WorldWideScience

Sample records for bright extragalactic planetary

  1. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  2. The morphology and surface brightness of extragalactic jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.

    1983-01-01

    The problems associated with laminar flow models are reviewed, and an analogy between laboratory jets and astrophysical jets is given. The relationship between surface brightness and the jet full width half maximum is not in general as predicted by simple magnetohydrodynamic models. An alternative turbulent model is presented

  3. Characterizing Extragalactic Star Formation with GALEX Legacy Photometric Analysis of UV-Bright Stellar Complexes

    Science.gov (United States)

    Thilker, David

    -driven galaxy evolution using both existing NASA databases and operating instruments, in addition to upcoming space telescopes. While a legacy of our project will be the hierarchical photometric database (disseminated via MAST and NED) which supports extragalactic community science, our own goals from the proposed comprehensive measurements address some vital issues: (i) Currently there is controversy regarding the power-law slope of the empirical star formation law (SFL). Is there constant star formation efficiency above the HI-to-H_2 transition gas surface density (implying ~unity slope, see papers by Bigiel et al. and Leroy et al.), or is the SFL relation a stronger function of gas density with a super-linear form (as observed by Kennicutt et al. 2007)? Liu et al. (2011) have shown that the answer may depend critically on whether or not diffuse emission underlying star-forming substructures is removed. Our analysis will allow firm resolution of this issue, as we will also apply our photometry algorithm to Spitzer imaging for a subset of our sample galaxies, thus providing background-subtracted L(UV) and L(IR) measurements for substructures which can then be compared to existing and forthcoming (ALMA) CO imaging. (ii) We will also verify/calibrate our SED-fit based determination of age, extinction, and mass for UV-bright structures via direct comparison to the ground-truth stemming from resolved stellar populations (e.g. in ANGST galaxies) and also high-resolution HST UV-optical star cluster surveys (further out in the Local Volume). (iii) Finally, we will measure the diffuse UV fraction in a few hundred of the nearest galaxies (accounting for variation tied only to spatial resolution), trying to ascertain the characteristic fraction in galaxies of different Hubble type and dust-to-gas ratio. Systematic local variations in diffuse fraction and color will also be quantified as a function of environment.

  4. Observations of three bright extragalactic radiosources at the 1.38 cm wavelength with the resolution up to 8''

    International Nuclear Information System (INIS)

    Berlin, A.B.; Korenev, Yu.V.; Lesovoj, V.Yu.; Parijskij, Yu.N.; Smirnov, V.I.; Soboleva, N.S.

    1980-01-01

    New observations of radiogalaxies in the shortest wavelength region of the RATAN-600 radiotelescope were performed using the 1.38-cm radiometer. One-dimentional radiobrightness distribution of 3C 405 (Cyg A) and Cen A as well as instantaneous spectra of the nuclear sources in 3C 111, 3C 405 and Cen A are presented. Spectra of nuclear components in radiosources 3C 111 and Cen A show marked variations at the time scale of the order of three years. Fluxes for the nuclear component of Cyg A at the wavelengths greater than 3.9 cm have decreased during the last 5 years. Wavelength independence is pointed out for brightness distribution in the main components of all sources. This contradicts to some extragalactic radiosources models in which radiation losses of relativistic electrons when moving from the hot ''spots'' to ''tails'' are suggested

  5. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  6. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  7. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    Science.gov (United States)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous zvalues.

  8. Stellar candles for the extragalactic distance scale

    CERN Document Server

    Gieren, Wolfgang

    2003-01-01

    This volume reviews the current status with respect to both theory and observation of the extragalactic distance scale. A sufficient accuracy is required both for a precise determination of the cosmological parameters and also in order to achieve a better understanding of physical processes in extragalactic systems. The "standard candles", used to set up the extragalactic distance scale, reviewed in this book include cepheid variables, RR Lyrae variables, novae, Type Ia and Type II supernovae as well as globular clusters and planetary nebulae.

  9. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    Science.gov (United States)

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Extragalactic radioastronomy

    International Nuclear Information System (INIS)

    Tovmasyan, G.M.

    1977-01-01

    The results of observations of radiogalaxies and quasars are presented in a popular form. Comparative data on the radioemission power, the distribution of radio-brightness of various galaxies and quasars, and statistical data confirming the similarity of their radiostructures are given. Comparative data on quasars and radiogalaxies with double radiostructures are presented. The data indicate that transition from galaxies to quasars goes on continuously. The results of observations of weak radioemissions of normal galaxies with optical sings of nuclear activity and of radiosources with an anomalous spectrun and spent radiation power are given. The results of investigations of galaxy clusters containing supergiant stars responsible for the observed radiation are considered. The concept of the existence of huge stores of hypothetic superdense protostellar matter, whose explosions must lead to the phenomena observed, is described. This concept is not well-grounded theoretically

  11. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  12. Extragalactic Gravitational Collapse

    Science.gov (United States)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  13. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  14. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  15. IS THERE AN UNACCOUNTED FOR EXCESS IN THE EXTRAGALACTIC COSMIC RADIO BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyan, Ravi [Raman Research Institute, CV Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Cowsik, Ramanath, E-mail: rsubrahm@rri.res.in, E-mail: cowsik@physics.wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University, Campus Box 1105, St. Louis, MO 63130 (United States)

    2013-10-10

    Analyses of the distribution of absolute brightness temperature over the radio sky have recently led to suggestions that there exists a substantial unexplained extragalactic radio background. Consequently, there have been numerous attempts to place constraints on plausible origins of this 'excess'. We suggest here that this expectation of a large extragalactic background, over and above that contributed by the sources observed in the surveys, is based on an extremely simple geometry adopted to model the Galactic emission and the procedure adopted in the estimation of the extragalactic contribution. In this paper, we derive the extragalactic radio background from wide-field radio images using a more realistic modeling of the Galactic emission and decompose the sky maps at 150, 408, and 1420 MHz into anisotropic Galactic and isotropic extragalactic components. The anisotropic Galactic component is assumed to arise from a highly flattened spheroid representing the thick disk, embedded in a spherical halo, both centered at the Galactic center, along with Galactic sources, filamentary structures, and Galactic loops and spurs. All components are constrained to be positive and the optimization scheme minimizes the sky area occupied by the complex filaments. We show that in contrast with simple modeling of Galactic emission as a plane parallel slab, the more realistic modeling yields estimates for the uniform extragalactic brightness that are consistent with expectations from known extragalactic radio source populations.

  16. Fast Radio Bursts from Extragalactic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi [John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: manasvi@seas.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  17. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  18. Fast Radio Bursts from Extragalactic Light Sails

    International Nuclear Information System (INIS)

    Lingam, Manasvi; Loeb, Abraham

    2017-01-01

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  19. Extragalactic background light measurements and applications.

    Science.gov (United States)

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

  20. Infrared observations of extragalactic sources

    International Nuclear Information System (INIS)

    Kleinmann, D.E.

    1977-01-01

    The available balloon-borne and airborne infrared data on extragalactic sources, in particular M 82, NGC 1068 and NGC 253, is reviewed and discussed in the context of the extensive groundbased work. The data is examined for the clues they provide on the nature of the ultimate source of the energy radiated and on the mechanism(s) by which it is radiated. Since the discovery of unexpectedly powerful infrared radiation from extragalactic objects - a discovery now about 10 years old - the outstanding problems in this field have been to determine (1) the mechanism by which prodigious amounts of energy are released in the infrared, and (2) the nature of the underlying energy source. (Auth.)

  1. Radio outbursts in extragalactic sources

    International Nuclear Information System (INIS)

    Kinzel, W.M.

    1989-01-01

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior

  2. HEAO A-2 extragalactic results

    Science.gov (United States)

    Boldt, E. A.

    1979-01-01

    The all-sky surveys made with the A-2 instrument aboard HEAO-1 involved spectroscopy over a broad enough band width, with sufficient resolution, to obtain the basic spectral characteristics for two extreme aspects of the extragalactic X-ray sky. The overall spectrum (above 3 KeV) is remarkably well decribed by a thermal model. At the other extreme, the detailed broad-band observations of individual sources are restricted to objects within the present epoch. The objects include several individual active galaxies studied in detail for the first time as well as clusters of galaxies. Relating these results to the vast spatially unresolved hard X-ray flux measured with this instruments as well as the softer X-rays (at less than 3 keV) spatially resolved to high redshifts with the Einstein Observatory remains a challenge.

  3. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  4. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  5. Optical variability of the medium-bright quasar sample

    International Nuclear Information System (INIS)

    Huang, K.; Mitchell, K.J.; Usher, P.D.

    1990-01-01

    A variability study of the 32-member Medium-Bright Quasar Sample is reported. It is found that the star US 1953 has undergone a noticeable variation in the course of 26 hr. Apparent variations in the extragalactic object US 3498 may be illusory, owing to its partially resolved appearance. No other evidence for variability was detected. 34 refs

  6. Is PKS 2155 an extragalactic source

    International Nuclear Information System (INIS)

    Maraschi, L.; Treves, A.

    1981-01-01

    We present here observations in the far ultraviolet (1200-3000 Angstroem) obtained with I.U.E. The presence of weak variable emission features is discussed and the extragalactic nature of the object is questioned. (orig./WL)

  7. Is PKS 2155 an extragalactic source

    Energy Technology Data Exchange (ETDEWEB)

    Maraschi, L.; Treves, A. (Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Milan Univ. (Italy). Ist. di Fisica); Tanzi, E.G. (Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative); Tarenghi, M. (European Southern Observatory, Garching (Germany, F.R.))

    1981-01-01

    We present here observations in the far ultraviolet (1200-3000 Angstroem) obtained with I.U.E. The presence of weak variable emission features is discussed and the extragalactic nature of the object is questioned.

  8. Searching for Extragalactic Sources in the VISTA Variables in the Vía Láctea Survey

    Science.gov (United States)

    Baravalle, Laura D.; Alonso, M. Victoria; Nilo Castellón, José Luis; Beamín, Juan Carlos; Minniti, Dante

    2018-01-01

    We search for extragalactic sources in the VISTA Variables in the Vía Láctea survey that are hidden by the Galaxy. Herein, we describe our photometric procedure to find and characterize extragalactic objects using a combination of SExtractor and PSFEx. It was applied in two tiles of the survey: d010 and d115, without previous extragalactic IR detections, in order to obtain photometric parameters of the detected sources. The adopted criteria to define extragalactic candidates include CLASSSTAR 0.002 and the colors: 0.5 0.44 mag. We detected 345 and 185 extragalactic candidates in the d010 and d115 tiles, respectively. All of them were visually inspected and confirmed to be galaxies. In general, they are small and more circular objects, due to the near-IR sensitivity to select more compact objects with higher surface brightness. The procedure will be used to identify extragalactic objects in other tiles of the VVV disk, which will allow us to study the distribution of galaxies and filaments hidden by the Milky Way.

  9. Extragalactic Astronomy: The Universe Beyond Our Galaxy.

    Science.gov (United States)

    Jacobs, Kenneth Charles

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in…

  10. EXTRAGALACTIC DARK MATTER AND DIRECT DETECTION EXPERIMENTS

    International Nuclear Information System (INIS)

    Baushev, A. N.

    2013-01-01

    Recent astronomical data strongly suggest that a significant part of the dark matter content of the Local Group and Virgo Supercluster is not incorporated into the galaxy halos and forms diffuse components of these galaxy clusters. A portion of the particles from these components may penetrate the Milky Way and make an extragalactic contribution to the total dark matter containment of our Galaxy. We find that the particles of the diffuse component of the Local Group are apt to contribute ∼12% to the total dark matter density near Earth. The particles of the extragalactic dark matter stand out because of their high speed (∼600 km s –1 ), i.e., they are much faster than the galactic dark matter. In addition, their speed distribution is very narrow (∼20 km s –1 ). The particles have an isotropic velocity distribution (perhaps, in contrast to the galactic dark matter). The extragalactic dark matter should provide a significant contribution to the direct detection signal. If the detector is sensitive only to the fast particles (v > 450 km s –1 ), then the signal may even dominate. The density of other possible types of the extragalactic dark matter (for instance, of the diffuse component of the Virgo Supercluster) should be relatively small and comparable with the average dark matter density of the universe. However, these particles can generate anomaly high-energy collisions in direct dark matter detectors.

  11. Spectrum of the extragalactic background light

    Energy Technology Data Exchange (ETDEWEB)

    Bruzual A, G [Centro de Investigacion de Astronomia, Merida (Venezuela)

    1981-01-01

    The observed spectrum of the extragalactic background light in the range from ultraviolet to optical wavelengths is compared with a model prediction. The model uses the locally observed luminosity function of galaxies as well as evolutionary models for galaxy spectral energy distributions. The predicition is too faint by a factor of about 10.

  12. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  13. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  14. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    Science.gov (United States)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the

  15. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  16. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  17. Investigation of some galactic and extragalactic gravitational phenomena

    Directory of Open Access Journals (Sweden)

    Jovanović P.

    2012-01-01

    Full Text Available Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe

  18. Planetary magnetospheres

    International Nuclear Information System (INIS)

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  19. Extragalactic sources in Cosmic Microwave Background maps

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. De; Castex, G. [SISSA, via Bonomea 265, 34136 Trieste (Italy); González-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, 33007 Oviedo (Spain); Lopez-Caniego, M. [European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid (Spain); Negrello, M.; Clemens, M. [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Cai, Z.-Y. [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Delabrouille, J. [APC, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Herranz, D.; Bonavera, L. [Instituto de Física de Cantabria (CSIC-UC), avda. los Castros s/n, 39005 Santander (Spain); Melin, J.-B. [DSM/Irfu/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Tucci, M. [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Serjeant, S. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bilicki, M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch (South Africa); Andreani, P., E-mail: gianfranco.dezotti@oapd.inaf.it, E-mail: gcastex@sissa.it, E-mail: gnuevo@uniovi.es, E-mail: marcos.lopez.caniego@sciops.esa.int [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748, Garching (Germany); and others

    2015-06-01

    We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that

  20. Optical spectroscopy of ten extragalactic radiosources

    International Nuclear Information System (INIS)

    Rawlings, S.; Riley, J.M.; Saunders, R.

    1989-01-01

    We present optical spectroscopy of ten objects associated with extra-galactic radiosources, using the University of Hawaii 2.2-m telescope. Redshifts are measured for four radiogalaxies (B20217 + 36A + B, 3C73, 0648 + 19A, 0648 + 19B) and for a galaxy which is probably associated with a double radio-source with highly unusual properties (0951 + 37); existing redshifts are confirmed for two radiogalaxies (4C39.04, 4C40.08); and a tentative redshift of z=2.87 measured for the quasar 3C82. (author)

  1. Extragalactic sources in Cosmic Microwave Background maps

    Science.gov (United States)

    De Zotti, G.; Castex, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Cai, Z.-Y.; Clemens, M.; Delabrouille, J.; Herranz, D.; Bonavera, L.; Melin, J.-B.; Tucci, M.; Serjeant, S.; Bilicki, M.; Andreani, P.; Clements, D. L.; Toffolatti, L.; Roukema, B. F.

    2015-06-01

    We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that it

  2. Fine structure of 25 extragalactic radio sources

    International Nuclear Information System (INIS)

    Wittels, J.J.; Knight, C.A.; Shapiro, I.I.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Neill, A.E.; Ronnang, B.G.; Rydbeck, O.E.H.; Klemperer, W.K.; Warnock, W.W.

    1975-01-01

    Between 1972 April and 1973 May, 25 extragalactic radio sources were observed interferometrically at 7.8 GHz(lambdaapprox. =3.8 cm) with five pairings of antennas. These sources exhibit a broad variety of fine structures from very simple to complex. Although the structure and the total power of some of these sources have remained unchanged within the sensitivity of our measurements during the year of observations, both the total flux and the correlated flux of others have undergone large changes in a few weeks

  3. Probing the properties of extragalactic SNRs

    Science.gov (United States)

    Leonidaki, Ioanna

    2016-06-01

    The investigation of extragalactic SNRs gives us the advantage of surmounting the challenges we are usually confronted with when observing Galactic SNRs, most notably Galactic extinction and distance uncertainties. At the same time, by obtaining larger samples of SNRs, we are allowed to cover a wider range of environments and ISM parameters than our Galaxy, providing us a more complete and representative picture of SNR populations. I will outline the recent progress on extragalactic surveys of SNR populations focusing on the optical, radio, and X-ray bands. Multi-wavelength surveys can provide several key aspects of the physical processes taking place during the evolution of SNRs while at the same time can overcome possible selection effects that are inherent from monochromatic surveys. I will discuss the properties derived in each band (e.g. line ratios, luminosities, densities, temperatures) and their connection in order to yield information on various aspects of their behaviour and evolution. For example their interplay with the surrounding medium, their correlation with star formation activity, their luminosity distributions and their dependence on galaxy types.

  4. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  5. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  6. Rapid variability of extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Quirrenbach, A.; Witzel, A.; Krichbaum, T.; Hummel, C.A.; Alberdi, A.; Schalinski, C.

    1989-02-02

    Since its discovery more than 20 years ago, variability of extragalactic radio sources on timescales of weeks to years has been the subject of many investigations. We have examined the variability of these sources on timescales of hours at wavelengths of 6 and 11 cm using the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie and report the results for two sources. The quasar QSO0917 + 62 showed variations with amplitudes of up to 23% in /similar to/ 24 hours, which were correlated at the two wavelengths; in the BL Lac object 0716 + 71 we found variations with amplitudes of 7-11%. We discuss intrinsic effects, gravitational lensing and scattering in the interstellar medium as possible explanations for rapid radio variability.

  7. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  8. Rapid variability of extragalactic radio sources

    International Nuclear Information System (INIS)

    Quirrenbach, A.; Witzel, A.; Krichbaum, T.; Hummel, C.A.; Alberdi, A.; Schalinski, C.

    1989-01-01

    Since its discovery more than 20 years ago, variability of extragalactic radio sources on timescales of weeks to years has been the subject of many investigations. We have examined the variability of these sources on timescales of hours at wavelengths of 6 and 11 cm using the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie and report the results for two sources. The quasar QSO0917 + 62 showed variations with amplitudes of up to 23% in ∼ 24 hours, which were correlated at the two wavelengths; in the BL Lac object 0716 + 71 we found variations with amplitudes of 7-11%. We discuss intrinsic effects, gravitational lensing and scattering in the interstellar medium as possible explanations for rapid radio variability. (author)

  9. A precise extragalactic test of General Relativity.

    Science.gov (United States)

    Collett, Thomas E; Oldham, Lindsay J; Smith, Russell J; Auger, Matthew W; Westfall, Kyle B; Bacon, David; Nichol, Robert C; Masters, Karen L; Koyama, Kazuya; van den Bosch, Remco

    2018-06-22

    Einstein's theory of gravity, General Relativity, has been precisely tested on Solar System scales, but the long-range nature of gravity is still poorly constrained. The nearby strong gravitational lens ESO 325-G004 provides a laboratory to probe the weak-field regime of gravity and measure the spatial curvature generated per unit mass, γ. By reconstructing the observed light profile of the lensed arcs and the observed spatially resolved stellar kinematics with a single self-consistent model, we conclude that γ = 0.97 ± 0.09 at 68% confidence. Our result is consistent with the prediction of 1 from General Relativity and provides a strong extragalactic constraint on the weak-field metric of gravity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  11. Planetary Geomorphology.

    Science.gov (United States)

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  12. Extragalactic active objects in the radio and infrared bands

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Polska Akademia Nauk, Warsaw. Centrum Astronomiczne

    1981-01-01

    This paper is the second in a series of papers concerning extragalactic active objects. We discuss the properties of Seyfert's galaxies, radiogalaxies, quasars and BL Lacertae objects in the radio and infrared bands.

  13. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  14. The transition from galactic to extragalactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-06-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contain information about important parameters of powerful astrophysical sources and the conditions in extragalactic space. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  15. HUBBLE SPACE TELESCOPE SNAPSHOT SEARCH FOR PLANETARY NEBULAE IN GLOBULAR CLUSTERS OF THE LOCAL GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-04-15

    Single stars in ancient globular clusters (GCs) are believed incapable of producing planetary nebulae (PNs), because their post-asymptotic-giant-branch evolutionary timescales are slower than the dissipation timescales for PNs. Nevertheless, four PNs are known in Galactic GCs. Their existence likely requires more exotic evolutionary channels, including stellar mergers and common-envelope binary interactions. I carried out a snapshot imaging search with the Hubble Space Telescope (HST) for PNs in bright Local Group GCs outside the Milky Way. I used a filter covering the 5007 Å nebular emission line of [O iii], and another one in the nearby continuum, to image 66 GCs. Inclusion of archival HST frames brought the total number of extragalactic GCs imaged at 5007 Å to 75, whose total luminosity slightly exceeds that of the entire Galactic GC system. I found no convincing PNs in these clusters, aside from one PN in a young M31 cluster misclassified as a GC, and two PNs at such large angular separations from an M31 GC that membership is doubtful. In a ground-based spectroscopic survey of 274 old GCs in M31, Jacoby et al. found three candidate PNs. My HST images of one of them suggest that the [O iii] emission actually arises from ambient interstellar medium rather than a PN; for the other two candidates, there are broadband archival UV HST images that show bright, blue point sources that are probably the PNs. In a literature search, I also identified five further PN candidates lying near old GCs in M31, for which follow-up observations are necessary to confirm their membership. The rates of incidence of PNs are similar, and small but nonzero, throughout the GCs of the Local Group.

  16. Extragalactic dispersion measures of fast radio bursts

    International Nuclear Information System (INIS)

    Xu, Jun; Han, J. L.

    2015-01-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70°. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm −3 , while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm −3 . Notice, however, that additional dispersion measures of tens to hundreds of pc cm −3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium. (paper)

  17. Structure of planetary nebulae

    International Nuclear Information System (INIS)

    Goad, L.E.

    1975-01-01

    Image-tube photographs of planetary nebulae taken through narrow-band interference filters are used to map the surface brightness of these nebulae in their most prominent emission lines. These observations are best understood in terms of a two-component model consisting of a tenuous diffuse nebular medium and a network of dense knots and filaments with neutral cores. The observations of the diffuse component indicate that the inner regions of these nebulae are hollow shells. This suggests that steady stellar winds are the dominant factor in determining the structure of the central regions of planetary nebulae. The observations of the filamentary components of NGC 40 and NGC 6720 show that the observed nebular features can result from the illumination of the inner edges of dense fragmentary neutral filaments by the central stars of these nebulae. From the analysis of the observations of the low-excitation lines in NGC 2392, it is concluded that the rate constant for the N + --H charge transfer reaction is less than 10 -12 cm 3 sec -1

  18. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  19. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  20. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  1. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millennium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  2. In situ acceleration in extragalactic radio jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  3. BrightFocus Foundation

    Science.gov (United States)

    ... About BrightFocus Foundation Featured Content BrightFocus: Investing in Science to Save Mind and Sight We're here to help. Explore ... recognition is very important. Monday, November 6, 2017 New Diagnosis? Managing a mind and sight disease is a journey. And you’ ...

  4. Planetary Habitability

    Science.gov (United States)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  5. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  6. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  7. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  8. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  9. EoR Foregrounds: the Faint Extragalactic Radio Sky

    Science.gov (United States)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  10. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  11. Stunningly bright optical emission

    Science.gov (United States)

    Heinke, Craig O.

    2017-12-01

    The detection of bright, rapid optical pulsations from pulsar PSR J1023+0038 have provided a surprise for researchers working on neutron stars. This discovery poses more questions than it answers and will spur on future work and instrumentation.

  12. Where does particle acceleration occur in extended extragalactic radio sources

    International Nuclear Information System (INIS)

    Hughes, P.A.

    1980-01-01

    It is suggested that particle acceleration does not occur in the extended lobes of extragalactic radio sources, but only in the compact heads. Away from these, waves capable of accelerating particles may not propagate. Although wave generation within the lobes would allow acceleration there, it is not obvious that the plasma is sufficiently disturbed for this to occur. (author)

  13. On the extragalactic origin of gamma-ray bursts

    International Nuclear Information System (INIS)

    Johnson, M.; Teller, E.

    1984-01-01

    A theory to explain the origin of extragalactic gamma ray bursts is presented. Collisions of black dwarf and neutron stars with a subsequent fragmentation of the dwarf producing relativistic particle accelerations toward the neutron star and a resulting turbulent flow of material at the neutron star surface is postulated

  14. Extragalactic Gamma Ray Excess from Coma Supercluster Direction ...

    Indian Academy of Sciences (India)

    a power-law spectrum for γ rays from extragalactic sources and concluded a power- law index between 1.4 and 3 with values between 1.8 and 2 being the most common. Scharf & Mukherjee (2002) used data obtained by the Compton γ ray observatory spacecraft. They found a “fog” of γ rays associated to the galaxy clusters ...

  15. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  16. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E; Chang, Philip; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E {approx}> 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities {approx}> 10{sup 42} erg s{sup -1}) plasma beam instabilities, specifically the 'oblique' instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z {approx} 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above {approx}10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  17. SMC SMP 24: A newly radio-detected planetary nebula in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Bojičić I.S.

    2010-01-01

    Full Text Available In this paper we report a new radio-continuum detection of an extragalactic planetary nebula (PN: SMC SMP 24. We show the radio-continuum image of this PN and present the measured radio data. The newly reduced radio observations are consistent with the multi-wavelength data and derived parameters found in the literature. SMC SMP 24 appears to be a young and compact PN, optically thick at frequencies below 2 GHz.

  18. SMC SMP 24: A Newly Radio-Detected Planetary Nebula in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Bojicic, I. S.

    2010-12-01

    Full Text Available In this paper we report a new radio-continuum detection of an extragalactic planetary nebula (PN: SMC~SMP~24. We show the radio-continuum image of this PN and present the measured radio data. The newly reduced radio observations are consistent with the multi-wavelength data and derived parameters found in the literature. SMC~SMP~24 appears to be a young and compact PN, optically thick at frequencies below 2~GHz.

  19. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Zemcov, M.; Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I. [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); Suzuki, K., E-mail: zemcov@caltech.edu [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  20. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  1. High brightness ion source

    International Nuclear Information System (INIS)

    Dreyfus, R.W.; Hodgson, R.T.

    1975-01-01

    A high brightness ion beam is obtainable by using lasers to excite atoms or molecules from the ground state to an ionized state in increments, rather than in one step. The spectroscopic resonances of the atom or molecule are used so that relatively long wavelength, low power lasers can be used to obtain such ion beam

  2. Study of extragalactic sources with H.E.S.S

    International Nuclear Information System (INIS)

    Giebels, Berrie

    2007-01-01

    The field of Very High Energy (VHE) γ-ray emitting extragalactic sources has considerably evolved since the new generation of atmospheric Cerenkov telescopes (ACT) of improved sensitivity, such as H.E.S.S. array and the MAGIC ACT, have started operating. This has led to a wealth of new clues about emission mechanisms at high energy through the discovery of new sources, more accurate spectra and temporal studies of sources known previously, and simultaneous multi-wavelength (MWL) campaigns since broad band variability is a key phenomenon to the underlying physical mechanisms at play. The fact that some of these new sources are located at redshifts close to z ∼ 0.2 makes them powerful probes of the Extragalactic Background Light (EBL) through the attenuation of γ-rays above 100 GeV

  3. High-energy X-ray observations of extragalactic objects

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Lewin, W.; Kendziorra, E.; Staubert, R.

    1981-01-01

    During a balloon flight from Alice Springs, Australia, six extragalactic sources which are known as potential X-ray sources have been observed in hard X-rays (E > 20 keV). We present X-ray spectra of 3C 273 and Cen-A as well as upper limits on 3C 120, MKN 509, NGC 5506, and MR 2251-178. (orig.)

  4. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  5. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.

    1976-01-01

    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  6. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies.Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI.The data suggest that perceptions of brightness represent a robust

  7. eXtragalactic astronomy: the X-games of adaptive optics

    Science.gov (United States)

    Lai, Olivier

    2000-07-01

    Observing active nuclei, Ultra-Luminous Infrared Galaxies, starburst and merging galaxies, is both a challenge and a requirement for adaptive optics. It is a requirement, because models needed to explain the high infrared flux and the physics of these monsters need constraints that come, in part, from the fine details gleaned on high angular resolution images, and it is a challenge because, being distant, these objects are usually faint in apparent visual magnitude, meaning that the wavefront sensors have to operate in a photon starved regime. Many observations have been controversial in the past, and it is always difficult to tell an artifact such as astigmatism from an inner bar. The importance of observing the point spread function is therefore even more crucial than on bright objects, as PSF reconstruction methods 'a la Veran' break down when the photon noise dominates the statistics of the wave front, or when locking the loop on extended objects. Yet, while some cases have been controversial, some very clear and profound results have been obtained in the extragalactic domain, such as the detection of host galaxy to quasars and star formation studies. It turns out that the fundamental prerequisite to such success stories is a stable, well understood and well calibrated PSF.

  8. The Bright Universe Cosmology

    International Nuclear Information System (INIS)

    Surdin, M.

    1980-01-01

    It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)

  9. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  10. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  11. Extragalactic origin of gamma-ray bursts. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.; Teller, E.

    1984-01-01

    Detectors of gamma-rays carried by satellites and later by high-flying balloons showed the existence of events lasting from fifteen milliseconds to about a hundred seconds, arriving from all directions in space. A few hundred events have been observed in a little more than a decade. The energy of gamma-rays range from a few kilovolts to millions of volts. Recent evidence indicates that considerable energy may be carried at least in some cases even above 10 MeV. But the bulk of the energy appeared to be emitted between 100 and 200 keV. The observed intensities range between 10 -3 and 10 -7 ergs/cm 2 . The simple facts about intensity distribution are compatible with two extreme assumptions but exclude intermediate hypotheses. Either the events occur in our own galaxy in a region smaller than the thickness of the galaxy or they are of extragalactic origin and come from distant galaxies. Practically all attempted explanations have made the former explanation which requires that a mass of approximately 10 20 grams impinges on a neutron star (assuming a near to 100% conversion of gravitational energy available on the surface of the neutron star or 10 20 ergs/gram into gamma-rays which, of course, is unrealistic). In case of an extragalactic origin, the neutron star must attract and convert, as we shall see, about 2 x 10 30 grams or 10 -3 of the solar mass. It is perhaps the size of such events which deterred a detailed discussion of this alternative. Montgomery Johnson and I have tried to assume these big collisions, explore the consequences, and I shall talk about this extragalactic hypothesis

  12. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    Science.gov (United States)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the

  13. Space distribution of extragalactic sources - Cosmology versus evolution

    International Nuclear Information System (INIS)

    Cavaliere, A.; Maccacaro, T.

    1990-01-01

    Alternative cosmologies have been recurrently invoked to explain in terms of global spacetime structure the apparent large increase, with increasing redshift, in the average luminosity of active galactic nuclei. These models interestingly seek to avoid the complexities of the canonical interpretation in terms of intrinsic population evolutions in a Friedmann universe. However, a problem of consistency for these cosmologies is pointed out, since they have to include also other classes of extragalactic sources, such as clusters of galaxies and BL Lac objects, for which there is preliminary evidence of a different behavior. 40 refs

  14. Rotationally symmetric structure in two extragalactic radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Morison, I.

    1980-01-01

    The new multi-telescope radio-linked interferometer (MTRLI) at Jodrell Bank was used during January and February 1980 at a frequency of 408 MHz to map the extragalactic radio sources 3C196 and 3C305 with a resolution of approximately 1 arc s. It is shown here that both the markedly symmetric structures observed and the spectral index distributions inferred from comparisons with previously published 5 GHz maps provide evidence for the source axes having rotated during the lifetime of the emitting regions. (U.K.)

  15. Bright point study

    International Nuclear Information System (INIS)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona

  16. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  17. An Optical View of Extragalactic γ-Ray Emitters

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Simona [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua (Italy); Falomo, Renato [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Landoni, Marco [Osservatorio Astronomico di Brera (INAF), Merate (Italy); Treves, Aldo [Università degli Studi dell' Insubria, Varese (Italy); Scarpa, Riccardo, E-mail: simona.paiano@oapd.inaf.it [Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife (Spain); Departamento de Astrofsica, Universidad de La Laguna, San Cristóbal de La Laguna (Spain)

    2017-11-23

    The Fermi Gamma-ray Observatory discovered about a thousand extragalactic sources emitting energy from 100 MeV to 100 GeV. The majority of these sources belong to the class of blazars characterized by a quasi-featureless optical spectrum (BL Lac Objects). This hampers the determination of their redshift and therefore hinders the characterization of this class of objects. To investigate the nature of these sources and to determine their redshift, we are carrying out an extensive campaign using the 10 m Gran Telescopio Canarias to obtain high S/N ratio optical spectra. These observations allow us to confirm the blazar nature of the targets, to find new redshifts or to set stringent limits on the redshift based on the minimum equivalent width of specific absorption features that can be measured in the spectrum and are expected from their host galaxy, assuming it is a massive elliptical galaxy. These results are of importance for the multi-frequencies emission models of the blazars, to test their extreme physics, to shed light on their cosmic evolution and abundance in the far Universe. These gamma emitters are also of great importance for the characterization of the extragalactic background light through the absorption by the IR-optical background photons.

  18. THE EXTRAGALACTIC DISTANCE DATABASE: ALL DIGITAL H I PROFILE CATALOG

    International Nuclear Information System (INIS)

    Courtois, Helene M.; Bonhomme, Nicolas; Tully, R. Brent; Zavodny, Maximilian; Barnes, Austin; Fisher, J. Richard

    2009-01-01

    An important component of the Extragalactic Distance Database is a group of catalogs related to the measurement of H I line profile parameters. One of these is the All Digital H I catalog which contains an amalgam of information from new data and old. The new data result from observations with Arecibo and Parkes Telescopes and with the Green Bank Telescope, including continuing input since the award of the NRAO Cosmic Flows Large Program. The old data have been collected from archives, wherever available, particularly the Cornell University Digital H I Archive, the Nancay Telescope extragalactic H I archive, and the Australia Telescope H I archive. The catalog currently contains information on ∼15, 000 profiles relating to ∼13, 000 galaxies. The channel-flux per channel files, from whatever source, is carried through a common pipeline. The derived parameter of greatest interest is W m50 , the profile width at 50% of the mean flux. After appropriate adjustment, the parameter W mx is derived, the line width that statistically approximates the peak-to-peak maximum rotation velocity before correction for inclination, 2V max sini.

  19. Energy spectrum of extragalactic gamma-ray sources

    Science.gov (United States)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  20. Simulations of extragalactic magnetic fields and of their observables

    Science.gov (United States)

    Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.

    2017-12-01

    The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.

  1. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  2. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  3. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  4. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps

    Science.gov (United States)

    De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  5. Galactic vs. extragalactic origin of the peculiar transient SCP 06F6

    Science.gov (United States)

    Soker, Noam; Frankowski, Adam; Kashi, Amit

    2010-02-01

    We study four scenarios for the SCP 06F6 transient event that was announced recently. Some of these were previously briefly discussed as plausible models for SCP 06F6, in particular with the claimed detection of a z = 0.143 cosmological redshift of a Swan spectrum of a carbon rich envelope. We adopt this value of z for extragalactic scenarios. We cannot rule out any of these models, but can rank them from most to least preferred. Our favorite model is a tidal disruption of a CO white dwarf (WD) by an intermediate-mass black hole (IMBH). To account for the properties of the SCP 06F6 event, we have to assume the presence of a strong disk wind that was not included in previous numerical simulations. If the IMBH is the central BH of a galaxy, this explains the non-detection of a bright galaxy in the direction of SCP 06F6. Our second favorite scenario is a type Ia-like SN that exploded inside the dense wind of a carbon star. The carbon star is the donor star of the exploded WD. Our third favorite model is a Galactic source of an asteroid that collided with a WD. Such a scenario was discussed in the past as the source of dusty disks around WDs, but no predictions exist regarding the appearance of such an event. Our least favorite model is of a core collapse SN. The only way we can account for the properties of SCP 06F6 with a core collapse SN is if we assume the occurrence of a rare type of binary interaction.

  6. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  7. A Clustered Extragalactic Foreground Model for the EoR

    Science.gov (United States)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  8. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  9. Balloon observations of galactic and extragalactic objects at 100 microns.

    Science.gov (United States)

    Hoffmann, W. F.

    1972-01-01

    Recent far-infrared balloon-borne instruments have yielded observations of a number of bright sources at 100 microns. Many of these coincide with HII regions where molecular line emision has been detected. There is some indication of 100 micron emission which does not coincide with radio measurements.

  10. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    International Nuclear Information System (INIS)

    Odell, C.R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts

  11. The ZTF Bright Transient Survey

    Science.gov (United States)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  12. Assembling the Infrared Extragalactic Background Light with CIBER-2: Probing Inter-Halo Light and the Epoch of Reionization.

    Science.gov (United States)

    Bock, James

    We propose to carry out a program of observations with the Cosmic Infrared Background Experiment (CIBER-2). CIBER-2 is a near-infrared sounding rocket experiment designed to measure spatial fluctuations in the extragalactic background light. CIBER-2 scientifically follows on the detection of fluctuations with the CIBER-1 imaging instrument, and will use measurement techniques developed and successfully demonstrated by CIBER-1. With high-sensitivity, multi-band imaging measurements, CIBER-2 will elucidate the history of interhalo light (IHL) production and carry out a deep search for extragalactic background fluctuations associated with the epoch of reionization (EOR). CIBER-1 has made high-quality detections of large-scale fluctuations over 4 sounding rocket flights. CIBER-1 measured the amplitude and spatial power spectrum of fluctuations, and observed an electromagnetic spectrum that is close to Rayleigh-Jeans, but with a statistically significant turnover at 1.1 um. The fluctuations cross-correlate with Spitzer images and are significantly bluer than the spectrum of the integrated background derived from galaxy counts. We interpret the CIBER-1 fluctuations as arising from IHL, low-mass stars tidally stripped from their parent galaxies during galaxy mergers. The first generation of stars and their remnants are likely responsible for the for the reionization of the intergalactic medium, observed to be ionized out to the most distant quasars at a redshift of 6. The total luminosity produced by first stars is uncertain, but a lower limit can be placed assuming a minimal number of photons to produce and sustain reionization. This 'minimal' extragalactic background component associated with reionization is detectable in fluctuations at the design sensitivity of CIBER-2. The CIBER-2 instrument is optimized for sensitivity to surface brightness in a short sounding rocket flight. The instrument consists of a 28 cm wide-field telescope operating in 6 spectral bands

  13. MODELING EXTRAGALACTIC EXTINCTION THROUGH GAMMA-RAY BURST AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Alberto; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Cecchi-Pestellini, Cesare, E-mail: azonca@oa-cagliari.inaf.it, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: garesu@oa-cagliari.inaf.it, E-mail: cecchi-pestellini@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2016-09-20

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp{sup 2}, and sp{sup 3} carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  14. Extragalactic stellar astronomy with the brightest stars in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Kudritzki, R P; Urbaneja, M A; Bresolin, F [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Przybilla, N [Dr Remeis-Sternwarte Bamberg, Erlangen University, Sternwartstr. 7, D-96049 Bamberg (Germany)], E-mail: kud@ifa.hawaii.edu

    2008-12-15

    Supergiants are objects in transition from the blue to the red (and vice versa) in the uppermost HRD. They are the intrinsically brightest 'normal' stars at visual light with absolute visual magnitudes up to -9. They are ideal to study young stellar populations in galaxies beyond the Local Group to determine chemical composition and evolution, interstellar extinction, reddening laws and distances. We discuss the most recent results on the quantitative spectral analysis of such objects in galaxies beyond the Local Group based on medium and low-resolution spectra obtained with the ESO VLT and Keck. We describe the analysis method including the determination of metallicity and metallicity gradients. A new method to measure extragalactic distances accurately based on stellar gravities and effective temperatures is presented, the flux-weighted gravity-luminosity relationship (FGLR). The FGLR is a purely spectroscopic method that overcomes the uncertainties, introduced by interstellar extinction and variations of metallicity, which plague all methods of photometric stellar distance determination. We discuss the perspectives of future work using the giant ground-based telescopes of the next generation such as the TMT, the GMT and the E-ELT.

  15. Extragalactic circuits, transmission lines, and CR particle acceleration

    CERN Document Server

    Kronberg, Philipp P

    2014-01-01

    A non-negligible fraction of a Supermassive Black Hole's (SMBH) rest mass energy gets transported into extragalactic space by a remarkable process in jets which are incompletely understood. What are the physical processes which transport this energy? It is likely that the energy flows electromagnetically, rather than via a particle beam flux. The deduced electromagnetic fields may produce particles of energy as high as $\\sim 10^{20}$ eV. The energetics of SMBH accretion disk models and the electromagnetic energy transfer imply that a SMBH should generate a $10^{18} - 10^{19}$ Amp\\`eres current close to the black hole and its accretion disk. We describe the so far best observation-based estimate of the magnitude of the current flow along the axis of the jet extending from the nucleus of the active galaxy in 3C303. The current is measured to be $I \\sim 10^{18}$ Amp\\`eres at $\\sim 40$ kpc away from the AGN. This indicates that organized current flow remains intact over multi-kpc distances. The electric current $...

  16. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    An Tao; Baan, Willem A.

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  17. A model for extremely powerful extragalactic water masers

    International Nuclear Information System (INIS)

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H 2 O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H 2 O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived

  18. A model for extremely powerful extragalactic water masers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H/sub 2/O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H/sub 2/O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived.

  19. Secular Extragalactic Parallax and Geometric Distances with Gaia Proper Motions

    Science.gov (United States)

    Paine, Jennie; Darling, Jeremiah K.

    2018-06-01

    The motion of the Solar System with respect to the cosmic microwave background (CMB) rest frame creates a well measured dipole in the CMB, which corresponds to a linear solar velocity of about 78 AU/yr. This motion causes relatively nearby extragalactic objects to appear to move compared to more distant objects, an effect that can be measured in the proper motions of nearby galaxies. An object at 1 Mpc and perpendicular to the CMB apex will exhibit a secular parallax, observed as a proper motion, of 78 µas/yr. The relatively large peculiar motions of galaxies make the detection of secular parallax challenging for individual objects. Instead, a statistical parallax measurement can be made for a sample of objects with proper motions, where the global parallax signal is modeled as an E-mode dipole that diminishes linearly with distance. We present preliminary results of applying this model to a sample of nearby galaxies with Gaia proper motions to detect the statistical secular parallax signal. The statistical measurement can be used to calibrate the canonical cosmological “distance ladder.”

  20. The ALFALFA Extragalactic Catalog and Data Processing Pipeline

    Science.gov (United States)

    Kent, Brian R.; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Team

    2018-06-01

    The Arecibo Legacy Fast ALFA 21cm HI Survey has reached completion. The observations and data are used by team members and the astronomical community in a variety of scientific initiatives with gas-rich galaxies, cluster environments, and studies of low redshift cosmology. The survey covers nearly 7000 square degrees of high galactic latitude sky visible from Arecibo, Puerto Rico and ~4400 hours of observations from 2005 to 2011. We present the extragalactic HI source catalog of over ~31,000 detections, their measured properties, and associated derived parameters. The observations were carefully reduced using a custom made data reduction pipeline and interface. Team members interacted with this pipeline through observation planning, calibration, imaging, source extraction, and cataloging. We describe this processing workflow as it pertains to the complexities of the single-dish multi-feed data reduction as well as known caveats of the source catalog and spectra for use in future astronomical studies and analysis. The ALFALFA team at Cornell has been supported by NSF grants AST-0607007, AST-1107390 and AST-1714828 and by grants from the Brinson Foundation.

  1. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    An Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai (China); Baan, Willem A., E-mail: antao@shao.ac.cn, E-mail: baan@astron.nl [ASTRON, P.O. Box 2, 7990-AA Dwingeloo (Netherlands)

    2012-11-20

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  2. Evolution of Extragalactic Radio Sources and Quasar/Galaxy Unification

    Science.gov (United States)

    Onah, C. I.; Ubachukwu, A. A.; Odo, F. C.; Onuchukwu, C. C.

    2018-04-01

    We use a large sample of radio sources to investigate the effects of evolution, luminosity selection and radio source orientation in explaining the apparent deviation of observed angular size - redshift (θ - z) relation of extragalactic radio sources (EGRSs) from the standard model. We have fitted the observed θ - z data with standard cosmological models based on a flat universe (Ω0 = 1). The size evolution of EGRSs has been described as luminosity, temporal and orientation-dependent in the form DP,z,Φ ≍ P±q(1 + z)-m sinΦ, with q=0.3, Φ=59°, m=-0.26 for radio galaxies and q=-0.5, Φ=33°, m=3.1 for radio quasars respectively. Critical points of luminosity, logPcrit=26.33 WHz-1 and logDc=2.51 kpc (316.23 kpc) of the present sample of radio sources were also observed. All the results were found to be consistent with the popular quasar/galaxy unification scheme.

  3. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    Science.gov (United States)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  4. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  5. Planetary mass function and planetary systems

    Science.gov (United States)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  6. Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of their Matter Content

    Science.gov (United States)

    Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric; Stecker, Floyd W.

    2004-01-01

    We propose a method for estimating the composition, i.e. the relative amounts of leptons and protons, of extragalactic jets which exhibit Chandra - detected knots in their kpc scale jets. The method relies on measuring, or setting upper limits on, the component of the Cosmic Microwave Background (CMB) radiation that is bulk-Comptonized by the cold electrons in the relativistically flowing jet. These measurements, along with modeling of the broadband knot emission that constrain the bulk Lorentz factor GAMMA of the jets, can yield estimates of the jet power carried by protons and leptons. We provide an explicit calculation of the spectrum of the bulk-Comptonized (BC) CMB component and apply these results to PKS 0637 - 752 and 3C 273, two superluminal quasars with Chandra - detected large scale jets. What makes these sources particularly suited for such a procedure is the absence of significant non-thermal jet emission in the 'bridge', the region between the core and the first bright jet knot, which guarantees that most of the electrons are cold there, leaving the BC scattered CMB radiation as the only significant source of photons in this region. At lambda = 3.6 - 8.0 microns, the most likely band to observe the BC scattered CMB emission, the Spitzer angular resolution (approximately 1" - 3") is considerably smaller than the the 'bridges' of these jets (approximately 10"), making it possible to both measure and resolve this emission.

  7. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  8. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  9. The HST Key Project on the Extragalactic Distance Scale

    Science.gov (United States)

    Freedman, W. L.

    1994-12-01

    One of the major unresolved problems in observational cosmology is the determination of the Hubble Constant, (H_0). The Hubble Space Telescope (HST) Key Project on the Extragalactic Distance Scale aims to provide a measure of H_0 to an accuracy of 10%. Historically the route to H_0 has been plagued by systematic errors; hence there is no quick and easy route to a believeable value of H_0. Achieving plausible error limits of 10% requires careful attention to eliminating potential sources of systematic error. The strategy adopted by the Key Project team is threefold: First, to discover Cepheids in spiral galaxies located in the field and in small groups that are suitable for the calibration of several independent secondary methods. Second, to make direct Cepheid measurements of 3 spiral galaxies in the Virgo cluster and 2 members of the Fornax cluster. Third, to provide a check on the the Cepheid distance scale via independent distance estimates to nearby galaxies, and in addition, to undertake an empirical test of the sensitivity of the zero point of the Cepheid PL relation to heavy-element abundances. First results from the HST Key Project will be presented. We have now determined Cepheid distances to 4 galaxies using the HST: these are the nearby galaxies M81 and M101, the edge-on galaxy NGC 925, and the face-on spiral galaxy M100 in the Virgo cluster. Recently we have measured a Cepheid distance for M100 of 17 +/- 2 Mpc, which yields a value of H_0 = 80 +/- 17 km/sec/Mpc. This work was carried out in collaboration with the other members of the HST Key Project team, R. Kennicutt, J. Mould, F. Bresolin, S. Faber, L. Ferrarese, H. Ford, J. Graham, J. Gunn, M. Han, P. Harding, J. Hoessel, R. Hill, J. Huchra, S. Hughes, G. Illingworth, D. Kelson, B. Madore, R. Phelps, A. Saha, N. Silbermann, P. Stetson, and A. Turner.

  10. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  11. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  12. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  13. Evolution of the plasma universe: I. Double radio galaxies, quasars, and extragalactic jets

    International Nuclear Information System (INIS)

    Peratt, A.L.

    1986-01-01

    Cosmic plasma physics and our concept of the universe is in a state of rapid revision. This change started with in-situ measurements of plasmas in Earth's ionosphere, cometary atmospheres, and planetary magnetospheres; the translation of knowledge from laboratory experiments to astrophysical phenomena; discoveries of helical and filamentary plasma structures in the Galaxy and double radio sources; and the particle simulation of plasmas not accessible to in-situ measurement. Because of these, Birkeland (field-aligned) currents, double layers, and magnetic-field-aligned electric fields are now known to be far more important to the evolution of space plasma, including the acceleration of charged particles to high energies, than previously thought. This paper and its sequel investigate the observational evidence for a plasma universe threaded by Birkeland currents or filaments. This model of the universe was inspired by the advent of three-dimensional fully electromagnetic particle simulations and their application to the study of laboratory z pinches. This study resulted in totally unexpected phenomena in the data post-processed from the simulation particle, field, and history dumps. In particular, when the simulation parameters were scaled to galactic dimensions, the interaction between pinched filaments led to synchrotron radiation whose emission properties were found to share the following characteristics with double radio galaxies and quasars: power magnitude, isophotal morphology, spectra, brightness along source, polarization, and jets. The evolution of these pinched synchrotron emitting plasmas to elliptical, peculiar, and spiral galaxies by continuing the simulation run is addressed in a sequel paper

  14. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  15. Cosmology from angular size counts of extragalactic radio sources

    International Nuclear Information System (INIS)

    Kapahi, V.K.

    1975-01-01

    The cosmological implications of the observed angular sizes of extragalactic radio sources are investigated using (i) the log N-log theta relation, where N is the number of sources with an angular size greater than a value theta, for the complete sample of 3CR sources, and (ii) the thetasub(median) vs flux density (S) relation derived from the 3CR, the All-sky, and the Ooty occulation surveys, spanning a flux density range of about 300:1. The method of estimating the expected N(theta) and thetasub(m)(S) relations for a uniform distribution of sources in space is outlined. Since values of theta>approximately 100second arc in the 3C sample arise from sources of small z, the slope of the N(theta) relation in this range is practically independent of the world model and the distribution of source sizes, but depends strongly on the radio luminosity function (RLF). From the observed slope the RLF is derived in the luminosity range of about 10 23 178 26 W Hz -1 sr -1 to be of the form rho(P)dP proportional to Psup(-2.1)dP. It is shown that the angular size data provide independent evidence of evolution in source properties with epoch. It is difficult to explain the data with the simple steady-state theory even if identified QSOs are excluded from ths source samples and a local deficiency of strong source is postulated. The simplest evolutionary scheme that fits the data in the Einstein-de Sitter cosmology indicates that (a) the local RLF steepens considerably at high luminosities, (b) the comoving density of high luminosity sources increases with z in a manner similar to that implied by the log N-log S data and by the V/Vsub(m) test for QSOs, and (c) the mean physical sizes of radio sources evolve with z approximately as (1+z) -1 . Similar evolutionary effects appear to be present for QSOs as well as radio galaxies. (author)

  16. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  17. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  18. A New Sky Brightness Monitor

    Science.gov (United States)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  19. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  20. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  1. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  2. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  3. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  4. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  5. High-brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines

  6. Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System

    Science.gov (United States)

    Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.

    1998-01-01

    H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.

  7. The NuSTAR Extragalactic Surveys: Overview And Catalog From The Cosmos Field

    DEFF Research Database (Denmark)

    Civano, F.; Hickox, R. C.; Puccetti, S.

    2015-01-01

    To provide the census of the sources contributing to the X-ray background peak above 10 keV, Nuclear Spectroscopic Telescope Array (NuSTAR) is performing extragalactic surveys using a three-tier "wedding cake" approach. We present the NuSTAR survey of the COSMOS field, the medium sensitivity...

  8. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  9. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Aller, H. D.

    2016-01-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous gro...

  10. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  11. Topics in planetary plasmaspheres

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    Contributions to the understanding of two distinct kinds of planetary plasmaspheres: namely the earth-type characterized by an ionospheric source and a convection limited radial extent, and the Jupiter-type characterized by a satellite source and a radial extent determined by flux tube interchange motions. In both cases the central question is the geometry of the plasma distribution in the magnetosphere as it is determined by the appropriate production and loss mechanisms. The contributions contained herein concern the explication and clarification of these production and loss mechanisms

  12. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  13. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  14. High brightness beams and applications

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1995-01-01

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  15. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  16. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  17. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  18. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  19. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  20. Extrasolar Planetary Imaging Coronagraph

    Science.gov (United States)

    Clampin, M.

    2007-06-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F type stars which cannot be found with RV techniques, and observe the inner spatial structure and colors of debris disks. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument.

  1. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  2. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  3. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  4. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.

    1988-01-01

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  5. Increasing the Brightness of Light Sources

    OpenAIRE

    Fu, Ling

    2006-01-01

    In modern illumination systems, compact size and high brightness are important features. Light recycling allows an increase of the spectral radiance (brightness) emitted by a light source for the price of reducing the total radiant power. Light recycling means returning part of the emitted light to the source where part of it will escape absorption. As a result, the output brightness can be increased in a restricted phase space, ...

  6. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  7. The internal kinematics of the planetary nebula NGC 650/1

    International Nuclear Information System (INIS)

    Taylor, K.

    1979-01-01

    Hα and [N II], lambda 6584 line profiles from the bright lobes of planetary nebula NGC 650/1 have been obtained. These emission lines show a very strong symmetrical triple-peak velocity structure, not observed previously to the author's knowledge in planetary nebulae. Models are tentatively proposed to explain both the velocity data and the nebula's optical appearance. The velocity splitting amounts to approximately 62 km/s and the rest frame of the nebula is found to have a heliocentric radial velocity of -19 +- 2 km/s. (author)

  8. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  9. Topics in extragalactic astronomy with special reference to the southern hemisphere

    International Nuclear Information System (INIS)

    Vaucouleurs, G. De

    1977-01-01

    The following topics are covered: classification of galaxies; photometry, colorimetry, spectrophotometry of galaxies; type I supernovae as checks of cosmological models; diameters of galaxies; extragalactic distance indicators; Local Group and nearby group of galaxies; structure of the Local Supercluster of galaxies; anisotropy of the redshifts and kinematics of the Local Supercluster; large scale distribution of galaxies and clusters of galaxies; galaxy counts and probes in depth; problems in the southern hemisphere. (U.K.)

  10. Book review: “Extragalactic astronomy and cosmology—an introduction”

    International Nuclear Information System (INIS)

    Cappi, Alberto

    2015-01-01

    This is the second edition of a textbook conceived to be used in an introductory course on extragalactic astronomy and cosmology (the author is professor at Bonn University and a well-known specialist in gravitational lensing). A new edition is fully justified because, as Schneider () explains in the preface, the field has been evolving rapidly during the years which have passed since the first edition (published in 2006), with the advent of new observational facilities and new surveys.

  11. At what particle energy do extragalactic cosmic rays start to predominate?

    International Nuclear Information System (INIS)

    Wibig, Tadeusz; Wolfendale, Arnold W

    2005-01-01

    We have previously argued (e.g. Szabelski et al 2002 Astropart. Phys. 17 125) that the well-known 'ankle' in the cosmic ray energy spectrum, at log E (eV) ∼ 18.7-19.0, marks the transition from mainly galactic sources at lower energies to mainly extragalactic above. Recently, however, there have been claims for lower transitional energies, specifically from log E (eV) ∼ 17.0 (Thompson et al 2004 Proc. Catania Cosmic Ray Conf.) via 17.2-17.8 (Berezinsky et al 2004 Astropart. Phys. 21 617) to 18.0 (Hillas 2004 Proc. Leeds Cosmic Ray Conf.). In our model the ankle arises naturally from the sum of simple power law-spectra with slopes differing by Δγ ∼ 1.8; from differential slope γ = -3.8 for galactic particles (near log E = 19) to γ ∼ -2.0 for extragalactic sources. In the other models, on the other hand, the ankle is intrinsic to the extragalactic component alone, and arises from the shape of the rate of energy loss versus energy for the (assumed) protons interacting with the cosmic microwave background (CMB). Our detailed analysis of the world's data on the ultra-high energy spectrum shows that taken together, or separately, the resulting mean sharpness of the ankle (second derivative of the log(intensity x E 3 ) with respect to log E) is consistent with our 'mixed' model. For explanation in terms of extragalactic particles alone, however, the ankle will be at the wrong energy-for reasonable production models and of insufficient magnitude if, as seems likely, there is still a significant fraction of heavy nuclei at the ankle energy

  12. Book review: “Extragalactic astronomy and cosmology—an introduction”

    Energy Technology Data Exchange (ETDEWEB)

    Cappi, Alberto, E-mail: alberto.cappi@oabo.inaf.it [INAF - Osservatorio Astronomico di Bologna, Bologna (Italy)

    2015-09-16

    This is the second edition of a textbook conceived to be used in an introductory course on extragalactic astronomy and cosmology (the author is professor at Bonn University and a well-known specialist in gravitational lensing). A new edition is fully justified because, as Schneider () explains in the preface, the field has been evolving rapidly during the years which have passed since the first edition (published in 2006), with the advent of new observational facilities and new surveys.

  13. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  14. Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios

    International Nuclear Information System (INIS)

    Moliné, Ángeles; Schewtschenko, Jascha A.; Boehm, Céline; Palomares-Ruiz, Sergio; Baugh, Carlton M.

    2016-01-01

    The extragalactic γ-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ΛCDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the γ-ray and neutrino emission in these models may differ from ΛCDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ΛCDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ΛCDM as being due to CDM particles annihilating with a much weaker cross section than expected.

  15. Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Moliné, Ángeles [CFTP, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Schewtschenko, Jascha A.; Boehm, Céline [Institute for Particle Physics Phenomenology (IPPP), Durham University, Durham DH1 3LE (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Baugh, Carlton M., E-mail: maria.moline@ist.utl.pt, E-mail: jascha@schewtschenko.net, E-mail: Sergio.Palomares.Ruiz@ific.uv.es, E-mail: c.m.boehm@durham.ac.uk, E-mail: c.m.baugh@durham.ac.uk [Institute for Computational Cosmology (ICC), Durham University, Durham DH1 3LE (United Kingdom)

    2016-08-01

    The extragalactic γ-ray and neutrino emission may have a contribution from dark matter (DM) annihilations. In the case of discrepancies between observations and standard predictions, one could infer the DM pair annihilation cross section into cosmic rays by studying the shape of the energy spectrum. So far all analyses of the extragalactic DM signal have assumed the standard cosmological model (ΛCDM) as the underlying theory. However, there are alternative DM scenarios where the number of low-mass objects is significantly suppressed. Therefore the characteristics of the γ-ray and neutrino emission in these models may differ from ΛCDM as a result. Here we show that the extragalactic isotropic signal in these alternative models has a similar energy dependence to that in ΛCDM, but the overall normalisation is reduced. The similarities between the energy spectra combined with the flux suppression could lead one to misinterpret possible evidence for models beyond ΛCDM as being due to CDM particles annihilating with a much weaker cross section than expected.

  16. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  17. Visible Nulling Coronagraphy for Exo-Planetary Detection and Characterization

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert; Vasudevan, Gopal; Shao, Mike; Levine, Martin; Melnick, Gary; Tolls, Volker; Petrone, Peter; Dogoda, Peter; Duval, Julia; Ge, Jian

    Visible Nulling Coronagraphy (VNC) is the proposed method of detecting and characterizing exo-solar Jovian planets (null depth 10-9) for the proposed NASA's Extrasolar Planetary Imaging Coronagraph (EPIC) Clampin & Lyon 2004 and is an approach under evaluation for NASA's Terrestrial Planet Finder (TPF) mission. The VNC approach uses a single unobscured filled-aperture telescope and splits, via a 50:50 beamsplitter, its re-imaged pupil into two paths within a Mach-Zender interferometer. An achromatic PI phase shift is imposed onto one beam path and the two paths are laterally sheared with respect to each other. The two beams are recombined at a second 50:50 beamsplitter. The net effect is that the on axis (stellar) light is transmitted out of the bright interferometer arm while the off-axis (planetary) light is transmitted out of the nulled interferometer arm. The bright output is used for fine pointing control and coarse wavefront control. The nulled output is relayed to the science camera for science imagery and fine wavefront control. The actual transmission pattern, projected on the sky, follows a θ^2 pattern for a single shear, θ^4 for a double shear, with the spacing of the successive maxima proportional to the inverse of the relative lateral shear. Combinations of shears and spacecraft rolls build up the spatial frequency content of the sky transmission pattern in the same manner as imaging interferometer builds up the spatial frequency content of the image.

  18. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  19. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  20. China's roadmap for planetary exploration

    Science.gov (United States)

    Wei, Yong; Yao, Zhonghua; Wan, Weixing

    2018-05-01

    China has approved or planned a string of several space exploration missions to be launched over the next decade. A new generation of planetary scientists in China is playing an important role in determining the scientific goals of future missions.

  1. Planetary X-ray studies: past, present and future

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  2. Brightness and darkness as perceptual dimensions

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2007-01-01

    A common-sense assumption concerning visual perception states that brightness and darkness cannot coexist at a given spatial location. One corollary of this assumption is that achromatic colors, or perceived grey shades, are contained in a one-dimensional (1-D) space varying from bright to dark. The

  3. SURFACE PHOTOMETRY OF LOW SURFACE BRIGHTNESS GALAXIES

    NARCIS (Netherlands)

    DEBLOK, WJG; VANDERHULST, JM; BOTHUN, GD

    1995-01-01

    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  4. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  5. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  6. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  7. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  8. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    International Nuclear Information System (INIS)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.

    2012-01-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin 2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 10 9 M ☉ , from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  9. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  10. An autopsy of dead planetary systems with COS

    Science.gov (United States)

    Debes, John

    2014-10-01

    We propose to use HST/COS to conduct autopsies of dead planetary systems around UV bright hydrogen-white dwarfs (WDs), which have dust disks found via their mid-IR emission in excess of that expected from the photosphere. As part of a WISE survey, and followed up with a combination of NASA Keck HIRES/Magellan MIKE optical spectroscopy, we have identified three new systems that are accreting dust. These WDs are bright in the mid-IR and UV, gold-standard targets for studies with HST/COS and later with JWST. The dusty material is debris resulting from the tidal disruption of exo-asteroids that accrete onto the WD surface. Many atomic elements from the accreted and dissociated dust particles are detectable with COS, enabling abundance determinations of exo-asteroidal material. Moreover, the photospheric abundances of this material can be directly compared with a determination of the dust mineralogy obtained with future JWST mid-IR spectroscopy-our proposed UV observations provide complementary constraints on mineralogical compositions of the accreting dust particles. UV spectroscopy is crucial for cataloging elemental abundances for these exo-asteroids. For the majority of WDs, optical spectroscopy reveals only a couple of lines of Ca or Mg, while UV spectroscopy captures lines from Al, Fe, Si, C, Ni, O, S, Cr, P, and Ti. Obtaining the elemental abundances of exo-asteroids is comparable to the spectroscopic characterization of transiting exoplanets or protoplanetary disks-all of these techniques determine how the chemical diversity of planetary systems translate into planetary architectures and the probability of habitable planets around solar-type stars.

  11. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  12. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  13. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  14. Designers predict a bright future

    International Nuclear Information System (INIS)

    Statton, T.D.

    1996-01-01

    As power plant designers and builders, there is a bright future for the industry. The demand for electricity will continue to grow, and the need for new plants will increase accordingly. But companies that develop and supply these plants must adapt to new ways of doing business if they expect to see the dawn of this new age. Several factors will have a profound effect on the generation and use of electricity in future years. Instant communications now reach all corners of the globe, making people everywhere aspire to a higher standard of living. The economic surge needed to satisfy these appetites will, in turn, be fed by a network of suppliers who are themselves restructuring to serve global markets, unimpeded by past nationalistic barriers to trade. The strong correlation between economic progress and the growing demand for electricity is well recognized. A ready supply of affordable electricity is a necessary underpinning for any economic expansion. As economies advance and jobs increase, electric demand grows geometrically, fueled by an ever-improving quality of life. Coupled with increasing demand is the worldwide trend toward privatization of the generation industry. The reasons may vary in different parts of the world, but the effect is the same--companies are battling intensely for the right to build or purchase generating facilities. Those companies, like the industry they serve, are themselves in a period of transition. Once a closed, monopolistic group of owners in a predominantly services-based market, they are, thanks to competitive forces, being driven steadily toward a product-based structure

  15. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  16. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  17. Capabilities of the NASA/IPAC extragalactic database in the era of a global virtual observatory

    Science.gov (United States)

    Mazzarella, Joseph M.; Madore, Barry F.; Helou, George

    2001-11-01

    We review the capabilities of the NASA/IPAC Extragalactic Database (NED, http://ned.ipac.caltech.edu) for information retrieval and knowledge discovery in the context of a globally distributed virtual observatory. Since it's inception in 1990, NED has provided astronomers world-wide with the results of a systematic cross-correlation of catalogs covering all wavelengths, along with thousands of extragalactic observations culled from published journal articles. NED is continuously being expanded and revised to include new catalogs and published observations, each undergoing a process of cross-identification to capture the current state of knowledge about extragalactic sources in a panchromatic fashion. In addition to assimilating data from the literature, the team in incrementally folding in millions of observations from new large-scale sky surveys such as 2MASS, NVSS, APM, and SDSS. At the time of writing the system contains over 3.3 million unique objects with 4.2 million cross-identifications. We summarize the recent evolution of NED from its initial emphasis on object name-, position-, and literature-based queries into a research environment that also assists statistical data exploration and discovery using large samples of objects. Newer capabilities enable intelligent Web mining of entries in geographically distributed astronomical archives that are indexed by object names and positions in NED, sample building using constraints on redshifts, object types and other parameters, as well as image and spectral archives for targeted or serendipitous discoveries. A pilot study demonstrates how NED is being used in conjunction with linked survey archives to characterize the properties of galaxy classes to form a training set for machine learning algorithms; an initial goal is production of statistical likelihoods that newly discovered sources belong to known classes, represent statistical outliers, or candidates for fundamentally new types of objects. Challenges and

  18. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  19. BrightStat.com: free statistics online.

    Science.gov (United States)

    Stricker, Daniel

    2008-10-01

    Powerful software for statistical analysis is expensive. Here I present BrightStat, a statistical software running on the Internet which is free of charge. BrightStat's goals, its main capabilities and functionalities are outlined. Three different sample runs, a Friedman test, a chi-square test, and a step-wise multiple regression are presented. The results obtained by BrightStat are compared with results computed by SPSS, one of the global leader in providing statistical software, and VassarStats, a collection of scripts for data analysis running on the Internet. Elementary statistics is an inherent part of academic education and BrightStat is an alternative to commercial products.

  20. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  1. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  2. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  3. Measuring brightness temperature distributions of plasma bunches

    International Nuclear Information System (INIS)

    Kirko, V.I.; Stadnichenko, I.A.

    1981-01-01

    The possibility of restoration of brightness temperature distribution along plasma jet on the base of a simple ultra high- speed photography and subsequent photometric treatment is shown. The developed technique has been applied for finding spectral radiation intensity and brightness temperature of plasma jets of a tubular gas-cumulative charge and explosive plasma compressor. The problem of shock wave front has been successfully solved and thus distribution of above parameters beginning from the region preceeding the shock wave has been obtained [ru

  4. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  5. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1983-01-01

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  6. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  7. The width of jets in powerful edge-brightened extragalactic double radio sources

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1987-01-01

    The widths of primary and secondary jets are derived from a sample of 14 double hotspots in powerful extended extragalactic double radio sources. In the model employed, the primary jet extends from the core to the more compact primary hotspot and the secondary jet emerges from the primary hotspot and dissipates to form the diffuse secondary hotspot. Mean values of hotspot size/jet extent imply that the primary and secondary jets, if free, must be 2 0 and > 27 0 wide, respectively. (author)

  8. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    OpenAIRE

    Perucho, Manel

    2014-01-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of he...

  9. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N.

    2015-01-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method

  10. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N., E-mail: vptuskin@izmiran.ru, E-mail: rogovaya@izmiran.ru, E-mail: zirak@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow, 142190 (Russian Federation)

    2015-03-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method.

  11. VizieR Online Data Catalog: VIMOS Public Extragalactic Survey (VIPERS) DR1 (Garilli+, 2014)

    Science.gov (United States)

    Garilli, B.; Guzzo, L.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; de Lucia, G.; de la Torre, S.; Franzetti, P.; Fritz, A.; Fumana, M.; Granett, B. R.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Malek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-09-01

    We present the first Public Data Release (PDR-1) of the VIMOS Public Extragalactic Survey (VIPERS). It comprises 57204 spectroscopic measurements together with all additional information necessary for optimal scientific exploitation of the data, in particular the associated photometric measurements and quantification of the photometric and survey completeness. VIPERS is an ESO Large Programme designed to build a spectroscopic sample of =~100000 galaxies with iABaccessing the data through the survey database (http://vipers.inaf.it) where all information can be queried interactively. (4 data files).

  12. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    Science.gov (United States)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s.

  13. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  14. Future Looks Bright for Interferometry

    Science.gov (United States)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  15. Brightness masking is modulated by disparity structure.

    Science.gov (United States)

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  17. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  18. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  19. Number of planetary nebulae in our galaxy

    International Nuclear Information System (INIS)

    Alloin, D.; Cruz-Gonzalez, C.; Peimbert, M.

    1976-01-01

    It is found that the contribution to the ionization of the interstellar medium due to planetary nebulae is from one or two orders of magnitude smaller than that due to O stars. The mass return to the interstellar medium due to planetary nebulae is investigated, and the birth rate of white dwarfs and planetary nebulae are compared. Several arguments are given against the possibility that the infrared sources detected by Becklin and Neugebauer in the direction of the galactic center are planetary nebulae

  20. Extragalactic adventure

    International Nuclear Information System (INIS)

    Heidmann, J.

    1982-01-01

    The subject is covered in chapters, entitled: our galaxy and its hundred billion stars; galaxies, population of the Universe; radioastronomy, a deeper foray in space; spectra, valuable messengers; the expansion of the Universe and the Big Bang; Einstein's General Relativity Theory or gravitation by the curvature of space; curved spaces, surprising worlds; models of the Universe; space-time; cosmological horizons, limits of the Universe; the past of the Universe, from the primeval soup to us; the future of the Universe; anomalous spectral redshifts; quasars, at the boundaries of space; the Space Telescope, a new leap in knowledge; black holes and their fantastic properties; extraterrestrials. (U.K.)

  1. Extragalactic astronomy

    International Nuclear Information System (INIS)

    Sersic, J.L.

    1982-01-01

    This book condenses the author's yearly semester lectures on 'Extra galactic Astronomy' held almost without interruption over two decades at Cordoba University for students of Astronomy. After a first chapter on Morphology and Classification of galaxies, the second gives most of the basic information about normal galaxies as individuals. Active galaxies are described in chapter III whilst chapter IV deals with the mutual relationship between galaxies and their environment. The Scale of distance is considered in chapter V. Distance indicators are introduced and several conflicting viewpoints of different schools are presented. Chapter VI deals with Cosmology, just to give the necessary elements for chapter VII where the relation between gravitational instability and galaxy formation is discussed. Chapter VIII is an appendix containing additional notes. (Auth.)

  2. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  3. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  4. Archival Investigation of Outburst Sites and Progenitors of Extragalactic Intermediate-Luminosity Mid-IR Transients

    Science.gov (United States)

    Bond, Howard

    2017-08-01

    Our team is using Spitzer in a long-term search for extragalactic mid-infrared (MIR) variable stars and transients-the SPIRITS project (SPitzer InfraRed Intensive Transients Survey). In this first exploration of luminous astrophysical transients in the infrared, we have discovered a puzzling new class. We call them SPRITEs: eSPecially Red Intermediate-luminosity Transient Events. They have maximum MIR luminosities between supernovae and classical novae, but are not detected in the optical to deep limits. To date, we have discovered more than 50 SPRITEs in galaxies out to 17 Mpc. In this Archival Research proposal, we request support in order to investigate the pre-eruption sites in HST images of some 3 dozen SPRITEs discovered to date, and an additional 2 dozen that we are likely to find until the end of Spitzer observing in late 2018. Our aims are (1) characterize the pre-outburst environments at HST resolution in the visible and near-IR, to understand the stellar populations, stellar ages and masses, and interstellar medium at the outburst sites; (2) search for progenitors; (3) help prepare the way for a better understanding of the nature of extragalactic IR transients that will be investigated by JWST.

  5. VizieR Online Data Catalog: The VLBA Extragalactic Proper Motion Catalog (Truebenbach+, 2017)

    Science.gov (United States)

    Truebenbach, A. E.; Darling, J.

    2017-11-01

    We created our catalog of extragalactic radio proper motions using the 2017a Goddard VLBI global solution. The 2017a solution is computed from more than 30 years of dual-band VLBI observations --1979 August 3 to 2017 March 27. We also observed 28 objects with either no redshift or a "questionable" Optical Characteristic of Astrometric Radio Sources (OCARS; Malkin 2016ARep...60..996M) redshift at the Apache Point Observatory (APO) 3.5m telescope and/or at Gemini North. We conducted observations on the 3.5m telescope at Apache Point Observatory with the Dual Imaging Spectrograph (DIS) from 2015 April 18 to 2016 June 30. We chose two objects for additional observations with the Gemini Multi-Object Spectrograph-North (GMOS-N) at Gemini North Observatory. 2021+317 was observed on 2016 June 26 and 28, while 0420+417 was observed on 2016 November 8 and 26. We also observed 42 radio sources with the Very Long Baseline Array (VLBA) in the X-band (3.6cm/8.3GHz). Our targets had all been previously observed by VLBI. Our VLBA observations were conducted in two campaigns from 2015 September to 2016 January and 2016 October to November. The final extragalactic proper motion catalog (created primarily from archival Goddard VLBI data, with redshifts obtained from OCARS) contains 713 proper motions with average uncertainties of 24μas/yr. (5 data files).

  6. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  7. The SUrvey for Pulsars and Extragalactic Radio Bursts III: Polarization properties of FRBs 160102 & 151230

    Science.gov (United States)

    Caleb, M.; Keane, E. F.; van Straten, W.; Kramer, M.; Macquart, J. P.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Bhandari, S.; Burgay, M.; Farah, W.; Jameson, A.; Jankowski, F.; Johnston, S.; Petroff, E.; Possenti, A.; Stappers, B.; Tiburzi, C.; Krishnan, V. Venkatraman

    2018-05-01

    We report on the polarization properties of two fast radio bursts (FRBs): 151230 and 160102 discovered in the SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes radio telescope. FRB 151230 is observed to be 6 ± 11% circularly polarized and 35 ± 13 % linearly polarized with a rotation measure (RM) consistent with zero. Conversely, FRB 160102 is observed to have a circular polarization fraction of 30 ± 11 %, linear polarization fraction of 84 ± 15 % for RM =-221(6) rad m-2 and the highest measured DM (2596.1 ± 0.3 pc cm-3) for an FRB to date. We examine possible progenitor models for FRB 160102 in extragalactic, non-cosmological and cosmological scenarios. After accounting for the Galactic foreground contribution, we estimate the intrinsic RM to be -256(9) rad m-2 in the low-redshift case and ˜-2.4 × 102 rad m-2 in the high-redshift case. We assess the relative likeliness of these scenarios and how each can be tested. We also place constraints on the scattering measure and study the impact of scattering on the signal's polarization position angle.

  8. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  9. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  10. Planetary optical and infrared imaging

    International Nuclear Information System (INIS)

    Terrile, R.J.

    1988-01-01

    The purpose of this investigation is to obtain and analyze high spatial resolution charge coupled device (CCD) coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system. Imaging within our solar system will provide information on the current cloud configurations on the outer planets, search for new objects around the outer planets, and provide direct support for Voyager, Galileo, and CRAF by imaging material around asteroids and clouds on Neptune. Over the last year this program acquired multispectral and polarization images of the disk of material around the nearby star Beta Pictoris. This material is believed to be associated with the formation of planets and provides a first look at a planetary system much younger than our own. Preliminary color and polarization data suggest that the material is very low albedo and similar to dark outer solar system carbon rich material. A coronagraphic search for other systems is underway and has already examined over 100 nearby stars. Coronagraphic imaging provided the first clear look at the rings of Uranus and albedo limits for the ring arcs around Neptune

  11. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  12. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Science.gov (United States)

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  13. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  14. Proxy magnetometry of the photosphere: why are G-band bright points so bright?

    NARCIS (Netherlands)

    Rutten, R.J.; Kiselman, Dan; Voort, Luc Rouppe van der; Plez, Bertrand

    2000-01-01

    We discuss the formation of G-band bright points in terms of standard uxtube modeling, in particular the 1D LTE models constructed by Solanki and coworkers. Combined with LTE spectral synthesis they explain observed G-band bright point contrasts quite well. The G-band contrast increase over the

  15. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    NARCIS (Netherlands)

    Nijboer, T.C.W.; Nys, G.M.S.; van der Smagt, M.J.; de Haan, E.H.F.

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level

  16. A selective deficit in the appreciation and recognition of brightness: brightness agnosia?

    Science.gov (United States)

    Nijboer, Tanja C W; Nys, Gudrun M S; van der Smagt, Maarten J; de Haan, Edward H F

    2009-01-01

    We report a patient with extensive brain damage in the right hemisphere who demonstrated a severe impairment in the appreciation of brightness. Acuity, contrast sensitivity as well as luminance discrimination were normal, suggesting her brightness impairment is not a mere consequence of low-level sensory impairments. The patient was not able to indicate the darker or the lighter of two grey squares, even though she was able to see that they differed. In addition, she could not indicate whether the lights in a room were switched on or off, nor was she able to differentiate between normal greyscale images and inverted greyscale images. As the patient recognised objects, colours, and shapes correctly, the impairment is specific for brightness. As low-level, sensory processing is normal, this specific deficit in the recognition and appreciation of brightness appears to be of a higher, cognitive level, the level of semantic knowledge. This appears to be the first report of 'brightness agnosia'.

  17. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    Science.gov (United States)

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  18. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    Science.gov (United States)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  19. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  20. STARS4ALL Night Sky Brightness Photometer

    Directory of Open Access Journals (Sweden)

    Jaime Zamorano

    2017-06-01

    Full Text Available We present the main features of TESS-W, the first version of a series of inexpensive but reliable photometers that will be used to measure night sky brightness. The bandpass is extended to the red with respect of that of the Sky Quality Meter (SQM. TESS-W connects to a router via WIFI and it sends automatically the brightness values to a data repository using Internet of Things protocols. The device includes an infrared sensor to estimate the cloud coverage. It is designed for fixed stations to monitor the evolution of the sky brightness. The photometer could also be used in local mode connected to a computer or tablet to gather data from a moving vehicle. The photometer is being developed within STARS4ALL project, a collective awareness platform for promoting dark skies in Europe, funded by the EU. We intend to extend the existing professional networks to a citizen-based network of photometers. 

  1. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  2. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  3. Richard Bright and his neurological studies.

    Science.gov (United States)

    Pearce, J M S

    2009-01-01

    Richard Bright was one of the famous triumvirate of Guy's Hospital physicians in the Victorian era. Remembered for his account of glomerulonephritis (Bright's disease) he also made many important and original contributions to medicine and neurology. These included his work on cortical epileptogenesis, descriptions of simple partial (Jacksonian) seizures, infantile convulsions, and a variety of nervous diseases. Most notable were his reports of neurological studies including papers on traumatic tetanus, syringomyelia, arteries of the brain, contractures of spinal origin, tumours of the base of the brain, and narcolepsy. His career and these contributions are outlined. Copyright 2009 S. Karger AG, Basel.

  4. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become c...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  5. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  6. A semianalytical method for calculating the parameters of the electromagnetic halos around extragalactic gamma-ray sources

    NARCIS (Netherlands)

    Kel'ner, [No Value; Khangulyan, DV; Aharonian, FA

    2004-01-01

    The ultrahigh-energy (>20 TeV) gamma rays emitted by active galactic nuclei can be absorbed in intergalactic space through the production of electron-positron pairs during their interaction with extragalactic background photon fields. The electrons and positrons produced by this interaction form an

  7. Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sou...

  8. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up

    NARCIS (Netherlands)

    Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Caleb, M.; Eatough, R.P.; Flynn, C.; Green, J.A.; Jankowski, F.; Kramer, M.; Krishnan, V Venkatraman; Morello, V.; Possenti, A.; Stappers, B.; Tiburzi, C.; van Straten, W.; Andreoni, I.; Butterley, T.; Chandra, P.; Cooke, J.; Corongiu, A.; Coward, D.M.; Dhillon, V.S.; Dodson, R.; Hardy, L.K.; Howell, E.J.; Jaroenjittichai, P.; Klotz, A.; Littlefair, S.P.; Marsh, T.R.; Mickaliger, M.; Muxlow, T.; Perrodin, D.; Pritchard, D.; Sawangwit, U.; Terai, T.; Tominaga, N.; Torne, P.; Totani, T.; Trois, A.; Turpin, D.; Niino, Y.; Wilson, R.W.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzocca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major

  9. White Paper on the Status and Future of Ground-based Gamma-Ray Astronomy - Extragalactic Science Working Group

    Science.gov (United States)

    Krawczynski, H.; Coppi, P.; Dermer, C.; Dwek, E.; Georganopoulos, M.; Horan, D.; Jones, T.; Krennrich, F.; Mukherjee, R.; Perlman, E.; Vassiliev, V.

    2007-04-01

    In fall 2006, the Division of Astrophysics of the American Physical Society requested a white paper about the status and future of ground based gamma-ray astronomy. The white paper will largely be written in the year 2007. Interested scientists are invited to join the science working groups. In this contribution, we will report on some preliminary results of the extragalactic science working group. We will discuss the potential of future ground based gamma-ray experiments to elucidate how supermassive black holes accrete matter, form jets, and accelerate particles, and to study in detail the acceleration and propagation of cosmic rays in extragalactic systems like infrared galaxies and galaxy clusters. Furthermore, we discuss avenues to constrain the spectrum of the extragalactic infrared to optical background radiation, and to measure the extragalactic magnetic fields based on gamma-ray observations. Eventually, we discuss the potential of ground based experiments for conducting gamma-ray source surveys. More information about the white paper can be found at: http://cherenkov.physics.iastate.edu/wp/

  10. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  11. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. INPOP17a planetary ephemerides

    Science.gov (United States)

    Viswanathan, V.; Fienga, A.; Gastineau, M.; Laskar, J.

    2017-08-01

    Based on the use of Cassini radio tracking data and the introduction of LLR data obtained at 1064 nm, a new planetary ephemerides INPOP17a was built including improvements for the planet orbits as well as for Moon ephemerides. Besides new asteroid masses, new parameters related to the inner structure of the Moon were obtained and presented here. Comparisons with values found in the literature are also discussed. LLR Residuals reach the centimeter level for the new INPOP17a ephemerides.

  13. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  14. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  15. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  16. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  17. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  18. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aeikens, Elke; Päs, Heinrich [Fakultät für Physik, Technische Universität Dortmund,44221 Dortmund (Germany); Pakvasa, Sandip [Department of Physics & Astronomy, University of Hawaii,Honolulu, HI 96822 (United States); Sicking, Philipp [Fakultät für Physik, Technische Universität Dortmund,44221 Dortmund (Germany)

    2015-10-02

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  19. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aeikens, Elke; Päs, Heinrich; Sicking, Philipp [Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Pakvasa, Sandip, E-mail: elke.aeikens@tu-dortmund.de, E-mail: heinrich.paes@tu-dortmund.de, E-mail: pakvasa@phys.hawaii.edu, E-mail: philipp.sicking@tu-dortmund.de [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-10-01

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  20. THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Yüksel, Hasan; Kronberg, Philipp P.; Stanev, Todor; Kistler, Matthew D.

    2012-01-01

    The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of ∼10 20 eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to ∼> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.

  1. 318-MHz variability of complete samples of extragalactic radio sources. II

    International Nuclear Information System (INIS)

    Dennison, B.; Broderick, J.J.; Ledden, J.E.; O'Dell, S.L.; Condon, J.J.

    1981-01-01

    We report the remainder of two- and three-epoch 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz. From analysis of this low-frequency variability survey, we find that steep-spectrum (α> or =0.5) sources do not appear to vary, but about 40% of all flat-spectrum (α<0.5) sources exhibit low-frequency variability exceeding 8% over approx.5 yr. Among the flat-spectrum sources, those with inverted spectra show the largest fractional variations. We also find that the incidence of low-frequency variability is strongly correlated with the determination that a source is an optically violent variable. These statistical properties are consistent with models invoking relativistic beaming of radio and optical emission

  2. The Green Bank Third (GB3) survey of extragalactic radio sources at 1400 MHz

    International Nuclear Information System (INIS)

    Rys, S.; Machalski, J.

    1987-01-01

    The NRAO 91-m radio telescope in Green Bank, West Virginia was used to make a 1400-MHz sky survey covering an area of 0.0988 sr at declinations 70 deg ≤ δ 1950 < 76.8 deg with 10.1 x 10.5 arcmin resolution. This survey ends the series of smaller than 1-sr surveys made at 1400 MHz with that telescope and four-feed radiometer. A catalogue of 502 radiosources is presented, statistically complete to 112 mJy, which is about five times the rms noise and extragalactic confusion. The observations and data reduction are briefly summarized; the position and flux density errors are discussed. 13 refs., 2 tabs. (author)

  3. Extragalactic Background Light expected from photon-photon absorption on spectra of distant Active Galactic Nuclei

    International Nuclear Information System (INIS)

    Sinitsyna, V. G.; Sinitsyna, V. Y.

    2013-01-01

    Extragalactic background radiation blocks the propagation of TeV gamma-ray over large distances by producing e + e - pairs. As a result, primary spectrum of gamma-source is changed, depending on spectrum of background light. So, hard spectra of Active Galactic Nuclei with high red shifts allow the determination of a EBL spectrum. The redshifts of SHALON TeV gamma-ray sources range from 0.018 to 1.375 those spectra are resolved at the energies from 800 GeV to 30 TeV. Spectral energy distribution of EBL constrained from observations of Mkn421 (z=0.031), Mkn501 (z=0.034), Mkn180 (z=0.046), OJ287 (z=0.306), 3c454.3 (z=0.859) and 1739+5220(z=1.375) together with models and measurements are presented. (authors)

  4. Methods for the determination of lunisolar precession from observations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Elsmore, B.

    1976-01-01

    Although it is not practicable at present to determine the position or motion of the equinox using radio techniques, lunisolar precession may be determined from measurements at two epochs of differences of (i) Right Ascension -RA, and (ii) Declinations - Dec., of extragalactic radio sources. The determinations are largely free from systematic errors, and the magnitudes of random errors, arising principally from tropospheric irregularities, are given for observations with the Cambridge 5-km telescope. Some first epoch measure-ments have been made with this instrument and it is estimated that by carrying out second epoch measurements after an interval of 5 yr, the centennial value of lunisolar precession will be determined with a standard error of +- 0''.25. (author)

  5. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    Science.gov (United States)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  6. THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, Hasan; Kronberg, Philipp P. [Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kistler, Matthew D. [Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2012-10-10

    The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of {approx}10{sup 20} eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to {approx}> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomaly or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.

  7. The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Science.gov (United States)

    Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman

    2018-01-01

    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.

  8. Metre-wavelength fine structure in 30 extragalactic radio sources with sizes of a few arcsec

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.; Pramesh Rao, A.

    1983-01-01

    Interplanetary scintillation (IPS) observations at 327 MHz of an unbiased sample of 30 extragalactic radio sources having overall sizes between 1 and 4 arcsec, and flux densities greater than 1 Jy at 327 MHz are reported. From VLBI observations, these sources have been reported to contain compact components of sizes < approx.= to 0.02 arcsec contributing on an average about 25 per cent of the total emission at 5 HGz. The IPS observations show that about 45 per cent of the total emission at 327 MHz arises from structures of sizes between 0.05 and 0.5 arcsec (corresponding typically to 0.5 to 5 kpc). A comparison of the VLBI and IPS results indicates that the VLBI and IPS components probably refer to the same physical features in these sources. (author)

  9. OH+ emission from cometary knots in planetary nebulae

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.

    2018-05-01

    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.

  10. The Eindhoven High-Brightness Electron Programme

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    The Eindhoven High-Brightness programme is aimed at producing ultra-short intense electron bunches from compact accelerators. The RF electron gun is capable of producing 100 fs electron bunches at 7.5 MeV and 10 pC bunch charge. The DC/RF hybrid gun under development will produce bunches <75 fs at

  11. Discussion of high brightness rf linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    The fundamental aspects of high-brightness rf linacs are outlined, showing the breadth and complexity of the technology and indicating that synergism with advancements in other areas is important. Areas of technology reviewed include ion sources, injectors, rf accelerator structures, beam dynamics, rf power, and automatic control

  12. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  13. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  14. Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778

    Science.gov (United States)

    García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio

    2016-06-01

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] λ4363 line resembles that of the O II ORLs but differs from nebular [O III] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  15. IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778

    Energy Technology Data Exchange (ETDEWEB)

    García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio [Instituto de Astrofísica de Canarias, E-38200, La Laguna, Tenerife (Spain); Monteiro, Hektor [Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303-Pinheirinho, 37500-903, Itajubá (Brazil)

    2016-06-20

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  16. Role of cosmic ray protons in two types of extragalactic objects

    International Nuclear Information System (INIS)

    Vestrand, W.T.

    1980-01-01

    For many years the physics of galactic cosmic rays has been studied in detail. Very little work, however, has been done concerning cosmic ray protons in extragalactic objects. Here the role cosmic ray protons can play in two types of extragalactic sites are examined: (1) clusters of galaxies, and (2) the active nuclei of Quasars that produce superluminal radio components. Models of Coma-type radio halos must explain both their large extent and their rarity. A model is presented wherein secondary electrons produced by the interaction of cosmic ray protons with the observed intracluster gas are responsible for the diffuse radio emission. This model predicts a correlation between a cluster's evolutionary state and the presence of Coma-type halos. If a cluster's x-ray morphology is an indication of the cluster's evolutionary state, this prediction is supported by observations. This model also predicts that clusters with Coma-type halos will emit π 0 γ-rays. If the intracluster magnetic field in Coma has the strength favored by many authors, B/sub c/ = 0.2 microgauss, these γ-rays should be detectable with the proposed GRO satellite. Superluminal radio sources may originate in highly compact and relativistically hot plasmas. The production of mesons and their secondaries in an ultrarelativistic plasma is examined. Source functions from a relativistic Maxwellian distribution of protons are numerically calculated for conditions likely during the formation of superluminal radio components. Analytic expressions for the source functions from a power law distribution of relativistic protons are also presented

  17. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    Science.gov (United States)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  18. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  19. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  20. Intermittent Episodes of Bright Light Suppress Myopia in the Chicken More than Continuous Bright Light

    OpenAIRE

    Lan, Weizhong; Feldkaemper, Marita; Schaeffel, Frank

    2014-01-01

    PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows....

  1. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  2. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light.

    Directory of Open Access Journals (Sweden)

    Weizhong Lan

    Full Text Available PURPOSE: Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS: Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8 was kept under office-like illuminance (500 lux at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5, 2 hours (n = 5, 5 hours (n = 4 or 10 hours (n = 4. Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7, 30 minutes (n = 8, 15 minutes (n = 6, 7 minutes (n = 7 or 1 minute (n = 7 periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS: Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS: The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.

  3. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-02-26

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.

  4. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  5. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  6. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  7. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  8. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  9. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  10. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  11. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  12. Sealed Planetary Return Canister (SPRC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  13. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  14. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  15. Bright solitons in Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz

    2006-01-01

    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length

  16. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  17. High-brightness H/sup -/ accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rational and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed

  18. Brightness of synchrotron radiation from wigglers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2014-12-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called 'depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. In the geometrical optics limit computations can be performed analytically. Within this limit, we restrict ourselves to the case of the beam size-dominated regime, which is typical for synchrotron radiation facilities in the X-ray wavelength range. We give a direct demonstration of the fact that the apparent horizontal source size is broadened in proportion to the beamline opening angle and to the length of the wiggler. While this effect is well-understood, a direct proof appears not to have been given elsewhere. We consider the problem of the calculation of the wiggler source size by means of numerical simulations alone, which play the same role of an experiment. We report a significant numerical disagreement between exact calculations and approximations currently used in literature.

  19. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  20. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus

    1988-01-01

    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  1. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  2. Condensate bright solitons under transverse confinement

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2002-01-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula

  3. Possible Bright Starspots on TRAPPIST-1

    Science.gov (United States)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-04-01

    The M8V star TRAPPIST-1 hosts seven roughly Earth-sized planets and is a promising target for exoplanet characterization. Kepler/K2 Campaign 12 observations of TRAPPIST-1 in the optical show an apparent rotational modulation with a 3.3-day period, though that rotational signal is not readily detected in the Spitzer light curve at 4.5 μm. If the rotational modulation is due to starspots, persistent dark spots can be excluded from the lack of photometric variability in the Spitzer light curve. We construct a photometric model for rotational modulation due to photospheric bright spots on TRAPPIST-1 that is consistent with both the Kepler and Spitzer light curves. The maximum-likelihood model with three spots has typical spot sizes of R spot/R ⋆ ≈ 0.004 at temperature T spot ≳ 5300 ± 200 K. We also find that large flares are observed more often when the brightest spot is facing the observer, suggesting a correlation between the position of the bright spots and flare events. In addition, these flares may occur preferentially when the spots are increasing in brightness, which suggests that the 3.3-day periodicity may not be a rotational signal, but rather a characteristic timescale of active regions.

  4. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  5. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  6. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  7. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  8. Molecular transitions as probes of the physical conditions of extragalactic environments

    Science.gov (United States)

    Viti, Serena

    2017-11-01

    Aims: We present a method to interpret molecular observations and molecular line ratios in nearby extragalactic regions. Methods: Ab initio grids of time dependent chemical models, varying in gas density, temperature, cosmic ray ionization rate, and radiation field, are used as inputs into RADEX calculations. Tables of abundances, column densities, theoretical line intensities, and line ratios for some of the most used dense gas tracers are provided. The degree of correlation as well as degeneracy inherent in molecular ratios is discussed. Comparisons of the theoretical intensities with example observations are also provided. Results: We find that, within the parameters space explored, chemical abundances can be constrained by a well-defined set of gas density, gas temperature, and cosmic ray ionization rates for the species we investigate here. However, line intensities, and more importantly line ratios, from different chemical models can be very similar, thereby leading to a clear degeneracy. We also find that the gas subjected to a galactic cosmic ray ionization rate will not necessarily have reached steady state in 1 million years. The species most affected by time dependency effects are HCN and CS, which are both high density tracers. We use our ab initio method to fit an example set of data from two galaxies, I.e. M 82 and NGC 253. We find that (I) molecular line ratios can be easily matched even with erroneous individual line intensities; (II) no set of species can be matched by a one-component interstellar medium (ISM); and (III) a species may be a good tracer of an energetic process but only under specific density and temperature conditions. Conclusions: We provide tables of chemical abundances and line intensities ratios for some of the most commonly observed extragalactic tracers of dense gas for a grid of models. We show that by taking the chemistry behind each species and the individual line intensities into consideration, many degeneracies that arise

  9. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it

    Science.gov (United States)

    Unger, Michael; Farrar, Glennys R.; Anchordoqui, Luis A.

    2015-12-01

    The sharp change in slope of the ultrahigh energy cosmic ray (UHECR) spectrum around 1 018.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically, without fine-tuning. We propose a mechanism whereby photo-disintegration of ultrahigh energy nuclei in the region surrounding a UHECR accelerator accounts for the observed spectrum and inferred composition at Earth. For suitable source conditions, the model reproduces the spectrum and the composition over the entire extragalactic cosmic ray energy range, i.e. above 1 017.5 eV . Predictions for the spectrum and flavors of neutrinos resulting from this process are also presented.

  10. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    Science.gov (United States)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  11. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  12. The Formation of a Planetary Nebula.

    Science.gov (United States)

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  13. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  14. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  15. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  16. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  17. IRAS variables as galactic structure tracers - Classification of the bright variables

    Science.gov (United States)

    Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.

    1993-01-01

    The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.

  18. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  19. Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Rafael Alves; Sigl, Günter, E-mail: rafael.alves.batista@desy.de, E-mail: guenter.sigl@desy.de [II. Institut für Theoretische Physik, Universität Hamburg Luruper Chaussee 149, 22761, Hamburg (Germany)

    2014-11-01

    Ultra-high energy cosmic rays can propagate diffusively in cosmic magnetic fields. When their propagation time is comparable to the age of the universe, a suppression in the flux relative to the case in the absence of magnetic fields will occur. In this work we find an approximate parametrization for this suppression for energies below ∼ Z EeV using several magnetic field distributions obtained from cosmological simulations of the magnetized cosmic web. We assume that the magnetic fields have a Kolmogorov power spectrum with the field strengths distributed according to these simulations. We show that, if magnetic fields are coupled to the matter distribution, low field strengths will fill most of the volume, making the suppression milder compared to the case of a constant magnetic field with strength equal to the mean value of this distribution. We also derive upper limits for this suppression to occur for some models of extragalactic magnetic fields, as a function of the coherence length of these fields.

  20. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Bergin, E. A. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Goicoechea, J. R.; Cernicharo, J. [Grupo de Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (CSIC) E-28049 Madrid (Spain); Gerin, M.; Gusdorf, A. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, F-75005, Paris (France); Lis, D. C. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Schilke, P., E-mail: nindriolo@stsci.edu [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2017-02-10

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel /HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel /PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5≤ J{sub u} ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas.

  1. AXION DECAY AND ANISOTROPY OF NEAR-IR EXTRAGALACTIC BACKGROUND LIGHT

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Chen, Xuelei [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Cooray, Asantha; Mitchell-Wynne, Ketron [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Zemcov, Michael [Center for Detectors, School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Smidt, Joseph [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-07-10

    The extragalactic background light (EBL) is composed of the cumulative radiation from all galaxies and active galactic nuclei over cosmic history. In addition to point sources, the EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals, and a complete understanding of the nature of the infrared (IR) background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter (DM) models involving axions that trace DM halos of galaxies. Axions with a mass around a few electronvolts will decay via two photons with wavelengths in the near-IR band and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope and the Cosmic Infrared Background Experiment, we find that the 0.6–1.6 μ m power spectra can be explained by axions with masses around 4 eV. The total axion abundance Ω{sub a} ≃ 0.05, and it is comparable to the baryon density of the universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics theory and needs further discussion.

  2. Double hotspots and flow redirection in the lobes of powerful extragalactic radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Barthel, P.D.; Owens Valley Radio Observatory, Pasadena, CA)

    1986-01-01

    Detailed observations of two powerful extragalactic radio sources that contain a prominent double hotspot in one of their two outer lobes are presented. These double hotspots display similar characteristics in both sources, suggesting a common mechanism for their formation. Several other examples of double hotspots are found in the literature that also display many of the characteristics of those in the present sources. These characteristics cannot easily be explained by beam-jitter models, in which secondary hotspots are interpreted as previous impact sites of a beam, which has moved on to form the primary in a new location. Instead, it is proposed that these double hotspots are caused by a flow of material from the more compact to the less compact of the two. It is found that the most probable cause of the outflow is a collision of a beam from the nucleus with a massive (100-million solar mass), dense (greater than 0.1/cm) cloud in intergalactic space. The details of the deflection process itself are unclear, but a possibility is that the beam inflates a bubble of very hot plasma inside the cloud, which then escapes through a weak point in the wall of the cloud. The existence of such intergalactic clouds is considered to be a strong possibility, based on the recent literature, as well as the present hotspot outflow arguments, despite the apparently extreme values postulated for their mass and density. 45 references

  3. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    Science.gov (United States)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  5. Eight new quasars discovered by the Guoshoujing Telescope (LAMOST) in one extragalactic field

    International Nuclear Information System (INIS)

    Wu Xuebing; Jia Zhendong; Chen Zhaoyu; Zuo Wenwen; Zhao Yongheng; Luo Ali; Bai Zhongrui; Chen Jianjun; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; Wu Hong; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai; Kong Xu

    2010-01-01

    We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA = 08 h 58 m 08.2 s , Dec = 01 o 32'29.7') with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be missing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed. (research papers)

  6. Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Globus, Noemie; Piran, Tsvi [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Allard, Denis; Parizot, Etienne [Laboratoire Astroparticule et Cosmologie, Université Paris Diderot/CNRS, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)

    2017-04-20

    GeV–TeV gamma-rays and PeV–EeV neutrino backgrounds provide a unique window on the nature of the ultra-high-energy cosmic rays (UHECRs). We discuss the implications of the recent Fermi -LAT data regarding the extragalactic gamma-ray background and related estimates of the contribution of point sources as well as IceCube neutrino data on the origin of the UHECRs. We calculate the diffuse flux of cosmogenic γ -rays and neutrinos produced by the UHECRs and derive constraints on the possible cosmological evolution of UHECR sources. In particular, we show that the mixed-composition scenario considered in Globus et al., which is in agreement with both (i) Auger measurements of the energy spectrum and composition up to the highest energies and (ii) the ankle-like feature in the light component detected by KASCADE-Grande, is compatible with both the Fermi -LAT measurements and with current IceCube limits. We also discuss the possibility for future experiments to detect associated cosmogenic neutrinos and further constrain the UHECR models, including possible subdominant UHECR proton sources.

  7. Safeguarding Old and New Journal Tables for the VO: Status for Extragalactic and Radio Data

    Directory of Open Access Journals (Sweden)

    Heinz Andernach

    2009-03-01

    Full Text Available Independent of established data centers, and partly for my own research, since 1989 I have been collecting the tabular data from over 2600 articles concerned with radio sources and extragalactic objects in general. Optical character recognition (OCR was used to recover tables from 740 papers. Tables from only 41 percent of the 2600 articles are available in the CDS or CATS catalog collections, and only slightly better coverage is estimated for the NED database. This fraction is not better for articles published electronically since 2001. Both object databases (NED, SIMBAD, LEDA as well as catalog browsers (VizieR, CATS need to be consulted to obtain the most complete information on astronomical objects. More human resources at the data centers and better collaboration between authors, referees, editors, publishers, and data centers are required to improve data coverage and accessibility. The current efforts within the Virtual Observatory (VO project, to provide retrieval and analysis tools for different types of published and archival data stored at various sites, should be balanced by an equal effort to recover and include large amounts of published data not currently available in this way.

  8. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    Science.gov (United States)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  9. Constraints on decaying dark matter from the extragalactic gamma-ray background

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2015-02-01

    If dark matter is unstable and the mass is within GeV-TeV regime, its decays produce high-energy photons that give contribution to the extragalactic gamma-ray background (EGRB). We constrain dark matter decay by analyzing the 50-month EGRB data measured with Fermi satellite, for different decay channels motivated with several supersymmetric scenarios featuring R-parity violation. We adopt the latest astrophysical models for various source classes such as active galactic nuclei and star-forming galaxies, and take associated uncertainties properly into account. The lower limits for the lifetime are very stringent for a wide range of dark matter mass, excluding the lifetime shorter than 10 28 s for mass between a few hundred GeV and ∝1TeV, e.g., for b anti b decay channel. Furthermore, most dark matter models that explain the anomalous positron excess are also excluded. These constraints are robust, being little dependent on astrophysical uncertainties, unlike other probes such as Galactic positrons or anti-protons.

  10. First extragalactic detection of submillimeter CH rotational lines from the Herschel space observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Kamenetzky, Julia [Center for Astrophysics and Space Astronomy, University of Colorado, 1255 38th street, Boulder, CO 80303 (United States); Wilson, Christine D.; Schirm, Maximilien R. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Spinoglio, Luigi; Pereira Santaella, Miguel [Istituto di Fisica dello Spazio Interplanetario, INAF, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-06-20

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO{sup +} J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (∼10{sup –5}), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  11. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  12. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  13. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  14. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  15. Investigating the Bright End of LSST Photometry

    Science.gov (United States)

    Ojala, Elle; Pepper, Joshua; LSST Collaboration

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will begin operations in 2022, conducting a wide-field, synoptic multiband survey of the southern sky. Some fraction of objects at the bright end of the magnitude regime observed by LSST will overlap with other wide-sky surveys, allowing for calibration and cross-checking between surveys. The LSST is optimized for observations of very faint objects, so much of this data overlap will be comprised of saturated images. This project provides the first in-depth analysis of saturation in LSST images. Using the PhoSim package to create simulated LSST images, we evaluate saturation properties of several types of stars to determine the brightness limitations of LSST. We also collect metadata from many wide-field photometric surveys to provide cross-survey accounting and comparison. Additionally, we evaluate the accuracy of the PhoSim modeling parameters to determine the reliability of the software. These efforts will allow us to determine the expected useable data overlap between bright-end LSST images and faint-end images in other wide-sky surveys. Our next steps are developing methods to extract photometry from saturated images.This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement 1258333 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.Thanks to NSF grant PHY-135195 and the 2017 LSSTC Grant Award #2017-UG06 for making this project possible.

  16. Selection effects in the bivariate brightness distribution for spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1986-01-01

    The joint distribution of total luminosity and characteristic surface brightness (the bivariate brightness distribution) is investigated for a complete sample of spiral galaxies in the Virgo cluster. The influence of selection and physical limits of various kinds on the apparent distribution are detailed. While the distribution of surface brightness for bright galaxies may be genuinely fairly narrow, faint galaxies exist right across the (quite small) range of accessible surface brightnesses so no statement can be made about the true extent of the distribution. The lack of high surface brightness bright galaxies in the Virgo sample relative to an overall RC2 sample (mostly field galaxies) supports the contention that the star-formation rate is reduced in the inner region of the cluster for environmental reasons. (author)

  17. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  18. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  19. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  20. Planetary Data Archiving Plan at JAXA

    Science.gov (United States)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  1. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  2. Bright point study. [of solar corona

    Science.gov (United States)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona.

  3. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  4. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  5. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  6. Brightness and transparency in the early visual cortex.

    Science.gov (United States)

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  7. Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?

    Science.gov (United States)

    Regály, Zs.; Juhász, A.; Nehéz, D.

    2017-12-01

    Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.

  8. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne

    2013-06-07

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  9. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Schukraft, Anne

    2013-01-01

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  10. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  11. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    International Nuclear Information System (INIS)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    2017-01-01

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  12. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Larchenkova, Tatiana I. [ASC of P.N.Lebedev Physical Institute, Leninskiy prospect 53, Moscow 119991 (Russian Federation); Lutovinov, Alexander A.; Lyskova, Natalya S. [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)

    2017-01-20

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  13. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    International Nuclear Information System (INIS)

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko

    2013-01-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10 19 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E −1 ) due to pulsar spin down and a maximum energy E max ∼ Z 10 19 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10 16 and 10 18 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    Science.gov (United States)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  15. Time evolution of primordial magnetic fields and present day extragalactic magnetism

    International Nuclear Information System (INIS)

    Saveliev, Andrey

    2014-05-01

    The topic of the present thesis is the time evolution of Primordial Magnetic Fields which have been generated in the Early Universe. Assuming this so-called Cosmological Scenario of magnetogenesis to be true, it is shown in the following that this would account for the present day Extragalactic Magnetic Fields. This is particularly important in light of recent gamma ray observations which are used to derive a lower limit for the corresponding magnetic field strength, even though also an alternative approach, claiming instead that these observations are due to interactions with the Intergalactic Medium, is possible and will be tested here with Monte Carlo simulations. In order to describe the aforementioned evolution of Primordial Magnetic Fields, a set of general Master Equations for the spectral magnetic, kinetic and helical components of the system are derived and then solved numerically for the Early Universe. This semianalytical method allows it to perform a full quantitative study for the time development of the power spectra, in particular by fully taking into account the backreaction of the turbulent medium onto the magnetic fields. Applying the formalism to non-helical Primordial Magnetic Fields created on some characteristic length measure, it is shown that on large scales L their spectrum 5 builds up a slope which behaves as B∝L -(5)/(2) and governs the evolution of the coherence (or integral) scale. In addition, the claim of equipartition between the magnetic and the kinetic energy is found to be true. Extending the analysis to helical magnetic fields, it is observed that the time evolution changes dramatically, hence confirming quantitatively that an Inverse Cascade, i.e. an efficient transport of energy from small to large scales, as predicted in previous works, indeed does take place.

  16. Searching for νμ→ντ oscillations with extragalactic neutrinos

    International Nuclear Information System (INIS)

    Iyer, Sharada; Reno, Mary Hall; Sarcevic, Ina

    2000-01-01

    We propose a novel approach for studying ν μ →ν τ oscillations with extragalactic neutrinos. Active galactic nuclei and gamma ray bursts are believed to be sources of ultrahigh energy muon neutrinos. With distances of 100 Mpc or more, they provide an unusually long baseline for possible detection of ν μ →ν τ with mixing parameters Δm 2 down to 10 -17 eV 2 , many orders of magnitude below the current accelerator experiments. By solving the coupled transport equations, we show that high-energy ν τ 's, as they propagate through the Earth, cascade down in energy, producing the enhancement of the incoming ν τ flux in the low energy region, in contrast with the high-energy ν μ 's, which get absorbed. For an AGN quasar model we find the ν τ flux to be a factor of 2 to 2.5 larger than the incoming flux in the energy range between 10 2 GeV and 10 4 GeV, while for a GRB fireball model, the enhancement is 10-27 % in the same energy range and for zero nadir angle. This enhancement decreases with larger nadir angle, thus providing a novel way to search for ν τ appearance by measuring the angular dependence of the muons. To illustrate how the cascade effect and the ν τ final flux depend on the steepness of the incoming ν τ , we show the energy and angular distributions for several generic cases of the incoming tau neutrino flux, F ν 0 ∼E -n for n=1, 2 and 3.6. We show that for the incoming flux that is not too steep, the signal for the appearance of high-energy ν τ is the enhanced production of lower energy μ and their distinctive angular dependence, due to the contribution from the τ decay into μ just below the detector. (c) 2000 The American Physical Society

  17. The Orbital and Planetary Phase Variations of Jupiter-sized Planets: Characterizing Present and Future Giants

    Science.gov (United States)

    Mayorga, Laura C.; Jackiewicz, Jason; Rages, Kathy; West, Robert; Knowles, Ben; Lewis, Nikole K.; Marley, Mark S.

    2018-01-01

    Knowledge of how the brightness and color of a planet varies with viewing angle is essential for the design of future direct imaging missions and deriving constraints on atmospheric properties. However, measuring the phase curves for the solar system gas giants is impossible from the ground. Using data Cassini/ISS obtained during its flyby of Jupiter, I measured Jupiter's phase curve in six bands spanning 400-1000 nm. I found that Jupiter's brightness is less than that of a Lambertian scatterer and that its color varies more with phase angle than predicted by theoretical models. For hot Jupiters, the light from the planet cannot be spatially isolated from that of the star. As a result, determining the planetary phase curve requires removing the phase-dependent contributions from the host star. I consider the effect of varying the stellar model and present a parameterization of the Doppler beaming amplitude that depends upon the planetary mass, orbital period, and the stellar temperature. I consider the detectability of Doppler beaming amplitudes with data from TESS and find that TESS will be less sensitive to this signal than Kepler. This work was supported by the National Science Foundation Graduate Research Fellowship Program and the New Mexico Higher Education Department Graduate Scholarship Program.

  18. Precise Chemical Analyses of Planetary Surfaces

    Science.gov (United States)

    Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David; hide

    1996-01-01

    We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.

  19. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  20. Planning for planetary protection : challenges beyond Mars

    Science.gov (United States)

    Belz, Andrea P.; Cutts, James A.

    2006-01-01

    This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.

  1. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  2. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  3. The Planetary Terrestrial Analogues Library (PTAL)

    Science.gov (United States)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  4. 3D Visualization for Planetary Missions

    Science.gov (United States)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  5. Dynamical habitability of planetary systems.

    Science.gov (United States)

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).

  6. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  7. Infrared observations of planetary atmospheres

    International Nuclear Information System (INIS)

    Orton, G.S.; Baines, K.H.; Bergstralh, J.T.

    1988-01-01

    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

  8. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  9. Extrasolar Planetary Imaging Coronagraph (EPIC)

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Exoplanet Probe mission to image and characterize extrasolar giant planets. EPIC will provide insights into the physical nature and architecture of a variety of planets in other solar systems. Initially, it will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses and characterize the atmospheres around A and F type stars which cannot be found with RV techniques. It will also observe the inner spatial structure of exozodiacal disks. EPIC has a heliocentric Earth trailing drift-away orbit, with a 5 year mission lifetime. The robust mission design is simple and flexible ensuring mission success while minimizing cost and risk. The science payload consists of a heritage optical telescope assembly (OTA), and visible nulling coronagraph (VNC) instrument. The instrument achieves a contrast ratio of 10^9 over a 5 arcsecond field-of-view with an unprecedented inner working angle of 0.13 arcseconds over the spectral range of 440-880 nm. The telescope is a 1.65 meter off-axis Cassegrain with an OTA wavefront error of lambda/9, which when coupled to the VNC greatly reduces the requirements on the large scale optics.

  10. Very-High-Brightness Picosecond Electron Source

    International Nuclear Information System (INIS)

    Bluem, H.

    2003-01-01

    Bright, RF photocathode electron guns are the source of choice for most high-performance research accelerator applications. Some of these applications are pushing the performance boundaries of the present state-of-the-art guns. Advanced Energy Systems is developing a novel photocathode RF gun that shows excellent promise for extending gun performance. Initial gun simulations with only a short booster accelerator easily break the benchmark emittance of one micron for 1 nC of bunch charge. The pulse length in these simulations is less than 2 ps. It is expected that with more detailed optimization studies, the performance can be further improved. The performance details of the gun will be presented. In addition, we will discuss the present design concept along with the status of the project

  11. New redshifts of bright galaxies. III

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; de Vaucouleurs, A.; Nieto, J.

    1979-01-01

    Redshifts of 196 bright galaxies, and 2 QSO's are derived from 246 spectrograms obtained from 1972 to 1977 with the Galaxy meter's two-state image tube grism spectrograph attached at the Cassegrain focus of the McDonald Observatory Struve reflector. The reciprocal dispersion in 335 A/mm at Hα and the wavelength range lambdalambda 4500--8000 A. The galaxy redshifts are in the range -28 -1 , but few exceed 5,000 km s -1 . The internal mean errors of the weighted mean velocities range from 22 to 140 km s -1 . Comparisons with other systems of redshifts, particularly the RC2, 21-cm and Sandage systems, indicate a mean systematic error of -35 +- 16 km s -1 , but it is probably variable with V. The external mean error is sigma*=90 km s -1 for velocities V -1 having a mean weight =4.0

  12. Dark Skies, Bright Kids Year 8

    Science.gov (United States)

    Bittle, Lauren E.; Wenger, Trey; Johnson, Kelsey E.; Angell, Dylan; Burkhardt, Andrew; Davis, Blair; Firebaugh, Ariel; Hancock, Danielle; Richardson, Whitney; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; McNair, Shunlante; Prager, Brian; Pryal, Matthew; Troup, Nicholas William

    2017-01-01

    We present activities from the eighth year of Dark Skies Bright Kids (DSBK), an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Over the past seven years, our primary focus has been hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools, and over the past several years, we have partnered with local businesses to host our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows. This past summer we expanded our reach through a new initiative to bring week-long summer day camps to south and southwest Virginia, home to some of the most underserved communities in the commonwealth.

  13. Dark Skies, Bright Kids Year 7

    Science.gov (United States)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  14. Considerations for high-brightness electron sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are now used in many areas of physics research and in industrial and medical applications. New uses are being studied to address major societal needs in energy production, materials research, generation of intense beams of radiation at optical and suboptical wavelengths, treatment of various kinds of waste, and so on. Many of these modern applications require a high intensity beam at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. Considerations for ion and electron accelerators are often different, but there are also many commonalties, and in fact, techniques derived for one should perhaps more often be considered for the other as well. We discuss some aspects of high-brightness electron sources here from that point of view. 6 refs

  15. Post-main-sequence planetary system evolution

    Science.gov (United States)

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  16. Life-threatening motor vehicle crashes in bright sunlight

    OpenAIRE

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estim...

  17. Migration-induced architectures of planetary systems.

    Science.gov (United States)

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  18. Lessons learned from planetary science archiving

    Science.gov (United States)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  19. Study of Three-Dimensional Image Brightness Loss in Stereoscopy

    Directory of Open Access Journals (Sweden)

    Hsing-Cheng Yu

    2015-10-01

    Full Text Available When viewing three-dimensional (3D images, whether in cinemas or on stereoscopic televisions, viewers experience the same problem of image brightness loss. This study aims to investigate image brightness loss in 3D displays, with the primary aim being to quantify the image brightness degradation in the 3D mode. A further aim is to determine the image brightness relationship to the corresponding two-dimensional (2D images in order to adjust the 3D-image brightness values. In addition, the photographic principle is used in this study to measure metering values by capturing 2D and 3D images on television screens. By analyzing these images with statistical product and service solutions (SPSS software, the image brightness values can be estimated using the statistical regression model, which can also indicate the impact of various environmental factors or hardware on the image brightness. In analysis of the experimental results, comparison of the image brightness between 2D and 3D images indicates 60.8% degradation in the 3D image brightness amplitude. The experimental values, from 52.4% to 69.2%, are within the 95% confidence interval

  20. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  1. PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT z ∼> 7 USING HUBBLE SPACE TELESCOPE PURE PARALLEL OBSERVATIONS

    International Nuclear Information System (INIS)

    Yan Haojing; Yan Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan Xiaohui; Dave, Romeel; Roettgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Cai Zheng

    2011-01-01

    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin 2 in total area. We have found three bright Y 098 -dropouts, which are candidate galaxies at z ∼> 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ∼ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by 'cosmic variance' than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ∼ 7.4 is not well explained by the current luminosity function (LF) estimates at z ∼ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ∼ 7 if it belongs to the high-redshift tail of the galaxy population at z ∼ 7.

  2. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    Science.gov (United States)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  3. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  4. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  5. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    Science.gov (United States)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  6. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  7. Visualizing NASA's Planetary Data with Google Earth

    Science.gov (United States)

    Beyer, R. A.; Hancher, M. D.; Broxton, M.; Weiss-Malik, M.; Gorelick, N.; Kolb, E.

    2008-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of the footprint locations of various higher-resolution data sets. Once our group, or any group, performs these data conversions the KML can be made available on the Web, where anyone can download it and begin using it in Google Earth (or any other geospatial browser), just like a Web page. Lucian Plesea at JPL offers several KML basemaps (MDIM, colorized MDIM, MOC composite, THEMIS day time infrared, and both grayscale and colorized MOLA). We have created TES Thermal Inertia maps, and a THEMIS night time infrared overlay, as well. Many data sets for Mars have already been converted to KML. We provide coverage polygons overlaid on the globe, whose icons can be clicked on and lead to the full PDS data URL. We have built coverage maps for the following data sets: MOC narrow angle, HRSC imagery and DTMs, SHARAD tracks, CTX, and HiRISE. The CRISM team is working on providing their coverage data via publicly-accessible KML. The MSL landing site process is also providing data for potential landing sites via KML. The Google Earth client and KML allow anyone to contribute data for everyone to see via the Web. The Earth sciences community is already utilizing KML and Google Earth in a variety of ways as a geospatial browser, and we hope that the planetary sciences community will do the same. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data

  8. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  9. Revisiting the EC/CMB model for extragalactic large scale jets

    Science.gov (United States)

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  10. Recent Advances and Coming Attractions in the NASA/IPAC Extragalactic Database

    Science.gov (United States)

    Mazzarella, Joseph M.; Baker, Kay; Pan Chan, Hiu; Chen, Xi; Ebert, Rick; Frayer, Cren; Helou, George; Jacobson, Jeffery D.; Lo, Tak M.; Madore, Barry; Ogle, Patrick M.; Pevunova, Olga; Steer, Ian; Schmitz, Marion; Terek, Scott

    2017-01-01

    We review highlights of recent advances and developments underway at the NASA/IPAC Extragalactic Database (NED). Extensive updates have been made to the infrastructure and processes essential for scaling NED for the next steps in its evolution. A major overhaul of the data integration pipeline provides greater modularity and parallelization to increase the rate of source cross-matching and data integration. The new pipeline was used recently to fold in data for nearly 300,000 sources published in over 900 recent journal articles, as well as fundamental parameters for 42 million sources in the Spitzer Enhanced Imaging Products Source List. The latter has added over 360 million photometric measurements at 3.6, 4.5, 5.8. 8.0 (IRAC) and 24 microns (MIPS) to the spectral energy distributions of affected objects in NED. The recent discovery of super-luminous spiral galaxies (Ogle et al. 2016) exemplifies the opportunities for science discovery and data mining available directly from NED’s unique data synthesis, spanning the spectrum from gamma ray through radio frequencies. The number of references in NED has surpassed 103,000. In the coming year, cross-identifications of sources in the 2MASS Point Source Catalog and in the AllWISE Source Catalog with prior objects in the database (including GALEX) will increase the holdings to over a billion distinct objects, providing a rich resource for multi-wavelength analysis. Information about a recent surge in growth of redshift-independent distances in NED is presented at this meeting by Steer et al. (2017). Website updates include a ’simple search’ to perform common queries in a single entry field, an interface to query the image repository with options to sort and filter the initial results, connectivity to the IRSA Finder Chart service, as well as a program interface to query images using the international virtual observatory Simple Image Access protocol. Graphical characterizations of NED content and completeness are

  11. CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH WISE AND SDSS

    International Nuclear Information System (INIS)

    Yan Lin; Donoso, E.; Tsai, Chao-Wei; Cutri, R.; Jarrett, T.; Stern, D.; Assef, R. J.; Eisenhardt, P.; Blain, A. W.; Stanford, S. A.; Wright, E.; Bridge, C.; Riechers, D. A.

    2013-01-01

    The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey in four channels at 3.4-22 μm, detecting hundreds of millions of objects. We merge the WISE mid-infrared data with optical data from the Sloan Digital Sky Survey (SDSS) and provide a phenomenological characterization of WISE extragalactic sources. WISE is most sensitive at 3.4 μm (W1) and least sensitive at 22 μm (W4). The W1 band probes massive early-type galaxies out to z ∼> 1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4 μm sources have faint or no r-band counterparts (r > 22.2). In contrast, 92%-95% of 12 μm and 22 μm sources have SDSS optical counterparts with r ≤ 22.2. WISE 3.4 μm detects 89.8% of the entire SDSS QSO catalog at S/N W1 >7σ, but only 18.9% at 22 μm with S/N W4 > 5σ. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies, and strong active galactic nuclei (AGNs)/QSOs at z ∼ 0.8 and W2 –2 . (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1 – W2 > 0.8, W2 6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is one-third of all WISE color-selected AGNs. (3) Selection of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 with extremely red colors, r – W4 > 14 or well-detected 22 μm sources lacking detections in the 3.4 and 4.6 μm bands. The surface density of z ∼ 2 ULIRG candidates selected with r – W4 > 14 is 0.9 ± 0.07 deg –2 at S/N W4 ≥ 5 (the corresponding, lowest flux density of 2.5 mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRG candidates confirms our selection, and reveals a possible trend that optically fainter or r – W4 redder candidates are at higher redshifts.

  12. The VIMOS Public Extragalactic Redshift Survey. Measuring the growth rate of structure around cosmic voids

    Science.gov (United States)

    Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.

    2017-11-01

    We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in

  13. A Science Portal and Archive for Extragalactic Globular Cluster Systems Data

    Science.gov (United States)

    Young, Michael; Rhode, Katherine L.; Gopu, Arvind

    2015-01-01

    For several years we have been carrying out a wide-field imaging survey of the globular cluster populations of a sample of giant spiral, S0, and elliptical galaxies with distances of ~10-30 Mpc. We use mosaic CCD cameras on the WIYN 3.5-m and Kitt Peak 4-m telescopes to acquire deep BVR imaging of each galaxy and then analyze the data to derive global properties of the globular cluster system. In addition to measuring the total numbers, specific frequencies, spatial distributions, and color distributions for the globular cluster populations, we have produced deep, high-quality images and lists of tens to thousands of globular cluster candidates for the ~40 galaxies included in the survey.With the survey nearing completion, we have been exploring how to efficiently disseminate not only the overall results, but also all of the relevant data products, to the astronomical community. Here we present our solution: a scientific portal and archive for extragalactic globular cluster systems data. With a modern and intuitive web interface built on the same framework as the WIYN One Degree Imager Portal, Pipeline, and Archive (ODI-PPA), our system will provide public access to the survey results and the final stacked mosaic images of the target galaxies. In addition, the astrometric and photometric data for thousands of identified globular cluster candidates, as well as for all point sources detected in each field, will be indexed and searchable. Where available, spectroscopic follow-up data will be paired with the candidates. Advanced imaging tools will enable users to overlay the cluster candidates and other sources on the mosaic images within the web interface, while metadata charting tools will allow users to rapidly and seamlessly plot the survey results for each galaxy and the data for hundreds of thousands of individual sources. Finally, we will appeal to other researchers with similar data products and work toward making our portal a central repository for data

  14. TRACING MOLECULAR GAS MASS IN EXTREME EXTRAGALACTIC ENVIRONMENTS: AN OBSERVATIONAL STUDY

    International Nuclear Information System (INIS)

    Zhu Ming; Papadopoulos, Padeli P.; Xilouris, Emmanuel M.; Kuno, Nario; Lisenfeld, Ute

    2009-01-01

    We present a new observational study of the 12 CO(1-0) line emission as an H 2 gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H 2 , H I, and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC 3310, and the quiescent spiral NGC 157. Our study maintains a robust statistical notion of the so-called X = N(H 2 )/I CO factor (i.e., a large ensemble of clouds is involved) while exploring its dependence on the very different average ISM conditions prevailing within these two systems. These are constrained by fully sampled 12 CO(3-2) and 12 CO(1-0) observations, at a matched beam resolution of half-power beam width ∼15'', obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea (Hawaii) and the 45 m telescope of the Nobeyama Radio Observatory in Japan, combined with sensitive 850 μm and 450 μm dust emission and H I interferometric images which allow a complete view of all the neutral ISM components. Complementary 12 CO(2-1) observations were obtained with the JCMT toward the center of the two galaxies. We found an X factor varying by a factor of 5 within the spiral galaxy NGC 157 and about two times lower than the Galactic value in NGC 3310. In addition, the dust emission spectrum in NGC 3310 shows a pronounced submillimeter 'excess'. We tried to fit this excess by a cold dust component but very low temperatures were required (T C ∼ 5-11 K) with a correspondingly low gas-to-dust mass ratio of ∼5-43. We furthermore show that it is not possible to maintain the large quantities of dust required at these low temperatures in this starburst galaxy. Instead, we conclude that the dust properties need to be different from Galactic dust in order to fit the submillimeter 'excess'. We show that the dust spectral energy

  15. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    Science.gov (United States)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    RESUMEN. Chorros Extragalacticos (CE) y Fuentes Radio Extendidas (FRE) son locales de ricos y complejos procesos de plasma magnetizado. Recien tes observaciones indican que esas fuentes son estructuradas en filamen tos. Nos concentramos aqui en el analisis de dos problemas: 1) el prob[e ma de injecci6n,queespropuesto porlas teorias de aceleraci6n de p ? las en plasmas de CE e FRE, que necesitan partfculas que ya tengan ener gfas moderadamente relativisticas para que los procesos de Fermi sean efectivos; y 2) la reciente evidencia observacional de la ausencia de partfculas termicas en CE. El presente modelo pone en evidencia que ambos problemas estan 1ntimamente relacionados uno con el otro. Jafelice y Opher (1987a) (Astrophys. Space Sci. 137, 303) muestram que es espera da una abundante generaci6n de olas Alf cineticas (OAC) en CE y FRE. En el presente trabajo estudiamos Ia cadena de procesos: a) OAC aceleran electrons termicos al largo del campo magnetico de fondo producien- do electrones supratermicos fugitivos; b) que generan olas Langmuir; y c) las cuales por su vez aceleran una fraccion de los electrones fugi- tivos hasta energias moderadamente relativfsticas. Mostramos que supo - niendo que no haya otra fuente de poblaci6n termica a no ser la , la secuencia de procesos arriba puede encargarse delconsumo de los elec- trones termicos en una escala de tiempo %< que el tiempo de vida de la fuente. ABSTRACT: Extragalactic Jets (EJ) and Extended Radio Sources (ERS) are sites of rich and complex magnetized plasma processes.Recent observa - tions indicate that these sources are filamentary structured. We concentrate here on the analysis of two problems:i) the injection problem, faced by theories of particle acceleration in EJ and ERS plasmas, which need particles with already moderately relativistic energies for the Fer mi processes `to be effective; and 2) the recent observational evidence of the abscence of thermal particles within EJ. The present model makes

  16. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  17. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    Science.gov (United States)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  18. Bright environments vision of the Intelligent Lighting Institute (ILI)

    NARCIS (Netherlands)

    Özçelebi, T.

    2014-01-01

    The Bright Environments research program of the Eindhoven University of Technology Intelligent Lighting Institute aims to find new methods of intelligent lighting control and human interaction. We present a summary of the institute’s work on this research field and the research vision of the Bright

  19. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  20. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  1. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  2. Dark and bright vortex solitons in electromagnetically induced transparent media

    International Nuclear Information System (INIS)

    Wu Xuan; Xie Xiaotao; Yang Xiaoxue

    2006-01-01

    We show that dark and bright vortex solitons can exist in three-state electromagnetically induced transparent media under some appropriate conditions. We also analyse the stability of the dark and bright vortex solitons. This work may provide other research opportunities in nonlinear optical experiments and may result in a substantial impact on technology

  3. Edge integration and the perception of brightness and darkness

    NARCIS (Netherlands)

    Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W.

    2006-01-01

    How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the

  4. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris

    2015-01-01

    Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but a...

  5. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Science.gov (United States)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  6. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  7. Peering Through the Muck: Notes on the the Influence of the Galactic Interstellar Medium on Extragalactic Observations

    Science.gov (United States)

    Lockman, Felix J.

    This paper considers some effects of foreground Galactic gas on radiation received from extragalactic objects, with an emphasis on the use of the 21cm line to determine the total N(HI). In general, the opacity of the 21cm line makes it impossible to derive an accurate value of N(HI) by simply applying a formula to the observed emission, except in directions where there is very little interstellar matter. The 21cm line can be used to estimate the likelihood that there is significant molecular hydrogen in a particular direction, but carries little or no information on the amount of ionized gas, which can be a major source of foreground effects. Considerable discussion is devoted to the importance of small-scale angular structure in HI, with the conclusion that it will rarely contribute significantly to the total error compared to other factors (such as the effects of ionized gas) for extragalactic sight lines at high Galactic latitude. The direction of the Hubble/Chandra Deep Field North is used as an example of the complexities that might occur even in the absence of opacity or molecular gas.

  8. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  9. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    International Nuclear Information System (INIS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  10. Constraint on dark matter annihilation with dark star formation using Fermi extragalactic diffuse gamma-ray background data

    International Nuclear Information System (INIS)

    Yuan, Qiang; Yue, Bin; Chen, Xuelei; Zhang, Bing

    2011-01-01

    It has been proposed that during the formation of the first generation stars there might be a ''dark star'' phase in which the power of the star comes from dark matter annihilation. The adiabatic contraction process to form the dark star would result in a highly concentrated density profile of the host halo at the same time, which may give enhanced indirect detection signals of dark matter. In this work we investigate the extragalactic γ-ray background from dark matter annihilation with such a dark star formation scenario, and employ the isotropic γ-ray data from Fermi-LAT to constrain the model parameters of dark matter. The results suffer from large uncertainties of both the formation rate of the first generation stars and the subsequent evolution effects of the host halos of the dark stars. We find, in the most optimistic case for γ-ray production via dark matter annihilation, the expected extragalactic γ-ray flux will be enhanced by 1-2 orders of magnitude. In such a case, the annihilation cross section of the supersymmetric dark matter can be constrained to the thermal production level, and the leptonic dark matter model which is proposed to explain the positron/electron excesses can be well excluded. Conversely, if the positron/electron excesses are of a dark matter annihilation origin, then the early Universe environment is such that no dark star can form

  11. Brightness waves of electroluminescence in ZnO:La electroluminor

    International Nuclear Information System (INIS)

    Bhushan, S.; Pandey, A.N.; Kaza, Balakrishna Rao

    1979-01-01

    A cryostat for the measurement of different luminescent characteristics from liquid N 2 temperature to above has been fabricated. Using this cryostat brightness waves due to sinusoidal excitations for ZnO:La electroluminor (EL) has been studied at different temperatures from -168deg C. Brightness waves for this system consist of two primary peaks during each cycle of excitation. Each primary peak is associated with a secondary peak. This secondary peak at -168deg C exists at the left arm of the primary peak. As the temperature is increased to 18deg C it moves towards the right arm of the primary peak. At an intermediate temperature the secondary peaks are most pronounced. Possible mechanism for these phenomena have been discussed. Temperature dependence of time averaged EL brightness for this system has also been studied and three peaks have been found. The results of brightness waves have also been discussed in the light of temperature dependence of time averaged EL brightness. (auth.)

  12. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  13. Intercomparisons of nine sky brightness detectors.

    Science.gov (United States)

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2011-01-01

    Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 ± 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  14. Dark Skies, Bright Kids Year 9

    Science.gov (United States)

    Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  15. Enhanced brightness x-ray lasers

    International Nuclear Information System (INIS)

    Wan, A.S.; Cauble, R.C.; Da Silva, L.B.; Moreno, J.C.; Nilsen, J.

    1994-09-01

    We are developing short-pulsed, enhanced-brightness, and coherent x-ray lasers (XRLs) for applications in areas such as plasma imaging. In a traveling wave pump setup the optical laser creating the XRL plasma sweeps along the lasant axis at the same speed as the x-rays. This technique becomes increasingly important as the target length increases and the gain duration shortens. An order of magnitude increase in output energy was measured with vs without traveling wave pump. Using multiple pulse techniques and multilayer mirrors to inject the output of one pulse back into the plasma formed by a later pulse we have begun to develop the x-ray analog of a multi-pass amplifler. The use of multiple pulses separated by as much as 1.6 ns reduces multilayer mirror damage. This injection technique is demonstrated by imaging the near-field emission profiles of the XRL. The addition of multilayer beamsplitter will allow us to effectively produce a soft XRL cavity

  16. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  17. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  18. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  19. Intercomparisons of Nine Sky Brightness Detectors

    Directory of Open Access Journals (Sweden)

    Henk Spoelstra

    2011-10-01

    Full Text Available Nine Sky Quality Meters (SQMs have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  20. Dark Skies, Bright Kids Year 6

    Science.gov (United States)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine

    2015-01-01

    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  1. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  2. Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet

    Science.gov (United States)

    Nucita, A. A.; Licchelli, D.; De Paolis, F.; Ingrosso, G.; Strafella, F.; Katysheva, N.; Shugarov, S.

    2018-05-01

    The transient event labelled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only 700-800 pc from Earth. Here, we show that observations with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low-mass ratio components. We present a complete description of the binary lens system, which host an Earth-like planet with most likely mass of 9.2 ± 6.6 M⊕. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of ≃380 pc and mass ≃0.25 M⊙.

  3. Engaging Audiences in Planetary Science Through Visualizations

    Science.gov (United States)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  4. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  5. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  6. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  7. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  8. Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties

    Science.gov (United States)

    Eide, Marius B.; Gronke, Max; Dijkstra, Mark; Hayes, Matthew

    2018-04-01

    Lyα is a powerful astrophysical probe. Not only is it ubiquitous at high redshifts, it is also a resonant line, making Lyα photons scatter. This scattering process depends on the physical conditions of the gas through which Lyα propagates, and these conditions are imprinted on observables such as the Lyα spectrum and its surface brightness profile. In this work, we focus on a less-used observable capable of probing any scattering process: polarization. We implement the density matrix formalism of polarization into the Monte Carlo radiative transfer code tlac. This allows us to treat it as a quantum mechanical process where single photons develop and lose polarization from scatterings in arbitrary gas geometries. We explore static and expanding ellipsoids, biconical outflows, and clumpy multiphase media. We find that photons become increasingly polarized as they scatter and diffuse into the wings of the line profiles, making scattered Lyα polarized in general. The degree and orientation of Lyα polarization depends on the kinematics and distribution of the scattering H I gas. We find that it generally probes spatial or velocity space asymmetries and aligns itself tangentially to the emission source. We show that the mentioned observables, when studied separately, can leave similar signatures for different source models. We conclude by revealing how a joint analysis of the Lyα spectra, surface brightness profiles, and polarization can break these degeneracies and help us extract unique physical information on galaxies and their environments from their strongest, most prominent emission line.

  9. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  10. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  11. Planetary Cartography - Activities and Current Challenges

    Science.gov (United States)

    Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita

    2018-05-01

    Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

  12. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  13. Dark Skies, Bright Kids! Year 3

    Science.gov (United States)

    Whelan, David G.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R. L.; Borish, J.; Corby, J. F.; Dorsey, G.; Gugliucci, N. E.; Prager, B. J.; Ries, P. A.; Romero, C. E.; Sokal, K. R.; Tang, X.; Walker, L. M.; Yang, A. J.; Zasowski, G.

    2012-01-01

    Dark Skies, Bright Kids! (DSBK) is a program that brings astronomy education to elementary schools throughout central Virginia. In a relaxed, out-of-classroom atmosphere, we are able to foster the innate curiosity that young students have about science and the world around them. We target schools that are under-served due to their rural locale or special needs students, demonstrating that science is a fun and creative process to a segment of the population that might not otherwise be exposed to astronomy. Families are included in the learning experience during semi-annual `star parties'. Since last January, we have expanded the breadth and depth of our educational capabilities. We have developed new programs for use in our digital planetarium. We held the first Central Virginia Star Party, providing an atmosphere where local children from multiple schools were able to share their love for astronomy. Local government and University officials were also invited so that they could experience our focused science outreach. Most recently, we have become part of Ivy Creek School's Club Day activities, bringing our program to a new segment of the elementary school system in Albemarle County: those that have `low-incidence' disabilities, requiring special attention. We continue to develop a curriculum for after-school programs that functions as either a series of one-time activities or several months of focused outreach at one school. Many of these activities are provided on our website, http://www.astro.virginia.edu/dsbk/, for the wider astronomical community, including the new planetarium work. We have extended our book project to include two bilingual astronomy books called `Snapshots of the Universe,' one in Spanish and English, the other in French and English. These books introduce young people to some of the many wonders of the Universe through art and captions developed by DSBK volunteers.

  14. Bright field electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Johansen, B.V.

    1976-01-01

    A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)

  15. Dark Skies, Bright Kids! Year 4

    Science.gov (United States)

    Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.

    2013-01-01

    Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning

  16. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  17. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  18. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  19. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  20. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  1. NIGHT SKY BRIGHTNESS ABOVE ZAGREB 2012.-2017.

    Directory of Open Access Journals (Sweden)

    Željko Andreić

    2018-01-01

    Full Text Available The night sky brightness at the RGN site (near the centre of Zagreb, Croatia was monitored form January 2012. to December 2017. The gathered data show that the average night sky brightness in this period did not change significantly, apart from differences caused by yearly variations in meteorological parameters. The nightly minima, maxima and mean values of the sky brightness do change considerably due to changes in meteorological conditions, often being between 2 and 3 magnitudes. The seasonal probability curves and histograms are constructed and are used to obtain additional information on the light pollution at the RGN site. They reveal that the night sky brightness clutters around two peaks, at about 15.0 mag/arcsec2 and at about 18.2 mag/arcsec2. The tendency to slightly lower brightness values in spring and summer can also be seen in the data. Two peaks correspond to cloudy and clear nights respectively, the difference in brightness between them being about 3 magnitudes. A crude clear/cloudy criterion can be defined too: the minimum between two peaks is around 16.7 mag/arcsec2. The brightness values smaller than thisare attributed to clear nights and vice-versa. Comparison with Vienna and Hong-Kong indicates that the light pollution of Zagreb is a few times larger.

  2. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  3. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.

    2009-01-01

    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency...... of a bright quantum state by transferring the sideband modes under interrogation to a vacuum state and subsequently measuring the quadrature via homodyne detection. The scheme is implemented experimentally, and it is successfully tested with a bright squeezed state of light....

  4. SMALL PLANETARY SATELLITE COLORS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include published colors of small planetary satellites published up through December 2003. Small planetary satellites are defined as all...

  5. Standards-Based Open-Source Planetary Map Server: Lunaserv

    Science.gov (United States)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.

    2018-04-01

    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  6. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  7. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  8. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  9. Planetary sciences and exploration: An Indian perspective

    Indian Academy of Sciences (India)

    Studies of impact craters records in the Indian shield have also been pursued and led to ... and emission of X-rays from planets as well as analytical modelling of martian ionosphere and ... Meteorite; moon; solar activity; solar system; martian atmosphere; planetary .... face layers of any meteorite reaching the earth, one.

  10. Keplerian planetary orbits in multidimensional Euclidian spaces ...

    African Journals Online (AJOL)

    Newton's laws of motion are three physical laws that together, laid the foundation for classical three dimensional mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. Kepler's laws of planetary motion are also three scientific laws describing the ...

  11. Allowed planetary orbits in the solar system

    International Nuclear Information System (INIS)

    Pintr, P.; Perinova, V.; Luks, A.

    2008-01-01

    A new law of the Titius-Bode type for planetary distances from the Sun is proposed. These distances for each planet are determined using appropriate nodal circle of a vibrating membrane. Regularities in the distribution of bodies in the solar system and in the systems of giant planets and some exoplanets are pointed out

  12. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  13. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations...

  14. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  15. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  16. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  17. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  18. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  19. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a

  20. Quasibiennial Periodicity of Solar and Planetary Phenomena

    Science.gov (United States)

    Predeanu, Irina

    The quasibiennial oscillation (QBO) of various solar and geophysical parameters is anlysed, taking some planetary configurations as temporal reference points. The incidence of the QBO minima in the proximity of Sun-Mars oppositions is discussed. The increase of this effect when Mars is near the perihelion or Jupiter is conjunct to the Sun is pointed out,

  1. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    Science.gov (United States)

    Evans, N.

    1984-09-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  2. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    Energy Technology Data Exchange (ETDEWEB)

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Pepe, Francesco; Udry, Stéphane; Lovis, Christophe [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Versoix (Switzerland); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Molinari, Emilio; Boschin, Walter [INAF-Fundación Galileo Galilei, Rambla José Ana Fernández Pérez, 7, E-38712 Breña Baja (Spain); Matthews, Jaymie M. [University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Cameron, Chris [Cape Breton University, 1250 Grand Lake Road, Sydney NS B1P 6L2 (Canada); Law, Nicholas [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Bowler, Brendan P. [California Institute of Technology, Pasadena, CA 91125 (United States); Baranec, Christoph, E-mail: avanderburg@cfa.harvard.edu [University of Hawai' i at Mānoa, Hilo, HI 96720 (United States); and others

    2015-02-10

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R {sub *} = 0.716 ± 0.024 R {sub ☉} and mass M {sub *} = 0.775 ± 0.027 M {sub ☉}. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R{sub p} = 2.53 ± 0.18 R {sub ⊕}. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M {sub ⊕} planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.

  3. CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454

    International Nuclear Information System (INIS)

    Vanderburg, Andrew; Montet, Benjamin T.; Johnson, John Asher; Buchhave, Lars A.; Zeng, Li; Latham, David W.; Angus, Ruth; Bieryla, Allyson; Charbonneau, David; Pepe, Francesco; Udry, Stéphane; Lovis, Christophe; Cameron, Andrew Collier; Molinari, Emilio; Boschin, Walter; Matthews, Jaymie M.; Cameron, Chris; Law, Nicholas; Bowler, Brendan P.; Baranec, Christoph

    2015-01-01

    We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] =–0.16 ± 0.08 and has a radius R * = 0.716 ± 0.024 R ☉ and mass M * = 0.775 ± 0.027 M ☉ . The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of R p = 2.53 ± 0.18 R ⊕ . Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M ⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars

  4. The History of Planetary Exploration Using Mass Spectrometers

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

  5. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  6. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  7. A new perspective on the infrared brightness temperature ...

    Indian Academy of Sciences (India)

    CEAWMT), ... temperatures clearly discriminates the cloud pixels of deep convective and ... utilized in the modelling of the histogram of infrared brightness temperature of deep convective and ..... Henderson-Sellers A 1978 Surface type and its effect.

  8. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  9. Visible Color and Photometry of Bright Materials on Vesta

    Science.gov (United States)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  10. Nimbus-5 ESMR Polar Gridded Brightness Temperatures, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data set consists of gridded brightness temperature arrays for the Arctic and Antarctic, spanning 11...

  11. The AGN fraction of submm-selected galaxies and contributions to the submm/mm-wave extragalactic background light

    Science.gov (United States)

    Serjeant, S.; Negrello, M.; Pearson, C.; Mortier, A.; Austermann, J.; Aretxaga, I.; Clements, D.; Chapman, S.; Dye, S.; Dunlop, J.; Dunne, L.; Farrah, D.; Hughes, D.; Lee, H.-M.; Matsuhara, H.; Ibar, E.; Im, M.; Jeong, W.-S.; Kim, S.; Oyabu, S.; Takagi, T.; Wada, T.; Wilson, G.; Vaccari, M.; Yun, M.

    2010-05-01

    We present a comparison of the SCUBA half degree extragalactic survey (SHADES) at 450 μm, 850 μm and 1100 μm with deep guaranteed time 15 μm AKARI FU-HYU survey data and Spitzer guaranteed time data at 3.6-24 μm in the Lockman hole east. The AKARI data was analysed using bespoke software based in part on the drizzling and minimum-variance matched filtering developed for SHADES, and was cross-calibrated against ISO fluxes. Our stacking analyses find AKARI 15 μm galaxies with ⪆200 μJy contribute >10% of the 450 μm background, but only 0.3.

  12. The PMA Catalogue as a realization of the extragalactic reference system in optical and near infrared wavelengths

    Science.gov (United States)

    Akhmetov, Volodymyr S.; Fedorov, Peter N.; Velichko, Anna B.

    2018-04-01

    We combined the data from the Gaia DR1 and Two-Micron All Sky Survey (2MASS) catalogues in order to derive the absolute proper motions more than 420 million stars distributed all over the sky in the stellar magnitude range 8 mag 2MASS catalogue objects, the 2-dimensional median filter was used. The PMA system of proper motion has been obtained by direct link to 1.6 millions extragalactic sources. The short analysis of the absolute proper motion of the PMA stars Catalogue is presented in this work. From a comparison of this data with same stars from the TGAS, UCAC4 and PPMXL catalogues, the equatorial components of the mutual rotation vector of these coordinate systems are determined.

  13. The NuSTAR Extragalactic Surveys: Initial Results and Catalog from the Extended Chandra Deep Field South

    DEFF Research Database (Denmark)

    Mullaney, J. R.; Del-Moro, A.; Aird, J.

    2015-01-01

    We present the initial results and the source catalog from the Nuclear Spectroscopic Telescope Array (NuSTAR) survey of the Extended Chandra Deep Field South (hereafter, ECDFS)—currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ≈30......V fluxes) span the range L10 40 keV (0.7 300) 10 erg s» - ´ 43 1 -- ,sampling below the “knee” of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify oneNuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclearactivity at infrared...

  14. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  15. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  16. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  17. Analytically derived conversion of spectral band radiance to brightness temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., 44th Avenue, Burlington, MA 01803 (United States)], E-mail: lex@spectral.com

    2008-05-15

    Simple analytic expressions for brightness temperature have been derived in terms of band response function spectral moments. Accuracy measures are also derived. Application of these formulas to GOES-12 Sounder thermal infrared bands produces brightness temperature residuals between -5.0 and 2.5 mK for a 150-400 K temperature range. The magnitude of residuals for the five ASTER Radiometer thermal infrared bands over the same temperature range is less than 0.22 mK.

  18. CLUES on Fermi-LAT prospects for the extragalactic detection of μνSSM gravitino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Vargas, G.A.; Muñoz, C.; Yepes, G. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Fornasa, M.; Zandanel, F.; Prada, F. [Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada (Spain); Cuesta, A.J., E-mail: germanarturo.gomez@uam.es, E-mail: mattia@iaa.es, E-mail: fabio@iaa.es, E-mail: antonio.cuesta@yale.edu, E-mail: carlos.munnoz@uam.es, E-mail: fprada@iaa.es, E-mail: gustavo.yepes@uam.es [Yale Center for Astronomy and Astrophysics, Yale University, CT 06511, New Haven (United States)

    2012-02-01

    The μνSSM is a supersymmetric model that has been proposed to solve the problems generated by other supersymmetric extensions of the standard model of particle physics. Given that R-parity is broken in the μνSSM, the gravitino is a natural candidate for decaying dark matter since its lifetime becomes much longer than the age of the Universe. In this model, gravitino dark matter could be detectable through the emission of a monochromatic gamma ray in a two-body decay. We study the prospects of the Fermi-LAT telescope to detect such monochromatic lines in 5 years of observations of the most massive nearby extragalactic objects. The dark matter halo around the Virgo galaxy cluster is selected as a reference case, since it is associated to a particularly high signal-to-noise ratio and is located in a region scarcely affected by the astrophysical diffuse emission from the galactic plane. The simulation of both signal and background gamma-ray events is carried out with the Fermi Science Tools, and the dark matter distribution around Virgo is taken from a N-body simulation of the nearby extragalactic Universe, with constrained initial conditions provided by the CLUES project. We find that a gravitino with a mass range of 0.6–2 GeV, and with a lifetime range of about 3 × 10{sup 27}–2 × 10{sup 28} s would be detectable by the Fermi-LAT with a signal-to-noise ratio larger than 3. We also obtain that gravitino masses larger than about 4 GeV are already excluded in the μνSSM by Fermi-LAT data of the galactic halo.

  19. NEUTRON-CAPTURE ELEMENT ABUNDANCES IN MAGELLANIC CLOUD PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Mashburn, A. L.; Sterling, N. C. [Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118 (United States); Madonna, S. [Instituto de Astrofísica de Canarias, Departamento Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Dinerstein, Harriet L. [Department of Astronomy, University of Texas, 2515 Speedway, C1400, Austin, TX 78712-1205 (United States); Roederer, I. U. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Geballe, T. R., E-mail: awhite15@my.westga.edu, E-mail: nsterlin@westga.edu, E-mail: smadonna@iac.es, E-mail: harriet@astro.as.utexas.edu, E-mail: iur@umich.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States)

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n -capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s -process enrichments of Kr (0.6–1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5–0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2–3 M {sub ⊙} progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s -process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2–0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n -capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s -process enrichments to be studied in PN populations with well-determined distances.

  20. Three Transits for the Price of One: Super-Earth Transits of the Nearest Planetary System Discovered By Kepler/K2

    Science.gov (United States)

    Redfield, Seth; Niraula, Prajwal; Hedges, Christina; Crossfield, Ian; Kreidberg, Laura; Greene, Tom; Rodriguez, Joey; Vanderburg, Andrew; Laughlin, Gregory; Millholland, Sarah; Wang, Songhu; Cochran, William; Livingston, John; Gandolfi, Davide; Guenther, Eike; Fridlund, Malcolm; Korth, Judith

    2018-05-01

    We propose primary transit observations of three Super-Earth planets in the newly discovered planetary system around a bright, nearby star, GJ 9827. We recently announced the detection of three super-Earth planets in 1:3:5 commensurability, the inner planet, GJ 9827 b having a period of 1.2 days. This is the nearest planetary system that Kepler or K2 has found, at 30 pc, and given its brightness is one of the top systems for follow-up characterization. This system presents a unique opportunity to acquire three planetary transits for the price of one. There are several opportunities in the Spitzer visibility windows to obtain all three transits in a short period of time. We propose 3.6 micron observations of all three Super-Earth transits in a single 18-hour observation window. The proximity to a 1:3:5 resonance is intriguing from a dynamical standpoint as well. Indeed, anomalous transit timing offsets have been measured for planet d in Hubble observations that suffer from partial phase coverage. The short cadence and extended coverage of Spitzer is essential to provide a firm determination of the ephemerides and characterize any transit timing variations. Constraining these orbital parameters is critical for follow-up observations from space and ground-based telescopes. Due to the brightness of the host star, this planetary system is likely to be extensively observed in the years to come. Indeed, our team has acquired observations of the planets orbiting GJ9827 with Hubble in the ultraviolet and infrared. The proposed observations will provide infrared atmospheric measurements and firm orbital characterization which is critical for planning and designing future observations, in particular atmospheric characterization with JWST.

  1. The effect of bright lines in environmental risk communication

    International Nuclear Information System (INIS)

    Wilson, K.N.; Desvousges, W.H.; Smith, K.V.; Payne, J.

    1993-01-01

    Bright lines in environmental risk communication refer to the specific levels at which an environmental risk becomes a serious health threat and action should be taken to mitigate its effects. This study examined the effect of ''bright lines'' in risk communication by emphasizing the radon exposure threshold level of 4 picocuries per liter. Specifically, the authors developed a computer-assisted interview containing bright-line versions of risk information. The bright-line version contained a range of possible radon levels, the corresponding number of estimated lung cancer cases, the relative health risk from radon compared to other health risks, and the EPA guidelines for mitigating levels above 4 picocuries in the home. The non-bright line version was identical to the bright-line version, except it did not include the EPA's mitigation recommendations. Effect measures included respondents' change in perceived risk after reading their materials, intended testing behavior, and advice to their neighbor for a specified radon level either above or below the 4 picocury threshold level. This paper discusses broader policy implications for designing effective risk communication programs

  2. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a

  3. Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Directory of Open Access Journals (Sweden)

    Payne, J. L.

    2008-06-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37~GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4arcsec/2arcsec. Optical PNe and radio candidates are within 2arcsec and may represent a sub-population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6~$M_odot$ or greater, supporting the existence of PNe progenitor central stars with masses up to 8 $M_odot$.

  4. Optical spectra of radio planetary nebulae in the small Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Payne J.L.

    2008-01-01

    Full Text Available We present preliminary results from spectral observations of four (4 candidate radio sources co-identified with known planetary nebulae (PNe in the Small Magellanic Cloud (SMC. These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (400 /200 . Optical PNe and radio candidates are within 200 and may represent a sub- population of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 Mo or greater, supporting the existence of PNe progenitor central stars with masses up to 8 Mo.

  5. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  6. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  7. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  8. Continuing Improvement in the Planetary Ephemeris with VLBA Observations of Cassini

    Science.gov (United States)

    Jones, Dayton L.; Folkner, William M.; Jacobson, Robert A.; Jacobs, Christopher S.; Romney, Jonathan D.; Dhawan, Vivek; Fomalont, Edward B.

    2016-06-01

    During the past decade a continuing series of measurements of the barycentric position of the Saturn system in the inertial International Celestial Reference Frame (ICRF) has led to a significant improvement in our knowledge of Saturn's orbit. This in turn has improved the current accuracy and time range of the solar system ephemeris produced and maintained by the Jet Propulsion Laboratory. Our observing technique involves high-precision astrometry of the radio signal from Cassini with the NRAO Very Long Baseline Array, combined with solutions for the orbital motion of Cassini about the Saturn barycenter from Doppler tracking by the Deep Space Network. Our VLBA astrometry is done in a phase-referencing mode, providing nrad-level relative positions between Cassini and angularly nearby extragalactic radio sources. The positions of those reference radio sources are tied to the ICRF through dedicated VLBI observations by several groups around the world. We will present recent results from our astrometric observations of Cassini through early 2016. This program will continue until the end of the Cassini mission in 2017, although future improvement in Saturn's orbit will be more incremental because we have already covered more that a quarter of Saturn's orbital period. The Juno mission to Jupiter, which will orbit Jupiter for about 1.5 years starting in July 2016, will provide an excellent opportunity for us to apply the same VLBA astrometry technique to improve the orbit of Jupiter by a factor of several. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Program and operated under license. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract

  9. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    Science.gov (United States)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  10. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  11. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  12. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  13. The 830--1120 A Spectrum of a Bright Comet: First Results on Hale-Bopp

    Science.gov (United States)

    Stern, S. Alan; Festou, Michel C.; Slater, David C.; Parker, Joel Wm.; A'Hearn, Michael F.

    1998-09-01

    The EUVS planetary sounding rocket spectrograph was flown on 29 March 1997 from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 Angstroms. At the time of launch the comet was near perihelion, 0.92 AU from the Sun, 1.34 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 3 Angstroms, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 Angstroms yet achieved. The spectrum includes significant detections which we tentatively attribute to due to 834 Angstroms 0 II, the 1026 Angstroms H I Lyman beta /O I blend, and 989 Angstroms O I; we will also discuss evidence for Argon signatures, as well as two additional, yet to be identified features. We will describe the EUVS Hale-Bopp experiment and its results, including feature brightnesses, corresponding columns, and species abundance ratios in the inner coma. In addition to its value for providing insight into comets in general, and Hale-Bopp in particular, this spectrum is serving as an excellent input for New Millennium Deep Space 1/MICAS and Rosetta/ALICE UV observation planning below 1200 Angstroms.

  14. Three Small Planets Transiting the Bright Young Field Star K2-233

    Science.gov (United States)

    David, Trevor J.; Crossfield, Ian J. M.; Benneke, Björn; Petigura, Erik A.; Gonzales, Erica J.; Schlieder, Joshua E.; Yu, Liang; Isaacson, Howard T.; Howard, Andrew W.; Ciardi, David R.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Cody, Ann Marie; Riedel, Adric; Schwengeler, Hans Martin; Tanner, Christopher; Ende, Martin

    2018-05-01

    We report the detection of three small transiting planets around the young K3 dwarf K2-233 (2MASS J15215519‑2013539) from observations during Campaign 15 of the K2 mission. The star is relatively nearby (d = 69 pc) and bright (V = 10.7 mag, K s = 8.4 mag), making the planetary system an attractive target for radial velocity follow-up and atmospheric characterization with the James Webb Space Telescope. The inner two planets are hot super-Earths (R b = 1.40 ± 0.06 {R}\\oplus , R c = 1.34 ± 0.08 {R}\\oplus ), while the outer planet is a warm sub-Neptune (R d = 2.6 ± 0.1 {R}\\oplus ). We estimate the stellar age to be {360}-140+490 Myr based on rotation, activity, and kinematic indicators. The K2-233 system is particularly interesting given recent evidence for inflated radii in planets around similarly aged stars, a trend potentially related to photo-evaporation, core cooling, or both mechanisms.

  15. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  16. Color and emotion: effects of hue, saturation, and brightness.

    Science.gov (United States)

    Wilms, Lisa; Oberfeld, Daniel

    2017-06-13

    Previous studies on emotional effects of color often failed to control all the three perceptual dimensions of color: hue, saturation, and brightness. Here, we presented a three-dimensional space of chromatic colors by independently varying hue (blue, green, red), saturation (low, medium, high), and brightness (dark, medium, bright) in a factorial design. The 27 chromatic colors, plus 3 brightness-matched achromatic colors, were presented via an LED display. Participants (N = 62) viewed each color for 30 s and then rated their current emotional state (valence and arousal). Skin conductance and heart rate were measured continuously. The emotion ratings showed that saturated and bright colors were associated with higher arousal. The hue also had a significant effect on arousal, which increased from blue and green to red. The ratings of valence were the highest for saturated and bright colors, and also depended on the hue. Several interaction effects of the three color dimensions were observed for both arousal and valence. For instance, the valence ratings were higher for blue than for the remaining hues, but only for highly saturated colors. Saturated and bright colors caused significantly stronger skin conductance responses. Achromatic colors resulted in a short-term deceleration in the heart rate, while chromatic colors caused an acceleration. The results confirm that color stimuli have effects on the emotional state of the observer. These effects are not only determined by the hue of a color, as is often assumed, but by all the three color dimensions as well as their interactions.

  17. Beam brightness calculation for analytical and empirical distribution functions

    International Nuclear Information System (INIS)

    Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.

    1992-01-01

    The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution

  18. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  19. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  20. 1984 Mauna Loa eruption and planetary geolgoy

    International Nuclear Information System (INIS)

    Moore, H.J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates