Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of brightness temperatures acquired from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 Pathfinder satellite. The...

  4. SMAPVEX12 PALS Brightness Temperature Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains brightness temperature data obtained by the Passive Active L-band System (PALS) microwave aircraft instrument as a part of the Soil Moisture...

  5. SMEX03 SSM/I Brightness Temperature Data, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  6. SMEX03 SSM/I Brightness Temperature Data, Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  7. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  8. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  9. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.; Mapsit Steering Committee

    2017-02-01

    Planetary spatial data continue to increase in volume and complexity. These data are the hard-earned fruits of planetary exploration, and MAPSIT’s mission is to ensure their availability for any conceivable investigation, now or in the future.

  10. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  11. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  12. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  13. Cosmology and Particle Astrophysics (2nd edn) and Extragalactic Astronomy and Cosmology: An Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, Virginia [Department of Physics and Astronomy, University of California-Irvine, CA 92697-4575 (United States); Las Cumbres Global Telescope Network, Goleta, CA 93117 (United States)

    2007-05-07

    a while to find the bits you want. The index lists neither lambda nor the cosmological constant, and inflation is said to appear on pp 307-412. The chapters are of equal length, in traditional textbook fashion. Neither volume has much to say about issues that are currently 'hot'-the importance of extra dimensions, fine tuning of cosmological parameters, possible evidence for cosmic geometry different from the simplest. Discussions of such things will, of course, date a textbook quickly. On the other hand, they are often the items that physics (etc) students will have heard about in colloquia and would like to have clarified. Names appear only as eponyms, from Altarelli Parisi evolution (which is not on the page to which B and G's index refers you) to the Zeeman effect, which is where PS's index says it is. Can I imagine using either of these as texts? Definitely yes for PS, since it is a possible fit to an astrophysics course that UCI offers as a 'vocabulary builder' for students coming out of mainstream physics (and for which we have yet to find an entirely suitable text). We are contemplating a faculty hire or two in astro-particle physics, in which case B and G might well be a good fit to a seminar for students beginning work in that area. If I were asked to teach the course, however, I would probably want an instructor's solution manual for the text problems. One may well exist, though the book does not mention it. Using PS, you will have to make up your own problems (which you can then reasonably be expected to be able to work without help). (Book review of Cosmology and Particle Astrophysics (2nd edn), Lars Bergstroem and Ariel Goobar, 2006 Berlin: Springer and Worthing: Praxis, ISBN 978-3-540-33174-2 and Extragalactic Astronomy and Cosmology: An Introduction, Peter Schneider, 2006 Berlin: Springer, ISBN 978-3-540-33174-2)

  14. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  15. NEUTRON-CAPTURE ELEMENT ABUNDANCES IN MAGELLANIC CLOUD PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Mashburn, A. L.; Sterling, N. C. [Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118 (United States); Madonna, S. [Instituto de Astrofísica de Canarias, Departamento Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Dinerstein, Harriet L. [Department of Astronomy, University of Texas, 2515 Speedway, C1400, Austin, TX 78712-1205 (United States); Roederer, I. U. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Geballe, T. R., E-mail: awhite15@my.westga.edu, E-mail: nsterlin@westga.edu, E-mail: smadonna@iac.es, E-mail: harriet@astro.as.utexas.edu, E-mail: iur@umich.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States)

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n -capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s -process enrichments of Kr (0.6–1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5–0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2–3 M {sub ⊙} progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s -process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2–0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n -capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s -process enrichments to be studied in PN populations with well-determined distances.

  16. The effect of bright lines in environmental risk communication

    International Nuclear Information System (INIS)

    Wilson, K.N.; Desvousges, W.H.; Smith, K.V.; Payne, J.

    1993-01-01

    Bright lines in environmental risk communication refer to the specific levels at which an environmental risk becomes a serious health threat and action should be taken to mitigate its effects. This study examined the effect of ''bright lines'' in risk communication by emphasizing the radon exposure threshold level of 4 picocuries per liter. Specifically, the authors developed a computer-assisted interview containing bright-line versions of risk information. The bright-line version contained a range of possible radon levels, the corresponding number of estimated lung cancer cases, the relative health risk from radon compared to other health risks, and the EPA guidelines for mitigating levels above 4 picocuries in the home. The non-bright line version was identical to the bright-line version, except it did not include the EPA's mitigation recommendations. Effect measures included respondents' change in perceived risk after reading their materials, intended testing behavior, and advice to their neighbor for a specified radon level either above or below the 4 picocury threshold level. This paper discusses broader policy implications for designing effective risk communication programs

  17. Information and Announcements Planetary Exploration Programme

    Indian Academy of Sciences (India)

    It is, however, in the unconscious mental acceptance of these rational ... Exploration. the PLANEX programme of ISRO has been organizing periodic workshops and training programmes. The main ... Three or four bright participants will be selected for further intensive training in specialized fields related to the thrust areas in ...

  18. Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-06-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37~GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4arcsec/2arcsec. Optical PNe and radio candidates are within 2arcsec and may represent a sub-population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6~$M_odot$ or greater, supporting the existence of PNe progenitor central stars with masses up to 8 $M_odot$.

  19. Optical spectra of radio planetary nebulae in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (400 /200 . Optical PNe and radio candidates are within 200 and may represent a sub- population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 Mo or greater, supporting the existence of PNe progenitor central stars with masses up to 8 Mo.

  20. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  1. Planetary Science with Balloon-Borne Telescopes

    Science.gov (United States)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  2. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  3. Continuing Improvement in the Planetary Ephemeris with VLBA Observations of Cassini

    Science.gov (United States)

    Jones, Dayton L.; Folkner, William M.; Jacobson, Robert A.; Jacobs, Christopher S.; Romney, Jonathan D.; Dhawan, Vivek; Fomalont, Edward B.

    2016-06-01

    During the past decade a continuing series of measurements of the barycentric position of the Saturn system in the inertial International Celestial Reference Frame (ICRF) has led to a significant improvement in our knowledge of Saturn's orbit. This in turn has improved the current accuracy and time range of the solar system ephemeris produced and maintained by the Jet Propulsion Laboratory. Our observing technique involves high-precision astrometry of the radio signal from Cassini with the NRAO Very Long Baseline Array, combined with solutions for the orbital motion of Cassini about the Saturn barycenter from Doppler tracking by the Deep Space Network. Our VLBA astrometry is done in a phase-referencing mode, providing nrad-level relative positions between Cassini and angularly nearby extragalactic radio sources. The positions of those reference radio sources are tied to the ICRF through dedicated VLBI observations by several groups around the world. We will present recent results from our astrometric observations of Cassini through early 2016. This program will continue until the end of the Cassini mission in 2017, although future improvement in Saturn's orbit will be more incremental because we have already covered more that a quarter of Saturn's orbital period. The Juno mission to Jupiter, which will orbit Jupiter for about 1.5 years starting in July 2016, will provide an excellent opportunity for us to apply the same VLBA astrometry technique to improve the orbit of Jupiter by a factor of several. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Program and operated under license. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract

  4. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  5. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  6. Beam brightness calculation for analytical and empirical distribution functions

    International Nuclear Information System (INIS)

    Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.

    1992-01-01

    The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution

  7. Color and emotion: effects of hue, saturation, and brightness.

    Science.gov (United States)

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  8. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  9. The Next Generation of Planetary Atmospheric Probes

    Science.gov (United States)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  10. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  11. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  12. Multiscale regime shifts and planetary boundaries.

    Science.gov (United States)

    Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian

    2013-07-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. N-body simulations of planetary formation

    Science.gov (United States)

    Beauge, C.; Aarseth, S. J.

    1990-07-01

    Numerical simulations of the last stage of terrestrial planetary formation are performed using an N-body code similar to that of Lecar and Aarseth (1986). An improved treatment of collisions has been applied, which allows fragmentation and cratering, as well as accretion. Initial models consist of 200 bodies of total mass 2.3 x 10 to the 28th g, distributed in a two-dimensional ring of size 1 AU with initial circular orbits about the sun. Planetary embryos begin to form by accretion in the early stages when the relative velocities are small. Eventually, a small number of massive embryos emerge, and subsequently accrete nearly all the fragments. Final configurations of three different models yield four principal bodies with moderate eccentricities on a time-scale of 500,000 yr.

  14. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  15. The planetary rate of sprite events

    DEFF Research Database (Denmark)

    Ignaccolo, M.; Farges, T.; Mika, A.

    2006-01-01

    We propose a new formula to calculate the planetary rate of sprite events, based on observations with sprite detectors. This formula uses the number of detected sprites, the detection efficiency and the false alarm rate of the detector and spatial and temporal effectiveness functions. The role...... of these elements in the formula is discussed for optical and non-optical recordings. We use the formula to calculate an average planetary rate of sprite events of similar to 2.8 per minute with an accuracy of a factor similar to 2 - 3 by use of observations reported in the literature. The proposed formula can...... be used to calculate the occurrence rate of any physical event detected by remote sensing....

  16. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.

    1977-01-01

    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  17. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  18. Planetary Sciences: American and Soviet Research

    Science.gov (United States)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  19. Planetary atmospheric physics and solar physics research

    Science.gov (United States)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  20. Large-Scale Structures of Planetary Systems

    Science.gov (United States)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  1. Earth-like Habitats in Planetary Systems

    OpenAIRE

    Fritz, Jörg; Bitsch, Bertram; Kührt, Ekkehard; Morbidelli, Alessandro; Tornow, Carmen; Wünnemann, Kai; Fernandes, Vera A.; Grenfell, Lee J.; Rauer, Heike; Wagner, Roland; Werner, Stephanie C.

    2014-01-01

    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research All...

  2. Robots and humans: synergy in planetary exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  3. Search for binary nuclei in planetary nebulae

    International Nuclear Information System (INIS)

    Jasniewicz, G.

    1987-01-01

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star. 9 references

  4. Search for binary nuclei in planetary nebulae

    Science.gov (United States)

    Jasniewicz, G.

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star.

  5. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  6. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  7. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  8. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  9. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  10. INVITED TALK: Dynamics Of Planetary Rings

    Science.gov (United States)

    Tiscareno, Matthew S.

    2011-04-01

    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We will review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We will then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk), and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs both at Saturn, Jupiter, and Neptune. Finally, every known ring system includes a substantial component of diffuse dusty rings.

  11. Interstellar and Planetary Analogs in the Laboratory

    Science.gov (United States)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  12. SmallSat Innovations for Planetary Science

    Science.gov (United States)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  13. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  14. A DEEP KECK/NIRC2 SEARCH FOR THERMAL EMISSION FROM PLANETARY COMPANIONS ORBITING FOMALHAUT

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne; Cloutier, Ryan [University of Toronto, 50 St George St., Toronto, ON M5S 1A1 (Canada); Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kaisler, Denise [Citrus College, 1000 West Foothill Boulevard, Glendora, CA 91741 (United States)

    2013-11-01

    We present deep Keck/NIRC2 1.6 and 3.8 μm imaging of Fomalhaut to constrain the near-infrared brightness of Fomalhaut b, recently confirmed as a likely planet, and search for additional planets at r {sub proj} = 15-150 AU. Using advanced/novel point spread function subtraction techniques, we identify seven candidate substellar companions Fomalhaut b-like projected separations. However, multi-epoch data show them to be background objects. We set a new 3σ upper limit for Fomalhaut b's H-band brightness of m(H) ∼23.15 or 1.5-4.5 M{sub J} . We do not recover the possible point source reported from Spitzer/IRAC data: at its location detection limits are similar to those for Fomalhaut b. Our data when combined with other recent work rule out planets with masses and projected separations comparable to HR 8799 bcde and M > 3 M{sub J} planets at r {sub proj} > 45 AU. The James Webb Space Telescope will likely be required to shed substantial further light on Fomalhaut's planetary system in the next decade.

  15. Distribution of scientific data from ESA's planetary missions via the Planetary Science Archive (PSA)

    Science.gov (United States)

    Heather, D.; Zender, J.; Arviset, C.

    The Planetary Science Archive (PSA) is an online archive facility supporting all of ESA's planetary missions. Scientific and ancillary data from all of ESA's planetary missions will be distributed via the PSA, which is open to the worldwide scientific community, and should be the first port of call for all scientists looking for ESA planetary data. Currently, the PSA contains data from Giotto, several ground-based observatories, and Mars Express. In the long run, the PSA will also be the repository for missions such as Huygens, SMART-1, Rosetta and Venus Express. This presentation gives a demonstration of the use and functionality of the PSA to show how data products and data sets should be queried, requested and retrieved from the archive. An overview of the data flow from the spacecraft to the scientific community is also provided. The data release policy and the envisaged schedule of the expected data releases are given, and the archive process is detailed including the definition of data types and products, database ingestion and reviews for all instruments on-board ESA's planetary missions.

  16. A neurodynamical model of brightness induction in v1.

    Directory of Open Access Journals (Sweden)

    Olivier Penacchio

    Full Text Available Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.

  17. Magnetic dynamos in accreting planetary bodies

    Science.gov (United States)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  18. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    International Nuclear Information System (INIS)

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  19. The Effect of Blazar Spectral Breaks on the Blazar Contribution to the Extragalactic Gamma-Ray Background

    Science.gov (United States)

    Venters, Tonia M.; Pavlidou, Vasiliki

    2011-01-01

    The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.

  20. Cosmic Ray Origin: Lessons from Ultra-High-Energy Cosmic Rays and the Galactic/Extragalactic Transition

    Energy Technology Data Exchange (ETDEWEB)

    Parizot, Etienne

    2014-11-15

    We examine the question of the origin of the Galactic cosmic-rays (GCRs) in the light of the data available at the highest energy end of the spectrum. We argue that the data of the Pierre Auger Observatory and of the KASCADE-Grande experiment suggest that the transition between the Galactic and the extragalactic components takes place at the energy of the ankle in the all-particle cosmic-ray spectrum, and at an energy of the order of 10{sup 17} eV for protons. Such a high energy for Galactic protons appears difficult to reconcile with the general view that GCRs are accelerated by the standard diffusive shock acceleration process at the forward shock of individual supernova remnants (SNRs). We also review various difficulties of the standard SNR-GCR connection, related to the evolution of the light element abundances and to significant isotopic anomalies. We point out that most of the power injected by the supernovæ in the Galaxy is actually released inside superbubbles, which may thus play an important role in the origin of cosmic-rays, and could solve some persistent problems of the standard SNR-GCR scenario in a rather natural way.

  1. A deep narrowband survey for planetary nebulae at the outskirts of M 33

    Science.gov (United States)

    Galera-Rosillo, R.; Corradi, R. L. M.; Mampaso, A.

    2018-04-01

    Context. Planetary nebulae (PNe) are excellent tracers of stellar populations with low surface brightness, and therefore provide a powerful method to detect and explore the rich system of substructures discovered around the main spiral galaxies of the local group. Aim. We searched the outskirts of the local group spiral galaxy M 33 (the Triangulum) for PNe to gain new insights into the extended stellar substructure on the northern side of the disc and to study the existence of a faint classical halo. Methods: The search is based on wide field imaging covering a 4.5 square degree area out to a maximum projected distance of about 40 kpc from the centre of the galaxy. The PN candidates are detected by the combination of images obtained in narrowband filters selecting the [OIII]λ5007 Å and Hα + [NII] nebular lines and in the continuum g' and r' broadband filters. Results: Inside the bright optical disc of M 33, eight new PN candidates were identified, three of which were spectroscopically confirmed. No PN candidates were found outside the limits of the disc. Fourteen additional sources showing [OIII] excess were also discovered. Conclusions: The absence of bright PN candidates in the area outside the galaxy disc covered by this survey sets an upper limit to the luminosity of the underlying population of 1.6 × 107 L⊙, suggesting the lack of a massive classical halo, which is in agreement with the results obtained using the red giant branch population. Based on observations made with the Isaac Newton Telescope and service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  2. Bright and Not-So-Bright Prospects for Women in Physics in China-Beijing

    Science.gov (United States)

    Wu, Ling-An; Yang, Zhongqin; Ma, Wanyun

    2009-04-01

    Science in China-Beijing is enjoying a healthy increase in funding year by year, so the prospects for physicists are also bright. However, employment discrimination against women, formerly unthinkable, is becoming more and more explicit as the country evolves toward a market economy. Some recruitment notices bluntly state that only men will be considered, or impose restrictions upon potential female candidates. Female associate professors in many institutions are forced to retire at age 55, compared with 60 for men. This double-pinching discrimination against both younger and older women threatens to lead to a "pincer" effect, more serious than the "scissors" effect. Indeed, the ratio of senior-level women physicists in general has dropped significantly in recent years in China. Ironically, the number of female students applying for graduate studies is on the rise, as it is becoming increasingly difficult for them to compete with men in the job market with just an undergraduate degree. The Chinese Physical Society has made certain efforts to promote the image of women physicists, but it will take time and effort to reverse the trend.

  3. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  4. Surface brightness parameters as tests of galactic evolution

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1976-01-01

    It is shown that surface brightness parameters defined in terms of an isophotal radius are insensitive to galactic evolution, because the effects of luminosity evolution on the flux and isophotal radius almost cancel each other. Surface brightness parameters defined in terms of a metric radius are able to give fairly direct information on evolution, but only if the metric scale of each galaxy in the sample is determined by photometry of the galaxy itself. If, instead, a metric radius is estimated by means of a fiducial value of q 0 , the brightness-redshift relation yields only a function of both evoluting and the unknown cosmological model, which is very similar to the function obtained from the Hubble diagram

  5. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    Science.gov (United States)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  6. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1989-01-01

    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  7. Effects of Bright Light Treatment on Psychomotor Speed in Athletes

    Directory of Open Access Journals (Sweden)

    Mikko Paavo Tulppo

    2014-05-01

    Full Text Available Purpose: A recent study suggests that transcranial brain targeted light treatment via ear canals may have physiological effects on brain function studied by functional magnetic resonance imaging (fMRI techniques in humans. We tested the hypothesis that bright light treatment could improve psychomotor speed in professional ice hockey players. Methods: Psychomotor speed tests with audio and visual warning signals were administered to a Finnish National Ice Hockey League team before and after 24 days of transcranial bright light or sham treatment. The treatments were given during seasonal darkness in the Oulu region (latitude 65 degrees north when the strain on the players was also very high (10 matches during 24 days. A daily 12-min dose of bright light or sham (n = 11 for both treatment was given every morning between 8–12 am at home with a transcranial bright light device. Mean reaction time and motor time were analyzed separately for both psychomotor tests. Analysis of variance for repeated measures adjusted for age was performed. Results: Time x group interaction for motor time with a visual warning signal was p = 0.024 after adjustment for age. In Bonferroni post-hoc analysis, motor time with a visual warning signal decreased in the bright light treatment group from 127 ± 43 to 94 ± 26 ms (p = 0.024 but did not change significantly in the sham group 121 ± 23 vs. 110 ± 32 ms (p = 0.308. Reaction time with a visual signal did not change in either group. Reaction or motor time with an audio warning signal did not change in either the treatment or sham group. Conclusion: Psychomotor speed, particularly motor time with a visual warning signal, improves after transcranial bright light treatment in professional ice-hockey players during the competition season in the dark time of the year.

  8. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    Science.gov (United States)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  9. The Planetary Data System - A solution to data management for the planetary science community

    Science.gov (United States)

    Dobinson, Elaine R.

    1990-01-01

    An overview of the first release of the Planetary Data System (PDS) is presented, and some of the challenges encountered during development of the system are described. The principal goals of the PDS are to distribute planetary science data and information about these data to NASA, to provide scientific knowledge to users of these data, and to provide for permanent storage. The current architecture and capabilities of the PDS (Version 1.0) are examined, and some of the special challenges encountered and lessons learned during the application are highlighted. Finally, implications for future versions of the PDS as well as for other science data systems are discussed.

  10. High-brightness displays in integrated weapon sight systems

    Science.gov (United States)

    Edwards, Tim; Hogan, Tim

    2014-06-01

    In the past several years Kopin has demonstrated the ability to provide ultra-high brightness, low power display solutions in VGA, SVGA, SXGA and 2k x 2k display formats. This paper will review various approaches for integrating high brightness overlay displays with existing direct view rifle sights and augmenting their precision aiming and targeting capability. Examples of overlay display systems solutions will be presented and discussed. This paper will review significant capability enhancements that are possible when augmenting the real-world as seen through a rifle sight with other soldier system equipment including laser range finders, ballistic computers and sensor systems.

  11. An adaptive brightness preserving bi-histogram equalization

    Science.gov (United States)

    Shen, Hongying; Sun, Shuifa; Lei, Bangjun; Zheng, Sheng

    2011-11-01

    Based on mean preserving bi-histogram equalization (BBHE), an adaptive image histogram equalization algorithm for contrast enhancement is proposed. The threshold is gotten with adaptive iterative steps and used to divide the original image into two sub-images. The proposed Iterative of Brightness Bi-Histogram Equalization overcomes the over-enhancement phenomenon in the conventional histogram equalization. The simulation results show that the algorithm can not only preserve the mean brightness, but also keep the enhancement image information effectively from visual perception, and get a better edge detection result.

  12. Evaluation of brightness temperature from a forward model of ...

    Indian Academy of Sciences (India)

    sensing technique from ground-based instruments by which high vertical resolution measurements at surface levels are ... the planetary boundary layer, this technique may get importance by providing high resolution data ... Elements of forward model for an upward-looking microwave radiometer. this forward model with a ...

  13. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  14. Dynamic brightness induction causes flicker adaptation, but only along the edges: Evidence against the neural filling-in of brightness

    Science.gov (United States)

    Robinson, Alan E.; de Sa, Virginia R.

    2013-01-01

    Is brightness represented in a point-for-point neural map that is filled in from the response of small, contrast-sensitive edge detector cells? We tested for the presence of this filled-in map by adapting to illusory flicker caused by a dynamic brightness-induction stimulus. Thereafter flicker sensitivity was reduced when our test region was the same size as the induced region, but not for smaller, inset regions. This suggests induced brightness is represented by either small edge-selective cells with no filling-in stage, or by contrast-sensitive spatial filters at many different scales, but not by a population of filled-in neurons arranged in a point-for-point map. PMID:23729768

  15. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    Science.gov (United States)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  16. ESA's Planetary Science Archive: Status and Plans

    Science.gov (United States)

    Heather, David; Barthelemy, Maud; Manaud, Nicolas; Martinez, Santa; Szumlas, Marek; Vazquez, Jose Luis; Arviset, Christophe; Osuna, Pedro; PSA Development Team

    2013-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. The PSA currently holds data from Mars Express, Venus Express, SMART-1, Huygens, Rosetta and Giotto, as well as several ground-based cometary observations. It will be used for archiving on ExoMars, BepiColombo and for the European contributions to Chandrayaan-1. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. - The Map-based Interface is currently operational only for Mars Express HRSC and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All PSA data are prepared by the corresponding instrument teams, and are made to comply with the internationally recognized PDS standards. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels through to

  17. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  18. Dynamics of Planetary Systems in Star Clusters

    Science.gov (United States)

    Spurzem, R.; Giersz, M.; Heggie, D. C.; Lin, D. N. C.

    2009-05-01

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We show that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as σ Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal

  19. Risk to civilization: A planetary science perspective

    International Nuclear Information System (INIS)

    Chapman, C.R.; Morrison, D.

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature

  20. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.