WorldWideScience

Sample records for bright collimated light

  1. Compact collimators for high brightness blue LEDs using dielectric multilayers

    NARCIS (Netherlands)

    Cornelissen, H.J.; Ma, H.; Ho, C.; Li, M.; Mu, C.

    2011-01-01

    A novel method is presented to inject the light of millimeter-sized high-brightness blue LEDs into light guides of submillimeter thickness. Use is made of an interference filter that is designed to pass only those modes that will propagate in the light guide by total internal reflection. Other modes

  2. Bright Lights, Big Cities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Overabundant lighting has become another pollution source in the Chinese cities The glow of electric lights illuminating the nights of ever-brighter cities has been regarded as one of the signs of prosperity and modern civilization.

  3. Bright Lights, Big Cities

    OpenAIRE

    Bundervoet, Tom; Maiyo, Laban; Sanghi, Apurva

    2015-01-01

    This paper uses the night lights (satellite imagery from outer space) approach to estimate growth in and levels of subnational 2013 gross domestic product for 47 counties in Kenya and 30 districts in Rwanda. Estimating subnational gross domestic product is consequential for three reasons. First, there is strong policy interest in how growth can occur in different parts of countries, so tha...

  4. [Bright light therapy for elderly].

    Science.gov (United States)

    Okawa, Masako

    2015-06-01

    Bright light therapy (BLT) holds considerable promise for sleep problems in the elderly. BLT for community-dwelling patients with Alzheimer's disease showed significant improvement in sleep parameters. In the institutional setting, BLT was effective in reducing daytime nap duration. Morning BLT was found to advance the peak circadian rhythm and increase activity level in daytime and melatonin level at night. Light therapy could be used in combination with other nonpharmacological methods such as social activities, outside walking, physical exercises, which showed greater effects than independent BLT on sleep and cognitive function. BLT treatment strategy was proposed in the present paper. We should pay more attentions to BLT in community setting for mental and physical well-being. PMID:26065132

  5. Collimators

    CERN Document Server

    Wronka, Slawomir

    2013-01-01

    The collimator system of a particle accelerator must efficiently remove stray particles and provide protection against uncontrolled losses. In this article, the basic design concepts of collimators and some realizations are presented.

  6. Collimator

    International Nuclear Information System (INIS)

    A new type of collimator is described for gamma spectrometric measurement of irradiated nuclear fuel. The design features greater accuracy of the collimation apperture along the whole axis of the collimator and will enable a more accurate nondestructive investigation of the physical properties of the irradiated fuel. (J.C.)

  7. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  8. Collimated Light Source Using Patterned Organic Light-Emitting Diodes and Microlens

    Science.gov (United States)

    Sukekazu Aratani,; Masaya Adachi,; Masao Shimizu,; Tatsuya Sugita,; Toshinari Shibasaki,; Katsusuke Shimazaki,

    2010-04-01

    We developed for the first time a collimated organic light-emitting diode (OLED) light source using a patterned OLED and a microlens. The structure of the collimated OLED light source was designed by conventional ray-tracking simulation. We demonstrated that the collimated OLED light source enhanced the luminance of a liquid crystal display (LCD) with a low aperture ratio by a factor of more than two compared with a conventional OLED light source, which was not patterned. The collimated OLED light source with the patterned OLED and microlens is thus very effective for achieving a highly efficient LCD with OLED backlight.

  9. Increasing the brightness of light sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ling

    2006-11-16

    In this work the principle of light recycling is applied to artificial light sources in order to achieve brightness enhancement. Firstly, the feasibilities of increasing the brightness of light sources via light recycling are examined theoretically, based on the fundamental laws of thermodynamics including Kirchhoff's law on radiation, Planck's law, Lambert-Beer's law, the etendue conservation and the brightness theorem. From an experimental viewpoint, the radiation properties of three different kinds of light sources including short-arc lamps, incandescent lamps and LEDs characterized by their light-generating mechanisms are investigated. These three types of sources are used in light recycling experiments, for the purpose of 1. validating the intrinsic light recycling effect in light sources, e. g. the intrinsic light recycling effect in incandescent lamps stemming from the coiled filament structure. 2. acquiring the required parameters for establishing physical models, e.g. the emissivity/absorptivity of the short-arc lamps, the intrinsic reflectivity and the external quantum efficiency of LEDs. 3. laying the foundations for designing optics aimed at brightness enhancement according to the characteristics of the sources and applications. Based on the fundamental laws and experiments, two physical models for simulating the radiance distribution of light sources are established, one for thermal filament lamps, the other for luminescent sources, LEDs. As validation of the theoretical and experimental investigation of the light recycling effect, an optical device, the Carambola, is designed for achieving deterministic and multiple light recycling. The Carambola has the function of a concentrator. In order to achieve the maximum possible brightness enhancement with the Carambola, several combinations of sources and Carambolas are modelled in ray-tracing simulations. Sources with different light-emitting mechanisms and different radiation properties

  10. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise

    OpenAIRE

    Youngstedt, Shawn D.; Kline, Christopher E.; Elliott, Jeffrey A; Zielinski, Mark; Devlin, Tina M.; Moore, Teresa A.

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness...

  11. Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.

    Science.gov (United States)

    Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A

    2016-01-01

    Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935

  12. Bright visible light emission from graphene

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Shim Yoo, Yong; Yoon, Duhee; Dorgan, Vincent E.; Pop, Eric; Heinz, Tony F.; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (˜2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  13. High-brightness beamline for X-ray spectroscopy at the advanced light source

    International Nuclear Information System (INIS)

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard-x-ray beamline, and its brightness will be an order-of-magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new open-quotes Cowan typeclose quotes double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS

  14. Bright artificial light subsensitizes a central muscarinic mechanism.

    Science.gov (United States)

    Dilsaver, S C; Majchrzak, M J

    1987-12-14

    Supersensitivity of a muscarinic mechanism is implicated in the pathophysiology of depression. Bright artificial light is efficacious in the treatment of Seasonal Affective Disorder (SAD). We studied the effect of constant bright light (11,500 lux) on the sensitivity of adult, male rats to oxotremorine, 1.5 mg/kg ip, using a repeated measures design. Oxotremorine challenges were proceeded by the injection of methylscopolamine, 1 mg/kg ip, by 30 minutes. Temperature was telemetrically measured every 10 minutes for 120 minutes starting 10 minutes after the injection of oxotremorine. Prior to and after 7 continuous days of exposure to bright light, the sample exhibited a hypothermic response of 2.50 +/- 0.48 degrees C (mean +/- SEM) and 0.29 +/- 0.31 degrees C (mean +/- SEM), respectively (p less than 0.0014). All 7 animals exhibited blunting to the thermic response to oxotremorine. Bright light also blocked the capacity of amitriptyline to supersensitize a central muscarinic mechanism. Exposure to light at an intensity of 300 lux for 7 days had no effect on the thermic response to oxotremorine. These data are consistent with the hypotheses that the biology of depression involves supersensitivity of central muscarinic mechanisms and that the effects of bright artificial light are not the consequence of shifting circadian rhythms. PMID:3695799

  15. Night Sky Brightness and Light Pollution in Comunidad de Madrid

    OpenAIRE

    Zamorano Calvo, Jaime; Sánchez de Miguel, Alejandro; Gómez Castaño, José; Ocaña González, Francisco; Gallego Maestro, Jesús; Pila Díez, Berenice; Nievas Rosillo, Miguel; Tapia Ayuga, Carlos; Fernández Domínguez, Alberto; Pascual Ramírez, Sergio

    2013-01-01

    Preliminary results of a study of the night sky background brightness around the city of Madrid using Sky Quality Meter (SQM) photometers are presented. Data-retrieval methodology includes an automatic procedure to measure from a moving vehicle which allows to speed up the data gathering. The night sky brightness, an astronomical quality parameter that accounts for luminous flux from the sky, is closely related with the light pollution. The map with the spatial distribution of the night s...

  16. Effects of Bright Light Treatment on Psychomotor Speed in Athletes

    Directory of Open Access Journals (Sweden)

    MikkoPaavoTulppo

    2014-05-01

    Full Text Available Purpose: A recent study suggests that transcranial brain targeted light treatment via ear canals may have physiological effects on brain function studied by functional magnetic resonance imaging (fMRI techniques in humans. We tested the hypothesis that bright light treatment could improve psychomotor speed in professional ice hockey players. Methods: Psychomotor speed tests with audio and visual warning signals were administered to a Finnish National Ice Hockey League team before and after 24 days of transcranial bright light or sham treatment. The treatments were given during seasonal darkness in the Oulu region (latitude 65 degrees north when the strain on the players was also very high (10 matches during 24 days. A daily 12-min dose of bright light or sham (n = 11 for both treatment was given every morning between 8–12 am at home with a transcranial bright light device. Mean reaction time and motor time were analyzed separately for both psychomotor tests. Analysis of variance for repeated measures adjusted for age was performed. Results: Time x group interaction for motor time with a visual warning signal was p = 0.024 after adjustment for age. In Bonferroni post-hoc analysis, motor time with a visual warning signal decreased in the bright light treatment group from 127 ± 43 to 94 ± 26 ms (p = 0.024 but did not change significantly in the sham group 121 ± 23 vs. 110 ± 32 ms (p = 0.308. Reaction time with a visual signal did not change in either group. Reaction or motor time with an audio warning signal did not change in either the treatment or sham group. Conclusion: Psychomotor speed, particularly motor time with a visual warning signal, improves after transcranial bright light treatment in professional ice-hockey players during the competition season in the dark time of the year.

  17. The "Brightness Rules" Alternative Conception for Light Bulb Circuits

    Science.gov (United States)

    Bryan, Joel A.; Stuessy, Carol

    2006-01-01

    An alternative conception for the observed differences in light bulb brightness was revealed during an unguided inquiry investigation in which prospective elementary teachers placed identical bulbs in series, parallel, and combination direct current circuits. Classroom observations, document analyses, and video and audio transcriptions led to the…

  18. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. : Phase delaying efficacy of intermittent bright light

    OpenAIRE

    Gronfier, Claude; Wright, Kenneth,; Kronauer, Richard,; Jewett, Megan,; Czeisler, Charles,

    2004-01-01

    International audience It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered ...

  19. Design of optical system for collimating the light of an LED uniformly.

    Science.gov (United States)

    Chen, Chen; Zhang, Xiaohui

    2014-05-01

    A type of optical system consisting of one total internal reflection (TIR) lens and two reflectors is designed for collimating the light of an LED to a uniform pattern. Application of this kind of optical system includes underwater light communication and an underwater image system. The TIR lens collimates all the light of the LED to a nonuniform plane wavefront. The double-reflector system redistributes the plane wavefront uniformly and collimates again. Three optical systems that produce a different radius of the output light patterns are designed. The simulation result shows that the uniformity of the designed optical system is greater than 0.76, and the total output efficiency (TOE) is greater than 89%. At the same time, we conclude that the radius of the output reflector should not be smaller than that of the input reflector in order to keep high uniformity and TOE. One of the designed optical systems is fabricated by computer numeric control, and the experiment results satisfy that goal. PMID:24979645

  20. Prophylactic treatment of seasonal affective disorder (SAD) by using light visors : Bright white or infrared light?

    NARCIS (Netherlands)

    Meesters, Y; Beersma, DGM; Bouhuys, AL; van den Hoofdakker, RH

    1999-01-01

    Background: Thirty-eight patients with SAD participated in a light visor study addressing two questions. 1. Can the development of a depressive episode be prevent ed by daily exposure to bright light started before symptom onset in early fall and continued throughout the winter? 2. Does the light ha

  1. The optimization of collimator's light-weighting structure based on MOBIE system of TMT

    Science.gov (United States)

    Chen, Hong; Chen, Yi; Hu, Zhongwen; Xu, Mingming; Ji, Hangxin; Wang, Lei

    2015-10-01

    Design a best light-weighting collimator to conform to the requirements of opto-mechanical design. Good surface accuracy is our aim, based on a less mass. The ratio of diameter to thickness, the type, size and thickness of pocket, the thickness of the mirror, the support size and position, the thickness of the wall and so on is concerned. Besides, comparing two kinds material is also discussed. In addition, we consider the situation that the orientation vary in support plane. Use the orthogonal table to analyze these elements, and find the better methods. According to the analysis in ANSYS, the collimator mass can reduce to 103 kg, below 159 kg; the ratio of light-weight can reach 70%; the peak-valley value is below 100 nm, that meets the request of below 200 nm.

  2. Bright light treatment of depression for older adults [ISRCTN55452501

    Directory of Open Access Journals (Sweden)

    Knickerbocker Nancy C

    2005-11-01

    Full Text Available Abstract Background The incidence of insomnia and depression in the elder population is significant. It is hoped that use of light treatment for this group could provide safe, economic, and effective rapid recovery. Methods In this home-based trial we treated depressed elderly subjects with bright white (8,500 Lux and dim red ( Results Eighty-one volunteers, between 60 and 79 years old, completed the study. Both treatment and placebo groups experienced mood improvement. Average GDS scores improved 5 points, the Hamilton Depression Rating Scale (HDRS 17 scores (extracted from the self-rated SIGH-SAD-SR improved 6 points. There were no significant treatment effects or time-by-treatment interactions. No significant adverse reactions were observed in either treatment group. The assays of urine and saliva showed no significant differences between the treatment and placebo groups. The healthy control group was active earlier and slept earlier but received less light than the depressed group at baseline. Conclusion Antidepressant response to bright light treatment in this age group was not statistically superior to placebo. Both treatment and placebo groups experienced a clinically significant overall improvement of 16%.

  3. Implementing bright light treatment for MSFC payload operations shiftworkers

    Science.gov (United States)

    Hayes, Benita C.; Stewart, Karen T.; Eastman, Charmane I.

    1994-01-01

    Intense light can phase-shift circadian rhythms and improve performance, sleep, and wellbeing during shiftwork simulations, but to date there have been very few attempts to administer light treatment to real shiftworkers. We have developed procedures for implementing light treatment and have conducted controlled trials of light treatment for MSFC Payload Operations staff during the USML-1 mission. We found that treatment had beneficial effects on fatigue, alertness, self-rated job performance, sleep, mood, and work attendance. Although there are portable bright light boxes commercially available, there is no testing protocol and little performance information available. We measure the illuminance of two candidate boxes for use in this study and found that levels were consistently lower than those advertised by manufacturers. A device was developed to enhance the illuminance output of such units. This device increased the illuminance by at least 60 % and provided additional improvements in visual comfort and overall exposure. Both the design of this device and some suggested procedures for evaluating light devices are presented.

  4. Relationships between brightness of nighttime lights and population density

    Science.gov (United States)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly

  5. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans

    OpenAIRE

    Gronfier, Claude; Wright, Kenneth P.; Kronauer, Richard E.; Jewett, Megan E.; Czeisler, Charles A.

    2004-01-01

    It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker, and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine if a single sequence of brief bright light pulses administered during the early biological ni...

  6. Lattice Development for Pep-X High Brightness Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Nosochkov, Yuri; /SLAC; Cai, Yunhai; /SLAC; Wang, Min-Huey; /SLAC

    2010-08-25

    Design of PEP-X high brightness light source machine is under development at SLAC. The PEP-X is a proposed replacement for the PEP-II in the existing 2.2 km tunnel. Two of the PEP-X six arcs contain DBA type lattice providing 30 dispersion free straights suitable for 3.5 m long undulators. The lattice contains TME cells in the other four arcs and 89.3 m wiggler in a long straight section yielding a horizontal emittance of {approx}0.1 nm-rad at 4.5 GeV. The recent lattice modifications are aimed at increasing the predicted brightness and improving beam dynamic properties. The standard DBA cells are modified into supercells for providing low-{beta} undulator straights. The DBA and TME cell phase advance is better optimized. Harmonic sextupoles are added to minimize the sextupole driven resonance effects and amplitude dependent tune shift. Finally, the injection scheme is changed from vertical to horizontal plane in order to avoid large vertical amplitudes of injected beam within small vertical aperture of undulators.

  7. The National Synchrotron Light Source, Part I: Bright Idea

    International Nuclear Information System (INIS)

    The National Synchrotron Light Source (NSLS) was the first facility designed and built specifically for producing and exploiting synchrotron radiation. It was also the first facility to incorporate the Chasman-Green lattice for maximizing brightness. The NSLS was a $24-million project conceived about 1970. It was officially proposed in 1976, and its groundbreaking took place in 1978. Its construction was a key episode in Brookhaven's history, in the transition of synchrotron radiation from a novelty to a commodity, and in the transition of synchrotron-radiation scientists from parasitic to autonomous researchers. The way the machine was conceived, designed, promoted, and constructed illustrates much both about the tensions and tradeoffs faced by large scientific projects in the age of big science. In this article, the first of two parts, I cover the conception, design, and planning of the NSLS up to its groundbreaking. Part II, covering its construction, will appear in the next issue.

  8. Bright light in elderly subjects with nonseasonal major depressive disorder: a double blind randomised clinical trial using early morning bright blue light comparing dim red light treatment

    Directory of Open Access Journals (Sweden)

    van Someren Eus JW

    2008-07-01

    Full Text Available Abstract Background Depression frequently occurs in the elderly. Its cause is largely unknown, but several studies point to disturbances of biological rhythmicity. In both normal aging, and depression, the functioning of the suprachiasmatic nucleus (SCN is impaired, as evidenced by an increased prevalence of day-night rhythm perturbations, such as sleeping disorders. Moreover, the inhibitory SCN neurons on the hypothalamus-pituitary adrenocortical axis (HPA-axis have decreased activity and HPA-activity is enhanced, when compared to non-depressed elderly. Using bright light therapy (BLT the SCN can be stimulated. In addition, the beneficial effects of BLT on seasonal depression are well accepted. BLT is a potentially safe, nonexpensive and well accepted treatment option. But the current literature on BLT for depression is inconclusive. Methods/Design This study aims to show whether BLT can reduce non-seasonal major depression in elderly patients. Randomized double blind placebo controlled trial in 126 subjects of 60 years and older with a diagnosis of major depressive disorder (MDD, DSM-IV/SCID-I. Subjects are recruited through referrals of psychiatric outpatient clinics and from case finding from databases of general practitioners and old-people homes in the Amsterdam region. After inclusion subjects are randomly allocated to the active (bright blue light vs. placebo (dim red light condition using two Philips Bright Light Energy boxes type HF 3304 per subject, from which the light bulbs have been covered with bright blue- or dim red light- permitting filters. Patients will be stratified by use of antidepressants. Prior to treatment a one-week period without light treatment will be used. At three time points several endocrinological, psychophysiological, psychometrically, neuropsychological measures are performed: just before the start of light therapy, after completion of three weeks therapy period, and three weeks thereafter. Discussion If BLT

  9. Near-field collimation of light carrying orbital angular momentum with bull's-eye-assisted plasmonic coaxial waveguides.

    Science.gov (United States)

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-01-01

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM). PMID:26159423

  10. Regulation of lipid peroxidation in the retina under the effect of bright light.

    Science.gov (United States)

    Dzhafarov, A I; Kasimov, E M; Mamedov, Sh Y

    2011-04-01

    Changes in LPO intensity under the effect of exposure to bright light and the possibility of their correction with antioxidants were studied on rabbits with diabetic retinopathy. It was found that enhanced LPO caused by exposure to bright light in rabbits with diabetic retinopathy can be corrected with antioxidants. Phenosan potassium salt, α-tocopherol, and oxypyridine were more effective than SOD and taurine in preventing MDA accumulation. A complex of natural and synthetic antioxidants was most efficient in correcting LPO under conditions of exposure to bright light. PMID:22235421

  11. Adjustable collimator

    International Nuclear Information System (INIS)

    In a rotating fan beam tomographic scanner there is included an adjustable collimator and shutter assembly. The assembly includes a fan angle collimation cylinder having a plurality of different length slots through which the beam may pass for adjusting the fan angle of the beam. It also includes a beam thickness cylinder having a plurality of slots of different widths for adjusting the thickness of the beam. Further, some of the slots have filter materials mounted therein so that the operator may select from a plurality of filters. Also disclosed is a servo motor system which allows the operator to select the desired fan angle, beam thickness and filter from a remote location. An additional feature is a failsafe shutter assembly which includes a spring biased shutter cylinder mounted in the collimation cylinders. The servo motor control circuit checks several system conditions before the shutter is rendered openable. Further, the circuit cuts off the radiation if the shutter fails to open or close properly. A still further feature is a reference radiation intensity monitor which includes a tuning-fork shaped light conducting element having a scintillation crystal mounted on each tine. The monitor is placed adjacent the collimator between it and the source with the pair of crystals to either side of the fan beam

  12. Bending self-collimated one-way light by using gyromagnetic photonic crystals

    International Nuclear Information System (INIS)

    We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams

  13. Bending self-collimated one-way light by using gyromagnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing-Bo [School of Electronic Sciences and Engineering, Nanjing University, Nanjing 210093 (China); Jiangsu Key Construction Laboratory of Modern Measurement Technology and Intelligent System, Huaiyin Normal University, Huaian 223300 (China); Li, Zhen; Wu, Rui-xin, E-mail: rxwu@nju.edu.cn [School of Electronic Sciences and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-12-14

    We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.

  14. Artificial light alters natural regimes of night-time sky brightness

    Science.gov (United States)

    Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.

    2013-04-01

    Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.

  15. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology

    OpenAIRE

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W.; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A.; Corsini, Giovanni U.; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright li...

  16. Artificial light alters natural regimes of night-time sky brightness

    OpenAIRE

    Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.

    2013-01-01

    Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights i...

  17. Bright green light treatment of depression for older adults [ISRCTN69400161

    Directory of Open Access Journals (Sweden)

    Knickerbocker Nancy C

    2005-11-01

    Full Text Available Abstract Background Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT, sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral responsiveness may differ by age, we examined whether green light would provide efficient antidepressant treatment in an elder age group. Methods We contrasted one hour of bright green light (1,200 Lux and one hour of dim red light placebo ( Results The protocol was completed by 33 subjects who were 59 to 80 years old. Mood improved on average 23% for all subjects, but there were no significant statistical differences between treatment and placebo groups. There were negligible adverse reactions to the bright green light, which was well tolerated. Conclusion Bright green light was not shown to have an antidepressant effect in the age group of this study, but a larger trial with brighter green light might be of value.

  18. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology

    Science.gov (United States)

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W.; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A.; Corsini, Giovanni U.; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution. PMID:23462874

  19. Bright green light treatment of depression for older adults [ISRCTN69400161

    OpenAIRE

    Knickerbocker Nancy C; Kripke Daniel F; Loving Richard T; Grandner Michael A

    2005-01-01

    Abstract Background Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT), sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral respons...

  20. Light Harvesting as a Simple and Versatile Way to Enhance Brightness of Luminescent Sensors

    OpenAIRE

    Mayr, Torsten; Borisov, Sergey M; Abel, Tobias; Enko, Barbara; Waich, Kerstin; Mistlberger, Günter; Klimant, Ingo

    2009-01-01

    The emissive output of indicator dyes in luminescent sensors can be amplified by the addition of antenna dyes with a higher brightness. The highly concentrated antenna dye molecules absorb the excitation light and transfer the energy to an indicator dye. This harvesting of light makes thin sensor layers (thickness

  1. Spatial Filtering Versus Anchoring Accounts of Brightness/Lightness Perception in Staircase and Simultaneous Brightness/Lightness Contrast Stimuli

    OpenAIRE

    Blakeslee, Barbara; Reetz, Daniel; McCourt, Mark E.

    2009-01-01

    Cataliotti and Gilchrist (1995) reported that, consistent with anchoring theory, the lightness of a black step in a reflectance staircase was not altered by moving a white step from a remote to an adjacent location. Recently, Economou, Zdravkovic and Gilchrist (2007) reported data supporting three additional predictions of the anchoring model (Gilchrist et al., 1999): 1) equiluminant incremental targets in staircase simultaneous lightness contrast stimuli appeared equally light; 2) the simult...

  2. Volume-scalable high-brightness three-dimensional visible light source

    Science.gov (United States)

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  3. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Science.gov (United States)

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  4. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network

    CERN Document Server

    Pun, Chun Shing Jason; Leung, Wai Yan; Wong, Chung Fai

    2014-01-01

    Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey, for...

  5. Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides

    Science.gov (United States)

    Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang

    2015-01-01

    The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM). PMID:26159423

  6. Design of collimating system for LED source

    Science.gov (United States)

    Shen, Yanan; Huang, Yifan; Xing, Han

    2013-12-01

    Along with the development of semiconductor lighting technology, LED chip is widely used as the source of the glare flashlight. Collimating the light of the source and improving the utilization rate of light energy is crucial. The collimating lens is designed by the theory of geometrical optics and the theory of non-imaging optics. The small angle light from the source is collimated through the collimating lens surface, and the large angle light is collimated by the total reflection of the collimating lens. The collimating lens has a high light energy utilization and a good collimating performance. The collimation system is simulated and optimized in the Lighttools software. When the size of the LED chip is 1 mm*1 mm, the energy utilization rate of the collimating lens is more than 95%, and most lighting area radii are no more than 8 m when the illuminated plane is 500 m away from the light source.

  7. Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes.

    Science.gov (United States)

    Torres Alonso, Elias; Karkera, George; Jones, Gareth F; Craciun, Monica F; Russo, Saverio

    2016-07-01

    Alternating current electroluminescent technology allows the fabrication of large area, flat and flexible lights. Presently the maximum size of a continuous panel is limited by the high resistivity of available transparent electrode materials causing a visible gradient of brightness. Here, we demonstrate that the use of the best known transparent conductor FeCl3-intercalated few-layer graphene boosts the brightness of electroluminescent devices by 49% compared to pristine graphene. Intensity gradients observed for high aspect ratio devices are undetectable when using these highly conductive electrodes. Flat lights on polymer substrates are found to be resilient to repeated and flexural strains. PMID:27299371

  8. Recognizing emotions in faces : effects of acute tryptophan depletion and bright light

    NARCIS (Netherlands)

    aan het Rot, Marije; Coupland, Nicholas; Boivin, Diane B.; Benkelfat, Chawki; Young, Simon N.

    2010-01-01

    In healthy never-depressed individuals, acute tryptophan depletion (ATD) may selectively decrease the accurate recognition of fearful facial expressions. Here we investigated the perception of facial emotions after ATD in more detail. We also investigated whether bright light, which can reverse ATD'

  9. Joint structure in high brightness light emitting diode (HB LED) packages

    International Nuclear Information System (INIS)

    We present the transmission electron microscopy (TEM) analysis of 1.5 μm-thick Au-20Sn solder joint between a high brightness light emitting diode (HB LED) and a Si heat sink. Due to intermetallic compound formation, global Sn depletion occurred in the thin solder, which raised the melting point of the solder and caused local incompleteness of bonding

  10. High cortisol awakening response is associated with an impairment of the effect of bright light therapy

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne Anita; Undén, M;

    2009-01-01

    OBJECTIVE: We investigated the predictive validity of the cortisol awakening response (CAR) in patients with non-seasonal major depression. METHOD: Patients were treated with sertraline in combination with bright or dim light therapy for a 5-week period. Saliva cortisol levels were measured in 63...

  11. Influence of celestial light on lunar surface brightness determinations: Application to earthshine studies

    Science.gov (United States)

    Thejll, P.; Gleisner, H.; Flynn, C.

    2015-01-01

    Aims: We consider the influence of celestial-sphere brightness on determinations of terrestrial albedo from earthshine intensity measurements. In particular, the contributions from zodiacal light and starlight are considered. Methods: Using published data for the zodiacal light (ZL) and stellar brightness distribution across the sky, we calculate the expected contribution to the sky at the position of the Moon in typical earthshine observations, and the magnitude relative to typical earthshine intensities. We derive terrestrial albedo with and without the ZL correction in order to gauge the magnitude of the effect. Results: We find that celestial-sphere surface brightness can be so large that a considerable and unacceptable error level would have an impact on half of typical earthshine-based albedo-determinations if left unaccounted for. Considering the empirical uncertainty on ZL, we show that almost all our earthshine data can be used if a sky correction is made. In real observations we find up to a 1% effect on albedo results of correcting for the celestial brightness. Conclusions: Correction for ZL and starlight brightness is essential to earthshine measurements if climate-science relevant levels of terrestrial albedo accuracy are to be achieved, something that has not yet been realized. With ZL and starlight corrections the earthshine method can potentially yield accurate terrestrial albedo values.

  12. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain

    Institute of Scientific and Technical Information of China (English)

    Sung Jin Kwon; Jeongsook Park; So Yun Park; Kwang Seop Song; Sun Tae Jung; So Bong Jung; Ik Ryeul Park; Wan Sung Choi; Sun Ok Kwon

    2013-01-01

    The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 lx, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.

  13. Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light.

    Science.gov (United States)

    Gaither Iii, C C; Schmahl, E J; Crannell, C J; Dennis, B R; Lang, F L; Orwig, L E; Hartman, C N; Hurford, G J

    1996-12-01

    We developed a method for making quantitative characterizations of bi-grid rotating modulation collimators (RMC's) that are used in a Fourier transform x-ray imager. With appropriate choices of the collimator spacings, this technique can be implemented with a beam-expanded He-Ne laser to simulate the plane wave produced by a point source at infinity even though the RMC's are diffraction limited at the He-Ne wavelength of 632.8 nm. The expanded beam passes through the grid pairs at a small angle with respect to their axis of rotation, and the modulated transmission through the grids as the RMC's rotate is detected with a photomultiplier tube. In addition to providing a quantitative characterization of the RMC's, the method also produces a measured point response function and provides an end-to-end check of the imaging system. We applied our method to the RMC's on the high-energy imaging device (HEIDI) balloon payload in its preflight configuration. We computed the harmonic ratios of the modulation time profile from the laser measurements and compared them with theoretical calculations, including the diffraction effects on irregular grids. Our results indicate the 25-in. (64-cm) x-ray imaging optics on HEIDI are capable of achieving images near the theoretical limit and are not seriously compromised by imperfections in the grids. PMID:21151253

  14. Night-sky brightness monitoring in Hong Kong - a city-wide light pollution assessment

    CERN Document Server

    Pun, Chun Shing Jason

    2011-01-01

    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe - the urban night-skies (sky brightness at 15.0 mag per arcsec square) are on average ~100 times brighter than at the darkest rural sites (20.1 mag per arcsec square), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag per arcsec square can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by hu...

  15. Enhancing the brightness of Si nanocrystal light-emitting devices with electro-excited surface plasmons

    International Nuclear Information System (INIS)

    The use of electro-excited surface plasmons (SPs) in Ag nanoparticles (Ag-NPs) is shown to enhance the brightness of Si nanocrystal light-emitting devices (Si-NC LEDs). The Ag-NPs are prepared on the Si-NC thin film by ultrasonic irradiation and postannealing treatments. Electro-excited SPs on Ag-NPs are found, which are induced by electron impact on Ag-NPs and the front electrode Al layer during the charge injection process of LED. The electro-excited SPs enhance the electroluminescence of Si-NC, or LED brightness, via the SP field coupling to the exciton dipole moment of Si-NC. A maximal 5.2-fold brightness enhancement of Si-NC LED is achieved at the postannealing temperature of 200 °C. Remnant far-field radiations arising from electro-excited SPs are detected, which further supports the existence of such SPs. (paper)

  16. Enhancing the brightness of Si nanocrystal light-emitting devices with electro-excited surface plasmons

    Science.gov (United States)

    Chen, Jia-Rong; Zhou, Zhi-Quan; Hao, Hong-Chen; Lu, Ming

    2014-09-01

    The use of electro-excited surface plasmons (SPs) in Ag nanoparticles (Ag-NPs) is shown to enhance the brightness of Si nanocrystal light-emitting devices (Si-NC LEDs). The Ag-NPs are prepared on the Si-NC thin film by ultrasonic irradiation and postannealing treatments. Electro-excited SPs on Ag-NPs are found, which are induced by electron impact on Ag-NPs and the front electrode Al layer during the charge injection process of LED. The electro-excited SPs enhance the electroluminescence of Si-NC, or LED brightness, via the SP field coupling to the exciton dipole moment of Si-NC. A maximal 5.2-fold brightness enhancement of Si-NC LED is achieved at the postannealing temperature of 200 °C. Remnant far-field radiations arising from electro-excited SPs are detected, which further supports the existence of such SPs.

  17. Night-sky brightness monitoring in Hong Kong A city-wide light pollution assessment

    OpenAIRE

    Pun, CSJ; So, CW

    2012-01-01

    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky QualityMeter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong ...

  18. A compact high brightness laser synchrotron light source for medical applications

    International Nuclear Information System (INIS)

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy

  19. The acute side effects of bright light therapy: a placebo-controlled investigation.

    Directory of Open Access Journals (Sweden)

    Yevgeny Botanov

    Full Text Available Despite the emergence of numerous clinical and non-clinical applications of bright light therapy (LT in recent decades, the prevalence and severity of LT side effects have not yet been fully explicated. A few adverse LT effects-headache, eye strain, irritability, and nausea-have been consistently reported among depressed individuals and other psychiatric cohorts, but there exists little published evidence regarding LT side effects in non-clinical populations, who often undergo LT treatment of considerably briefer duration. Accordingly, in the present study we examined, in a randomized sample of healthy young adults, the acute side effects of exposure to a single 30-minute session of bright white light (10,000 lux versus dim red light (< 500 lux. Across a broad range of potential side effects, repeated-measures analyses of variance revealed no significant group-by-time (Pre, Post interactions. In other words, bright light exposure was not associated with a significantly higher incidence of any reported side effect than was the placebo control condition. Nevertheless, small but statistically significant increases in both eye strain and blurred vision were observed among both the LT and control groups. Overall, these results suggest that the relatively common occurrence of adverse side effects observed in the extant LT literature may not fully extend to non-clinical populations, especially for healthy young adults undergoing LT for a brief duration.

  20. Demonstration of a bright and compact source of tripartite nonclassical light

    OpenAIRE

    Allevi, Alessia; Bondani, Maria; Paris, Matteo G. A.; Andreoni, Alessandra

    2008-01-01

    We experimentally demonstrate the nonclassical photon number correlations expected in tripartite continuous variable states obtained by parametric processes. Our scheme involves a single nonlinear crystal, where two interlinked parametric interactions take place simultaneously, and represents a bright and compact source of a sub-shot-noise tripartite light field. We analyze the effects of the pump intensities on the numbers of detected photons and on the amount of noise reduction in some deta...

  1. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    International Nuclear Information System (INIS)

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A−1 and 20 lm W−1, respectively, and a maximum brightness of 10 000 cd m−2. (paper)

  2. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    Science.gov (United States)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  3. Winter Fatigue and Winter Depression : Prevalence and Treatment with Bright Light

    OpenAIRE

    Rastad, Cecilia

    2009-01-01

    The aim of this thesis is to study prevalence of winter depressive mood and treatment effects of bright light for persons with winter fatigue and winter depression. Study I is a cross-sectional survey of a random sample (N=1657) from the general population between 18-65 years of age in Dalarna, Sweden (latitude 60°N). Study II is a similar survey of 17-18 year old students (N=756) in the municipality of Falun. Approximately 20% of both samples report seasonal symptoms, mainly fatigue, lowered...

  4. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  5. Can light make us bright? Effects of light on cognition and sleep

    NARCIS (Netherlands)

    Chellappa, Sarah Laxhmi; Gordijn, Marijke C. M.; Cajochen, Christian; VanDongen, HPA; Kerkhof, GA

    2011-01-01

    Light elicits robust nonvisual effects on numerous physiological and behavioral variables, such as the human sleep-wake cycle and cognitive performance. Light effects crucially rely on properties such as dose, duration, timing, and wavelength. Recently, the use of methods such as fMRI to assess ligh

  6. Multiple collimator

    International Nuclear Information System (INIS)

    The collimator for the simultaneous use of several measuring probes enables one to meet the requirements of nuclear medical diagnostics for the setting of measuring probes on the organ being examined. Collimator pipes are provided for this purpose, into which the measuring probes are plugged. They can be moved via ball joints on a shielding plate, so that shielding of interference radiation is guaranteed in every position. (RW)

  7. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    Science.gov (United States)

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates. PMID:24147405

  8. Radiological considerations for POE-1 photon shutters, collimators and beam stops of the Biomedical Imaging and Therapy beamline at the Canadian Light Source

    Science.gov (United States)

    Asai, Juhachi; Wysokinski, Tomasz W.; Smith, Sheldon; Chapman, Dean

    2008-01-01

    A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed.

  9. Radiological considerations for POE-1 photon shutters, collimators and beam stops of the Biomedical Imaging and Therapy beamline at the Canadian Light Source

    International Nuclear Information System (INIS)

    A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed

  10. Bright Light Therapy in Parkinson's Disease: An Overview of the Background and Evidence

    Directory of Open Access Journals (Sweden)

    Sonja Rutten

    2012-01-01

    Full Text Available Sleep disorders are common in Parkinson's disease (PD and seem to be strongly associated with depression. It has been suggested that sleep disorders as well as depression are caused by a disturbed circadian rhythm. Indeed, PD patients are prone to misalignment of their circadian rhythm due to various factors, and many patients with PD display a phase advance of their circadian rhythm. Current treatment options for sleep disorders and depression in patients with PD are limited and can have serious side effects; alternative treatments are therefore badly needed. Bright light therapy (BLT restores circadian rhythmicity effectively in mood- and sleep-disturbed patients without PD. The few studies that focused on the efficacy of BLT in patients with PD demonstrated a positive effect of BLT not only on sleep and mood but also on motor function. More research on the neurobiology and efficacy of BLT in PD is warranted.

  11. Bright Ray-like Features in the Aftermath of CMEs: White Light vs UV Spectra

    CERN Document Server

    Ciaravella, A; Giordano, S; Raymond, J C

    2013-01-01

    Current sheets are important signatures of magnetic reconnection in the eruption of confined solar magnetic structures. Models of Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejected flux rope with the post eruption magnetic loops. Current sheets have been identified in white light images of CMEs as narrow rays trailing the outward moving CME core, and in ultraviolet spectra as narrow bright features emitting the Fe XVIII line. In this work samples of rays detected in white light images or in ultraviolet spectra have been analyzed. Temperatures, widths, and line intensities of the rays have been measured, and their correlation to the CME properties has been studied. The samples show a wide range of temperatures with hot, coronal and cool rays. In some cases, the UV spectra support the identification of rays as current sheets, but they show that some white light rays are cool material from the CME core. In many cases, both hot and cool material are present, but offset from ...

  12. Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes

    Science.gov (United States)

    Reddy, M. Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  13. Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes.

    Science.gov (United States)

    Reddy, M Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s(-1). Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  14. Three-dimensional spectrum mapping of bright emission centers: Investigating the brightness-limiting process in Eu-doped GaN red light emitting diodes

    International Nuclear Information System (INIS)

    A pulse-driven emission-spectroscopy mapping technique is used to investigate the bright emission centers in Eu-doped GaN (GaN:Eu) red light emitting diodes (LED). The LEDs are operated in pulse-driven mode, and the emission spectra are acquired for a range of pulse frequencies. This ensemble of emission spectral data yields a three-dimensional mapping that allows the origin of emission lines to be identified by visual inspection. The identification was achieved even for a weak 5D0 → 7F3 transition in conventional photoluminescence measurements. A peculiar split is observed in the 5D0 → 7F3 transition for the bright emission center referred to as OMVPE 8. Despite the unique transition at this emission center, the emission efficiencies for the 5D0 → 7F3 and 5D0 → 7F2 transitions were identical. This finding indicates that the excitation of the emission centers, rather than the radiative transitions, is the limiting process that determines the GaN:Eu red LED brightness

  15. Momentary adjusting methods for simulating the color temperature, hues and brightness of daylight illumination with RGB LEDs for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing

    2011-07-01

    Methods for simulating the color temperature, hue and brightness of daylight illumination for indoor lighting simply by adjusting the intensity of red, green, and blue light emitting diodes are proposed. We obtain uniform color mixing with a light box by adjusting the ratios between the intensities of red, green and blue LEDs. The intensity can be found by measuring the CIE chromaticity coordinates (x, y) and the luminance Y of the daylight with a chroma meter. After the chromaticity coordinates (x, y) and the luminance Y are found, the tristimulus values can be calculated and then transferred to red, green, and blue primaries by linear transformation. With the correct ratio of red, green, and blue intensities, the color temperature, hues and brightness of daylight can be rebuilt by red, green, and blue light emitting diodes. PMID:21747561

  16. Observational studies of contributions of artificial and natural light factors to the night sky brightness measured through a monitoring network in Hong Kong

    OpenAIRE

    So, Chu-wing; 蘇桂榮

    2014-01-01

    Light pollution is a form of rapidly-growing and global-scale environmental degradation in which excessive outdoor lighting affects the natural environment, the ecosystem, and possibly even human health. Poorly designed outdoor lighting wastes energy and money, and robs the beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Bright...

  17. GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS

    International Nuclear Information System (INIS)

    This paper presents light curves as well as the first systematic characterization of variability of the 106 objects in the high-confidence Fermi Large Area Telescope Bright AGN Sample (LBAS). Weekly light curves of this sample, obtained during the first 11 months of the Fermi survey (2008 August 4-2009 July 4), are tested for variability and their properties are quantified through autocorrelation function and structure function analysis. For the brightest sources, 3 or 4 day binned light curves are extracted in order to determine power density spectra (PDSs) and to fit the temporal structure of major flares. More than 50% of the sources are found to be variable with high significance, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for flat spectrum radio quasars and low/intermediate synchrotron frequency peaked BL Lac objects. Autocorrelation timescales derived from weekly light curves vary from four to a dozen of weeks. Variable sources of the sample have weekly and 3-4 day bin light curves that can be described by 1/f α PDS, and show two kinds of gamma-ray variability: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red noise with occasional intermittence and (2)-measured for a few blazars showing strong activity-complex and structured temporal profiles characterized by long-term memory and steeper PDS slopes, reflecting a random walk underlying mechanism. The average slope of the PDS of the brightest 22 FSRQs and of the 6 brightest BL Lacs is 1.5 and 1.7, respectively. The study of temporal profiles of well-resolved flares observed in the 10 brightest LBAS sources shows that they generally have symmetric profiles and that their total duration vary between 10 and 100 days. Results presented here can assist in source class recognition for unidentified sources and can serve as reference for more detailed analysis of the brightest gamma

  18. On the brightness of diluted photon source in synchrotron light facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M. E-mail: ivanian@asls.candle.am; Martirosyan, Y.; Tsakanov, V

    2004-10-01

    The undulator radiation spectral brightness in storage ring is studied taking into account the effects of the electron beam oscillating trajectory and the beam transverse size variation along the undulator. The modified optimal beta function at the source point to reach maximum brightness is obtained that is in direct relation with the emitted photons wavelength. It is shown that the maximum spectral brightness in long wavelength range is achieved with low beta lattice, while in short wavelength range with larger beta.

  19. High-brightness blue organic light emitting diodes with different types of guest-host systems

    Science.gov (United States)

    Wang, Xiao; Zhang, Jing-shuang; Peng, Cui-yun; Guo, Kun-ping; Wei, Bin; Zhang, Hao

    2016-03-01

    We demonstrate high-brightness blue organic light emitting diodes (OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene (perylene), di(4-fluorophenyl) amino-di (styryl) biphenyl (DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl (BCzVBi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl (CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole (PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.10), (0.15, 0.15) and (0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.

  20. Doping in the Mixed Layer to Achieve High Brightness and Efficiency Organic Light Emitting Devices

    Institute of Scientific and Technical Information of China (English)

    高文宝; 杨开霞; 刘宏宇; 冯晶; 刘式墉

    2002-01-01

    Doping in the mixed layer was introduced to fabricate high brightness and high efficiency organic light emitting devices. In these devices, a copper phthalocyanine (CuPc) film acts as the buffer layer, a naphthylphenybiphenyl amine (NPB) film as the hole transport layer and a tris(8-hydroxyquinolinolate)aluminium (Alq3) film as the electron transport layer. The luminescent layer consists of the mixture of NPB, Alq3 (to be called the mixed layer), and an emitting dopant 5,6,11,12-petraphenylnaphthacene (rubrene), where the concentration of NPB declined and the concentration of Alq3 was increased gradually in the deposition process. Adopting this doping mixed layer, the device exhibits the maximum emission of 49300cd/m2 at 35 V and the maximum efficiency of 7.96cd/A at 10.5 V, which have been improved by two times in comparison with conventional doped devices. We attribute this improvement to the effective confinement of carriers in the mixed layer, which leads to the increase of the recombination efficiency of carriers.

  1. Influence of Type of Electric Bright Light on the Attraction of the African Giant Water Bug, Lethocerus indicus (Hemiptera: Belostomatidae

    Directory of Open Access Journals (Sweden)

    Luke Chinaru Nwosu

    2012-01-01

    Full Text Available This study investigated the influence of type of electric bright light (produced by fluorescent light tube and incandescent light bulb on the attraction of the African giant water bug, Lethocerus indicus (Hemiptera: Belostomatidae. Four fluorescent light tubes of 15 watts each, producing white-coloured light and four incandescent light bulbs of 60 watts each, producing yellow-coloured light, but both producing the same amount of light, were varied and used for the experiments. Collections of bugs at experimental house were done at night between the hours of 8.30 pm and 12 mid-night on daily basis for a period of four months per experiment in the years 2008 and 2009. Lethocerus indicus whose presence in any environment has certain implications was the predominant belostomatid bug in the area. Use of incandescent light bulbs in 2009 significantly attracted more Lethocerus indicus 103 (74.6% than use of fluorescent light tubes 35 (25.41% in 2008 [4.92=0.0001]. However, bug’s attraction to light source was not found sex dependent [>0.05; (>0.18=0.4286 and >0.28=0.3897]. Therefore, this study recommends the use of fluorescent light by households, campgrounds, and other recreational centres that are potentially exposed to the nuisance of the giant water bugs. Otherwise, incandescent light bulbs should be used when it is desired to attract the presence of these aquatic bugs either for food or scientific studies.

  2. High-Brightness Beams from a Light Source Injector The Advanced Photon Source Low-Energy Undulator Test Line Linac

    CERN Document Server

    Travish, G; Borland, M; Hahne, M; Harkay, K C; Lewellen, J W; Lumpkin, Alex H; Milton, S V; Sereno, N S

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, includi...

  3. High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac

    OpenAIRE

    Travish, G.; Biedron, S; Borland, M.; Hahne, M.; Harkay, K.; Lewellen, J.W.; Lumpkin, A.; Milton, S.; Sereno, N.

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventiona...

  4. Vitamin B12 enhances the phase-response of circadian melatonin rhythm to a single bright light exposure in humans.

    Science.gov (United States)

    Hashimoto, S; Kohsaka, M; Morita, N; Fukuda, N; Honma, S; Honma, K

    1996-12-13

    Eight young males were subjected to a single blind cross-over test to see the effects of vitamin B12 (methylcobalamin; VB12) on the phase-response of the circadian melatonin rhythm to a single bright light exposure. VB12 (0.5 mg/day) or vehicle was injected intravenously at 1230 h for 11 days, which was followed by oral administration (2 mg x 3/day) for 7 days. A serial blood sampling was performed under dim light condition (less than 200 lx) and plasma melatonin rhythm was determined before and after a single bright light exposure (2500 lx for 3 h) at 0700 h. The melatonin rhythm before the light exposure showed a smaller amplitude in the VB12 trial than in the placebo. The light exposure phase-advanced the melatonin rhythm significantly in the VB12 trail, but not in the placebo. These findings indicate that VB12 enhances the light-induced phase-shift in the human circadian rhythm. PMID:8981490

  5. Shedding light on emotional perception: Interaction of brightness and semantic content in extrastriate visual cortex.

    Science.gov (United States)

    Schettino, Antonio; Keil, Andreas; Porcu, Emanuele; Müller, Matthias M

    2016-06-01

    The rapid extraction of affective cues from the visual environment is crucial for flexible behavior. Previous studies have reported emotion-dependent amplitude modulations of two event-related potential (ERP) components - the N1 and EPN - reflecting sensory gain control mechanisms in extrastriate visual areas. However, it is unclear whether both components are selective electrophysiological markers of attentional orienting toward emotional material or are also influenced by physical features of the visual stimuli. To address this question, electrical brain activity was recorded from seventeen male participants while viewing original and bright versions of neutral and erotic pictures. Bright neutral scenes were rated as more pleasant compared to their original counterpart, whereas erotic scenes were judged more positively when presented in their original version. Classical and mass univariate ERP analysis showed larger N1 amplitude for original relative to bright erotic pictures, with no differences for original and bright neutral scenes. Conversely, the EPN was only modulated by picture content and not by brightness, substantiating the idea that this component is a unique electrophysiological marker of attention allocation toward emotional material. Complementary topographic analysis revealed the early selective expression of a centro-parietal positivity following the presentation of original erotic scenes only, reflecting the recruitment of neural networks associated with sustained attention and facilitated memory encoding for motivationally relevant material. Overall, these results indicate that neural networks subtending the extraction of emotional information are differentially recruited depending on low-level perceptual features, which ultimately influence affective evaluations. PMID:26994832

  6. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    Science.gov (United States)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  7. Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness

    International Nuclear Information System (INIS)

    Highly efficient and bright hybrid white organic light emitting diodes (WOLEDs) based on simple architectures have been successfully fabricated and characterized. The optimized device can reach a maximum forward-viewing power efficiency (PE) of 20.2 lm/W, a peak forward-viewing current efficiency (CE) of 30.7 cd/A, an extremely high brightness of 95,683 cd/m2, and a Commission International de l’E clairage chromaticity coordinates of (0. 436, 0.425) at 12 V. Even at the illumination-relevant brightness of 1000 cd/m2, a forward-viewing PE of 17.0 lm/W and CE of 30.7 cd/A are obtained. Moreover, it is found that the device not only suffers slight efficiency roll-off but also exhibits a stable color during a large range of brightness, indicating that the device can satisfy the future commercial requirements. Undoubtedly, the results will be beneficial to the design of both material and device architecture for high-performance WOLEDs and next-generation solid-state lighting sources. - Highlights: • A simple HWOLED with B/O/B structure has been successfully developed. • A extremely high brigthness of 95,683 cd/m2 is obtained. • A high forward-viewing CE of 30.7 cd/A and PE of 20.2 lm/W are achieved. • Efficiency roll-off is very low and color is relatively stable

  8. Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications

    Science.gov (United States)

    Kinoshita, Junichi; Ikeda, Yoshihisa; Takeda, Yuji; Ueno, Misaki; Kawasaki, Yoji; Matsuba, Yoshiaki; Heike, Atsushi

    2012-11-01

    The speckle contrast of blue light emission out of high-brightness white lamps using phosphors excited by InGaN/GaN blue laser diodes is evaluated as a measure of coherence. As a result, speckle contrast of as low as 1.7%, the same level as a blue light emitting diode, is obtained. This implies that the original blue laser light can be converted into incoherent light through lamp structures without any dynamic mechanisms. This unique speckle-free performance is considered to be realized by multiple scattering inside the lamp structure, the multi-longitudinal mode operation of the blue laser diodes, and the use of multiple laser diodes. Such almost-incoherent white lamps can be applied for general lighting without any nuisance of speckle noise and should be categorized as lamps rather than lasers in terms of laser safety regulation.

  9. Evidence for anxiolytic effects of acute caffeine on anxiety-related behavior in male and female rats tested with and without bright light.

    Science.gov (United States)

    Hughes, Robert N; Hancock, Nicola J; Henwood, Gina A; Rapley, Susan A

    2014-09-01

    Male and female PVG/c rats were observed in an open field (OF) and an elevated plus maze (EPM) either with or without a bright light stressor (600-692 lx) following an intraperitoneal injection of saline, 25 or 50mg/kg of caffeine. One week later, the same rats were observed under the same drug and lighting conditions but in the opposite apparatus to that experienced earlier. Either the higher or both doses of caffeine decreased anxiety as indicated by increased OF rearing and decreased grooming, immobility and corner occupancy (in the presence of bright light). A similar interpretation applied to caffeine-related increased entries into and observations in the EPM open arms for males only, and increased entries into the open arms for females alone in the presence of bright light. Bright light increased anxiety as shown by longer latencies of emergence into the OF and decreased ambulation and, for males only, decreased center occupancy and increased corner occupancy. Fewer entries into the open arms in the presence of bright light for females only also suggested heightened anxiety. Apart from one OF and one EPM measure, bright light did not appear to markedly influence the effects of caffeine which were concluded to be primarily anxiolytic, with males being more affected than females. Although the central mechanisms responsible for caffeine's anxiolytic action remain to be established, it is possible that antagonism of A2A adenosine receptors might somehow be involved. PMID:24875772

  10. Fabrication and property analysis of AIGalnP red light LED with high bright

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The LED with DBR and enhancing transmission film was grown by MOCVD. At 20 mA DC injection current, the LED peak wavelength was 623 nm, the light intensity was 200 mcd, and the output light power was 2.14 mW. The light intensity and output light power have been improved than traditional LED.

  11. Sleep, mood, and circadian responses to bright green light during sleep

    OpenAIRE

    Grandner, Michael Andrew

    2007-01-01

    Based on human and animal research, it appears that light administered in the last two hours of sleep might be particularly effective as an antidepressant and in advancing circadian rhythms. Green light might be more effective than white light. An obvious advantage of light treatment during sleep is that disturbance and time cost during waking hours might be avoided. For these reasons, we decided to explore effects of a light treatment with a green light mask used for in the last hours of sle...

  12. Circadian phase-shifting effects of a laboratory environment: a clinical trial with bright and dim light

    OpenAIRE

    Youngstedt, Shawn D.; KRIPKE, DANIEL F.; Elliott, Jeffrey A; Rex, Katharine M

    2005-01-01

    Background: Our aims were to examine the influence of different bright light schedules on mood, sleep, and circadian organization in older adults (n = 60, ages 60–79 years) with insomnia and/or depression, contrasting with responses of young, healthy controls (n = 30, ages 20–40 years).Methods: Volunteers were assessed for one week in their home environments. Urine was collected over two 24-hour periods to establish baseline acrophase of 6-sulphatoxymelatonin (aMT6s) excretion. Immediately fo...

  13. Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness

    International Nuclear Information System (INIS)

    High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N', N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB)/4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ)2Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/ bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6–12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2 . We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/ blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now

  14. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications.

    Science.gov (United States)

    Shen, Chao; Ng, Tien Khee; Leonard, John T; Pourhashemi, Arash; Nakamura, Shuji; DenBaars, Steven P; Speck, James S; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-06-01

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021¯) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3  dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. PMID:27244426

  15. Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber.

    Science.gov (United States)

    Wang, Shih-Chang; Yang, Teng-I; Jheng, Dong-Yo; Hsu, Chun-Yang; Yang, Tzu-Te; Ho, Tuan-Shu; Huang, Sheng-Lung

    2015-12-01

    High-brightness near-infrared broadband amplified spontaneous emission (ASE) was generated by glass-clad Ti:sapphire crystal fibers, which were developed using the co-drawing laser-heated pedestal growth method. As much as 29.2 mW of ASE power was generated using 520 nm laser diodes as the excitation source on an a-cut, 18 μm core-diameter Ti:sapphire crystal fiber (CF). The 3 dB bandwidth was 163.8 nm, and the radiance was 53.94  W·mm(-2) sr(-1). The propagation loss of the glass-clad sapphire CF measured using the cutback method was 0.017  cm(-1) at 780 nm. For single-mode applications, more than 100 μW of power was coupled into a SM600 single-mode fiber. PMID:26625059

  16. Temporary blinding from bright light sources as a significant impact on occupational safety and health

    International Nuclear Information System (INIS)

    Low power laser and high-brightness LEDs (HB-LEDs) have been applied in specially developed and computer assisted test setups in order to determine the duration and progression of colours in afterimages, the disturbance of visual acuity as well as the impairment of colour and contrast vision. Interrelationships between wavelength, exposure duration, optical power and energy have been investigated. Afterimage durations up to 300 seconds were found if the fovea of the human retina is irradiated from a laser beam at less than 30 μW, whereas lower values are valid in the Parafoveal region and in the periphery. The visual acuity was strongly reduced during about 30 % of the afterimage time. The time-dependent progression of the afterimage colours was determined for 4 different dominant wavelengths of HB-LEDs, i.e. 455 nm, 530 nm, 590 nm and 625 nm, in the power range between 0.05 m W and 0.5 m W for exposure durations between 0.5 s and 5 s. The flight of colours obtained with 5 test persons is given as 8-bit RGB-values and illustrated as a function of the applied optical energy in the CIE chromaticity diagram together with the respective total afterimage durations. The colour contrast capability was investigated for 3 volunteers with specially developed test charts in 7 colours, namely without and after glare from 4 coloured high-brightness LEDs. Each subject completed 56 time-consuming tests since adequate adaptation was necessary between the respective tests. Glare increases the identification times about 14 s and 16 s and even stronger impairment is observable especially at low colour contrast. Tests with 40 subjects and 4 different pseudoisochromatic colour plates have shown that colour vision was impaired for periods between 27 s and 186 s depending on the applied colour plate and respective LED colour. Such relatively long lasting visual disturbances could be of particular concern connected with performing safety critical operations such as working with machines

  17. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  18. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Science.gov (United States)

    Mi, Rui; Cheng, Gang; Zhao, Yi; Xie, Wen-Fa; Hou, Jing-Ying; Ding, Tao; Liu, Shi-Yong

    2004-03-01

    We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminium (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916 cd m-2 at 16 V and 2.85 cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  19. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Institute of Scientific and Technical Information of China (English)

    MI Rui; CHENG Gang; ZHAO Yi; XIE Wen-Fa; HOU Jing-Ying; DING Tao; LIU Shi-Yong

    2004-01-01

    @@ We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)N,N′-diphenyl-1,1′-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminum (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916cd m-2 at 16 V and 2.85cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  20. Nature of light rain during presence and absence of bright band

    Indian Academy of Sciences (India)

    Mahen Konwar; R S Maheskumar; S K Das; S B Morwal

    2012-08-01

    This paper reports the evolution of rain drop size distribution (DSD) during bright band (BB) and no-BB (NBB) conditions of low intensity rainfall events as observed by a vertically pointing Micro Rain Radar (MRR) over Pune (18.58°N, 73.92°E), India. The BB is identified by enhanced radar reflectivity factor (dBZ) at the 0°C isotherm. The gradient of hydrometeor fall velocity is found to be a good indicator in identifying the melting layer when enhanced radar reflectivity at melting layer is not prominent. The storm structures as observed by the MRR are compared with CloudSat observations that provide evidence of ice hydrometeor at ∼−60°C with clear indication of BB at 0°C. Storm heights at warmer than 0°C are evident during NBB conditions from CloudSat. This suggests that warm rain processes are responsible for producing rain during NBB conditions. During BB conditions, bimodal DSDs below the melting layer are observed at lower altitudes. The DSDs of shallow warm precipitating systems of NBB conditions are monomodal at all the altitudes. Significantly, normalized DSDs are found to be bimodal for BB conditions, and monomodal for NBB conditions which confirm different dominant microphysical processes. It is found that the observed bimodal DSDs during BB conditions are mainly due to the collision, coalescence and break-up processes. During NBB conditions, number and size of large raindrops grow while reaching the ground without much breakup. The radar reflectivity and rainfall intensity (mmh−1) relationship of the form = b are found out for BB and NBB conditions. Existing different microphysical processes lead to large coefficient in the – relationship with small exponent during BB conditions while during NBB conditions the coefficients are small with large exponents.

  1. Three-Week Bright-Light Intervention Has Dose-Related Effects on Threat-Related Corticolimbic Reactivity and Functional Coupling

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Madsen, Martin K; Mc Mahon, Brenda;

    2014-01-01

    -11.0 kilolux) for 30 minutes daily over a period of 3 weeks. Additionally, we considered serotonin transporter-linked polymorphic region (5-HTTLPR) genotype status as a model for differences in serotonin signaling and moderator of intervention effects. RESULTS: Bright-light dose significantly negatively......BACKGROUND: Bright-light intervention is reported to successfully treat depression, in particular seasonal affective disorder, but the neural pathways and molecular mechanisms mediating its effects are unclear. An amygdala-prefrontal cortex corticolimbic circuit regulates responses to salient...... environmental stimuli (e.g., threat) and may underlie these effects. Serotonin signaling modulates this circuit and is implicated in the pathophysiology of seasonal and other affective disorders. METHODS: We evaluated the effects of a bright-light intervention protocol on threat-related corticolimbic reactivity...

  2. Examination of the melatonin hypothesis in women exposed at night to EMF or bright light.

    OpenAIRE

    Graham, C.; Cook, M.R.; Gerkovich, M M; Sastre, A

    2001-01-01

    It has been hypothesized that the increased incidence of breast cancer in industrial societies is related to greater exposure to power-frequency electric and magnetic fields (EMF) and/or the presence of high levels of light at night (LAN). EMF and LAN are said to reduce circulating levels of the hormone melatonin which, in turn, allows estrogen levels to rise and stimulate the turnover of breast epithelial stem cells and increase the risk for malignant transformation. Three laboratory-based s...

  3. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state

    OpenAIRE

    Timo Takala; Markku Timonen; Juha Nikkinen; Jukka Remes; Antti Aunio; Ahmed Abou-Elseoud; Juuso Nissilä; Tuomo Starck; Osmo Tervonen; Vesa Kiviniemi

    2012-01-01

    Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magneti...

  4. Transcranial bright light treatment via the ear canals in seasonal affective disorder: a randomized, double-blind dose-response study

    OpenAIRE

    Jurvelin, Heidi; Takala, Timo; Nissilä, Juuso; Timonen, Markku; Rüger, Melanie; Jokelainen, Jari; Räsänen, Pirkko

    2014-01-01

    Background Bright light treatment is effective for seasonal affective disorder (SAD), although the mechanisms of action are still unknown. We investigated whether transcranial bright light via the ear canals has an antidepressant effect in the treatment of SAD. Methods During the four-week study period, 89 patients (67 females; 22 males, aged 22-65, mean ± SD age: 43.2 ± 10.9 years) suffering from SAD were randomized to receive a 12-min daily dose of photic energy of one of three intensities ...

  5. Acute effects of bright light and caffeine on nighttime melatonin and temperature levels in women taking and not taking oral contraceptives

    Science.gov (United States)

    Wright, K. P. Jr; Myers, B. L.; Plenzler, S. C.; Drake, C. L.; Badia, P.; Czeisler, C. A. (Principal Investigator)

    2000-01-01

    Caffeine and bright light effects on nighttime melatonin and temperature levels in women were tested during the luteal phase of the menstrual cycle (n=30) or the pseudo luteal phase for oral contraceptive users (n=32). Participants were randomly assigned to receive either bright (5000 lux) or dim room light (oral contraceptive users. The results for women in the luteal phase of the menstrual cycle are consistent with our previous findings in men. The results also suggest that oral contraceptives may alter the effects of caffeine on nighttime melatonin levels.

  6. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour.

    Science.gov (United States)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R; Gather, Malte C

    2016-01-01

    Organic light emitting diodes (OLEDs) are in widespread use in today's mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm(-2)) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401

  7. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Science.gov (United States)

    Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.

    2016-08-01

    Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm‑2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.

  8. Heralded source of bright multi-mode mesoscopic sub-Poissonian light.

    Science.gov (United States)

    Iskhakov, T Sh; Usenko, V C; Andersen, U L; Filip, R; Chekhova, M V; Leuchs, G

    2016-05-15

    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying post-selection, we conditionally prepared a sub-Poissonian state of light containing 6.3·105 photons per pulse on the average with the Fano factor 0.63±0.01. The scheme can be considered as the heralded preparation of pulses with the mean energy varying between tens and hundreds of fJ and the uncertainty considerably below the shot-noise level. Such pulses can be used in metrology (for instance, for radiometer calibration), as well as for probing multi-mode nonlinear optical effects. PMID:27176949

  9. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots.

    Science.gov (United States)

    Shen, Huaibin; Lin, Qinli; Wang, Hongzhe; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Zheng, Ying; Li, Lin Song

    2013-11-27

    In this paper, we use a simple device architecture based on solution-processed ZnO nanoparticles (NPs) as the electron injection/transport layer and bilayer structure of poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) as the hole injection/transport layer to assess the effect of shell thickness on the properties of quantum-dot-based light emitting diodes (QD-LEDs), comprising CdSe/CdS/ZnS core-shell QDs as the emitting layer. QDs with varying shell thickness were assessed to determine the best option of shell thickness, and the best improvement in device performance was observed when the shell thickness was 2.1 nm. Thereafter, different emissions of QDs, but with optimized same shell thickness (∼2.1 nm), were selected as emitters to be fabricated into same structured QD-LEDs. Highly bright orange-red and green QD-LEDs with peak luminances up to ∼30 000 and ∼52 000 cd m(-2), and power efficiencies of 16 and 19.7 lm W(-1), respectively, were demonstrated successfully. These results may demonstrate a striking basic prototype for the commercialization of QD-based displays and solid-state lightings. PMID:24191742

  10. High brightness three-dimensional light field display based on the aspheric substrate Fresnel-lens-array with eccentric pupils

    Science.gov (United States)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Cao, Xuemei; Chen, Zhidong; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-02-01

    The brightness and viewing field of the reproductive three-dimensional (3D) image are crucial factors to realize a comfortable 3D perception for the light field display based on the liquid crystal device (LCD). To improve the illuminance of 3D image with sub-image-units with small aperture angles and enlarge the viewing field, the illuminance of the Fresnel-lens combining with the sub-images on LCD is analyzed and designed. Theoretical and experimental results show that the Fresnel-lens-array with eccentric pupil(FAEP) can address above problems. A 3D light field display based on LCD with FAEP and directional diffuser screen are used to reconstruct the target 3D field. 25 parallax sub-images are projected to the directional diffuser screen to verify the improvement of illuminance and viewing field. To reduce eccentric aberration introduced by eccentric pupil, a novel structure of Fresnel-lens-array is presented to reduce the aberration. The illuminance and viewing field are well promoted at the same time. 3D image with the high quality can be achieved.

  11. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    International Nuclear Information System (INIS)

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs

  12. Multi-collimator

    International Nuclear Information System (INIS)

    The multi-collimator serves for measurement of the spatial distribution of gamma radiation emitted by labelled organs in nuclear-medical diagnostics. By means of roller or spherical joints the individual collimators with the probes inserted can be moved to a certain degree in recesses of a shielding without being affected by stray radiation. Part of the recesses are filled with a fitted body containing the collimator which can be rotated about its axis of symmetry and has a graduation for the position of the collimator tube. (RW)

  13. A new astronomical method for determining the brightness of the night sky and its application to study long-term changes in the level of light pollution

    Science.gov (United States)

    Ściężor, T.

    2013-10-01

    In this paper, I present a new method that has been developed for determining the brightness of a cloudless night sky, on the basis of widely available amateur observations of comets. The tests show the correctness of the method, which makes it possible to determine the level of light pollution, defined as the brightness of the artificial sky glow, through the use of the archival observations of comets. The use of data bases of comet observations in Poland in the period 1994-2009 has led to a positive verification of the known model map of the brightness of the night sky. Also, it has been possible to find changes in the level of light pollution in this period, at the selected observation sites.

  14. Color mixing collimating lamp based on RGB LEDs

    Science.gov (United States)

    Lo, Yi-Chien; Moreno, Ivan; Chiu, Bo-Chun; Chien, Wei-Ting; Cai, Jhih-You; Chang, Yu-Yu; Sun, Ching-Cherng

    2012-10-01

    A novel light luminaire is proposed and experimentally analyzed, which efficiently mixes and projects the tunable light from red, green and blue (RGB) light-emitting diodes (LEDs). Simultaneous light collimation and color mixing is a challenging task because most collimators separate colors, and most color mixers spread the light beam. We performed an experimental study to find a balance between optical efficiency and color uniformity by changing light recycling and color mixing.

  15. Examination of the melatonin hypothesis in women exposed at night to EMF or bright light.

    Science.gov (United States)

    Graham, C; Cook, M R; Gerkovich, M M; Sastre, A

    2001-05-01

    It has been hypothesized that the increased incidence of breast cancer in industrial societies is related to greater exposure to power-frequency electric and magnetic fields (EMF) and/or the presence of high levels of light at night (LAN). EMF and LAN are said to reduce circulating levels of the hormone melatonin which, in turn, allows estrogen levels to rise and stimulate the turnover of breast epithelial stem cells and increase the risk for malignant transformation. Three laboratory-based studies, in which a total of 53 healthy young women were exposed at night to EMF or to LAN under controlled exposure conditions, were performed to determine whether such exposures reduce melatonin and are associated with further alterations in estrogen. All-night exposure to industrial-strength magnetic fields (60 Hz, 28.3 microT) had no effect on the blood levels of melatonin or estradiol. In contrast, nocturnal melatonin levels were profoundly suppressed, and the time of peak concentration was significantly delayed in women exposed to LAN, regardless of whether they were in the follicular or luteal phase of the menstrual cycle. These changes, however, were not associated with alterations in point-for-point matching measures of estradiol. Women who chronically secrete high or low amounts of melatonin each night (area-under-curve range: 86-1,296 pg/mL) also did not differ in their blood levels of estradiol. Taken together, these results are consistent with a growing body of evidence which generally suggests that environmental EMF exposure has little or no effect on the parameters measured in this report. PMID:11401762

  16. Research data supporting "Bright and efficient blue polymer light emitting diodes with reduced operating voltages processed entirely at low-temperature"

    OpenAIRE

    Hoye, R. L. Z.; Musselman, K.P.; Chua, M. R.; Sadhanala, A.; Raninga, R. D.; MacManus-Driscoll, J. L.; Friend, R. H.; Credgington, D.

    2015-01-01

    Raw data for all figures and ESI from manuscript "Bright and efficient blue polymer light emitting diodes with reduced operating voltages processed entirely at low-temperature" published in Journal of Materials Chemistry C (http://dx.doi.org/10.1039/C5TC01581B).

  17. Bright light therapy as part of a multicomponent management program improves sleep and functional outcomes in delirious older hospitalized adults

    Directory of Open Access Journals (Sweden)

    Chong MS

    2013-05-01

    Full Text Available Mei Sian Chong,1 Keng Teng Tan,2 Laura Tay,1 Yoke Moi Wong,1 Sonia Ancoli-Israel3,41Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore; 2Department of Pharmacy, Tan Tock Seng Hospital, Singapore; 3Departments of Psychiatry and Medicine, University of California, San Diego, CA, USA; 4VA Center of Excellence for Stress and Mental Health (CESAMH, San Diego, CA, USAObjective: Delirium is associated with poor outcomes following acute hospitalization. A specialized delirium management unit, the Geriatric Monitoring Unit (GMU, was established. Evening bright light therapy (2000–3000 lux; 6–10 pm daily was added as adjunctive treatment, to consolidate circadian activity rhythms and improve sleep. This study examined whether the GMU program improved sleep, cognitive, and functional outcomes in delirious patients.Method: A total of 228 patients (mean age = 84.2 years were studied. The clinical characteristics, delirium duration, delirium subtype, Delirium Rating Score (DRS, cognitive status (Chinese Mini–Mental State Examination, functional status (modified Barthel Index [MBI], and chemical restraint use during the initial and predischarge phase of the patient’s GMU admission were obtained. Nurses completed hourly 24-hour patient sleep logs, and from these, the mean total sleep time, number of awakenings, and sleep bouts (SB were computed.Results: The mean delirium duration was 6.7 ± 4.6 days. Analysis of the delirium subtypes showed that 18.4% had hypoactive delirium, 30.2% mixed delirium, and 51.3% had hyperactive delirium. There were significant improvements in MBI scores, especially for the hyperactive and mixed delirium subtypes (P < 0.05. Significant improvements were noted on the DRS sleep–wake disturbance subscore, for all delirium-subtypes. The mean total sleep time (7.7 from 6.4 hours (P < 0.05 and length of first SB (6.0 compared with 5.3 hours (P < 0.05 improved, with decreased mean number of SBs and awakenings. The

  18. Research on Brightness Measurement of Intense Electron Beam

    CERN Document Server

    Wang, Yuan; Zhang, Huang; Yang, GuoJun; Li, YiDing; Li, Jin

    2015-01-01

    The mostly research fasten on high emission density of injector to study electron beam's brightness in LIA. Using the injector(2MeV) was built to research brightness of multi-pulsed high current(KA) electron beam, and researchs three measurement method (the pepper-pot method, beam collimator without magnetic field, beam collimator with magnetic field method) to detect beam's brightness with time-resolved measurement system.

  19. Micro-structure Engineering of InGaN/GaN Quantum Wells for High Brightness Light Emitting Devices

    KAUST Repository

    Shen, Chao

    2013-05-01

    L > 3 μm in the array configuration would allow the building of practical devices. Overall, this work demonstrated a novel top-down approach to manufacture large effective-area, high brightness emitters for solid-state lighting applications.

  20. Characterization of Embedded BPM Collimators

    CERN Document Server

    VALENTINO, Gianluca

    2015-01-01

    During LS1, 16 tertiary collimators (TCTs) and 2 secondary collimators (TCSGs) in IR6 were replaced by new embedded BPM collimators. The BPM functionality allows the possibility to align the collimators more quickly and therefore be able to respond faster to machine configuration changes, as well as a direct monitoring of the beam orbit at the collimators. Following an initial commissioning phase, an MD was carried out to test the new collimators and acquisition electronics with beam in the LHC.

  1. GLOBE at Night: a Worldwide Citizen-Science Program to Increase Awareness of Light Pollution by Measuring Night Sky Brightness

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2011-12-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What has contributed to its success? Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and "Dark Skies Rangers" activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how one can participate in a citizen-science star-hunt like GLOBE at Night. To increase participation in the 2011 campaign, children and adults submitted their sky brightness measurements in real time with smart phones or tablets using the web application at www.globeatnight.org/webapp/. With smart phones and tablets, the location, date and time register automatically. For those without smart mobile devices, user-friendly tools on the GLOBE at Night report page were reconfigured to determine latitude and longitude more easily and accurately. As a proto-type for taking multiple measurements, people in Tucson found it easy to adopt a street and take measurements every mile for the length of the street. The grid of measurements

  2. Wake fields in SLAC Linac Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Decker, F. -J. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Smith, H. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sullivan, M. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  3. Mississippi Power ampersand Light Company: A departure point for extension of the bright line: between federal and state regulatory jurisdiction over public utilities

    International Nuclear Information System (INIS)

    This article suggests that the Supreme Court's decision in Mississippi Power ampersand Light Co. v. Mississippi ex rel. Moore (MP ampersand L) issued on June 29, 1988 may provide an appropriated departure point from which to extend the bright line between FERC and state PUC jurisdiction to deal with the costs associated with failed nuclear power plants. The issue of a jurisdictional bright line extension initially is posed where state PUCs, in setting retail electric rates, disallow or severely restrict recovery costs of failed unclear power plan costs from retail ratepayers. The article first provides a factual background against which to examine the jurisdictional bright line law. Second, it analyzes the MP ampersand L decision's clear affirmation of the statutory, judicial, and constitutional bases for drawing the jurisdictional bright line that are found in Part II of the Federal Power Act, the file rate doctrine, preemption principles, and the commerce clause of the Constitution. Finally, it discusses the extension of that jurisdictional bright line to deal with the current and future costs of inoperable, abandoned, or canceled nuclear power plants

  4. Improvement in Fatigue, Sleepiness, and Health-Related Quality of Life with Bright Light Treatment in Persons with Seasonal Affective Disorder and Subsyndromal SAD

    Directory of Open Access Journals (Sweden)

    Cecilia Rastad

    2011-01-01

    Full Text Available Objective. To investigate the effects of bright light treatment for secondary outcome measures and to explore and validate empirically derived subgroups and treatment effects in subgroups. Methods. A descriptive design. A sample of forty-nine persons (mean age of 45.8 with clinically assessed seasonal affective disorder (SAD or subsyndromal SAD (S-SAD participated in a two-group clinical trial evaluating the effects of treatment with bright light therapy. A person-oriented cluster analysis was applied to study treatment effects in subgroups. Results. For the merged group, sleepiness (Epworth Sleepiness Scale, fatigue (fatigue questionnaire, and health-related quality of life (SF-36 were improved at posttreatment, and results were maintained at the one-month followup. Three distinct subgroups had a high level of fatigue in common, while the level of excessive daytime sleepiness and depressed mood differed between the subgroups. Over time, all subgroups improved following ten days treatment in a light room. Conclusion. Fatigue, excessive daytime sleepiness, and health-related quality of life improve in a similar way as depressed mood following treatment with bright light. The treatment was effective irrespective of the severity of the disorder, that is, for persons with SAD and subsyndromal SAD.

  5. Adjunctive Triple Chronotherapy (Combined Total Sleep Deprivation, Sleep Phase Advance, and Bright Light Therapy) Rapidly Improves Mood and Suicidality in Suicidal Depressed Inpatients: An Open Label Pilot Study

    OpenAIRE

    Sahlem, Gregory L.; Kalivas, Benjamin; Fox, James B.; Lamb, Kayla; Roper, Amanda; Williams, Emily N.; Williams, Nolan R.; Korte, Jeffrey E.; Zuschlag, Zachary D.; El Sabbagh, Salim; Guille, Constance; Barth, Kelly S.; Uhde, Thomas W.; George, Mark S.; Short, E. Baron

    2014-01-01

    Previous studies have demonstrated that combined total sleep deprivation (Wake therapy), sleep phase advance, and bright light therapy (Triple Chronotherapy) produce a rapid and sustained antidepressant effect in acutely depressed individuals. To date no studies have explored the impact of the intervention on unipolar depressed individuals with acute concurrent suicidality. Participants were suicidal inpatients (N=10, Mean age=44±16.4SD, 6F) with unipolar depression. In addition to standard o...

  6. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  7. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Zou Ye [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo, E-mail: zbdeng@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Xu Denghui [Department of Mathematics and Physics, Beijing Technology and Business University, Beijing 100037 (China); Lue Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2012-02-15

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N Prime -diphenyl-N,N Prime -bis(1-napthyl-phenyl)-1.1 Prime -biphenyl-4.4 Prime -diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3})/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq{sub 3} layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: Black-Right-Pointing-Pointer Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. Black-Right-Pointing-Pointer Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. Black-Right-Pointing-Pointer The Improved OLED performance was attributed to the possible interfacial chemical reaction. Black-Right-Pointing-Pointer Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  8. Cleaning insertions and collimation challenges

    CERN Document Server

    Redaelli, S; Bertarelli, A; Bruce, R; Jowett, J M; Lechner, A; Losito, R

    2015-01-01

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010–2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  9. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    CERN Document Server

    Kain, V; Bracco, C; Fraser, M; Galleazzi, F; Gianfelice-Wendt, E; Kosmicki, A; Maciariello, F; Meddahi, M; Nuiry, F X; Steele, G; Velotti, F

    2015-01-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  10. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. [CERN; Aberle, O. [CERN; Bracco, C. [CERN; Fraser, M. [CERN; Galleazzi, F. [CERN; Gianfelice-Wendt, E. [Fermilab; Kosmicki, A. [CERN; Maciariello, F. [CERN; Meddahi, M. [CERN; Nuiry, F. X. [CERN; Steele, G. [CERN; Velotti, F. [CERN

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  11. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming

    2006-01-01

    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  12. Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin

    International Nuclear Information System (INIS)

    Highlights: • A various high-refractive-index ZnO patterns were formed on LED using imprinting. • Mechanism of light extraction enhancement was demonstrated by simulation and EL. • Light output power of patterned LED was improved up 19.6% by light waveguide effect. - Abstract: We fabricated high-brightness GaN-based light-emitting diodes (LEDs) with highly refractive patterned structures by using a thermal nanoimprint lithography (NIL). A highly refractive ZnO-nanoparticle-dispersed resin (ZNDR) was used in NIL, and a submicron hole, a submicron high-aspect-ratio pillar, and microconvex arrays were fabricated on the indium tin oxide (ITO) top electrode of GaN-based LED devices. We analyzed the light extraction mechanism for each of the three types of patterns by using a finite element method simulation, and found that the high-aspect-ratio pillar had a great ability to improve light extraction owing to its waveguide effect and prominent scattering effect. As a result, the light output power, which was measured in an integrating sphere, of the LED device was enhanced by up to 19.6% when the high-aspect-ratio pillar array was formed on the top ITO electrode of the device. Further, the electrical properties of none of the patterned LED devices fabricated using ZNDR degraded in comparison to those of bare LED devices

  13. Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kyeong-Jae [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Cho, Joong-Yeon; Jo, Han-Byeol [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-08-15

    Highlights: • A various high-refractive-index ZnO patterns were formed on LED using imprinting. • Mechanism of light extraction enhancement was demonstrated by simulation and EL. • Light output power of patterned LED was improved up 19.6% by light waveguide effect. - Abstract: We fabricated high-brightness GaN-based light-emitting diodes (LEDs) with highly refractive patterned structures by using a thermal nanoimprint lithography (NIL). A highly refractive ZnO-nanoparticle-dispersed resin (ZNDR) was used in NIL, and a submicron hole, a submicron high-aspect-ratio pillar, and microconvex arrays were fabricated on the indium tin oxide (ITO) top electrode of GaN-based LED devices. We analyzed the light extraction mechanism for each of the three types of patterns by using a finite element method simulation, and found that the high-aspect-ratio pillar had a great ability to improve light extraction owing to its waveguide effect and prominent scattering effect. As a result, the light output power, which was measured in an integrating sphere, of the LED device was enhanced by up to 19.6% when the high-aspect-ratio pillar array was formed on the top ITO electrode of the device. Further, the electrical properties of none of the patterned LED devices fabricated using ZNDR degraded in comparison to those of bare LED devices.

  14. Dependence on the incident light power of the internal electric fields in a GaAs p-i-n solar cell according to bright photoreflectance spectroscopy

    Science.gov (United States)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Lee, Sang Jun

    2016-07-01

    Bright photoreflectance (BPR) spectroscopy at room temperature is used to examine the internal electric fields in a GaAs p-i-n solar cell for their dependence on the incident light power. Electric fields are observed at 30 µW and 100 µW of incident light. With increasing power, the strengths of the two electric fields are reduced due to the photovoltage effect. The electric field observed at 30 µW is assigned to the p-i interface, which is close to the surface. The other electric field is due to the i-n interface because the incident light penetrates deeper as the light power is increased. The electric field strength of 35.6 kV/cm at the p-i interface is lower than that of 42.9 kV/cm at the i-n interface at 500 µW of light power because the photovoltage effect is proportional to the number of photo-generated carriers, which is reduced as the distance from the surface increases. When the incident light power is similar to the excitation beam power, the electric fields at the p-i interface are saturated.

  15. Can the season of birth risk factor for schizophrenia be prevented by bright light treatment for the second trimester mother around the winter solstice?

    Science.gov (United States)

    Schwartz, Paul J

    2014-12-01

    The season of birth risk factor for schizophrenia exerts a pervasive effect on the global population, particularly at northerly latitudes. The winter infection hypothesis and the low vitamin D hypothesis are both compelling but lack conclusive clinical data. The present work develops a maternal-fetal chronobiological hypothesis for this season of birth risk factor and its prevention by maternal bright light treatment. Around the winter solstice, due to decreased sunlight, the chronobiological apparatus of the at-risk second trimester mother is characterized by a reduced amplitude circadian pacemaker, and a reduced maximum of her nocturnal plasma melatonin concentrations (MTmax) and an increased minimum of her nocturnal core body temperatures (Tmin)--both of which exert adverse effects on the fetal hippocampus and dorsal striatum. The consequences for the fetus include reduced volume and increased excitability of the hippocampus, ventral striatal dysfunction, increased presynaptic nigrostriatal dopamine transmission, and increased propensity for pathological nigrostriatal neuronal phasic firing. Thus, the maternal-fetal chronobiological hypothesis fully accounts for the fetal precursors of the major pathognomonic abnormalities in adults with schizophrenia. Bright light treatment for the second trimester mother around the winter solstice, by increasing maternal circadian amplitude, could possibly prevent the fetal hippocampal and striatal abnormalities and eliminate the season of birth risk factor for schizophrenia. PMID:25456791

  16. Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer.

    Science.gov (United States)

    Zhang, Xiaoyu; Lin, Hong; Huang, He; Reckmeier, Claas; Zhang, Yu; Choy, Wallace C H; Rogach, Andrey L

    2016-02-10

    High photoluminescence quantum yield, easily tuned emission colors, and high color purity of perovskite nanocrystals make this class of material attractive for light source or display applications. Here, green light-emitting devices (LEDs) were fabricated using inorganic cesium lead halide perovskite nanocrystals as emitters. By introducing a thin film of perfluorinated ionomer (PFI) sandwiched between the hole transporting layer and perovskite emissive layer, the device hole injection efficiency has been significantly enhanced. At the same time, PFI layer suppressed charging of the perovskite nanocrystal emitters thus preserving their superior emissive properties, which led to the three-fold increase in peak brightness reaching 1377 cd m(-2). The full width at half-maximum of the symmetric emission peak with color coordinates of (0.09, 0.76) was 18 nm, the narrowest value among perovskite based green LEDs. PMID:26745020

  17. Cavity Light-Emitting Diode for Durable, High-Brightness and High-Efficiency Lighting Applications: First Budget Period Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Yijian Shi

    2009-09-30

    A COLED device consists of a top electrode (anode) and a bottom electrode (cathode) separated by a thin dielectric layer. In this metal/dielectric stack, numerous small wells, or cavities, are etched through the top electrode and the dielectric layer. These cavities are subsequently filled with LEP molecules. When a voltage is applied between the top and bottom electrodes, holes (from the top electrode) and electrons (from the bottom electrode) are injected into the polymer. Light emission is generated upon recombination of holes and electrons within the polymer along the perimeters of cavities. Figure 1 compares the structures of the COLED and the traditional OLED. The existing COLED fabrication process flow is illustrated in Figure 2. A COLED can potentially be 5 times more efficient and can operate at as much as 100 times higher current density with much longer lifetime than an OLED. To fully realize these potential advantages, the COLED technology must overcome the following technical barriers, which were the technical focused points for Years 1 and 2 (Phase I) of this project: (1) Construct optimum thickness dielectric layer: In the traditional OLED structure, the optimal thickness of the LEP film is approximately 80-100 nm. In a COLED device, the effective LEP thickness roughly equals the thickness of the dielectric layer. Therefore, the optimal dielectric thickness for a COLED should also be roughly equal to 80-100 nm. Generally speaking, it is technically challenging to produce a defect-free dielectric layer at this thickness with high uniformity, especially over a large area. (2) Develop low-work-function cathode: A desired cathode should have a low work function that matches the lowest unoccupied molecular orbital (LUMO) level of the LEP molecules. This is usually achieved by using a low-work-function metal such as calcium, barium, lithium, or magnesium as the cathode. However, these metals are very vulnerable to oxygen and water. Since the cathode of the

  18. [Influence of collimation system on static Fourier transform spectrometer].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Liang, Jing-Qiu; Liang, Zhong-Zhu; Sun, Qiang; Wang, Wei-Biao

    2014-01-01

    Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system. PMID:24783575

  19. Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1

    Science.gov (United States)

    McNeill, A.; Fitzsimmons, A.; Jedicke, R.; Wainscoat, R.; Denneau, L.; Vereš, P.; Magnier, E.; Chambers, K. C.; Kaiser, N.; Waters, C.

    2016-07-01

    The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack effect. We have analysed the changes in magnitude between consecutive detections of ˜60 000 asteroids measured by the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency towards smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 ± 0.13 : 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.

  20. Brightness variation distributions among main belt asteroids from sparse light curve sampling with Pan-STARRS 1

    CERN Document Server

    McNeill, A; Jedicke, R; Wainscoat, R; Denneau, L; Veres, P; Magnier, E; Chambers, K C; Kaiser, N; Waters, C

    2016-01-01

    The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of approximately 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1 : 0.85 \\pm 0.13 : 0.71 \\pm 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.

  1. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  2. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  3. Adjunctive triple chronotherapy (combined total sleep deprivation, sleep phase advance, and bright light therapy) rapidly improves mood and suicidality in suicidal depressed inpatients: an open label pilot study.

    Science.gov (United States)

    Sahlem, Gregory L; Kalivas, Benjamin; Fox, James B; Lamb, Kayla; Roper, Amanda; Williams, Emily N; Williams, Nolan R; Korte, Jeffrey E; Zuschlag, Zachary D; El Sabbagh, Salim; Guille, Constance; Barth, Kelly S; Uhde, Thomas W; George, Mark S; Short, E Baron

    2014-12-01

    Previous studies have demonstrated that combined total sleep deprivation (Wake therapy), sleep phase advance, and bright light therapy (Triple Chronotherapy) produce a rapid and sustained antidepressant effect in acutely depressed individuals. To date no studies have explored the impact of the intervention on unipolar depressed individuals with acute concurrent suicidality. Participants were suicidal inpatients (N = 10, Mean age = 44 ± 16.4 SD, 6F) with unipolar depression. In addition to standard of care, they received open label Triple Chronotherapy. Participants underwent one night of total sleep deprivation (33-36 h), followed by a three-night sleep phase advance along with four 30-min sessions of bright light therapy (10,000 lux) each morning. Primary outcome measures included the 17 item Hamilton depression scale (HAM17), and the Columbia Suicide Severity Rating Scale (CSSRS), which were recorded at baseline prior to total sleep deprivation, and at protocol completion on day five. Both HAM17, and CSSRS scores were greatly reduced at the conclusion of the protocol. HAM17 scores dropped from a mean of 24.7 ± 4.2 SD at baseline to a mean of 9.4 ± 7.3 SD on day five (p = .002) with six of the ten individuals meeting criteria for remission. CSSRS scores dropped from a mean of 19.5 ± 8.5 SD at baseline to a mean of 7.2 ± 5.5 SD on day five (p = .01). The results of this small pilot trial demonstrate that adjunctive Triple Chronotherapy is feasible and tolerable in acutely suicidal and depressed inpatients. Limitations include a small number of participants, an open label design, and the lack of a comparison group. Randomized controlled studies are needed. PMID:25231629

  4. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints

    CERN Document Server

    Shappee, B J; Holoien, T W -S; Prieto, J L; Contreras, C; Itagaki, K; Burns, C R; Kochanek, C S; Stanek, K Z; Alper, E; Basu, U; Beacom, J F; Bersier, D; Brimacombe, J; Conseil, E; Danilet, A B; Dong, Subo; Falco, E; Grupe, D; Hsiao, E Y; Kiyota, S; Morrell, N; Nicolas, J; Phillips, M M; Pojmanski, G; Simonian, G; Stritzinger, M; Szczygieł, D M; Thompson, T A; Thorstensen, J; Wagner, M; Woźniak, P R

    2015-01-01

    On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just $\\sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 11.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($\\Delta m_{15}(B) = 0.796 \\pm 0.001_{\\textrm{stat}}$), a $B$-band maximum at $2457015.823 \\pm 0.030_{\\textrm{stat}}$, a rise time of $16.94^{+ 0.11 }_{- 0.11 }$ days, and moderate host--galaxy extinction ($E(B-V)_{\\textrm{host}} = 0.329 \\pm 0.001_{\\textrm{stat}}$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $\\mu = 30.834 \\pm 0.003_{\\textrm{stat}} \\pm 0.16_{\\textrm{syst}}$ corresponding to a distance of $14.68 \\pm 0.02_{\\...

  5. Low-intensity blue-enriched white light (750 lux and standard bright light (10 000 lux are equally effective in treating SAD. A randomized controlled study

    Directory of Open Access Journals (Sweden)

    Bos Elske H

    2011-01-01

    Full Text Available Abstract Background Photoreceptor cells containing melanopsin play a role in the phase-shifting effects of short-wavelength light. In a previous study, we compared the standard light treatment (SLT of SAD with treatment using short-wavelength blue-enriched white light (BLT. Both treatments used the same illuminance (10 000 lux and were equally highly effective. It is still possible, however, that neither the newly-discovered photoreceptor cells, nor the biological clock play a major role in the therapeutic effects of light on SAD. Alternatively, these effects may at least be partly mediated by these receptor cells, which may have become saturated as a result of the high illuminances used in the therapy. This randomized controlled study compares the effects of low-intensity BLT to those of high-intensity SLT. Method In a 22-day design, 22 patients suffering from a major depression with a seasonal pattern (SAD were given light treatment (10 000 lux for two weeks on workdays. Subjects were randomly assigned to either of the two conditions, with gender and age evenly distributed over the groups. Light treatment either consisted of 30 minutes SLT (5000°K with the EnergyLight® (Philips, Consumer Lifestyle with a vertical illuminance of 10 000 lux at eye position or BLT (17 000°K with a vertical illuminance of 750 lux using a prototype of the EnergyLight® which emitted a higher proportion of short-wavelengths. All participants completed questionnaires concerning mood, activation and sleep quality on a daily basis. Mood and energy levels were also assessed on a weekly basis by means of the SIGH-SAD and other assessment tools. Results On day 22, SIGH-SAD ratings were significantly lower than on day 1 (SLT 65.2% and BLT 76.4%. On the basis of all assessments no statistically significant differences were found between the two conditions. Conclusion With sample size being small, conclusions can only be preliminary. Both treatment conditions were found

  6. Four-block beam collimator

    CERN Multimedia

    1977-01-01

    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  7. Quantum communication with macroscopically bright nonclassical states.

    Science.gov (United States)

    Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim

    2015-11-30

    We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light. PMID:26698776

  8. Enhanced luminous efficiency and brightness using DNA electron blocking layers in bio-organic light emitting diodes

    Science.gov (United States)

    Hagen, Joshua A.

    The biopolymer deoxyribonucleic acid (DNA) has been extracted from salmon (saDNA) and used successfully as an electron blocking layer (EBL) in multiple structures of Organic Light Emitting Diodes (OLED). Water soluble saDNA was complexed with a cationic surfactant hexadecytrimethylammonium chloride (CTMA) which makes the resulting DNA-CTMA molecule water insoluble, and soluble in common organic media such as alcohols. Solutions of DNA-CTMA and butanol make uniform thin films from 20nm to 5 microns in thickness by varying spin coating parameters and molecular weight. The optical properties of DNA-CTMA thin films include high transparency and low optical loss for applications at wavelengths above 400nm. The DNA-CTMA films have an electrical resistivity on the order of 107 O*cm. All of these properties combined made DNA-CTMA a candidate as an EBL in OLEDs, and this resulting device was termed a Bio-organic Light Emitting Diode (BioLED). Enhanced electroluminescent efficiency has been demonstrated in both green and blue emitting BioLEDs. The resulting green and blue BioLEDs showed a maximum luminous efficiency of 8.2 and 0.8 cd/A, respectively. The DNA based BioLEDs were as much as 10x more efficient and 30x brighter than their OLED counterparts. The enhancement in performance is due to the electron blocking action with the 0.9 eV (lowest unoccupied molecular orbital) value, allows hole injection to proceed with a 5.6eV (highest occupied molecular orbital) value. DNA-CTMA has also been successfully deposited in thin film form via molecular beam deposition (MBD). The growth was achieved at 160°C at vacuum levels of 10-5 Torr at a deposition rate of 0.8A/s. MBD grown DNA-CTMA thin films were highly uniform, optically transparent, and adhere to silicon, quartz and glass substrates more strongly than spin coated films. The material deposited was verified as DNA-CTMA through optical absorption, energy dispersive X-ray analysis, and using a DNA indicating fluorescent dye

  9. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  10. High-brightness beamline for x-ray spectroscopy at the ALS

    International Nuclear Information System (INIS)

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new open-quotes Cowan typeclose quotes double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS

  11. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-time Observations, First-light Time, Distance to NGC 4666, and Progenitor Constraints

    Science.gov (United States)

    Shappee, B. J.; Piro, A. L.; Holoien, T. W.-S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Woźniak, P. R.

    2016-08-01

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”) discovered ASASSN-14lp just ∼2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ({{Δ }}{m}15(B)=0.80+/- 0.05), a B-band maximum at 2457015.82 ± 0.03, a rise time of {16.94}-0.10+0.11 days, and moderate host-galaxy extinction (E{(B-V)}{host}=0.33+/- 0.06). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of μ =30.8+/- 0.2, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 {R}ȯ .

  12. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  13. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers.

    Science.gov (United States)

    Liao, Chen; Tang, Luping; Gao, Xiaoqin; Xu, Ruilin; Zhang, Huichao; Yu, Yongya; Lu, Changgui; Cui, Yiping; Zhang, Jiayu

    2015-12-28

    Well-defined plasmon couplers (PCs) that comprise a Ag core overcoated with a SiO(2) shell with controlled thickness, followed by a monolayer of CdS-ZnS core-shell quantum dots (QDs) were synthesized to modify the emission from trap-rich CdS-ZnS QDs by adjusting the distance between the QDs and Ag nanoparticles (NPs). When the thickness of the SiO(2) shell was 10 nm, because the shell could effectively suppress the non-radiative energy transfer from the semiconductor QDs to the metal NPs and the localized surface plasmon resonance (LSPR) of the Ag NPs spectrally matched the emission peak of the CdS-ZnS QDs to bring about strong plasmon coupling, optimum enhancements of the surface state emission (SSE) (17 times) and band-edge emission (BEE) (4 times) were simultaneously realized and the SSE to BEE intensity ratio was increased to 55%. As a result, a bright white-light source with 1931 Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.34) was realized by the superposition of the two emissions. The experimental results from Ag/SiO(2)/CdSe-ZnS and the Ag/SiO(2)/CdS:Mn-ZnS core/shell/shell PCs indicated that suppressing the non-radiative decay rate (k(nr)) was the underlying mechanism for plasmon coupling fluorescence enhancement. PMID:26592756

  14. Computer aided pinhole collimating system based on dual laser theodolides

    International Nuclear Information System (INIS)

    A computer aided thick pinhole collimating system was developed for X-ray or Gamma ray pinhole imaging applications. This system consists of two laser theodolites and actuators, a digital video camera, a laptop computer and a specifically developed software package. Functions including aided focusing, aided light axis adjustment and parameter recording were implemented. Compared with single light axis method, this system can shorten the collimating adjustment time, and achieve better precision. It can also provide long-term reference axis. Data processing and alignment criterion were discussed. (authors)

  15. Efficient Dielectric Metasurface Collimating Lenses for Mid-Infrared Quantum Cascade Lasers

    OpenAIRE

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses...

  16. Design and experimental validation of a compact collimated Knudsen source

    CERN Document Server

    Wouters, Steinar H W; Mutsaers, Peter H A; Vredenbregt, Edgar J D

    2015-01-01

    In this paper we discuss the design and performance of a collimated Knudsen source which has the benefit of a simple design over recirculating sources. Measurements of the flux, transverse velocity distribution and brightness at different temperatures were conducted to evaluate the performance. The scaling of the flux and brightness with the source temperature follow the theoretical predictions. The transverse velocity distribution in the transparent operation regime also agrees with the simulated data. The source was found able to produce a flux of $10^{14}$ s$^{-1}$ at a temperature of 433 K. Furthermore the transverse reduced brightness of an ion beam with equal properties as the atomic beam reads $1.7 \\times 10^2$ A/(m${}^2$ sr eV) which is sufficient for our goal: the creation of an ultra-cold ion beam by ionization of a laser-cooled and compressed atomic rubidium beam.

  17. Fluorescence-guided surgery of retroperitoneal-implanted human fibrosarcoma in nude mice delays or eliminates tumor recurrence and increases survival compared to bright-light surgery.

    Directory of Open Access Journals (Sweden)

    Fuminari Uehara

    Full Text Available The aim of this study is to determine if fluorescence-guided surgery (FGS can eradicate human fibrosarcoma growing in the retroperitoneum of nude mice. One week after retroperitoneal implantation of human HT1080 fibrosarcoma cells, expressing green fluorescent protein (GFP (HT-1080-GFP, in nude mice, bright-light surgery (BLS was performed on all tumor-bearing mice (n = 22. After BLS, mice were randomized into 2 treatment groups; BLS-only (n = 11 or the combination of BLS + FGS (n = 11. The residual tumors remaining after BLS were resected with FGS using a hand-held portable imaging system under fluorescence navigation. The average residual tumor area after BLS + FGS was significantly smaller than after BLS-only (0.4 ± 0.4 mm(2 and 10.5 ± 2.4 mm(2, respectively; p = 0.006. Five weeks after surgery, the fluorescent-tumor areas of BLS- and BLS + FGS-treated mice were 379 ± 147 mm(2 and 11.7 ± 6.9 mm(2, respectively, indicating that FGS greatly inhibited tumor recurrence compared to BLS. The combination of BLS + FGS significantly decreased fibrosarcoma recurrence compared to BLS-only treated mice (p < 0.001. Mice treated with BLS+FGS had a significantly higher disease-free survival rate than mice treated with BLS-only at five weeks after surgery. These results suggest that combination of BLS + FGS significantly reduced the residual fibrosarcoma volume after BLS and improved disease-free survival.

  18. Collimation with hollow electron beams

    CERN Document Server

    Stancari, G; Annala, G; Kuznetsov, G; Shiltsev, V; Still, D A; Vorobiev, L G

    2011-01-01

    A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented.

  19. First cleaning with LHC collimators

    CERN Document Server

    Wollmann, D; Arnau-Izquiedo, G; Assmann, R; Bacher, J P; Baglin, V; Bellodi, G; Bertarelli, A; Bouzoud, A; Bracco, C; Bruce, R; Brugger, M; Calatroni, S; Cerruti, F; Chamizo, R; Cherif, A; Chiaveri, E; Chiggiato, P; Dallochio, A; Dehning, B; Donze, M; Ferrari, A; Folch, R; Francon, P; Gander, P; Geisser, J M; Grudiev, A; Holzer, EB; Jacquet, D; Jeanneret, J B; Jimenez, J M; Jonker, M; Jowett, J; Kershaw, K; Lari, L; Lendaro, J; Loprete, F; Losito, R; Magistris, M; Malabaila, M; Mayer, M; Marsili, A; Masi, A; Mathot, S; Métral, E; Mitifiot, C; Mounet, N; de Morais Amaral, R; Nordt, A; Perret, R; Perrollaz, S; Rathjen, C; Redaelli, S; Robert-Demolaize, G; Roesler, S; Rossi, A; Salvant, B; Santana, M; Sexton, I; Sievers, P; Tardy, T; Timmins, M; Tsoulou, K; Veyrunes, E; Vincke, H; Vlachoudis, V; Vuillemin, V; Weiler, T; Zimmermann, F; Baishev, I; Kurochkin, I; Kaltchev, D; Caspers, F; Kadi, Y

    2010-01-01

    The LHC has two dedicated cleaning insertions: IR3 for momentum cleaning and IR7 for betatron cleaning. The collimation system has been specified and built with tight mechanical tolerances (e.g. jaw flatness ~ 40 μm ) and is designed to achieve a high accuracy and reproducibility of the jaw positions (~ 20 μm). The practically achievable cleaning efficiency of the present Phase-I system depends on the precision of the jaw centering around the beam, the accuracy of the gap size and the jaw parallelism against the beam. The reproducibility and stability of the collimation system is important to avoid the frequent repetition of beam based alignment which is currently a lengthy procedure. Within this paper we describe the method used for the beam based alignment of the LHC collimation system, its achieved accuracy and stability and its performance at 450GeV.

  20. The brightness of colour.

    Directory of Open Access Journals (Sweden)

    David Corney

    Full Text Available BACKGROUND: The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this 'illusion' to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. RESULTS: Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1, if not earlier in the visual system, since the brightness of colours (as opposed to their luminance accords with activity in V1 as measured with fMRI. CONCLUSIONS: The data suggest that perceptions

  1. Efficient Dielectric Metasurface Collimating Lenses for Mid-Infrared Quantum Cascade Lasers

    CERN Document Server

    Arbabi, Amir; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 $\\mu$m distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0...

  2. Comparison of effects of bright light therapy alone or combined with fluoxetine on severity of depression, circadian rhythms, mood disturbance, and sleep quality, in patients with non-seasonal depression

    OpenAIRE

    Ağargün MY; Hızlı Sayar G; Bulut H; Tan O

    2013-01-01

    Mehmet Yücel Agargün,1 Gokben Hizli Sayar,2 Hüseyin Bulut,3 Oguz Tan21Medipol University, Department of Psychiatry, Istanbul, Turkey; 2Uskudar University, Neuropsychiatry Istanbul Hospital, Istanbul, Turkey; 3Büyükçekmece Government Hospital, Department of Psychiatry, Istanbul, TurkeyPurpose: To compare effects of bright light therapy (BLT) alone or combined with the selective serotonin reuptake inhibitor (SSRI) fluoxetine, on severity of depression, circadian ...

  3. Comparison of effects of bright light therapy alone or combined with fluoxetine on severity of depression, circadian rhythms, mood disturbance, and sleep quality, in patients with non-seasonal depression

    OpenAIRE

    Hizli Sayar, Gökben

    2013-01-01

    Mehmet Yücel Agargün,1 Gokben Hizli Sayar,2 Hüseyin Bulut,3 Oguz Tan21Medipol University, Department of Psychiatry, Istanbul, Turkey; 2Uskudar University, Neuropsychiatry Istanbul Hospital, Istanbul, Turkey; 3Büyükçekmece Government Hospital, Department of Psychiatry, Istanbul, TurkeyPurpose: To compare effects of bright light therapy (BLT) alone or combined with the selective serotonin reuptake inhibitor (SSRI) fluoxetine, on severity o...

  4. Proton Collimators for Fusion Reactors

    Science.gov (United States)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  5. A neutron collimator with adjustable radiation field

    International Nuclear Information System (INIS)

    An adjustable neutron collimator for neutron therapy purposes is described. The collimator is designed to give a very sharp radiation field and a high freedom of choice for the radiation geometrics. (L.E.)

  6. Scintillation camera brightness calibration apparatus

    International Nuclear Information System (INIS)

    Circuitry is described for calibrating the brightness of a cathode ray tube display and recording apparatus comprising: 1) intensity control means for adjusting the intensity of the cathode ray tube beam; 2) light sensitive means disposed to receive light emitted from the cathode ray tube and generating a first electrical signal having a magnitude dependent upon the intensity of the emitted light; 3) reference signal generating means for generating a second electrical signal of predetermined magnitude; and 4) electrical signal comparison means coupled to the light sensitive means and the reference signal generating means for comparing the magnitude of the first and second electrical signals. (author)

  7. High resolution alpha particle spectrometry through collimation

    International Nuclear Information System (INIS)

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides. - Highlights: • Alpha particle spectrometry with collimation a useful method for identifying nuclear materials among various radionuclides. • A collimator cut off alpha particles with low angle emitted from a source. • We confirm that that a collimator improves the resolution of alpha spectra through both simulation and experiments

  8. Radiation imaging apparatus with a slit collimator

    International Nuclear Information System (INIS)

    In imaging apparatus comprising a slit collimator, means for imparting to said collimator a basic movement through a succession of different positions relative to a source of radiation, detector means for providing measurements of the radiation passing through the collimator in each of said positions, and means for processing data from said succession of measurements to gain information about said source, that improvement comprising means for superimposing upon said basic movement of said collimator a cyclic lateral movement of said collimator and said detector means transverse both to the direction of radiation transmission through said collimator and to the wall of said collimator defining said slits, and means for making a succession of said measurements during each cycle of said lateral movement

  9. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma

    OpenAIRE

    Gruver, Aaron M; Peerwani, Ziad; Tubbs, Raymond R.

    2010-01-01

    Assessment of ERBB2 (HER2) status in breast carcinomas has become critical in determining response to the humanised monoclonal antibody trastuzumab. The current joint College of American Pathologists and the American Society of Clinical Oncology guidelines for the evaluation of HER2 status in breast carcinoma involve testing by immunohistochemistry and fluorescence in situ hybridisation (FISH). However, neither of these modalities is without limitations. Novel bright field in situ hybridisati...

  10. Fano resonance of self-collimated beams in two-dimensional photonic crystals.

    Science.gov (United States)

    Lee, Sun-Goo; Park, Jong-Moon; Kee, Chul-Sik

    2014-11-17

    We report that the Fano resonance of self-collimated beams can be achieved in a two-dimensional photonic crystal by introducing a Fano resonator that is composed of zigzag line defects. An asymmetric Fano line shape in a transmission spectrum is generated by the interference between radiated light beams from the resonator and self-collimated beams that directly pass through the resonator without resonance. It is shown that the Fano profile increases in sharpness as the number of zigzag line defects increases because the phase values of the radiated light beams change more rapidly when the number of defects increases. The Fano resonance of self-collimated beams could provide an efficient approach to manipulate light propagation and increase the possibility of application of self-collimated beams. PMID:25402134

  11. The UBVRI light curve behaviour of the Seyfert galaxy NGC 4151 during the extraordinary maximum of the nuclear brightness in 1989-1997

    Science.gov (United States)

    Merkulova, N. I.

    Observations were carried out with the 1.25 m telescope of Crimean Astrophysical Observatory, equipped with a Double Image Chopping Photometer--Polarimeter by Prof. V.Piirola from Helsinki University. This device allows to obtain simultaneous observations in 5 filters of Johnson's UBVRI system. Photometric errors were less than 0,m01, time resolution was about 3--4 min. Round diaphragms with diameters 20 and 15 arcseconds were used. During this extraordinary maximum the nuclear brightness in the U band increases on ~2m.0, while in the I band -- only on ~ 0m.7. All colour indices decreased: (U-B) from ~-0m.3 to ~-0m.8, (B-V) from ~0m.9 to ~0m.4, (V-I) from ~1m.3 to ~0m.9. The flux ascending in the blue spectral region was twice more than in the red one. The galaxy nucleus seems to be more and more "bluer", but some brightness and colour variations were observed during each of the 9 observational seasons, include local mimimums, flares and intranight variability. Colour--magnitude dependences were analyzed as well as two--colour diagrams. There were no differences between data obtained in 20" and 15" apertures. This fact means that we can see only fluxes from the galactic nucleus during the epoch of brightness maximum.

  12. A LabVIEW-based data acquisition system for the UTEP/Orsay Instrumented Collimator

    International Nuclear Information System (INIS)

    Full text: We have successfully employed an instrumented collimator of aperture 2 mm for the g8a run (summer, 2001) in Hall B of Jefferson Lab, which was designed and tested by UTEP and engineered and built by the Institut de Physique Nucl ire in Orsay, France. The instrumentation of the collimator consists of four radially mounted scintillator + light guide + PMT elements possessing a left-right, up-down symmetry, which afforded the beam of photons to be precisely aligned to the central axis of the collimator. The collimator was sensitive to rather modest beam motion of the order of a few tens of microns. We made use of the physical fact that the emission angle of the coherent Bremsstrahlung photon component is correlated with its energy for enhancing the degree of polarization of the photon beam. We can extract the spectral peak by tightly collimating the beam and thereby reduce the incoherent background, which further serves to increase the degree of polarization. The maximum polar angle is limited by the opening angle of the collimator, which gives the lower limit for the coherent Bremsstrahlung photon energy. To achieve polarizations exceeding 75%, we must collimate the beam to better than one half of a characteristic angle. This means for a collimator-goniometer distance of 22 m, the aperture of the collimator should be ∼ 2 mm for an incident electron energy of Eo 5.7 GeV. We will report primarily on the bench top data acquisition system (DAQ), which interfaced LabVIEW through a SCSI connection to the VME back plane to readout CAEN QDCs. We employed this DAQ to test and calibrate the instrumented collimator. Our efforts were quite successful in that the device functioned beyond design specifications within one hour after the photon beam was directed onto the bore hole of the collimator. (Author)

  13. An ultra-bright atom laser

    International Nuclear Information System (INIS)

    We present a novel, ultra-bright atom laser and an ultra-cold thermal atom beam. Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb atoms in a trapped Bose–Einstein condensate. The resulting time-dependent adiabatic potential forms a trap, which at low rf-frequencies opens just below the condensate and thus allows an extremely bright well-collimated atom laser beam to emerge. As opposed to traditional atom lasers based on weak coupling of the magnetic hyperfine levels, this technique allows us to outcouple atoms at an arbitrarily large rate. We achieve a flux of 4×107 atom s-1, a seven fold increase compared to the brightest atom lasers to date. Furthermore, we demonstrate by two orders of magnitude the coldest thermal atom beam (200 nK). (paper)

  14. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  15. Neutron collimator with rectangular beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. E-mail: leo.cussen@vu.edu.au; Hoeghoj, P.; Anderson, I.S

    2001-03-21

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm{sup 2} in all cases. The blades of the collimators are 280 {mu}m thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years.

  16. Neutron collimator with rectangular beam profile

    CERN Document Server

    Cussen, L D; Anderson, I S

    2001-01-01

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm sup 2 in all cases. The blades of the collimators are 280 mu m thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years.

  17. Neutron collimator with rectangular beam profile

    International Nuclear Information System (INIS)

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm2 in all cases. The blades of the collimators are 280 μm thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years

  18. Pinhole collimator design for nuclear survey system

    International Nuclear Information System (INIS)

    A conventional knife-edge collimator, which is widely used in gamma camera for medical diagnosis, is not suitable for nuclear imaging system because many scattering radiations near the pinhole aperture happen and blur image. A new pinhole collimator, which shapes a channeled aperture for reducing image degradation induced by the scattering radiations, is introduced and its characteristics are analyzed by Monte Carlo simulation. Resolutions defined as the full-width at half-maximum (FWHM) of point spread function and efficiencies are calculated about several pinhole diameters from 4 to 8 mm and channel heights from 2 to 10 mm. For this calculation, we assumed that 137Cs radiation sources with 662 keV mono-energies enter into our designed collimator at the 1 m distance from the detector plane. The efficiencies and resolutions of the channeled collimator are compared with those of the conventional collimator. By comparison results, it is verified that the new collimator takes advantage more than the conventional collimator. The optimum channel height and diameter of the pinhole collimator from simulation results are also proposed and designed. We finally acquired nuclear image mounting this collimator in the nuclear survey system

  19. Burkina Faso - BRIGHT II

    Data.gov (United States)

    Millenium Challenge Corporation — Millennium Challenge Corporation hired Mathematica Policy Research to conduct an independent evaluation of the BRIGHT II program. The three main research questions...

  20. Spatial Brightness Perception of Trichromatic Stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Houser, Kevin W.

    2012-11-16

    An experiment was conducted to examine the effect of tuning optical radiation on brightness perception for younger (18-25 years of age) and older (50 years of age or older) observers. Participants made forced-choice evaluations of the brightness of a full factorial of stimulus pairs selected from two groups of four metameric stimuli. The large-field stimuli were created by systematically varying either the red or the blue primary of an RGB LED mixture. The results indicate that light stimuli of equal illuminance and chromaticity do not appear equally bright to either younger or older subjects. The rank-order of brightness is not predicted by any current model of human vision or theory of brightness perception including Scotopic to Photopic or Cirtopic to Photopic ratio theory, prime color theory, correlated color temperature, V(λ)-based photometry, color quality metrics, linear brightness models, or color appearance models. Age may affect brightness perception when short-wavelength primaries are used, especially those with a peak wavelength shorter than 450 nm. The results suggest further development of metrics to predict brightness perception is warranted, and that including age as a variable in predictive models may be valuable.

  1. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  2. BrightFocus Foundation

    Science.gov (United States)

    ... size: A A Contrast En Español Donate BrightFocus Foundation Alzheimer’s Disease Research Macular Degeneration Research National Glaucoma ... Bovenkamp, Ph.D., Scientific Program Officer for BrightFocus Foundation, about the basic science and therapeutic research the ...

  3. Lensless CCD-based fluorometer using a micromachined optical Soller collimator

    NARCIS (Netherlands)

    Balsam, Joshua; Ossandon, Miguel; Kostov, Yordan; Bruck, Hugh Alan; Rasooly, Avraham

    2011-01-01

    In this paper, we describe a simple charge-coupled device (CCD) based lensless fluorometer with sensitivity in the range of current ELISA plate readers. In our lensfree fluorometer, a multi-wavelength LED light source was used for fluorophore excitation. To collimate the light, we developed a simple

  4. Characterisation of fan-beam collimators

    International Nuclear Information System (INIS)

    Fan-beam collimators offer a good balance between resolution and noise. The collimator response may be included in iterative reconstruction algorithms in order to improve single-photon emission tomography (SPET) resolution. To this end, accurate determination of the focal region and characterisation of the collimator response as a function of the source co-ordinates must be performed. In this paper, a method to characterise fan-beam collimators is evaluated. First, we calculated the real focal region and the accuracy of the collimator convergence. Then, we confirmed the hypothesis that Gaussian distributions adequately fit the collimator responses, although no individualised treatment was performed for the tails of detector response which are associated with scattering and septal penetration. Finally, analytical functions were used to model the resolution and sensitivity. The parameter values in these functions were obtained from experimental measures by non-linear regression fitting. Our findings show differences of 1.43% between nominal and real focal length and standard deviations of 2.5 mm in the x-direction and 7.1 mm in the y-direction for the focal convergence. The correlation coefficients between experimental and predicted values were 0.994 for resolution and 0.991 for sensitivity. As a consequence, the proposed method can be used to characterise the collimator response. (orig.)

  5. The HEAO-1 Scanning Modulation Collimator

    Science.gov (United States)

    Schwartz, Daniel A.

    2013-01-01

    My niche on this panel seems to be the High Energy Astronomy Observatory-1 Scanning Modulation Collimator experiment. Our chair, Hale Bradt, and the late Herb Gursky each proposed a different version modulation collimator, which was condensed by NASA via "forced marriage," to the SMC. I worked as Project Scientist under Herb, later inheriting the PI role. The MIT Project Scientist, the late Rodger Doxsey, and I were told "this is your experiment," and "we are a seamless team regardless of institution." Rodger and I were young enough to believe this, and we made it happen (and not always with the best results vis a vis higher internal management). I was never interested in astronomy, and allegedly am still not. Why do an astro-metrical job of measuring and reporting the coordinates of X-ray sources? In fact we participated widely in the identification of the sources with astronomical object, and making each paper a discussion of the physics of the emission. An enjoyable way to learn some astronomy. The stated purpose of the Gursky/Bradt experiment was to enable optical identifications so that more detailed study could be done. I remember meeting with John Whelan to discuss his collaboration in making the optical identifications. He said he only wanted to study sources after they were identified. For many milliseconds I became very angry - "who is going to to the work to MAKE those identifications," but luckily before speaking I realized how satisfying it was that astronomers indeed wanted to study X-ray sources in other wavebands. The second biggest excitement in the HEAO-1 program was the "glitches" that appeared in the gyro data during final functional testing. This took some high-powered politics by all the PI's to convince MSFC to delay for 4 months, replacing the "funny" unit with one from HEAO-2 (Einstein) and later refurbishing that unit. Third biggest excitement was when a computer failed and final checkout during countdown at the Cape was done by looking at

  6. Collimator assembly for an electron accelerator

    International Nuclear Information System (INIS)

    According to this invention, the collimator assembly comprises a collimator shielding block for blocking undesired x-rays and a bushing inserted into the shielding block. The bushing has a conical passage opening for transmitting x-rays therethrough and for defining the x-ray cone. There are provided means for easily interchanging the bushing in the collimator shielding block. Therefore, bushings of different cone-defining passage can be inserted readily into the shielding block. If a larger area is to be irradiated, a bushing will be used which has a passageway of a larger cone angle

  7. Crystal Collimation with protons at injection energy

    CERN Document Server

    Rossi, Roberto; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Redaelli, Stefano; Valentino, Gianluca; Scandale, Walter; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on August 30th, 2015, bent silicon crystals were tested with protons beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals, providing a crucial test of the hardware for precise crystal angle adjustments (goniometers). Proton channeling was observed for the first time with LHC beams and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  8. Collimator for the SPS extracted beam

    CERN Multimedia

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  9. Sunspot Bright Points

    CERN Document Server

    Choudhary, Debi Prasad

    2010-01-01

    We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around the sunspots. The well isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km. The larger points are mostly associated with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue ba...

  10. Collimator Systems for the SNS Ring

    International Nuclear Information System (INIS)

    The requirements and performance goals for the collimators are to reduce the uncontrolled beam loss by 2 x 10-4, absorb 2 kW of deposited heat, and minimize production and leakage of secondary radiation. In order to meet these requirements a self-shielding collimator configuration consisting of a layered structure was designed. The front layers (in the direction of the proton beam) are relatively transparent to the protons, and become progressively less transparent (blacker) with depth into the collimator. In addition, a high density (iron) shield is added around the outside. The protons will be stopped in the center of the collimator, and thus the bulk of the secondary particles are generated at this location. The conceptual design described, the method of analysis discussed, and preliminary performance parameters outlined

  11. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  12. Collimation of laser-produced proton beam

    Science.gov (United States)

    Takano, M.; Nagashima, T.; Izumiyama, T.; Gu, Y. J.; Barada, D.; Kong, Q.; Wang, P. X.; Ma, Y. Y.; Wang, W. M.; Kawata, S.

    2016-03-01

    In intense laser plasma interaction for particle acceleration several issues remain to be solved. In this paper we focus on a collimation of ion beam, which is produced by a laser plasma interaction. In this study, the ion beam is collimated by a thin film target. When an intense short pulse laser illuminates a target, target electrons are accelerated, and create an electron cloud that generates a sheath electric field at the target surface. Such the ion acceleration mechanism is called the target normal sheath acceleration (TNSA). The TNSA field would be used for the ion beam collimation by the electric field. We have successfully obtained a collimated beam in our particle-in-cell simulations.

  13. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  14. A multirod collimator for neutron therapy

    International Nuclear Information System (INIS)

    Purpose: To design, construct, and commission a multirod collimator for producing irregularly shaped fields in neutron radiation therapy. To demonstrate the reliability and applicability of this device to routine use with a superconducting cyclotron for neutron therapy. Methods and Materials: A multirod collimator has been designed, constructed, and thoroughly tested to investigate its radiological properties; neutron transmission characteristics, beam profiles, and penumbral widths as a function of field size and depth in a phantom, and the spatial resolution of the rod array, have been measured. A wide variety of irregularly shaped fields, used routinely in neutron radiation therapy, have been produced, including fields that incorporate partial transmission blocks. The performance of the collimator has been closely monitored over a period of 20 months to accurately assess reliability. Results: The multirod collimator has been in routine use for 32 months, and during this time a total of 7025 neutron fields has been treated. For the latter 20 months of this period, detailed performance records show that collimator failure has caused 28.4 h of downtime during the patient treatment day. Only 5.25 h of this downtime was experienced in the last 12 months (0.22% of the available treatment time). The results of collimator attenuation and beam profile measurements show that the radiological properties of the collimator are comparable to those of other collimator systems used for neutron radiation therapy. Isodose measurements in a water phantom show that the spatial resolution of the rods is superior to that of the leaves used in neutron multileaf collimators. The ability of the multirod collimator to produce many irregularly shaped fields commonly encountered in neutron radiation therapy has been demonstrated. Shaped fields for prostate, head and neck, soft tissue sarcomas, lung, thyroid, rectum, bladder, colon, breast, pancreas, and gynecological tumors have been

  15. Solid Collection Efforts: Ta Collimator Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gostic, J M

    2011-11-21

    Ta collimator sets that were part of the gated x-ray detector diagnostic (GXD) at NIF were analyzed for debris distribution and damage in 2011. These disks (ranging in thickness from 250 to 750 {mu}m) were fielded approximately 10 cm from target chamber center (TCC) on various symcap, THD and re-emit shots. The nose cone holder and forward Ta collimator (facing target chamber center, TCC) from all shots show evidence of surface melt. Non-destructive analysis techniques such as optical microscopy, surface profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray fluorescence (XRF) were used to determine debris composition and degree of deformation associated with each Ta disk. Molten debris from the stainless steel nose cone contaminated the surface of the collimators along with other debris associated with the target assembly (Al, Si, Cu, Au and In). Surface elemental analysis of the forward collimator Ta disks indicates that Au hohlraum debris is less concentrated on these samples versus those fielded 50 cm from TCC in the wedge range filter (WRF) assembly. It is possible that the Au is distributed below or within the stainless steel melt layer covering the disk, as most of the foreign debris is captured in the melted coating. The other disks (fielded directly behind the forward collimator in a sandwiched configuration) have visible forms of deformation and warping. The degree of warping increases as the shock wave penetrates the assembly with the most damage sustained on the back collimator. In terms of developing a solid collection capability, the collimator analyses suggests that close proximity may cause more interference with capsule debris collection and more damage to the surface of the collector diagnostic. The analyses of the Ta collimators were presented to the Target and Laser Interaction Sphere (TaLIS) group; a representative presentation is attached to this document.

  16. Comparison of Carbon and Hi-Z Primary Collimators for the LHC Phase II Collimation System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Lewis; /SLAC; Markiewicz, Thomas; /SLAC; Smith, Jeffrey; /SLAC; Assmann, Ralph; /CERN; Bracco, Chiara; /CERN; Weiler, Thomas; /Karlsruhe, Inst. Technol.

    2011-10-31

    A current issue with the LHC collimation system is single-diffractive, off-energy protons from the primary collimators that pass completely through the secondary collimation system and are absorbed immediately downbeam in the cold magnets of the dispersion suppressor section. Simulations suggest that the high impact rate could result in quenching of these magnets. We have studied replacing the 60 cm primary graphite collimators, which remove halo mainly by inelastic strong interactions, with 5.25 mm tungsten, which remove halo mainly by multiple coulomb scattering and thereby reduce the rate of single-diffractive interactions that cause losses in the dispersion suppressor.

  17. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-ray Burst X-ray Afterglow Light Curves

    CERN Document Server

    Racusin, J L; de Pasquale, M; Kocevski, D

    2016-01-01

    We present a correlation between the average temporal decay ({\\alpha}X,avg,>200s) and early-time luminosity (LX,200s) of X-ray afterglows of gamma-ray bursts as observed by Swift-XRT. Both quantities are measured relative to a rest frame time of 200 s after the {\\gamma}-ray trigger. The luminosity average decay correlation does not depend on specific temporal behavior and contains one scale independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. (2012) in the optical light curves observed by Swift-UVOT. The correlation indicates that on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light curve morphologies and observational selection effects, and how either geometrical effe...

  18. A Simple and Inexpensive Collimator for Neutron Radiography

    DEFF Research Database (Denmark)

    Olsen, J.; Mortensen, L.

    1974-01-01

    A neutron beam collimator was constructed by means of plastic drinking “straws”. The properties of the collimator were investigated, and especially the distribution of the neutrons at different distances.......A neutron beam collimator was constructed by means of plastic drinking “straws”. The properties of the collimator were investigated, and especially the distribution of the neutrons at different distances....

  19. Compact collimated fiber optic array diagnostic for railgun plasmas

    Science.gov (United States)

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  20. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  1. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    Science.gov (United States)

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 $\\mu$m distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36$^\\circ$ and beam quality factor of $M^2$=1.02.

  2. Robust Collimation Control of Laser-Generated Ion Beam

    OpenAIRE

    Kawata, S; Takano, M.; Kamiyama, D.; T. Nagashima; Barada, D.; Gu, Y. J.; Li, X; Yu, Q; Kong, Q.; Wang, P. X.

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters a...

  3. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    Science.gov (United States)

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  4. Multibeam collimator uses prism stack

    Science.gov (United States)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  5. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to a combination of lutein and zeaxanthin and improved vision under bright light conditions pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to a combination of lutein and zeaxanthin and improved vision under bright light conditions pursuant to Article 13(5) of Regulation (EC) No 1924/2006....

  6. Comparison of effects of bright light therapy alone or combined with fluoxetine on severity of depression, circadian rhythms, mood disturbance, and sleep quality, in patients with non-seasonal depression

    Directory of Open Access Journals (Sweden)

    Ağargün MY

    2013-06-01

    Full Text Available Mehmet Yücel Agargün,1 Gokben Hizli Sayar,2 Hüseyin Bulut,3 Oguz Tan21Medipol University, Department of Psychiatry, Istanbul, Turkey; 2Uskudar University, Neuropsychiatry Istanbul Hospital, Istanbul, Turkey; 3Büyükçekmece Government Hospital, Department of Psychiatry, Istanbul, TurkeyPurpose: To compare effects of bright light therapy (BLT alone or combined with the selective serotonin reuptake inhibitor (SSRI fluoxetine, on severity of depression, circadian rhythms, mood disturbance, and sleep quality, in patients with non-seasonal depression.Patients and methods: Drug-free patients who were administered 10,000 lux of BLT for 30 minutes for 7 days comprised the BLT group (n = 7, while patients who started fluoxetine as an add-on treatment day comprised the SSRI + BLT group (n = 8. The primary outcomes were severity of depression, measured using the Hamilton Depression Rating Scale (HAM-D and the Beck Depression Inventory (BDI; chronotype, measured using the Morningness Eveningness Questionnaire (MEQ; mood disturbance, measured using the Profile of Mood States (POMS survey; and sleep quality, measured using the Pittsburgh Sleep Quality Index (PSQI, before and after treatment in both groups.Results: All patients completed the study, and none reported obvious side effects. The mean onset age of depression was 26.1 years ± 5.3 years in the BLT group and 27 years ± 9.5 years in the SSRI + BLT group (P = 0.425. The number of past depressive episodes was 1.29 ± 0.76 in the BLT group, and 1.5 ± 0.8 in the SSRI + BLT group (P = 0.427. The difference between pre- and posttreatment scores revealed no significant difference between groups for the HAM-D scale, BDI, MEQ, POMS survey, and the PSQI.Conclusion: This study suggests that BLT is effective with respect to the severity of depression, circadian rhythms, mood disturbance, and sleep quality, in non-seasonal depression. However, there was no evidence in favor of adjunctive fluoxetine with BLT

  7. Lightness functions

    DEFF Research Database (Denmark)

    Campi, Stefano; Gardner, Richard; Gronchi, Paolo;

    2012-01-01

    Variants of the brightness function of a convex body K in n-dimensional Euclidean are investigated. The Lambertian lightness function L(K; v , w ) gives the total reflected light resulting from illumination by a light source at infinity in the direction w that is visible when looking in the...... direction v . The partial brightness function R( K ; v , w ) gives the area of the projection orthogonal to v of the portion of the surface of K that is both illuminated by a light source from the direction w and visible when looking in the direction v . A class of functions called lightness functions is...... lightness functions....

  8. Prototype magnified and collimated autostereoscopic displays

    Science.gov (United States)

    Eichenlaub, Jesse B.

    1996-04-01

    Experiments indicate that the volume of virtual space within which stereoscopic images can be seen comfortably, without eye discomfort, fusion difficulty, or inaccuracies in perceived depth, is dependent upon the eye to screen distance. This volume is maximized when the screen appears to be at infinity--that is, when it is collimated. With the image collimated, objects located within a virtual space extending from a few feet in front of the observer to infinity can be viewed comfortably. Collimation also reduces the distortion seen in stereoscopic images when viewing them from off axis locations. DTI is developing two magnified and collimated autostereoscopic displays. One uses a collimation module designed for out the window simulators to provide a very wide angle, immersive image that is potentially well suited to flight simulators and video games. Another, more compact version uses Fresnel lenses to magnify the images of a high resolution 13.8" diagonal LCD to the same angular size as a 21" display seen at 30". This variation may be more suited to desktop displays. It provides resolution, color palette, and apparent screen size equivalent to a high end CRT.

  9. Vol. 31 - Crystal Collimation for LHC

    CERN Document Server

    Mirarchi, Daniele; Scandale, Walter; Hall, Geoffrey

    2015-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) may demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The present collimation system has accomplished its tasks during the LHC Run I very well, where no quench with circulating beam took place with up to 150 MJ of stored energy at 4 TeV. On the other hand, uncertainty remains on the performance at the design energy of 7 TeV and with 360 MJ of stored energy. In particular, a further increase up to about 700 MJ is expected for the high luminosity upgrade (HL-LHC), where improved cleaning performance may be needed together with a reduction of collimator impedance. The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present s...

  10. Upgrade scenario for the RHIC collimation system

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize, G.; Drees, A.

    2012-01-19

    The RHIC collimation system is used to reduce background levels in both STAR and PHENIX detectors. With a push for higher luminosity in the near future, it becomes critical to check if and how the level of performance of the collimators can be improved. The following reviews a proposal for additional collimators placed further downstream of the current system and designed to intercept the tertiary halo coming out of the IR8 insertion before it can reach the triplet quadrupoles in either STAR or PHENIX. Simulations have been peformed to quantify the efficiency of additional collimator jaws in RHIC. Each figure presented in this article clearly shows that the additional mask collimators provide the expected reduction in losses around the machine, and especially to the incoming triplet to the STAR experiment (IP6), for the Yellow beam as much as for the Blue beam. Looking at compiled statistics for all three working point cases studied, proton losses around the machine are reduced by roughly one order of magnitude: at most a factor 30 for magnet losses, and at most a factor 40 for losses in spaces between magnets.

  11. Collimating Slicer for Optical Integral Field Spectroscopy

    CERN Document Server

    Laurent, Florence

    2016-01-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element in a given object field. It is a powerful tool which rearranges the data cube (x, y, lambda) represented by two spatial dimensions defining the field and the spectral decomposition in a detector plane. In IFS, the spatial unit reorganizes the field and the spectral unit is being composed of a classical spectrograph.The development of a Collimating Slicer aims at proposing a new type of integral field spectrograph which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph, thus mixing the spatial and spectral units. The traditional combination of slicer, pupil and slit elements and the spectrograph collimator is replaced by a new one composed of a slicer and collimator only. In this paper, the state of the art of integral field spectroscopy using image slicers is described. The new system based onto the development of a Collimating Slic...

  12. Controlling the self-collimation characteristics of a near-infrared two-dimensional metallic photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Ren Cheng; Wang Wen-Zhong; Wang Yi-Quan

    2012-01-01

    Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method.The Drude dispersion model is adopted to describe the metal rod,and the self-collimation behaviours of the near-infrared light through the PC are studied.The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.

  13. High Brightness Test Stand

    International Nuclear Information System (INIS)

    The High Brightness Test Stand is a 2 MeV, less than or equal to 10 kA electron accelerator module. This accelerator module, designed as an upgrade prototype for the Advanced Test Accelerator (ATA), combines solid state nonlinear magnetic drives with state-of-the-art induction linac technology. The facility serves a dual role, as it not only provides a test bed for this new technology, but is used to develop high brightness electron optics. We will both further describe the accelerator, as well as present some of the preliminary electron optics measurements

  14. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian;

    Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...... one hundred fifty self-reliant female patients between 15 and 55 years of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance of...... conference. Conclusion: Collimation improvement in basic chest radiography can reduce the radiation to female patients at chest x-ray examinations....

  15. THE TWO STAGE CRYSTAL COLLIMATOR FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FLILLER, R.P. III; DREES, A.; GASSNER, D.; HAMMONS, L.; MCINTYRE, G.; TRBOJEVIC, D.; BIRYUKOV, V.; CHESNOKOV, Y.; TEREKHOV, V.

    2001-06-18

    The use of a two stage crystal collimation system in the RHIC yellow ring is examined. The system includes a copper beam scraper and a bent silicon crystal. While scrapers were installed in both of the RHIC rings before the year 2000 run, the crystal is installed for the 2001 run in one ring only, forming a two stage collimation system there. We present simulations of the expected channeling through the bent silicon crystal for both protons and gold ions with various beam parameters. This gives a picture of the particle losses around the ring, and the expected channeling efficiency. These results are then used to optimize the beam parameters in the area of the crystal to obtain maximum channeling efficiency, minimize out-scattering in the secondary collimator, and reduce beam halo.

  16. Design and construction of LEP collimators

    International Nuclear Information System (INIS)

    Movable collimators are installed in LEP to protect the experiments and the electrostatic separators from synchrotron radiation and off-momentum electrons and positrons. The collimators consist of copper blocks with tungsten inserts moving in 500 mm long parallelepipedic vacuum tanks. They place at least 30 radiation lengths of matter across the obstructed aperture. Great importance has been given to minimize higher order mode losses and construction costs. The copper blocks have been designed with a shape for matching circular, elliptical and cruciform vacuum chambers. The collimator blocks are water cooled and moved with stepping motors under microprocessor control with a resolution of 5 μm and an absolute setting accuracy better than 100 μm

  17. Macrostrain measurement using radial collimators at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M.; Roberts, J.A.; Davis, D.

    1996-06-01

    A series of `short` radial collimators have been implemented in the 90{degrees} scattering geometries on the neutron powder diffractometer at Los Alamos. The capability to perform macrostrain measurements has been improved by the commensurate ability to rapidly select a sampling volume appropriate to the specimen. The compact design of the collimators was dictated by the need to fit them in a cylindrical vacuum chamber as well as providing space in which to manipulate a specimen in three dimensions. Collimators of different vane lengths were fabricated to give 4 different resolutions for which 2/3 of the diffracted intensity comes form distances of 0.75, 1. 25, 2.5, and 4.0 mm along the incident beam. Qualifying scans and a demonstration of a cracked ring, containing a steep stress gradient, are included.

  18. Collimation Studies with Hollow Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  19. IMP SPECT with the pinhole collimator

    International Nuclear Information System (INIS)

    Highly sophisticated imaging designs are required to overcome the difficulties in single photon emission tomography. Most problems are still not solved sufficiently. At present time the rotating gamma camera seems to be the most advanced device for this purpose, but even with a double head rotating gamma camera still some problems remain concerning sensitivity, resolution and quantification. The seven-pinhole collimator tomographic system offers the possibility to perform tomographic scintigraphy using standard nuclear medicine equipment. This technique utilizes a multi-pinhole collimator on a scintillation camera to obtain seven independent, nonoverlapping projections of the organ simultaneously. A computer then reconstructs up to 16 axial tomographic sections. Inherent in this application is quantitative interpretation of the resultant images, utilizing a second computer program. The purpose of this study was to evaluate the feasibility and utility of the multipinhole technique in brain imaging with /sup 123/I-amphetamines, using a large field of view seven-pinhole collimator design

  20. Channeling collimation studies at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  1. Radiation collimator and systems incorporating same

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Daren R. (Idaho Falls, ID); Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Haskell, Kevin J. (Idaho Falls, ID); Bennett, Brion D. (Idaho Falls, ID); Tschaggeny, Charles W. (Woods Cross, UT); Jones, Warren F. (Idaho Falls, ID)

    2011-09-13

    A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.

  2. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  3. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ-rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution. PMID:25378898

  4. Collimation effect of water collimator to D-D and D-T neutrons

    International Nuclear Information System (INIS)

    A study of a water collimator is performed for 5-cm and 10-cm daim. cylindrical collimators located in a 100-cm water shield. A point neutron source of D-D or D-T reactions is located at the entrance to the collimator. Results of the Monte Carlo simulation are analyzed as reference data. Two parameters are proposed to measure the collimation effects, i.e. scattered neutron flux on the axis of the collimator and the width of the plateau observed in the scattered flux profile. The flux on the axis is analyzed by a single-albedo-scattering model, while the width of the plateau is represented by a single-scattering model in the shied. The flux on the axis is nearly proportional to the collimator radius. The axial profile of the on-axis flux is closely approximated with an imaginary source assumed at the center of the collimator. The imaginary source reproduces the width of the plateau in the radial profile of the scattered flux. (author)

  5. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    Science.gov (United States)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  6. A dosimetric comparison of various multileaf collimators

    International Nuclear Information System (INIS)

    The dosimetric characteristics of three multileaf collimator (MLC) systems (Elekta, Siemens and Varian) having 10 mm leaf width are compared. A 6 MV photon beam was used from each unit for measurements. Film dosimetry was performed for the measurements and the analysis techniques were exactly duplicated in each system. Two of the collimators have rounded leaf ends (Elekta and Varian) and the third (Siemens) has a flat end that follows beam divergence. A scanning densitometer (Wellhoefer with 0.45 mm spot and 0.5 mm step size) was used for film analysis. The dosimetric characteristics studied include: penumbra width (80-20%) as a function of position of the leaf end in the field, inter- and intra-leaf radiation leakage, dose distribution of the tongue and groove, and isodose curves for stepped leaves forming 45 deg. angle beam edge. Results show that MLC designs with divergent and non-divergent leaves produce penumbra (80-20%) widths that are within 2.0 mm of each other. However, the distance of the collimator from the x-ray target plays an important role, and the smallest penumbra width was noted for the Varian MLC despite its rounded leaf-end design. Compared to the other systems, this collimator is positioned about 15 cm closer to the patient which affects the skin dose. The MLC with flat leaf end, although closer to the target, showed slightly poorer penumbra width. Inter-leaf leakage through the leaves is 1.3% for two of the collimators (Elekta and Varian) with the backup jaws and is nearly 1% for the third system (Siemens). The Siemens MLC produces reduced tongue-and-groove effect compared to the other two collimators (Elekta and Varian). The isodose undulation for a stepped edge is found to be significant for the collimator closest to the patient (Varian) and does not depend on the leaf-end shape. There is no perfect MLC system that can be recommended, rather each one has unique advantages and disadvantages that should be weighed with comfort, ease and cost

  7. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    OpenAIRE

    Ching-Lin Fan; Hao-Wei Chen; Hui-Lung Lai; Bo-Liang Guo; Bohr-Ran Huang

    2014-01-01

    This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The v...

  8. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey Claiborne; /SLAC; Keller, Lewis; /SLAC; Lundgren, Steven; /SLAC; Markiewicz, Thomas; /SLAC; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  9. Highly collimated source of cold Rubidium atoms from a two dimensional magneto-optical trap

    CERN Document Server

    Carrat, Vincent; Jacquey, Marion; Tabosa, José W; de Lesegno, Bruno Viaris; Pruvost, Laurence

    2013-01-01

    Using a blue detuned laser shaped in a Laguerre-Gaussian donut mode we highly collimate the output of a two dimensional magneto-optical trap. The resulting atomic beam has a 1 mm diameter, its divergence is reduced from 40 down to 3 mrad and the atomic density is increased by a factor of 200. The collimation effect has been studied versus the order of the Laguerre-Gaussian mode (up to 10) and the laser atom frequency detuning (2 to 120 GHz). The 2D-colli-MOT study allows us to determine the best conditions which minimize the atom heating due to residual light absorption and optimize the collimation effect. The 2D-colli MOT could provide a new tool to fill a 3D-MOT using lasers with millimeter range diameters and thus sparing the laser power.

  10. Online Status and Settings Monitoring for the LHC Collimators

    CERN Document Server

    Valentino, G; Jacquet, D; Redaelli, S; Veyrunes, E

    2014-01-01

    The Large Hadron Collider is equipped with 100 movable collimators. The LHC collimator control system is responsible for the accurate synchronization of around 400 axes of motion at the microsecond level, and with the precision of a few micrometers.

  11. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  12. Bright Economic Prospects

    Institute of Scientific and Technical Information of China (English)

    Zhang Minqiu

    2004-01-01

    @@ India is expected to register an 8.2% growth rate for the 2003-04 fiscal year. The overall economic situation this year has been satisfactory despite the scaled down 6-6.5% growth rate for the new fiscal year due to oil price hikes, reduced monsoon volume and some 7% inflation. Judging from the following factors, bright prospects are in store for the country down the road.

  13. The Linac Cooherent Light Source (LCLS) Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  14. The Linac Coherent Light Source (LCLS) Accelerator

    International Nuclear Information System (INIS)

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-(micro)m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007

  15. Acceleration and collimation of relativistic MHD disk winds

    CERN Document Server

    Porth, O

    2009-01-01

    We perform axisymmetric relativistic magnetohydrodynamic (MHD) simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100x200 inner disk radii. In general, we obtain collimated beams of mildly relativistic speed and mass-weighted half-opening angles of 3-7 degrees. When we increase the outflow Poynting flux by injecting an additional disk toroidal field into the inlet, Lorentz factors up to 6 are reached. These flows gain super-magnetosonic speed and remain Poynting flux dominated. The light surface of...

  16. Lamp spectrum and spatial brightness at photopic levels

    DEFF Research Database (Denmark)

    Fotios, Steve; Atli, Deniz; Cheal, Chris; Houser, Kevin; Logadóttir, Ásta

    2015-01-01

    lower illuminance with potential reductions in energy consumption. Consideration of experimental design was used to review 70 studies of spatial brightness. Of these, the 19 studies considered to provide credible evidence of SPD effects were used to explore metrics for predicting the effect of SPD but......Light sources are available in a variety of spectral power distributions (SPDs) and this affects spatial brightness in a manner not predicted by quantities such as illuminance. Tuning light source SPD to better match the sensitivity of visual perception may allow the same spatial brightness but at...

  17. Study on the Backward Scattering Power of a Collimated Green-Blue Laser Beam Transmitting in the Seawater

    Institute of Scientific and Technical Information of China (English)

    陈磊; 罗莉; 戴德昌; 罗琦; 丘志仁; 周建英

    2001-01-01

    Based on the theory of light beam transmitting in the seawater and the principle of scattering between light and particles, we have studied the relation between water quality parameter and backward scattering power of collimated green-blue laser beam, which can be used to interpret the existed airborne laser experimental data successfully.

  18. Conceptual design of 1.5m aperture vertical collimator assembly with short tube and long focus

    Science.gov (United States)

    Yang, Fei; Ming, Ming; Wang, Fu-guo; Zhang, Li-min; Chen, Bao-gang; Shao, Liang

    2013-09-01

    In order to evaluate and test the image quality of large aperture telescope, the most directly method is adopting the collimator and test the telescope system with full aperture. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) commenced developing the large aperture collimator for interferometric and image quality testing of meter scale optical systems under cryogenic, vacuum conditions. The aperture of the collimator which has been on the conceptual design phase is 1.5m diameter, and the optical configuration is Cassegrain, the focus is 50m. The material of reaction bonded Silicon Carbide (RB-SiC) produced by CIOMP will be used as the primary mirror substrate. And the figure accuracy of the primary mirror will be polished better than 15nm (RMS). The collimator will be working in a vacuum chamber and face down vertically to the unit under test. The application requirements, specification requirements, and some key technology are demonstrated and analysed with finite element analysis (FEA) in the paper. The feasibility, error budget, and hazards evaluation of the collimator are fulfilled by the FEA results. It demonstrated that the conceptual design meet the requirements of the 1.5m aperture vertical collimator, and could achieve the high accuracy requirements of the wavefront for the beam of light in the vacuum chamber, which the wavefront error should less than 32nm(RMS). Mechanical alignment errors induced by thermal and structural perturbations are monitored with an auto-focusing system to enable focus compensation. The ambient temperature of the collimator in chamber are controlled allowing testing while the chamber shrouds and test unit are brought to cryogenic temperatures. With the high accuracy of the wavefront, the collimator could test the image resolution, modulation transfer functions (MTFs), point spread functions (PSFs), encircled energy, wavefront error, best focus, etc. for optical systems. And the conceptual design could be

  19. Can Collimated Extraterrestrial Signals be Intercepted?

    CERN Document Server

    Forgan, Duncan H

    2014-01-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrowband pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of intelligent civilisations if we do? We carry out Monte Carlo Realisation simulations of interstellar communications between civilisations in the Galactic Habitable Zone (GHZ) using collimated beams. We measure the frequency with which beams between two stars are intercepted by a third. The interception rate increases linearly with the fraction of communicating civilisations, and as the cube of the beam opening angle, which is somewhat stronger than theoretical expectations, which we argue is due to the geometry of the GHZ...

  20. PERFORMANCE OF AND UPGRADES TO THE SNS COLLIMATOR SYSTEMS

    International Nuclear Information System (INIS)

    As the Spallation Neutron Source (SNS) beam power is increased, the collimator systems are becoming correspondingly more important. The High Energy Beam Transport (HEBT) transverse collimators are now routinely used during neutron production. We are in the process of redesigning the HEBT momentum collimation system due to problems with gas production from radiolysis. The Ring collimators are designed for two-stage operation but to date they are mainly used in one-stage mode. In this paper we will discuss the status, the operational performance, and upgrades to the collimation systems.

  1. Collimator settings and performance in 2011 and 2012

    International Nuclear Information System (INIS)

    Collimator settings and performance are key parameters for deciding the reach in intensity and β* in order to conclude on possible limits for the 2012 run, a summary is first given of the relevant running experience in 2011 and the collimation-related MDs. These include among others tight collimator settings, a quench test, and aperture measurements. Based on the 2011 experience, we conclude on possible running scenarios for 2012 in terms of collimator settings, intensity and β* from the collimation point of view. (authors)

  2. Can Collimated Extraterrestrial Signals be Intercepted?

    OpenAIRE

    Forgan, Duncan H.

    2014-01-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrowband pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of ...

  3. Turbulent Magnetohydrodynamic Jet Collimation and Thermal Driving

    OpenAIRE

    Williams, Peter T.

    2003-01-01

    We have argued that magnetohydrodynamic (MHD) turbulence in an accretion disk naturally produces hoop-stresses, and that in a geometrically-thick flow these stresses could both drive and collimate an outflow. We based this argument on an analogy of turbulent MHD fluids to viscoelastic fluids, in which azimuthal shear flow creates hoop-stresses that cause a variety of flow phenomena, including the Weissenberg effect in which a fluid climbs a spinning rod. One of the more important differences ...

  4. Collimation systems in the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e{sup +}E{sup {minus}} linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs.

  5. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-01-01

    Full Text Available This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when ΔVTH=±0.33 V, the average error rate of the OLED current variation was low (<0.8%, and when ΔVTH_OLED=+0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the I×R (current × resistance drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the I×R drop voltage of a power line.

  6. Simulation of double and single tapered PET collimators

    International Nuclear Information System (INIS)

    This paper reports on interplane data which allows Multi-Slice Positron Emission Tomographs (PET) to reconstruct images of planes between adjacent axial cross sections. The size and shape of the interplane collimators determine the amount of such data which is available for the detectors. Monte Carlo techniques were used to analyze the performance of a new collimator design, a collimator with double tapered geometry, which maximizes interplane data collection by increasing the transaxial crystal area available for photon detection. Simulations were done to compare the behavior of a GBO-Brain scanner when different interplane shaped collimators are used, and for volume imaging systems with tapered collimators. Three collimator shapes were analyzed-cylindrical, tapered and the new collimator with a double tapered geometry. A 9% increase in the efficiency of interplane data collection was observed without significant detriment in any other imaging parameter

  7. Evaluation of infrared collimators for testing thermal imaging systems

    Science.gov (United States)

    Chrzanowski, K.

    2007-06-01

    Infrared reflective collimators are important components of expensive sophisticated test systems used for testing thermal imagers. Too low quality collimators can become a source of significant measurement errors and collimators of too high quality can unnecessarily increase cost of a test system. In such a situation it is important for test system users to know proper requirements on the collimator and to be able to verify its performance. A method for evaluation of infrared reflective collimators used in test systems for testing thermal imagers is presented in this paper. The method requires only easily available optical equipment and can be used not only by collimator manufactures but also by users of test equipment to verify performance of the collimators used for testing thermal imagers.

  8. One primary collimator with optional crystal feature, tested with beam

    CERN Document Server

    EuCARD, Collaboration

    2014-01-01

    The WP8 of EuCARD aims at the design of more advanced materials and collimator concepts for high beam power in particle accelerators like LHC and FAIR. Deliverable 8.3.1 concerned the production and the validation by beam tests of an advanced collimator prototype to improve various aspects of the LHC collimation system, such as the accuracy of the collimator jaw alignment to the circulating beam, the duration of collimator setup time and the overall halo cleaning performance. A collimator prototype was built and installed in the SPS for beam tests in the running period between 2010 and 2012. Crystal collimation aspects were dealt with in a dedicated SPS experiment, which also profited from EuCARD contributions.

  9. The effect of collimation angle of collimator-2 on the resolution and beam intensity of neutron diffractometer DN3

    International Nuclear Information System (INIS)

    The changing effect of collimation angle of collimator 2 on the performance of neutron powder diffractometer DN3 has been studied. The increasing of collimation of collimator 2 cause the increasing of observed neutron beam intensity in main detector. In contrast the resolution become lower particularly in the low and high scattering angle. It has been discussed some alternatives to improve the performance of DN3 equipment compromising between resolution and intensity such as the increasing beam collimation and the utilization of focusing monochromator. (author)

  10. Adaptive Lighting

    OpenAIRE

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive LightingAdaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled i...

  11. Light Reflector

    Science.gov (United States)

    1988-01-01

    Ultra Sales, Inc.'s fluorescent lighting fixture gets a boost in reflectivity through installation of Lightdriver, a thin tough thermoplastic film plated with aluminum, capable of reflecting 95 percent of visible light striking it. Lightdriver increases brightness without adding bulbs, and allows energy savings by removing some bulbs because the mirrorlike surface cuts light loss generally occasioned by conventional low reflectivity white painted surface above the bulbs in many fluorescent fixtures. Forty-five percent reduction in lighting electricity is attainable.

  12. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  13. Intrinsic brightness temperatures of blazar jets at 15 GHz

    Directory of Open Access Journals (Sweden)

    Hovatta Talvikki

    2013-12-01

    Full Text Available We have developed a new Bayesian Markov Chain Monte Carlo method to deconvolve light curves of blazars into individual flares, including proper estimation of the fit errors. We use the method to fit 15GHzlight curves obtained within the OVRO 40-m blazar monitoring program where a large number of AGN have been monitored since 2008 in support of the Fermi Gamma-Ray Space Telescope mission. The time scales obtained from the fitted models are used to calculate the variability brightness temperature of the sources. Additionally, we have calculated brightness temperatures of a sample of these objects using Very Long Baseline Array data from the MOJAVE survey. Combining these two data sets enables us to study the intrinsic brightness temperature distribution in these blazars at 15 GHz. Our preliminary results indicate that the mean intrinsic brightness temperature in a sample of 14 sources is near the equipartition brightness temperature of ~ 1011K.

  14. Comparison of LHC collimation setups with manual and semi-automatic collimator alignment

    CERN Document Server

    Valentino, G; Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Redaelli, S; Rossi, A; Sammut, N; Wollmann, D

    2011-01-01

    The LHC collimation system beam-based alignment procedure has recently been upgraded to a semi-automatic process in order to increase its efficiency. In this paper, we describe the parameters used to measure the accuracy, stability and performance of the beam-based alignment of the LHC collimation system. This is followed by a comparison of the results at 450 GeV and 3.5 TeV with (1) a manual alignment and (2) with the results for semi-automatic alignment.

  15. How Bright Can Supernovae Get?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  16. High brightness electron sources

    International Nuclear Information System (INIS)

    High energy physics accelerators and free electron lasers put increased demands on the electron beam sources. This paper describes the present research on attaining intense bright electron beams using photoinjectors. Recent results from the experimental programs will be given. The performance advantages and difficulties presently faced by researchers will be discussed, and the following topics will be covered. Progress has been made in photocathode materials, both in lifetime and quantum efficiency. Cesium telluride has demonstrated significantly longer lifetimes than cesium antimonide at 10-8 torr. However, the laser system is more difficult because cesium telluride requires quadrupled YLF instead of the doubled YLF required for cesium antimonide. The difficulty in using photoinjectors is primarily the drive laser, in particular the amplitude stability. Finally, emittance measurements of photoinjector systems can be complicated by the non-thermal nature of the electron beam. An example of the difficulty in measuring beam emittance is given

  17. High brightness cathode experiments on the experimental test accelerator (ETA). Final report

    International Nuclear Information System (INIS)

    The experiments performed on the ETA during the months of September through October of 1984 were intended to accomplish two objectives; to discover or develop a source capable of producing an electron beam whose brightness is substantially higher than that of previous sources, and to determine, if possible, the mechanisms which limit the source brightness so that further enhancements might be obtained. The results of the experiments met these objectives to a limited degree. A cathode material (velvet) and a diode geometry were identified which resulted in more than a factor of two improvements in brightness over that obtained with previous flashboard cathodes. Experiments were performed which have yielded information about mechanisms which may limit beam brightness, and have suggested approaches for further work to improve brightness. However, the desired brightness of 105 A/(cm2-rad2) was not achieved in these experiments. This report contains a discussion of the cathodes used, the diode geometries employed, the diagnostics, the typical characteristics of a single beam experiment, and the characteristics of the collimator used to measure the brightness. The entire ensemble of brightness data is presented and broken down into classes of experiments. In addition, the results of an EBQ calculation of one diode geometry are discussed, and differences between the results of similar experiments on ETA and ATA are noted. Finally, conclusions and recommendations are presented

  18. Asymmetric collimation in breast cancer irradiation

    International Nuclear Information System (INIS)

    Many methods have been devised to achieve an ideal match of the anterior supraclavicular field (SCV) caudal edge and the cephalad edges of the tangential fields. A non divergent SCV field edge is easily achieved using a half beam block. A number of methods are used to achieve a non divergent edge from the tangential beams including blocking, table angulation, collimator angulation in combination, and half beam blocking, collimator angulation. Using asymmetric collimation technique it is possible to achieve a perfect match-line at the junction of SCV and tangential fields. Via the longitudinal X-jaws, caudal edge of the SCV field and the cephalad margin of the tangential fields is defined. All three fields use one isocenter and thus a single set-up point by abutting beam-split fields at the match plane. The transverse Y jaws are used to beam-split the medial and lateral tangential fields at the chest wall level and define the lateral and medial edges of the SCV field. This technique eliminates lifting heavy half beam block, and the use of single isocenter is time-saving during set-up procedure. Computerized water phantom was utilized in dosimetric evaluations in this nonstandard technique. The match-line is clinically confirmed with verification film for each patient at first treatment. Our treatment planning system, Theraplan - Version 5B, is capable of asymmetric field planning. The 3-D treatment planning is performed at the central axis plane. Angle of tangential fields and source-skin distance at the set-up point is confirmed by 3D treatment planning

  19. Beam Delivery WG Summary: Optics, Collimation & Background

    Energy Technology Data Exchange (ETDEWEB)

    Angal-Kalinin, D.; Jackson, F.; /Daresbury; Mokhov, N.V.; /Fermilab; Kuroda, S.; /KEK, Tsukuba; Seryi, A.A.; /SLAC

    2006-01-20

    The presented paper partially summarizes the work of the Beam Delivery working group (WG4) at Snowmass, concentrating on status of optics, layout, collimation, and background. The strawman layout with 2 interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design and extraction line design has been reviewed and the design issues were discussed during the optics and layout session at the Snowmass.

  20. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  1. Preliminary assessment of beam impact consequences on LHC Collimators

    CERN Document Server

    Cauchi, M; Bertarelli, A; Bruce, R; Carra, F; Dallocchio, A; Deboy, D; Mariani, N; Rossi, A; Lari, L; Mollicone, P; Sammut, N

    2011-01-01

    The correct functioning of the LHC collimation system is crucial to attain the desired LHC luminosity performance. However, the requirements to handle high intensity beams can be demanding. In this respect, the robustness of the collimators plays an important role. An accident, which causes the proton beam to hit a collimator, might result in severe beam-induced damage and, in some cases, replacement of the collimator, with consequent downtime for the machine. In this paper, several case studies representing different realistic beam impact scenarios are shown. A preliminary analysis of the thermal response of tertiary collimators to beam impact is presented, from which the most critical cases can be identified. Such work will also help to give an initial insight on the operational constraints of the LHC by taking into account all relevant collimator damage limits.

  2. Calibration and quality control of a multi leaf collimator using linear array of detectors

    International Nuclear Information System (INIS)

    The protocol for calibration and quality control established by Siemens for the multi leaf collimator (MLC) of Primus electron linear accelerators, using the light field coincidence with the beam of radiation to determine the position of the blades. In this paper, we illustrate the use of a calibration method for determining the positions of MLC plates radiologically with the help of a linear array of detectors, based on the proposal Lopes et al (2007).

  3. New scheme of high-precision visual collimator

    Science.gov (United States)

    Ge, Zhaoxiang; Ying, Han; Chen, Lei

    1998-08-01

    Machine manufacture and installation, special constructional engineering and precision engineering surveying need a very high precision collimator. In the text, we discus a plane focusing visual collimator, which had been specially made for the synchrotron accelerator. Using an electronic spirit level as the reference element, CCD automatic aiming system, photoelectric readout device and computer processing technology, the new visual collimator has a much higher precision and can be used more quickly, more conveniently and more reliably.

  4. Light

    CERN Document Server

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  5. A variable-collimation display system

    Science.gov (United States)

    Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito

    2014-03-01

    Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.

  6. Optimization of convergent collimators for pixelated SPECT systems

    Energy Technology Data Exchange (ETDEWEB)

    Capote, Ricardo M.; Matela, Nuno; Conceicao, Raquel C.; Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Campo Grande, 1749-016 Lisboa (Portugal)

    2013-06-15

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60-300 keV) and high energy radiation (300-511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to the

  7. Tests of a silicon wafer based neutron collimator

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. E-mail: leo.cussen@vu.edu.au; Vale, C.J.; Anderson, I.S.; Hoeghoj, P

    2001-10-01

    A Soller slit neutron collimator has been prepared by stacking 160 {mu}m thick single crystal silicon wafers coated on one surface with 4 {mu}m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  8. Tests of a silicon wafer based neutron collimator

    CERN Document Server

    Cussen, L D; Anderson, I S; Hoeghoj, P

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 mu m thick single crystal silicon wafers coated on one surface with 4 mu m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  9. Tests of a silicon wafer based neutron collimator

    International Nuclear Information System (INIS)

    A Soller slit neutron collimator has been prepared by stacking 160 μm thick single crystal silicon wafers coated on one surface with 4 μm of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators

  10. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    Energy Technology Data Exchange (ETDEWEB)

    Helfenstein, P.; Guzenko, V. A.; Tsujino, S. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Fink, H.-W. [Physik Institut, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2013-01-28

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leading to a net enhancement of the current density. Furthermore, a noble gas conditioning process was successfully applied to the double-gate device to improve the beam uniformity in-situ with orders of magnitude increase of the active emission area. The results show that the proposed double-gate field emission cathodes are promising for high current and high brightness electron beam applications such as free-electron lasers and THz power devices.

  11. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    Science.gov (United States)

    Helfenstein, P.; Guzenko, V. A.; Fink, H.-W.; Tsujino, S.

    2013-01-01

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leading to a net enhancement of the current density. Furthermore, a noble gas conditioning process was successfully applied to the double-gate device to improve the beam uniformity in-situ with orders of magnitude increase of the active emission area. The results show that the proposed double-gate field emission cathodes are promising for high current and high brightness electron beam applications such as free-electron lasers and THz power devices.

  12. Cometary Jet Collimation Without Physical Confinement

    Science.gov (United States)

    Steckloff, J. K.; Melosh, H. J.

    2012-12-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces. Furthermore, these models do not explain why cometary jets appear to be directed normal to the local gravitational potential, and/or appear to originate on the faces of scarps. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are powered by the sun, and therefore must emanate from close to the surface of the comet due to a thermal skin depth on the order of ~10 cm. Here we describe a simplified computer model of jets emanating from Comet Tempel 1. Our novel mechanism is based on the occurrence of fluidized flows, which have gained observational support from the Deep Impact and Stardust-NExT flyby missions We approximate the vents of the comet as a region of smooth terrain on the order of ~10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution function, and integrate over the active area in order to calculate the gas drag force due to the vent. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. The vent surfaces were modeled at various angles with respect to the gravitational potential. To approximate scarps, we modeled a non-venting region located above the vent and at the same angle as the vent. The size of this non-venting region was allowed to vary. We assumed that the scarp face, which is composed of the vent and non-venting regions, eroded uniformly. Particles of a constant size are placed randomly on the surface of the vent, and their positions in time

  13. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  14. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  15. Time collimation for elastic neutron scattering at a pulsed source

    International Nuclear Information System (INIS)

    Conditions for carrying out elastic neutron scattering experiments using the time-of-flight technique are considered. It is shown, that the employment of time dependent neutron beam collimation in the source-sample flight path increases the luminosity of the spectrometer under certain resolution restrictions. Time collimation modes are proposed for small-angle scattering and neutron reflection. (author) 8 figs., 3 refs

  16. Formation of collimated beams behind the woodpile photonic crystal

    International Nuclear Information System (INIS)

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam's focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.

  17. Self-collimation in photonic crystals with anisotropic constituents

    Institute of Scientific and Technical Information of China (English)

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.

  18. Towards Optimum Material Choices for HL-LHC Collimator Upgrade

    CERN Document Server

    Quaranta, E.; Biancacci, N.; Bruce, R.; Carra, F.; Métral, E.; Redaelli, S.; Rossi, A.; Salvant, B.

    2016-01-01

    properties that address different limitations of the present collimation system, solutions have been found to fulfil various upgrade challenges. This paper describes the proposed staged approach to deploy new materials in the upgraded HL-LHC collimation system. Beam tests at the CERN HiRadMat facility were also performed to benchmark simulation methods and constitutive material models.

  19. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  20. Modeling and simulation of LHC beam-based collimator setup

    CERN Document Server

    Valentino, G; Assmann, R W; Burkart, F; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    In the 2011 Large Hadron Collider run, collimators were aligned for proton and heavy ion beams using a semiautomatic setup algorithm. The algorithm provided a reduction in the beam time required for setup, an elimination of beam dumps during setup and better reproducibility with respect to manual alignment. A collimator setup simulator was developed based on a Gaussian model of the beam distribution as well as a parametric model of the beam losses. A time-varying beam loss signal can be simulated for a given collimator movement into the beam. The simulation results and comparison to measurement data obtained during collimator setups and dedicated fills for beam halo scraping are presented. The simulator will then be used to develop a fully automatic collimator alignment algorithm.

  1. First ion collimation commissioning results at the LHC

    CERN Document Server

    Bellodi, G; Bruce, R; Cauchi, M; Jowett, JM; Valentino, G; Wollmann, D

    2011-01-01

    First commissioning of the LHC lead ion beams to 1.38 A TeV beam energy was successfully achieved in November 2010. Ion collimation has been predicted to be less efficient than for protons at the LHC, because of the complexity of the physical processes involved: nuclear fragmentation and electromagnetic dissociation in the primary collimators creating fragments with a wide range of Z/A ratios, that are not intercepted by the secondary collimators but lost in the dispersion suppressor sections of the ring. In this article we present first comparisons of measured loss maps with theoretical predictions from simulation runs with the ICOSIM code. An extrapolation to define the ultimate intensity limit for Pb beams is attempted. The scope of possible improvements in collimation efficiency coming from the installation of new collimators in the cold dispersion suppressors and combined betatron and momentum cleaning is also explored.

  2. Preliminary Exploratory Study of Different Phase II Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L.; Assmann, R.W.; Bertarelli, A.; Bracco, C.; Brugger, M.; Cerutti, F.; Dallocchio, A.; Ferrari, A.; Mauri, M.; Roesler, S.; Sarchiapone, L.; Vlachoudis, Vasilis; /CERN; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, Thomas W.; Smith, J.C.; /SLAC; Lari, L.; /LPHE, Lausanne

    2011-11-02

    The Large Hadron Collider (LHC) collimation system is installed and commissioned in different phases, following the natural evolution of the LHC performance. To improve cleaning efficiency towards the end of the low beta squeeze at 7TeV, and in stable physics conditions, it is foreseen to complement the 30 highly robust Phase I secondary collimators with low impedance Phase II collimators. At this stage, their design is not yet finalized. Possible options include metallic collimators, graphite jaws with a movable metallic foil, or collimators with metallic rotating jaws. As part of the evaluation of the different designs, the FLUKA Monte Carlo code is extensively used for calculating energy deposition and studying material damage and activation. This report outlines the simulation approach and defines the critical quantities involved.

  3. Small animal imaging by single photon emission using pinhole and coded aperture collimation

    International Nuclear Information System (INIS)

    The aim of this paper is to investigate the basic properties and limits of the small animal imaging systems based on single photon detectors. The detectors for radio imaging of small animals are challenging because of the very high spatial resolution needed, possibly coupled with high efficiency to allow dynamic studies. These performances are hardly attainable with single photon technique because of the collimator that limits both spatial resolution and sensitivity. In this paper we describe a simple desktop detector based on pixellated NaI(Tl) scintillator array coupled with a pinhole collimator and a PSPMT, the Hamamatsu R2486. The limits of such systems as well as the way to overcome them will be shown. In fact better light sampling at the anode level would allow better pixel identification for higher number of pixel that is one of the parameters defining the image quality. Also the spatial resolution would improve. The performances of such layout are compared with others using PSPMTs differing from R2486 for the light sampling at the anode level and different areas. We show how a further step, namely the substitution of the pinhole collimator with a coded aperture, will allow a great improvement in system sensitivity while maintaining very good spatial resolution, possibly submillimetric. Calculations and simulations show that sensitivity would improve by a factor of 50

  4. Small animal imaging by single photon emission using pinhole and coded aperture collimation

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, F.; Accorsi, R.; Cinti, M.N.; Colilli, S.; Cusanno, F.; De Vincentis, G.; Fortuna, A.; Girolami, B.; Giuliani, F.; Gricia, M.; Lanza, R.; Loizzo, A.; Loizzo, S.; Lucentini, M.; Majewski, S.; Santavenere, F.; Pani, R.; Pellegrini, R.; Signore, A.; Scopinaro, F.

    2005-06-01

    The aim of this paper is to investigate the basic properties and limits of the small animal imaging systems based on single photon detectors. The detectors for radio imaging of small animals are challenging because of the very high spatial resolution needed, possibly coupled with high efficiency to allow dynamic studies. These performances are hardly attainable with single photon technique because of the collimator that limits both spatial resolution and sensitivity. In this paper we describe a simple desktop detector based on pixellated NaI(Tl) scintillator array coupled with a pinhole collimator and a PSPMT, the Hamamatsu R2486. The limits of such systems as well as the way to overcome them will be shown. In fact better light sampling at the anode level would allow better pixel identification for higher number of pixel that is one of the parameters defining the image quality. Also the spatial resolution would improve. The performances of such layout are compared with others using PSPMTs differing from R2486 for the light sampling at the anode level and different areas. We show how a further step, namely the substitution of the pinhole collimator with a coded aperture, will allow a great improvement in system sensitivity while maintaining very good spatial resolution, possibly submillimetric. Calculations and simulations show that sensitivity would improve by a factor of 50.

  5. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing.

    Science.gov (United States)

    Thiele, Simon; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M

    2016-07-01

    By using two-photon lithographic 3D printing, we demonstrate additive manufacturing of a dielectric concentrator directly on a LED chip. With a size of below 200 μm in diameter and length, light output is increased by a factor of 6.2 in collimation direction, while the emission half-angle is reduced by 50%. We measure excellent form fidelity and irradiance patterns close to simulation. Additionally, a more complex shape design is presented, which exhibits a nonconventional triangular illumination pattern. The introduced method features exceptional design freedoms which can be used to tailor high-quality miniature illumination optics for specific lighting tasks, for example, endoscopy. PMID:27367093

  6. Radionuclide equilibrium ventriculography in infants and children using converging collimator

    International Nuclear Information System (INIS)

    In infants and young children, the radionuclide cardiac blood-pool images obtained with a general-purpose (GP) parallel-hole collimator are often too small to provide accurate delineation of the left ventricle (LV), especially the interventricular border. In order to obtain magnified cardiac images, a radionuclide gated equilibrium study was performed with a converging (CV) collimator. We compared these two methods in terms of image quality and estimation of LV ejection fraction (EF). Twenty-five children (age, 10 months to 6 years, mean 2.5 years; weight, 5.5 to 20 kg, mean 12 kg) with various heart diseases were studied with administration of 3-7 mCi 99mTc human serum albumin. The GP collimator was used in 15 subjects and the CV collimator in 16. The CV collimator provided optimal magnification and better resolution than the GP type. Cardiac images obtained with the CV collimator facilitated precise delineation of the entire interventricular border in all 16 cases. Those obtained with the GP collimator showed poor delineation of the interventricular border in four subjects. Both GP and CV collimations enabled LVEFs to be calculated, and the values correlated well with those obtained by cine-angiography. The correlation coefficient, however, was higher with the CV collimator (r=0.787 vs. 0.861, p<0.001). Radionuclide cardiac blood-pool study with CV collimator has clinical significance because it provides sufficiently magnified cardiac images with high resolution, enabling accurate estimation of LVEF in infants and young children. (author)

  7. The 1 × 4 Optical Splitters Based on Silicon Photonic Crystal Self-Collimation Ring Resonators

    International Nuclear Information System (INIS)

    We report 1 × 4 optical splitters (OSs) with different splitting ratios based on either rod-type or hole-type silicon photonic crystal self-collimation ring resonators (SCRRs). The four beam splitters of the OSs are formed by changing the radii of silicon rods or air holes. The light beam propagating along the SCRR can be controlled by the self-collimation effect. The transmission spectra at the through and drop ports are investigated by using the finite-difference time-domain (FDTD) method. The simulated results agree well with the theoretical calculation. For 1550-nm dropping wavelength, the free spectral ranges for rod-type and hole-type configurations are 28.8nm and 32.5nm, respectively, which almost cover the whole optical communication C-band window. The dimensions of these structures are only about 10 μm × 10 μm

  8. An Optical Computed Tomography by Means of the Simplified Collimator in Near-infrared Region

    Science.gov (United States)

    Mizumoto, Iwao; Odake, Sotoji; Mashiko, Shinro; Suzuki, Nobutaka

    The optical CT unit which was assembled with the laser diode working at the wavelength of 1.3 μm, and a glass optical fiber and a pin-hole with a diameter of the 100 μm yields the collimated near-infrared light through a scattering medium. Because the spatial collimator system needs no fast response time, a high sensitive Ge-PIN photodetector was employed the CT system. The optical CT image is allowed by use of near-infrared absorption characteristic. When the image construction of a grape was performed using projection data, so the comparatively good experimental results was obtained. The places of a grape seed was found without cutting. By means of the difference in characteristics of near-infrared absorption, the image of a cylindrical oil phantom in gelatin was reproduced.

  9. Determination of optimal collimation parameters for a rotating slat collimator system: a system matrix method using ML-EM

    Science.gov (United States)

    Boisson, F.; Bekaert, V.; Brasse, D.

    2016-03-01

    Nowadays, Single Photon imaging has become an essential part of molecular imaging and nuclear medicine. Whether to establish a diagnosis or in the therapeutic monitoring, this modality presents performance that continues to improve. For over 50 years, several collimators have been proposed. Mainly governed by collimation parameters, the resolution-sensitivity trade-off is the factor determining the collimator the most suitable for an intended study. One alternative to the common approaches is the rotating slat collimator (RSC). In the present study, we are aiming at developing a preclinical system equipped with a RSC dedicated to mice and rats imaging, which requires both high sensitivity and spatial resolution. We investigated the resolution-sensitivity trade-offs obtained by varying different collimation parameters: (i) the slats height (H), and (ii) the gap between two consecutive slats (g), considering different intrinsic spatial resolutions. One system matrix was generated for each set of collimation parameters (H,g). Spatial resolutions, Signal-to-Noise Ratio (SNR) and sensitivity obtained for all the set of collimation parameters (H,g) were measured in the 2D projections reconstructed with ML-EM. According to our results, 20 mm high slats and a 1 mm gap were chosen as a good RSC candidate for a preclinical detection module. This collimator will ensure a sensitivity greater than 0.2% and a system spatial resolution below 1 mm, considering an intrinsic spatial resolution below 0.8 mm.

  10. Theoretical analysis of a collimated hollow-laser-beam generated by a single axicon using diffraction integral

    Science.gov (United States)

    Qian, Yong; Wang, Yuzhu

    2004-04-01

    A novel method to generate a collimated hollow-laser-beam (HLB) by only a single axicon is proposed. With some reasonable assumptions, the radial light intensity distribution is calculated in detail by diffraction integral theory. The result of numerical simulation shows that this method is valid. Compared with other methods of generating HLB, this scheme is extraordinarily simple in principle and can be utilized experimentally to construct a light trap in atomic fountain for convenience.

  11. Assessment of line of sight characteristics of ITER bolometer prototype collimators

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, F., E-mail: florian.penzel@ipp.mpg.de [Max-Planck-Institute for Plasmaphysics, EURATOM Association, Garching (Germany); Meister, H.; Giannone, L.; Kannamüller, M.; Koll, J.; Trautmann, T. [Max-Planck-Institute for Plasmaphysics, EURATOM Association, Garching (Germany); Koch, A.W. [Institute for Measurement Systems and Sensor Technology, Technical University of Munich (Germany)

    2013-10-15

    Highlights: ► Developments on the optimization of line of sight (LOS) characteristics for the ITER bolometry collimators are presented. ► ITER Bolometer Robot Test Facility (IBOROB) is used as a diagnostic tool in order to analyze signal geometry and assess the performance of different prototypes. ► LOS characteristics as a function of number of apertures are presented. ► Influence of a microwave filtering aperture was determined. ► Improvement of stray light attenuation by application of the graphite based coating AQUADAG. -- Abstract: This work outlines the present design status of developments on the optimization of line of sight (LOS) characteristics for the ITER bolometry collimators. The verification and measurement of the LOS of the bolometry is an important issue for a reliable operation of the tomographic reconstruction algorithms. Therefore the ITER Bolometer Robot Test Facility (IBOROB) is used as a diagnostic tool in order to analyze LOS geometry and assess the performance of different collimator prototypes. The LOS characteristics as a function of number of apertures are presented and the influence of a microwave filtering aperture was determined. The results of the improvement of stray light attenuation by application of the graphite based coating AQUADAG are evaluated as well and an overview about the current collimator design is given. This paper focuses on the most remarkable results, a way to further possible upgrades is outlined. However, some results are not in accordance with the ones predicted in theoretical calculations. Thus not all key parameters which influence the LOS could be clearly identified yet.

  12. Assessment of line of sight characteristics of ITER bolometer prototype collimators

    International Nuclear Information System (INIS)

    Highlights: ► Developments on the optimization of line of sight (LOS) characteristics for the ITER bolometry collimators are presented. ► ITER Bolometer Robot Test Facility (IBOROB) is used as a diagnostic tool in order to analyze signal geometry and assess the performance of different prototypes. ► LOS characteristics as a function of number of apertures are presented. ► Influence of a microwave filtering aperture was determined. ► Improvement of stray light attenuation by application of the graphite based coating AQUADAG. -- Abstract: This work outlines the present design status of developments on the optimization of line of sight (LOS) characteristics for the ITER bolometry collimators. The verification and measurement of the LOS of the bolometry is an important issue for a reliable operation of the tomographic reconstruction algorithms. Therefore the ITER Bolometer Robot Test Facility (IBOROB) is used as a diagnostic tool in order to analyze LOS geometry and assess the performance of different collimator prototypes. The LOS characteristics as a function of number of apertures are presented and the influence of a microwave filtering aperture was determined. The results of the improvement of stray light attenuation by application of the graphite based coating AQUADAG are evaluated as well and an overview about the current collimator design is given. This paper focuses on the most remarkable results, a way to further possible upgrades is outlined. However, some results are not in accordance with the ones predicted in theoretical calculations. Thus not all key parameters which influence the LOS could be clearly identified yet

  13. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  14. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    International Nuclear Information System (INIS)

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the Hα emission line. The collimation and scattering of this broad Hα component was also revealed by fitting the [N II] λλ6548, 6583 and Hα emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = –18° ± 13° and P.A. = 162° ± 13°) along a direction perpendicular to the torus/disk (P.A. = 72° ± 14°) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the Hα emission line is visible and also why many previous studies detected no broad Hα. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  15. Wavelength division demultiplexing with photonic crystal self-collimation interference

    Science.gov (United States)

    Wang, Yufei; Qiu, Yishen; Chen, Xiyao; Lin, Guimin; Hong, Hailian

    2007-11-01

    A theoretical model of wavelength division demultiplexer (WDD), which is based on an asymmetric Mach-Zehnder interferometer (AMZI) constructed in a two-dimensional photonic crystal (2D PhC), is proposed and numerically demonstrated. The 2D PhC consists of a square lattice of cylindric air holes in silicon. The AMZI includes two mirrors and two splitters. Lights propagate between them employing self-collimation effect. The two interferometer branches have different path lengths. By using the finite-difference time-domain method, the calculation results show that the transmission spectras at two AMZI output ports are in the shape of sinusoidal curves and have a uniform peak spacing in the frequency range from 0.26c/a to 0.27c/a. When the path length of the longer branch is increased and the shorter one is fixed, the peaks shift to the lower frequencies and the peak spacing decreases nonlinearly. Consequently, the transmission can be designed to meet various application demands by changing the length difference between the two branches. For the dimensions of the WDD are about tens of operating wavelengths, this PhC WDD may be applied in future photonic integrated circuits.

  16. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  17. Multipinhole collimator with 20 apertures for a brain SPECT application

    International Nuclear Information System (INIS)

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10−5 to 1.6 × 10−3) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of 123I-ioflupane or 123I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy

  18. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  19. Independent collimators are sufficient to conform and combine adjacent fields?

    International Nuclear Information System (INIS)

    Consider a radiotherapy treatment in which the tumor is located in the region of head and neck. In general, isocentric technique combined with three tangents half-beam fields are used. How these fields must be collimated? We show that the combination of independent collimators and multi-leaf results in a uniform dose in the region which these fields touch each other. Moreover, we recommend a setup that minimizes the heterogeneity for LINAC's that doesn't possess a multi-leaf collimator. (author)

  20. The optimisation of absorber thickness for neutron Soller slit collimators

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. [Victoria Univ. of Technol., Melbourne (Australia). Sch. of Commun. and Inf.

    1998-08-11

    When constructing neutron Soller slit collimators an absorbing layer is applied to the blades. Choice of an optimum absorber thickness becomes more important as the collimator is made shorter or the neutron absorption becomes poorer as occurs for short wavelength neutrons. A quality factor for the performance of Soller slit collimators is proposed and used to determine the optimum thickness of the absorbing layer. The solution to this problem is non analytic but easily coded as a computer program. Sample calculations of optimum thickness are described. A simple formula for the approximate optimum thickness is given. (orig.) 3 refs.

  1. Hollow Electron Beam Collimator: R&D Status Report

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Valishev, A; Kabantsev, A; Vorobiev, L

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  2. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  3. Development of hollow electron beams for proton and ion collimation

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; /Fermilab; Assmann, R.; /CERN; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  4. Collimator Layouts for HL-LHC in the Experimental Insertions

    CERN Document Server

    Bruce, R; Esposito, Luigi Salvatore; Jowett, John; Lechner, Anton; Quaranta, Elena; Redaelli, Stefano; Schaumann, Michaela; Skordis, Eleftherios; Eleanor Steele, G; Garcia Morales, H; Kwee-Hinzmann, Regina

    2015-01-01

    This paper presents the layout of collimators for HL-LHC in the experimental insertions. On the incoming beam, we propose to install additional tertiary collimators to protect potential new aperture bottlenecks in cells 4 and 5, which in addition reduce the experimental background. For the outgoing beam, the layout of the present LHC with three physics debris absorbers gives sufficient protection for highluminosity proton operation. However, collisional processes for heavy ions cause localized beam losses with the potential to quench magnets. To alleviate these losses, an installation of dispersion suppressor collimators is proposed.

  5. The final collimator has been installed ready for the LHC restart (phase 1 of the LHC collimator project)

    CERN Multimedia

    CERN audiovisual service

    2009-01-01

    The collimators are installed around the LHC ring and the transfer lines to absorb ‘stray’ particles that have spread out, forming a halo around the beam. It is important to absorb this halo to protect the rest of the machine from damage, in particular the superconducting magnets, where any slight heating by the ‘stray particles’ could cause a magnet quench. The one-meter long collimators absorb the particles in the halo by closing a set of ‘jaws’ of various materials around the beam; the most robust collimators use fiber-reinforced graphite. Before the start-up last year, 88 collimators were installed. The unforeseen shutdown caused by the incident in Sector 3-4, allowed the collimator team to continue with the final 20 collimators necessary to maximize the LHC intensity and luminosity reach with the phase 1 collimation system. This marks the end of 6.5 years of hard work since the project began

  6. The star-bright hour : [luuletused] / Betti Alver

    Index Scriptorium Estoniae

    Alver, Betti, 1906-1989

    2006-01-01

    Sisu: The star-bright hour ; Not a dream ; The Piper ; Corals in an ancent river. Luuletused pärinevad kogumikust "Tuulelaeval valgusest on aerud = Windship with Oars of Light. (Tallinn : Huma, 2001). Orig.: Tähetund ; Mitte viirastus, meelepett ; Vilepuhuja ; Korallid Emajões

  7. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  8. Drop filters in a rod-type photonic crystal based on self-collimation ring resonators

    Science.gov (United States)

    Lin, Guimin; Chen, Xiyao; Lin, Nan; Li, Junjun; Qiu, Yishen

    2010-10-01

    We design a rod-type drop filter (RTDF) in a two-dimensional photonic crystal (2D PhC) employing self-collimation (SC) effect. The perfect 2D PhC consists of a square-lattice of cylindrical silicon rods in air. The dielectric constant and the radius of host rods are ɛ=12.25 (correspondingly the refractive index n = 3.5) and r=0.40a respectively, where a is the lattice constant. In such a PhC, self-collimation phenomenon occurs for transverse-magnetic (TM) light beams with frequencies between 0.176c/a and 0.192c/a. The proposed RTDF based on a self-collimation ring resonator (SCRR) consists of two beam splitters and two mirrors. The performances of the SCRR are investigated with the finite-difference time-domain (FDTD) simulation technique. The calculation results show that the transmissivity spectrum at the drop port has nearly equal peak spacing which will decreases when the geometrical length of the SCRR is increased. Moreover, the full width at half maximum (FWHM) and thus quality (Q) factor of peaks can be easily tuned by changing the reflectivity of two beam splitters.

  9. Self-collimation-based photonic crystal Mach–Zehnder add-drop filters

    International Nuclear Information System (INIS)

    Photonic crystal Mach–Zehnder add-drop filters (PC-MZADFs) based on the self-collimation phenomenon in a two-dimensional (2D) PC are proposed and numerically studied using finite-difference time-domain (FDTD) simulations. Each PC-MZADF is composed of a symmetric Mach–Zehnder interferometer (MZI) with an identical filter in each of its two different optical paths. Zizag-box resonators (ZBRs) and Fano resonators (FRs) are employed as the optical filters in rod-type and hole-type PCs, respectively. It is shown that self-collimated beams with the ZBR and FR resonant frequencies can be dropped or added using multiple-beam interference. We also show that the resonant frequencies of the resonators can be adjusted by varying the radii of their rods or holes. Our results indicate that this device design may constitute an efficient approach to light propagation manipulation and increase the application range of self-collimated beams. (paper)

  10. Self-collimation-based photonic crystal Mach-Zehnder add-drop filters

    Science.gov (United States)

    Lee, Sun-Goo; Park, Jong-Moon; Kee, Chul-Sik; Lee, Jongjin

    2016-02-01

    Photonic crystal Mach-Zehnder add-drop filters (PC-MZADFs) based on the self-collimation phenomenon in a two-dimensional (2D) PC are proposed and numerically studied using finite-difference time-domain (FDTD) simulations. Each PC-MZADF is composed of a symmetric Mach-Zehnder interferometer (MZI) with an identical filter in each of its two different optical paths. Zizag-box resonators (ZBRs) and Fano resonators (FRs) are employed as the optical filters in rod-type and hole-type PCs, respectively. It is shown that self-collimated beams with the ZBR and FR resonant frequencies can be dropped or added using multiple-beam interference. We also show that the resonant frequencies of the resonators can be adjusted by varying the radii of their rods or holes. Our results indicate that this device design may constitute an efficient approach to light propagation manipulation and increase the application range of self-collimated beams.

  11. Collimation and scattering of the active galactic nucleus emission in the Sombrero galaxy

    CERN Document Server

    Menezes, R B; Ricci, T V; 10.1088/2041-8205/765/2/L40

    2013-01-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{\\alpha} emission line. The collimation and scattering of this broad H{\\alpha} component was also revealed by fitting the [NII] {\\lambda}{\\lambda}6548,6583 and H{\\alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18{\\de...

  12. The night sky brightness at Potsdam-Babelsberg

    CERN Document Server

    Puschnig, Johannes; Posch, Thomas; Schwarz, Robert

    2013-01-01

    We analyze the results of a 2 years (2011--2012) time series of night sky photometry performed at the Leibniz Institute for Astrophysics in Potsdam (AIP). This observatory is located on top of a hill ("Babelsberg"), 22\\,km to the southwest of the center of Berlin. The measurements have been performed with a Unihedron Sky Quality Meter. We find night sky brightness values ranging from 16.5 to 20.3 mag$_{\\rm SQM}$ arcsec$^{-2}$; the latter (best) value corresponds to 4.7 times the natural zenithal night sky brightness. We discuss the influence of clouds, of the Moon and other factors on the night sky brightness. With respect to the influence of the Moon, it turns out that Potsdam-Babelsberg, despite its proximity to Berlin, still shows a circalunar periodicity of the night sky brightness, although it is much weaker than naturally. The light-pollution-enhancing effect of clouds dominates the night sky brightness by far. Overcast nights with light pollution (up to 16.5 mag$_{\\rm SQM}$ arcsec$^{-2}$) are brighter ...

  13. Brightness reversal in the natural visual environment: a Venetian blind effect.

    Science.gov (United States)

    Walker, J T

    1985-01-01

    If a partially open Venetian blind is lighted by the sun, or by diffuse light from the sky, then the upper portion of each slat will be brightly lighted and the lower portion shaded. If an observer moves the head downward while viewing a dark object silhouetted against the sky, then the object displays a reversal of brightness, appearing brighter than the sky while the head is moving downward. Moving the head upward produces no brightness reversal. These observations in the natural visual environment are consistent with earlier laboratory demonstration under several conditions. PMID:3832614

  14. The EUVE bright source list

    Science.gov (United States)

    Stroozas, B.; Mcdonald, K.; Antia, B.; Mcdonald, J.; Wiercigroch, A.

    1993-01-01

    Initial results for bright extreme ultraviolet sources discovered during the EUVE all-sky and deep ecliptic surveys have been published as a Bright Source List (BSL) and released to the astronomical community with a recent NASA research announcement (NRA 93-OSS-02, Appendix F). This paper describes the data processing software, the EUVE survey data set, and the production of the BSL at the Center for EUV Astrophysics. The contents, format, and selection criteria for sources, the data processing strategy, some problems encountered, and a summary of the BSL results are presented.

  15. All things bright and beautiful

    OpenAIRE

    Brown, Chloe

    2012-01-01

    'All Things Bright and Beautiful' was exhibited in 20/21 Visual Arts Centre, Scunthorpe, which is sited in a 'redundant' church. The fundamental question that the exhibition explored concerned the role of 'the animal' within contemporary art and within secular society, which in turn hoped to prompt reflections on our understanding of the place of 'the human' in the world and in nature. If there is no divine order, as posited by the hymn 'All Things Bright and Beautiful', where does this leave...

  16. The evaluation and calibration of fan-beam collimators

    International Nuclear Information System (INIS)

    The aims of this study were (a) to determine the true focal length of a fan-beam collimator and (b) to calibrate image size (mm/pixel) for each collimator to permit inter-comparison of image data acquired on different gamma camera systems. A total of six fan-beam collimators on three dual-head gamma camera systems were evaluated using a set of four cobalt-57 point source markers. The markers were arranged in a line in the transverse plane with a known separation between them. Tomographic images were obtained at three radii of rotation. From reconstructed transaxial images the distance between markers was measured in pixels and used to determine pixel size in mm/pixel. The system value for the focal length of the collimator was modified by up to ±100 mm and transaxial images were again reconstructed. To standardize pixel size between systems, the apparent radius of rotation during a single-photon emission tomography (SPET) acquisition was modified by changes to the effective collimator thickness. SPET images of a 3D brain phantom were acquired on each system and reconstructed using both the original and the modified values of collimator focal length and thickness. Co-registration and subtraction of the reconstructed transaxial images was used to evaluate the effects of changes in collimator parameters. Pixel size in the reconstructed image was found to be a function of both the radius of rotation and the focal length. At the correct focal length, pixel size was essentially independent of the radius of rotation. For all six collimators, true focal length differed from the original focal length by up to 26 mm. These differences in focal length resulted in up to 6% variation in pixel size between systems. Pixel size between the three systems was standardized by altering the value for collimator thickness. Subtraction of the co-registered SPET images of the 3D brain phantom was significantly improved after optimization of collimator parameters, with a 35%-50% reduction

  17. Toward design of the Collider Beam Collimation System

    International Nuclear Information System (INIS)

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented

  18. Formation of collimated beams behind the woodpile photonic crystal

    OpenAIRE

    Trull Silvestre, José Francisco; Maigyte, Lina; Malinauskas, Mangirdas; Mizeikis, Vygantas; Juodkazis, Saulius; Cojocaru, Crina; Rutkauskas, Marius; Peckus, Martynas; Sirutkaitis, Valdas; Staliunas, Kestutis

    2011-01-01

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam’s focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model. Peer Reviewed

  19. Collimated directional emission from a peanut-shaped microresonator

    OpenAIRE

    Shu, Fang-Jie; Zou, Chang-Ling; Sun, Fang-Wen; Xiao, Yun-Feng

    2011-01-01

    Collimated directional emission is essentially required an asymmetric resonant cavity. In this paper, we theoretically investigate a type of peanut-shaped microcavity which can support highly directional emission with the emission divergence as small as 2.5o. The mechanism of the collimated emission is explained with the short-term ray trajectory and the intuitive lens model in detail. Wave simulation also confirms these results. This extremely narrow divergence of the emission holds a great ...

  20. Steering and collimating ballistic electrons with amphoteric refraction

    International Nuclear Information System (INIS)

    We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials’ parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.

  1. Collimators as diagnostic tools in the proton machine of HERA

    International Nuclear Information System (INIS)

    The proton ring of HERA is equipped with several transverse movable collimators. The analysis of beam halo induced particle losses, observed downstream of the collimator location, can be used for very sensitive measurements of beam properties. Possible applications are: the determination of the machine acceptance in a passive way, the measurement of transverse diffusion rates in the beam halo and the detection of small beam oscillations at low frequencies. ((orig.))

  2. Therapy simulation of MLC-collimated fields

    International Nuclear Information System (INIS)

    In clinical routines X-ray simulation of planned treatment fields is performed prior to start of the actual treatment session. In a clinic with access to MLC collimated beams and CT-based patient data in a 3-D dose planning system the beam shaping will in most cases be performed in the dose planning system. In these cases the beam simulation prior to treatment is motivated by at least three reasons. The first is to verify the positioning of the patient relative the beam isocenter point. The second is to verify the field shape with respect to tumour and critical organs, and to have the possibility to use contrast media in this verification. The third reason could be to achieve a reference image for later comparison to portal images. There are alternative methods available to achieve the above stated objects but they often suffer from a number of limitations. A portal imaging system can sometimes fulfil both the positioning and field shaping criteria but lack the contrast of a simulator image and can not be used with contrast media. Digitally reconstructed images can be generated in most dose planning systems and could thus be a potential replacement for simulator images but will not verify the patient position. Thus in most cases there will be an actual need for X-ray simulation prior to the patient treatment and for this purpose a number of different methods to visualise an MLC-shaped beam are available. One method is based on manual transfer of the field shape to the X-ray film. Another, commercially available system utilises automatic transfer of the field contour to a digitized image and a third method which will be presented in more detail is based on a specially developed mechanical accessory to the X-ray simulator, the MLC-delineator

  3. Parallel-hole collimator concept for stationary SPECT imaging.

    Science.gov (United States)

    Pato, Lara R V; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-21

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems' performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view ([Formula: see text] of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice. PMID:26528908

  4. Parallel-hole collimator concept for stationary SPECT imaging

    Science.gov (United States)

    Pato, Lara R. V.; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-01

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems’ performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view (75% of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  5. Extension collimator design for rat liver irradiation at THOR

    International Nuclear Information System (INIS)

    The renovation for an epithermal neutron beam at the Tsing Hua Open-pool reactor (THOR) had been completed in August 2004. Since the aperture of this facility is 14 cm in diameter, the average whole-body would be large if it is used for rat liver irradiation. To lower the whole-body dose while delivering the same amount of thermal neutrons to the rat liver location, an extension collimator was designed and adopted to provide a suitable beam hole in this article. The extension collimator is a centered conical aperture with inner opening of 14cm diameter and outer opening of various sizes. The effectiveness of the extension collimator was based on MCNP simulation results. They were compared with various materials, various thickness of the extension collimator, and various size of the outer opening. The simulation results indicate that an extension collimator, made of Li2CO3 dispersed in polyethylene (Li-Poly), will reduce the whole-body dose. Other simulations show that a 10cm-thick extension collimator, having a centered conical aperture of 14cm diameter tapering to 4cm diameter, would further reduce the whole-body dose. (author)

  6. SPECT reconstruction algorithms for converging hole and astigmatic collimators

    International Nuclear Information System (INIS)

    One of the problems posed by the astigmatic collimator is an accurate and effective description of its imaging properties. Since the image of an object can change drastically with its position relative to the collimator, the traditional method of describing a collimator in terms of its resolution and sensitivity is inadequate and must be extended to include the effects of source position. The authors have developed the generalized collimator transfer function (GCTF) to describe the non-stationary effects of collimator hole pattern on imaging. This concept is ideally suited to deal with the non-stationary effects of convergent and astigmatic collimation. The performance of a stationary imaging system can be described mathematically in terms of its point source response function (PSRF). The PSRF describes the image resulting from a point source located anywhere in front of the camera. the underlying assumption is that if the image of a point source is known, then the image of any extended source distribution can be reconstructed by convolution of the point source response function with the extended source distribution. For stationary systems the imaging processes is assumed to be shift-invariant. However, the authors goal is to analyze systems that are not necessarily shift-invariant. In order to accommodate such systems, they introduce the generalized point source response function (GPSRF). During the past year they have applied the GPSRF to generate SPECT images of analytical phantoms constructed as a collection of Gaussian source distributions

  7. Collimation quench test with 4 TeV proton beams

    CERN Document Server

    Salvachua, B; Cauchi, M; Deboy, D; Hofle, W; Holzer, EB; Jacquet, D; Lari, L; Nebot, E; Mirarchi, D; Quaranta, E; Redaelli, S; Sapinski, M; Schmidt, R; Valentino, G; Valuch, D; Wenniger, J; Wollmann, D; Zerlauth, M; CERN. Geneva. ATS Department

    2014-01-01

    In 2013, at the end of the LHC physics run I, several quench tests took place with the aim to measure the quench limit of the LHC superconducting magnets. The LHC superconducting magnets in the dispersion suppressor of IR7 are the most exposed to beam losses leaking from the betatron collimation system and represent the main limitation for the halo cleaning. A collimation quench test was performed with 4 TeV proton beams to improve the quench limit estimates, which determine the maximum allowed beam loss rate for a given collimation cleaning. The main goal of the collimation quench test was to try to quench the magnets by increasing losses at the collimators. This note describes the procedure during the test and the first results with the data. Losses of up to 1 MW over a few seconds were generated by blowing up the beam, achieving total losses of about 5.8 MJ. These controlled losses exceeded by a factor 2 the collimation design value, and the magnets did not quench.

  8. Bright Transients discovered by PSST

    Science.gov (United States)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-04-01

    Seven bright transients have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  9. Bright Transients discovered by PSST

    Science.gov (United States)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-08-01

    Six bright transients have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  10. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    Science.gov (United States)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  11. Absolute brightness temperature measurements at 2.1-mm wavelength

    Science.gov (United States)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  12. Collimation of a thulium atomic beam by two-dimensional optical molasses

    International Nuclear Information System (INIS)

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 °C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  13. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  14. Characterization of a dynamic multi-leaf collimator for stereotactic radiotherapy applications.

    Science.gov (United States)

    Godwin, G A; Simpson, J B; Mugabe, K V

    2012-07-21

    The Apex® dynamic mini-multileaf collimator has recently been released by Elekta and attaches directly to the linear accelerator head. This paper details the work and results obtained in characterizing this mini-MLC for stereotactic usage within our department. A range of mechanical and dosimetric characteristics were investigated which included inter and intra leaf leakage, light/radiation field congruence, leaf position reproducibility, radiation penumbra, total scatter factors and mechanical rotational stability with the additional mini-MLC weight. PMID:22750675

  15. Characterization of a dynamic multi-leaf collimator for stereotactic radiotherapy applications

    International Nuclear Information System (INIS)

    The Apex® dynamic mini-multileaf collimator has recently been released by Elekta and attaches directly to the linear accelerator head. This paper details the work and results obtained in characterizing this mini-MLC for stereotactic usage within our department. A range of mechanical and dosimetric characteristics were investigated which included inter and intra leaf leakage, light/radiation field congruence, leaf position reproducibility, radiation penumbra, total scatter factors and mechanical rotational stability with the additional mini-MLC weight. (paper)

  16. Enhanced PET resolution by combining pinhole collimation and coincidence detection.

    Science.gov (United States)

    DiFilippo, Frank P

    2015-10-21

    Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a (18)F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT

  17. Comparative efficiency of the multi-leaf collimator and variable-aperture collimator in intensity-modulated radiotherapy

    Science.gov (United States)

    Anderson, J. W.; Symonds-Tayler, R.; Hartmann, G.; Echner, G.; Lang, C.; Schlegel, W.; Webb, S.

    2006-04-01

    The potential of the variable-aperture collimator (VAC) in intensity-modulated radiation therapy (IMRT) has been evaluated by comparing its performance with that of the multi-leaf collimator (MLC). This comparison used a decomposition algorithm to find the series of collimator segments that would treat a given intensity-modulated beam (IMB). Collimator performance was measured using both the number of segments required to complete the IMB and the monitor-unit efficiency of the treatment. The VAC was modelled with aperture sizes from 4 × 4 cm to 20 × 20 cm, and these apertures were allowed to be located anywhere within the IMB. To enable a direct comparison, a similar scanning MLC was modelled at the same range of aperture sizes. Using both collimators, decompositions were run on 10 × 10 and 20 × 20 random IMBs with integer bixel values ranging from 1 to 10. Clinical IMBs from lung, head and neck, and pelvic patients were taken from a Pinnacle treatment-planning system and tested in the same manner. It was found that for all treatment sites, a small, scanning MLC performs as well or better than an equivalent sized VAC in both number of segments and monitor-unit efficiency, and would be an efficient choice for centres looking for a simple collimator for IMRT.

  18. At Bright Band Inside Victoria Crater

    Science.gov (United States)

    2007-01-01

    A layer of light-toned rock exposed inside Victoria Crater in the Meridiani Planum region of Mars appears to mark where the surface was at the time, many millions of years ago, when an impact excavated the crater. NASA's Mars Exploration Rover Opportunity drove to this bright band as the science team's first destination for the rover during investigations inside the crater. Opportunity's left front hazard-identification camera took this image just after the rover finished a drive of 2.25 meters (7 feet, 5 inches) during the rover's 1,305th Martian day, or sol, (Sept. 25, 2007). The rocks beneath the rover and its extended robotic arm are part of the bright band. Victoria Crater has a scalloped shape of alternating alcoves and promontories around the crater's circumference. Opportunity descended into the crater two weeks earlier, within an alcove called 'Duck Bay.' Counterclockwise around the rim, just to the right of the arm in this image, is a promontory called 'Cabo Frio.'

  19. Perceiving the Intensity of Light

    Science.gov (United States)

    Purves, Dale; Williams, S. Mark; Nundy, Surajit; Lotto, R. Beau

    2004-01-01

    The relationship between luminance (i.e., the photometric intensity of light) and its perception (i.e., sensations of lightness or brightness) has long been a puzzle. In addition to the mystery of why these perceptual qualities do not scale with luminance in any simple way, "illusions" such as simultaneous brightness contrast, Mach bands,…

  20. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  1. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model

    Science.gov (United States)

    Duriscoe, Dan M.

    2013-11-01

    Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth's surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.

  2. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  3. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  4. Brightness variability in the white badge of the eagle owl Bubo bubo

    OpenAIRE

    Penteriani, Vincenzo; Alonso-Álvarez, Carlos; Delgado, María del Mar; Sergio, Fabrizio; Ferrer, Miguel

    2006-01-01

    The application of modern spectrometry to the study of avian colour variability has revealed ignored patterns of colour variation such as male-biased sexual dichromatism and seasonal variability in the plumage. However, the variation in the achromatic property of such traits, that is in the total light reflectance of the spectrum (i.e., brightness), has commonly been overlooked. The evolution of signals based on brightness should be favoured in those species that are active when light is scar...

  5. Multiple-channel collimation for improved performance of SANS instruments

    International Nuclear Information System (INIS)

    Complete text of publication follows. Small Angle Neutron Scattering (SANS) is a powerful technique for the investigation of the submicrometer structure of condensed matter, and has found important applications in materials science and engineering, solid state physics, polymer research and biological sciences. SANS facilities are currently heavily demanded and several new such instruments are planned for installation. However, the existing facilities, due to the design adopted for the layout as well as the mode in which they operate can, in general, be upgraded. An analytical study is presented on the performance of a SANS instrument equipped with a multi-aperture pinhole collimator. This collimation can provide large count rate gains, which might attain one order of magnitude, for the usual resolution required in SANS measurements. Both pulsed and steady-state neutron sources are considered in the study. For pulsed source installation such collimation was found to be ideal because is not only provides the optimisation of count rate and resolution but it also avoids the problem of frame overlap, as relatively small collimation lengths are required. For steady-state neutron source installation the referred optimisation is achieved but the versatility in reciprocal space range becomes reduced. Finally, a new type of honeycomb collimator based on the results presented is proposed. (author)

  6. An improved scattering routine for collimation tracking studies at LHC

    CERN Document Server

    Tambasco, Claudia; Salvachua Ferrando, Maria Belen; Cavoto, Gianluca

    The present Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC accelerates proton beams up to 7 TeV colliding in the experiment detectors installed in four points of the accelerator ring. The LHC is built to store a energy of 360MJ for each beam. The energy deposition induced by local beam losses could quench the superconducting magnets located around the accelerator beam pipes. To prevent and keep under control dangerous beam losses, an efficient collimation system is required. In addition, the achievable LHC beam intensity is related to the beam loss rate and, consequently, to the cleaning efficiency of the collimation system. Collimation studies at LHC are carried out also by means of simulations by using SixTrack, a dedicated simulation tool that tracks a large numbers of particles for many turns around the ring. The SixTrack code includes a scattering routine to model proton interactions with the material of the collimators j...

  7. The Crystal Collimation System Of The Relativistic Heavy Ion Collider

    CERN Document Server

    Fliller, R P

    2004-01-01

    Crystal Channeling occurs when an ion enters a crystal with a small angle with respect to the crystal planes. The electrostatic interaction between the incoming ion and the lattice causes the ion to follow the crystal planes. By mechanically bending a crystal, it is possible to use a crystal to deflect ions. One novel use of a bent crystal is to use it to channel beam halo particles into a downstream collimator. By deflecting the halo particles into a collimator with a crystal it may be possible to improve the collimation efficiency as compared to a conventional two stage collimation system. A bent crystal was installed in the counterclockwise ring of the Relativistic Heavy Ion Collider (RHIC) prior to the FY2001 run to be used as the first stage of a two stage collimation system. We present a model and simulations to the predict crystal channeling efficiency. The simulations and model predict a channeling efficiency between 59% and 74% depending on the choice of optics. Attempts to reduce backgrounds in RHIC...

  8. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  9. Optimization of detector size and collimator for PG-SPECT

    International Nuclear Information System (INIS)

    A current absorbed dose evaluation method in a Boron Neutron Capture Therapy demands boron reaction rate from a boron concentration of an affected part supposed from a neutron flux and a boron concentration in blood measured by an activation method of a gold wire indirectly and converts it into an absorbed dose. So we devised a PG-SEPCT (Prompt Gamma-ray Single Photon Emission Computed Tomography) system to evaluate an absorbed dose directly by measuring prompt gamma-rays. Ordinary SPECT system uses a big NaI scintillator for detector so that measurement is done in low background gamma-ray environment. However, a conventional detector and collimator system cannot be just applied to PG-SPECT system because a background radiation coexists abundantly (PG-SPECT system is set in irradiation room). Accordingly PG-SPECT system requires a dedicated detector and collimator system. In order to reduce efficiency for background gamma-rays, we arranged detectors in a collimator to shield from background gamma-rays. We examined the most suitable collimator shape. The optimization condition of a dedicated collimator system is as follows: 1) the smallest particle size that can be distinguished is 1 cm. 2) necessary counts at measurement target center is not less than 10,000. (author)

  10. Collimated fast electron beam generation in critical density plasma

    International Nuclear Information System (INIS)

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 1014 W/cm2, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 1014 W/cm2, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion

  11. Bright solitons from defocusing nonlinearities

    OpenAIRE

    Borovkova, Olga V.; Kartashov, Yaroslav; Torner Sabata, Lluís; Malomed, Boris A.

    2011-01-01

    We report that defocusing cubic media with spatially inhomogeneous nonlinearity, whose strength increases rapidly enough toward the periphery, can support stable bright localized modes. Such nonlinearity landscapes give rise to a variety of stable solitons in all three dimensions, including one-dimensional fundamental and multihump states, two-dimensional vortex solitons with arbitrarily high topological charges, and fundamental solitons in three dimensions. Solitons maintain their coherence ...

  12. Night sky brightness at San Pedro Martir Observatory

    CERN Document Server

    Plauchu-Frayn, I; Colorado, E; Herrera, J; Cordova, A; Cesena, U; Avila, F

    2016-01-01

    We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) in Mexico. The UBVRI data is based upon CCD images obtained with the 0.84m and 2.12m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 mag/square arcsec, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend im...

  13. Galactic icebergs come to light

    International Nuclear Information System (INIS)

    The paper concerns low-surface brightness galaxies, which are called 'icebergs' because their light lies almost wholly below the brightness of the foreground sky. Calculations reveal that there is an almost perfect correspondence between the relative numbers of galaxies with different surface brightness that are actually found and the theoretical likelihood of finding them. Also virtually all known galaxies have surface brightnesses that are their theoretically predicted optimum values. A description is given of the techniques to detect the icebergs. Recent discoveries of icebergs are discussed, including the question ''how many low surface brightness galaxies are there?''. (U.K.)

  14. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and...

  15. Updated Simulation Studies of Damage Limit of LHC Tertiary Collimators

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Bruce, Roderik; Carra, Federico; Cerutti, Francesco; Gradassi, Paolo; Lechner, Anton; Redaelli, Stefano; Skordis, Eleftherios

    2015-01-01

    The tertiary collimators (TCTs) in the LHC, installed in front of the experiments, in standard operation intercept fractions of 10−3 halo particles. However, they risk to be hit by high-intensity primary beams in case of asynchronous beam dump. TCT damage thresholds were initially inferred from results of destructive tests on a TCT jaw, supported by numerical simulations, assuming simplified impact scenarios with one single bunch hitting the jaw with a given impact parameter. In this paper, more realistic failure conditions, including a train of bunches and taking into account the full collimation hierarchy, are used to derive updated damage limits. The results are used to update the margins in the collimation hierarchy and could thus potentially have an influence on the LHC performance.

  16. Muon and neutrino collimation in extensive air shower cores

    International Nuclear Information System (INIS)

    Detailed simulations of extensive air showers have been carried out with the CORSIKA program in order to evaluate the energy brought by the different shower components at ground level and transmitted underground. A special attention is given to the angular distributions and to the collimation of beams penetrating deep underground or underwater. The natural collimation of high energy particles in extensive air shower cores results mainly from the ratio between the transverse and the longitudinal momenta of secondary particles generated in the earliest interactions. This collimation is partly conserved by the high energy muons and neutrinos. It is comparable to the magnetic focusing of charged pions and kaons decaying in tunnels of suitable length after production in accelerators. Such is the case for neutrino beams of KEK J-PARC/T2K (300 km to Kamiokande), OPERA (730 km to Gran Sasso) and MINOS (735 km to Irvine Mine)

  17. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  18. Comparison of pinhole collimation and focusing optics for SANS

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, C.J., E-mail: cglinka@nist.gov [University of Delaware, Newark, DE 19716 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Barker, J.G.; Mildner, D.F.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-09-21

    We examine quantitatively the instrumental factors that affect the theoretical performance and practical application of conventional pinhole collimation and focusing optics for small-angle neutron scattering (SANS) measurements. We calculate the relative performance of pinhole collimation vis-à-vis focusing by grazing incidence elliptical mirrors and compare the results with a recent ray-tracing simulation to show that the performance gains due to focusing found in the simulation arise largely from assuming a much larger sample size. We also compare measurements of the parasitic scattering from pinhole collimation with that from focusing cylindrical quartz mirrors, and a focusing refractive optic, to stress the importance of signal-to-noise as the true measure of performance for SANS instruments.

  19. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

    2009-05-01

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

  20. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    International Nuclear Information System (INIS)

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts

  1. Optical nanostructures in 2D for wide-diameter and broadband beam collimation.

    Science.gov (United States)

    Clark, James; Anguita, José V; Chen, Ying; Silva, S Ravi P

    2016-01-01

    Eliminating curved refracting lensing components used in conventional projection, imaging and sensing optical assemblies, is critical to enable compactness and miniaturisation of optical devices. A suitable means is replacing refracting lenses with two-dimensional optical media in flat-slab form, to achieve an equivalent optical result. One approach, which has been the focus of intense research, uses a Veselago lens which features a negative-index metamaterial. However, practical implementations rely on resonance techniques, thus broadband operation at optical frequencies imposes significant technical challenges that have been difficult to overcome. Here, we demonstrate a highly-collimated, broadband, wide-diameter beam from a compact source in flat-slab form, based on light collimation using nanomaterials ordered in patterns and embedded into flexible polymers. These provide a highly anisotropic absorption coefficient due to patterns created by vertical carbon nanotube structures grown on glass, and the anisotropic electrical conductivity of the nanotubes. We show this nanostructure strongly absorbs unwanted off-axis light rays, whilst transmitting the desired on-axis rays, to achieve the required optical effect over broadband, from visible to short-infrared, thus circumventing some technical limitations of negative-index metamaterials. We further show a low substrate-temperature system for nanotube growth, allowing direct implementation into heat-sensitive large-area devices. PMID:26732851

  2. Characteristics of parallel-hole and pinhole collimators for nuclear medicine imaging

    International Nuclear Information System (INIS)

    In this paper, the spatial resolution and geometry sensitivity of parallel- and pin-hole collimators in compact gamma camera are presented, and quantitatively compared by GEANT4 code in Monte-Carlo library. The results show that the geometry sensitivity for pinhole collimator rapidly drops with increasing the gamma source-to- collimator distance (SCD); and for parallel-hole collimator, mildly. Meanwhile, the spatial resolution for pin-hole collimator mildly deteriorates; and for parallel-hole collimator, severely. The pin-hole collimator for close imaging objects has higher geometry sensitivity than parallel-hole collimator. Our findings are helpful for setting compact gamma camera collimators in nuclear medicine imaging. (authors)

  3. Collimation of the $e^{+}e^{-}$ annihilation event

    CERN Document Server

    Kimura, K

    1997-01-01

    The collimation $C$ of a hadronic event in the e^+e^- annihilation is defined as the average of $\\cos\\theta$, $C=$, where $\\theta$ is the angle of each hadron measured from the thrust axis, and the average is over all the hadrons produced in an event. It is an infrared-stable event-shape parameter. $1-\\bar C$, the difference between the unity and the average collimation at a given energy, is proportional to the anomalous dimension of the hadron multiplicity at the leading order in MLLA. Its next-to-leading order corrections are calculated.

  4. Measurements of Collimator Wakefields at End Station A

    International Nuclear Information System (INIS)

    The angular deflection of a 28.5 GeV electron beam passing off-axis between the jaws of a collimator, generating a transverse wakefield, were measured in End Station A (ESA) at SLAC. In total, fifteen different configurations of collimator geometry and material were tested: some were chosen for compatibility with previous measurements while others served to study the effect of geometry and taper angles (geometrical contribution to the wakefield) and the effect of the material resistivity (resistive contribution) to the imparted kick. This paper summarises the last update of preliminary experimental results before they are finalised. The reconstructed kick factor is compared to analytical calculations and simulations.

  5. ILC Beam delivery WG summary: Optics, collimation and background

    Energy Technology Data Exchange (ETDEWEB)

    Angal-Kalinin, D.; Jackson, F.; /Daresbury; Mokhov, N.V.; /Fermilab; Kuroda, S.; /KEK, Tsukuba; Seryi, A.A.; /SLAC

    2006-07-01

    The paper summarizes the work of the Beam Delivery working group (WG4) at Snowmass 2005 workshop, focusing on status of optics, layout, collimation and detector background. The strawman layout with two interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design including the collimation system, and extraction line design have been reviewed and the design issues were discussed during the WG4 sessions at the Snowmass, and are described in this paper.

  6. Jet Collimation by Small-Scale Magnetic Fields

    OpenAIRE

    Li, Li-Xin

    2001-01-01

    A popular model for jet collimation is associated with the presence of a large-scale and predominantly toroidal magnetic field originating from the central engine (a star, a black hole, or an accretion disk). Besides the problem of how such a large-scale magnetic field is generated, in this model the jet suffers from the fatal long-wave mode kink magnetohydrodynamic instability. In this paper we explore an alternative model: jet collimation by small-scale magnetic fields. These magnetic field...

  7. Collimated fast electron beam generation in critical density plasma

    OpenAIRE

    Iwawaki, T.; Habara, H; Baton, S.; Morita, K.; Fuchs, J; Chen, S.; Nakatsutsumi, M.; Rousseaux, C; Filippi, F; Nazarov, W.; Tanaka, K.A.

    2014-01-01

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 1014 W/cm2, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 1014 W/cm2, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magn...

  8. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  9. High brightness beams and applications

    International Nuclear Information System (INIS)

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  10. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... distributed differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial...

  11. Dimensionality constraints of light induced rotation

    CERN Document Server

    Oroszi, László; Galajda, Péter; Kelemen, Lóránd; Mathesz, Anna; Vicsek, Tamás; Vizsnyiczai, Gaszton; Ormos, Pál

    2015-01-01

    We have studied the conditions of rotation induced by collimated light carrying no angular momentum. Objects of different shapes and optical properties were examined in the nontrivial case where the rotation axis is perpendicular to the direction of light propagation. This geometry offers important advantages for application as it fundamentally broadens the possible practical arrangements to be realised. We found that collimated light cannot drive permanent rotation of 2D or prism-like 3D objects (i.e. fixed cross-sectional profile along the rotation axis) in the case of fully reflective or fully transparent materials. Based on both geometrical optics simulations and theoretical analysis, we derived a general condition for rotation induced by collimated light carrying no angular momentum valid for any arrangement: Permanent rotation is not possible if the scattering interaction is two-dimensional and lossless. In contrast, light induced rotation can be sustained if partial absorption is present or the object ...

  12. Advances in pinhole and multi-pinhole collimators for single photon emission computed tomography imaging.

    Science.gov (United States)

    Islamian, Jalil Pirayesh; Azazrm, AhmadReza; Mahmoudian, Babak; Gharapapagh, Esmail

    2015-01-01

    The collimator in single photon emission computed tomography (SPECT), is an important part of the imaging chain. One of the most important collimators that used in research, preclinical study, small animal, and organ imaging is the pinhole collimator. Pinhole collimator can improve the tradeoff between sensitivity and resolution in comparison with conventional parallel-hole collimator and facilities diagnosis. However, a major problem with pinhole collimator is a small field of view (FOV). Multi-pinhole collimator has been investigated in order to increase the sensitivity and FOV with a preserved spatial resolution. The geometry of pinhole and multi-pinhole collimators is a critical factor in the image quality and plays a key role in SPECT imaging. The issue of the material and geometry for pinhole and multi-pinhole collimators have been a controversial and much disputed subject within the field of SPECT imaging. On the other hand, recent developments in collimator optimization have heightened the need for appropriate reconstruction algorithms for pinhole SPECT imaging. Therefore, iterative reconstruction algorithms were introduced to minimize the undesirable effect on image quality. Current researches have focused on geometry and configuration of pinhole and multi-pinhole collimation rather than reconstruction algorithm. The lofthole and multi-lofthole collimator are samples of novel designs. The purpose of this paper is to provide a review on recent researches in the pinhole and multi-pinhole collimators for SPECT imaging. PMID:25709537

  13. THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST SWIFT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Long-duration gamma-ray bursts (GRBs) are widely believed to be highly collimated explosions (bipolar conical outflows with half-opening angle θ∼ 10-100). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a 'jet' break), has proven exceedingly difficult in the Swift era. Here, we undertake a study of five of the brightest (in terms of the isotropic prompt γ-ray energy release, Eγ,iso) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet break in all five events, strongly supporting the canonical picture of GRBs as collimated explosions. The most natural explanation for the lack of observed jet breaks from most Swift GRBs is therefore selection effects. However, the opening angles for the events in our sample are larger than would be expected if all GRBs had a canonical energy release of ∼1051 erg. The total energy release we measure for the 'hyper-energetic' (Etot ∼> 1052 erg) events in our sample is large enough to start challenging models with a magnetar as the compact central remnant.

  14. Quality control of collimator a system of image portal

    International Nuclear Information System (INIS)

    This paper presents the method followed in our Center to perform the quality control of the collimator (MLC) after the calibrations of the technical service, as well as regular monitoring of the position of the MLC to detect possible deviations. (Author)

  15. The collimation of magnetic jets by disk winds

    CERN Document Server

    Globus, Noemie

    2016-01-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disk wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disk wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about ten percents of the jet power. For moderate wind powers we find gradual collimation. For strong winds we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfv\\'en crossing times before becoming conical. We estimate that in the later case the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced ...

  16. Implementation of intensity modulation with dynamic multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J.W.; Yu, C.; Jaffray, D. [William Beaumont Hospital, Royal Oak, MI (United States)

    1995-12-01

    The computer-controlled multileaf collimator (MLC) marks one of the most important advances in radiation therapy. The device efficiently replaces manual blocking to shape fields and can be used to modulate beam intensity. The results of a research programme at William Beaumont Hospital, aimed at bringing dynamic intensity modulation into clinical use, are discussed.

  17. Collimation of energetic neutrinos and muons inside EAS cores

    Directory of Open Access Journals (Sweden)

    Cherif Talai Mohammed

    2013-06-01

    Full Text Available High-energy muon and neutrino components are simulated inside cores of EAS generated by primary protons and heavy nuclei of energies 1014-1020 eV. The collimation of muons and neutrinos inside the core is compared with present penetrating beams generated by accelerators.

  18. Evaluation of Focused Collimator Performance III. Three- and Five-Inch-Diameter Collimators For 131I and 99mTc

    International Nuclear Information System (INIS)

    Focused collimators for radioisotope scanning must be chosen according to their spatial resolution as a function of source-to-collimator distance, their plane-source sensitivity, and their septa penetration. All three parameters are determined from the response of a collimator to a uniform line source of a selected radionuclide. The line-source response is determined at 2.5-cm intervals from the face of the collimator by moving the line source in air at right angles to the central axis of the collimator and plotting the count-rate as a function of the source position. Seventeen commercial collimators from the Picker and SELO companies have been investigated. Seven of the collimators are for 5-in.- and ten for 3-in.-diameter sodium iodide crystals; eleven collimators are designed for 131I and six for 99mTc gamma rays. Additional measurements are performed with the moving line source in water to investigate the effect of an absorbing medium on the performance of the collimator. For equal focal distance, the larger diameter collimators have the advantage of higher sensitivity, but the distinct disadvantage that their spatial resolution deteriorates more rapidly with depth on either side of the focal plane compared with the smaller diameter collimators. As the depth interval of high resolution gets shorter, the distance of the organ to be scanned from the collimator becomes more critical and the average resolution of the collimator varies with the position arid thickness of the organ along the axis of the collimator. A focal distance of about 10 cm appears to be optimum for scanning all major organs. In scans of large organs (liver, lung and brain) the fraction of gamma rays detected is reduced by gamma-ray attenuation which increases with depth. With a pair of opposed long-focus3-in. -diameter collimators a spatial resolution and depth response can be achieved that do not vary much over a depth of 25 cm for the gamma rays of 131II within an absorbing medium. The

  19. Execution of mantle field with multileaf collimator: A simple approach

    Directory of Open Access Journals (Sweden)

    Prabhakar Ramachandran

    2008-01-01

    Full Text Available Background: Until very recently mantle field radiotherapy remained the gold standard for the treatment of favorable early-stage Hodgkin′s lymphoma. The classic mantle includes all the major lymph nodes above the diaphragm and extends from the inferior portion of the mandible to the level of the insertion of the diaphragm. Aims: To describe a simple technique that has been devised to treat the mantle field with the help of multileaf collimator and using computed tomography (CT-based treatment planning. Materials and Methods: CT scan was performed with the patient in the supine position and the datasets were transferred to the Eclipse™ treatment planning system. Elekta Precise™ linear accelerator equipped with 40 pairs of multileaf collimator (MLC was used for the execution of the mantle field. The MLC′s shapes were designed to take the shape of the conventional customized blocks used for treatment of mantle field. The anterior mantle field was divided into three separate MLC segments with the collimator kept at 0°. The first MLC segment was shaped to cover the neck, clavicular regions, and mediastinum. The second and the third MLC segments covered the right and left axilla, respectively. The posterior fields were opposed to the anterior subfields in a similar fashion. The dose was prescribed at the midplane, using reference points. Results and Conclusion: The technique described in this study is very simple, easy to implement, and avoids unnecessary delay in the execution of the mantle field. The mantle field can be easily shaped with the multileaf collimators, without any collimator rotation.

  20. Freeform étendue-preserving optics for light and color mixing

    Science.gov (United States)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benítez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-09-01

    Today's SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue). Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED, this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where the images of the chips merge. The virtual source is located at the same position with essentially the same size of the original source. The diameter of this optics was 3 times that of the chip-array footprint. In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell- Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness, color uniformity and efficiency.

  1. At the Cutting Edge of Bright Beams: The NSLS Source Development Lab (432nd Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Inspired by the discoveries with synchrotron light at the National Synchrotron Light Source (NSLS) and similar facilities around the world, researchers are looking for more brilliant beams of light. To develop this next-generation of light sources, accelerator physicists at the NSLS Source Development Laboratory (SDL) make use of a magnesium photocathode irradiated by ultraviolet laser light to produce electron beams of unprecedented brightness. As Murphy will describe in his talk, he and fellow researchers have developed various techniques to catch molecules and atoms in action. In one recent study, the researchers used a laser to control the pulse duration of light from a free-electron laser (FEL), a type of light source with a potential peak brightness up to one billion times higher than that of ordinary synchrotron light. In another technique, Murphy and his colleagues generated extremely short pulses of terahertz radiation that are the highest intensity of their type ever produced.

  2. Automatic Computer Algorithms for Beam-based Setup of the LHC Collimators

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Redaelli, S; Salvachua, B; Wollmann, D

    2012-01-01

    Beam-based setup of the LHC collimators is necessary to establish the beam centers and beam sizes at the collimator locations and determine the operational settings during various stages of the LHC machine cycle.

  3. Enhanced brightness from all solution processable biopolymer LED

    Science.gov (United States)

    Pradeep, C.; Namboothiry, M. A. G.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Biopolymer light emitting diodes were fabricated by using all solution processable polymers incorporating biomaterials such as deoxyribonucleic acid lipid complex as an electron blocking layer. Light emission is from a blend of fluorene based copolymers. The devices with electron blocking layer exhibited higher brightness and luminous efficiency. The increased luminance of the multilayer polymer LED is attributed to the contribution from DNA:CTMA as electron blocking layer and PFN, a derivative of polyfluorene, as electron injection layer. Our results show four fold increase in luminance values when DNA is used as electron blocking layer.

  4. Variable Circular Collimator in Robotic Radiosurgery: A Time-Efficient Alternative to a Mini-Multileaf Collimator?

    NARCIS (Netherlands)

    Van de Water, S.; Hoogeman, M.S.; Breedveld, S.; Nuyttens, J.J.M.E.; Schaart, D.R.; Heijmen, B.J.M.

    2011-01-01

    urpose Compared with many small circular beams used in CyberKnife treatments, beam’s eye view-shaped fields are generally more time-efficient for dose delivery. However, beam’s eye view-shaping devices, such as a mini-multileaf collimator (mMLC), are not presently available for CyberKnife, although

  5. Design and performance of a small-animal imaging system using synthetic collimation

    OpenAIRE

    Havelin, R J; Miller, B W; Barrett, H. H.; Furenlid, L.R.; Murphy, J M; Foley, M J

    2013-01-01

    This work outlines the design and construction of a single-photon emission computed tomography (SPECT) imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through forty-six pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from th...

  6. An energy-optimized collimator design for a CZT-based SPECT camera

    OpenAIRE

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radio-tracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collim...

  7. Ultra-bright alkylated graphene quantum dots

    Science.gov (United States)

    Feng, Lan; Tang, Xing-Yan; Zhong, Yun-Xin; Liu, Yue-Wen; Song, Xue-Huan; Deng, Shun-Liu; Xie, Su-Yuan; Yan, Jia-Wei; Zheng, Lan-Sun

    2014-10-01

    Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The

  8. The HH 24 Jet Complex: Collimated and Colliding Jets from a Newborn Multiple Stellar System

    Science.gov (United States)

    Reipurth, Bo

    2013-10-01

    The HH 24 complex constitutes the richest concentration of collimated bright Herbig-Haro jets known, and they originate from a small grouping of newborn binary and multiple systems. At least 6 jets are identified in deep groundbased optical interference images, and a similar number of sources in infrared images. We propose to do the first HST study of this complex, using H-alpha and [SII] filters. HST 0.05" to 0.1" angular resolution {20 to 40 AU at d 400 pc} is needed to resolve the shocks and their post-shock cooling layers for comparison with advanced numerical modeling. Our emphasis here is to explore outflows from a multiple system of newborn stars. Many of the jets show clear evidence of wiggling. The theory of jet motion from binary systems coupled with disk precession is now understood, and we will interpret the jet wiggles in this framework. Additionally, two of the HH 24 jets are showing evidence for a collision, a unique situation not seen anywhere else, and HST resolution is needed for comparison with gas-dynamic studies of jet-jet collisions. Two of the HH 24 jets are bright in the infrared [FeII] 1.644 line. In this line the main jet can be traced all the way to the source, which is the most important region for understanding the effects of binarity on the jet structure. We also apply for a second-epoch [SII] image in Cycle 23. This allows us, in addition to deriving the bulk motion, to determine such processes as expansion of the jet beam, sideways ejection in a working surface, turbulent and chaotic motions, and the effect of instabilities.

  9. Surface Brightness Profiles of Galactic Globular Clusters from Hubble Space Telescope Images

    CERN Document Server

    Noyola, E

    2006-01-01

    Hubble Space Telescope allows us to study the central surface brightness profiles for globular clusters at unprecedented detail. We have mined the HST archives to obtain 38 WFPC2 images of galactic globular clusters with adequate exposure times and filters, which we use to measure their central structure. We outline a reliable method to obtain surface brightness profiles from integrated light that we test on an extensive set of simulated images. Most clusters have central surface brightness about 0.5 mag brighter than previous measurements made from ground-based data, with the largest differences around 2 magnitudes. Including the uncertainties in the slope estimates, the surface brightness slope distribution is consistent with half of the sample having flat cores and the remaining half showing a gradual decline from 0 to -0.8 (dlog(Sigma)/dlogr). We deproject the surface brightness profiles in a non-parametric way to obtain luminosity density profiles. The distribution of luminosity density logarithmic slope...

  10. SKY BRIGHTNESS AND TRANSPARENCY IN THE i-BAND AT DOME A, ANTARCTICA

    International Nuclear Information System (INIS)

    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope Array. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec-2 in the SDSS i band at the south celestial pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec-2. There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.

  11. The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts

    CERN Document Server

    Cenko, S B; Harrison, F A; Kulkarni, S R; Nakar, E; Chandra, P; Butler, N R; Fox, D B; Gal-Yam, A; Kasliwal, M M; Kelemen, J; Moon, D -S; Price, P A; Rau, A; Soderberg, A M; Teplitz, H I; Werner, M W; Bock, D C -J; Bloom, J S; Starr, D A; Filippenko, A V; Chevalier, R A; Gehrels, N; Nousek, J N; Piran, T

    2009-01-01

    Long-duration gamma-ray bursts (GRBs) are widely believed to be highly-collimated explosions (opening angle theta ~ 1-10 deg). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a "jet" break), has proven exceedingly difficult in the Swift era. Here we undertake a study of five of the brightest (in terms of the isotropic prompt gamma-ray energy release, E(gamma, iso)) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet br...

  12. Radiative transport produced by oblique illumination of turbid media with collimated beams

    Science.gov (United States)

    Gardner, Adam R.; Kim, Arnold D.; Venugopalan, Vasan

    2013-06-01

    We examine the general problem of light transport initiated by oblique illumination of a turbid medium with a collimated beam. This situation has direct relevance to the analysis of cloudy atmospheres, terrestrial surfaces, soft condensed matter, and biological tissues. We introduce a solution approach to the equation of radiative transfer that governs this problem, and develop a comprehensive spherical harmonics expansion method utilizing Fourier decomposition (SHEFN). The SHEFN approach enables the solution of problems lacking azimuthal symmetry and provides both the spatial and directional dependence of the radiance. We also introduce the method of sequential-order smoothing that enables the calculation of accurate solutions from the results of two sequential low-order approximations. We apply the SHEFN approach to determine the spatial and angular dependence of both internal and boundary radiances from strongly and weakly scattering turbid media. These solutions are validated using more costly Monte Carlo simulations and reveal important insights regarding the evolution of the radiant field generated by oblique collimated beams spanning ballistic and diffusely scattering regimes.

  13. Manakins can produce iridescent and bright feather colours without melanosomes.

    Science.gov (United States)

    Igic, Branislav; D'Alba, Liliana; Shawkey, Matthew D

    2016-06-15

    Males of many species often use colourful and conspicuous ornaments to attract females. Among these, male manakins (family: Pipridae) provide classic examples of sexual selection favouring the evolution of bright and colourful plumage coloration. The highly iridescent feather colours of birds are most commonly produced by the periodic arrangement of melanin-containing organelles (melanosomes) within barbules. Melanin increases the saturation of iridescent colours seen from optimal viewing angles by absorbing back-scattered light; however, this may reduce the wide-angle brightness of these signals, contributing to a dark background appearance. We examined the nanostructure of four manakin species (Lepidothrix isidorei, L. iris, L. nattereri and L. coeruleocapilla) to identify how they produce their bright plumage colours. Feather barbs of all four species were characterized by dense and fibrous internal spongy matrices that likely increase scattering of light within the barb. The iridescent, yet pale or whitish colours of L. iris and L. nattereri feathers were produced not by periodically arranged melanosomes within barbules, but by periodic matrices of air and β-keratin within barbs. Lepidothrix iris crown feathers were able to produce a dazzling display of colours with small shifts in viewing geometry, likely because of a periodic nanostructure, a flattened barb morphology and disorder at a microstructural level. We hypothesize that iridescent plumage ornaments of male L. iris and L. nattereri are under selection to increase brightness or luminance across wide viewing angles, which may potentially increase their detectability by females during dynamic and fast-paced courtship displays in dim light environments. PMID:27307543

  14. VERITAS Observations under Bright Moonlight

    CERN Document Server

    ,

    2015-01-01

    The presence of moonlight is usually a limiting factor for imaging atmospheric Cherenkov telescopes due to the high sensitivity of the camera photomultiplier tubes (PMTs). In their standard configuration, the extra noise limits the sensitivity of the experiment to gamma-ray signals and the higher PMT currents also accelerates PMT aging. Since fall 2012, observations have been carried out with VERITAS under bright moonlight (Moon illumination $> 35\\%$), in two observing modes, by reducing the voltage applied to the PMTs and with UV bandpass filters, which allow observations up to $\\sim80\\%$ Moon illumination resulting in $29\\%$ more observing time over the course of the year. In this presentation, we provide details of these new observing modes and their performance relative to the standard VERITAS observations.

  15. Improved robustness of the LHC collimation system by operating with a jaw-beam angle

    CERN Document Server

    Lari, L; Rossi, A; Cauchi, M; Faus-Golfe, A

    2012-01-01

    The robustness of the Phase I collimation system could be improved playing with the angular orientation of each single jaw. A preliminary study on the asymmetric misalignment of the collimator jaws, scanning through different jaw angles and varying beam sizes and energy, have been carried out, aiming at minimizing the energy deposited on metallic collimators, following an asynchronous dump.

  16. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  17. Evaluation of parathyroid imaging methods with {sup 99m}Tc-MIBI. The comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hirofumi; Iwasaki, Ryuichiro; Hashimoto, Jun; Nakamura, Kayoko; Kunieda, Etsuo; Sanmiya, Toshikazu; Kubo, Atsushi [Keio Univ., Tokyo (Japan). School of Medicine; Ogawa, Koichi; Inagaki, Kazutoshi

    1999-07-01

    Parathyroid scintigraphy with {sup 99m}Tc-MIBI was performed using two kinds of collimators, namely, a pinhole one and a parallel-hole one, to evaluate which one was more suitable for the detection of hyperfunctioning parathyroid lesions. In the studies using {sup 99m}Tc source, the pinhole collimator showed better efficiency and spatial resolution in the distance where the parathyroid scan are actually performed. In the phantom study, the nodular activities modeling parathyroid lesions were visualized better on the images obtained using the pinhole collimator. In clinical studies for 30 patients suspicious of hyperparathyroidism, hyperfunctioning parathyroid nodules were better detected when the pinhole collimator was used. In conclusion, the pinhole collimator was thought to be more suitable for parathyroid scintigraphy with {sup 99m}Tc-MIBI than the parallel-hole collimator. (author)

  18. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  19. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    Science.gov (United States)

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule. PMID:27333609

  20. 光环境功能区域划分及管理初探%Approach to the Zoning and Management forth Function of Light Environment

    Institute of Scientific and Technical Information of China (English)

    陈亢利

    2005-01-01

    Light pollution becomes more and more serious, butt he s tudyon this field is far from enough. ln this paper, light enyironment is defined as light-free area, dark area, intermediate sight area, and bright area In addition, it is marked with index walue by index system, which includes average brightness, brightness evenness, glare index, and background brightness.

  1. Scientific investigations with the data base HEAO-1 scanning modulator collimator

    Science.gov (United States)

    Schwartz, Daniel A.

    1992-01-01

    The hardware specification for the Scanning Modulation Collimator (MC) experiment on HEAO-1 was to measure positions of bright (greater than 10(exp -11) ergs/cm(exp 2)s), hard (1 to 15 keV) x-ray sources to 5-10 arcsec, and to measure their size and structure in three energy bands down to 10 arcsec resolution. The scientific purpose of this specification was to enable the identification of these x-ray sources with optical and radio objects in order to elucidate the x-ray emission mechanism and the nature of the candidate astronomical system. The experiment was an outstanding success. Hardware systems functioned perfectly although loss of one (out of eight) proportional counters degraded our sensitivity by about 10 percent. Our aspect solution of 7 arcsec precision, allowed us to achieve statistic-limited location precision for all but the strongest sources. We vigorously pursued a strategy of determining the scientific importance of each identification, and of publishing each scientific result as it came along.

  2. Multiple and Precessing Collimated Outflows in the Planetary Nebula IC 4634

    CERN Document Server

    Guerrero, M A; Riera, A; Velazquez, P F; Olguin, L; Vázquez, R; Chu, Y -H; Raga, A; Benitez, G

    2008-01-01

    With its remarkable double-S shape, IC 4634 is an archetype of point-symmetric planetary nebulae (PN). In this paper, we present a detailed study of this PN using archival HST WFPC2 and ground-based narrow-band images to investigate its morphology, and long-slit spectroscopic observations to determine its kinematics and to derive its physical conditions and excitation. The data reveal new structural components, including a distant string of knots distributed along an arc-like feature 40"-60" from the center of the nebula, a skin of enhanced [O III]/H-alpha ratio enveloping the inner shell and the double-S feature, and a triple-shell structure. The spatio-kinematical study also finds an equatorial component of the main nebula that is kinematically independent from the bright inner S-shaped arc. We have investigated in detail the bow shock-like features in IC 4634 and found that their morphological, kinematical and emission properties are consistent with the interaction of a collimated outflow with surrounding ...

  3. Extreme Properties Of GRB061007: A Highly Energetic Or A Highly Collimated Burst?

    CERN Document Server

    Schady, P; Page, M J; Vetere, L; Pandey, S B; Wang, X Y; Cummings, J; Zhang, B; Zane, S; Breeveld, A; Burrows, D N; Gronwall, N G C; Hunsberger, S; Markwardt, C; Mason, K O; Mészáros, P; Oates, S R; Pagani, C; Poole, T S; Roming, P W A; Smith, P J; Vanden Berk, D E

    2006-01-01

    GRB061007 is the brightest gamma-ray burst (GRB) to be detected by Swift and is accompanied by an exceptionally luminous afterglow that had a V-band magnitude <11.1 at 80s after the prompt emission. From the start of the Swift observations the afterglow decayed as a power law with a slope of \\alpha_X=1.66+/-0.01 in the X-ray and \\alpha_{opt}=1.64+/-0.01 in the UV/optical, up to the point that it was no longer detected above background in the optical or X-ray bands. The brightness of this GRB and the similarity in the decay rate of the X-ray, optical and gamma-ray emission from 100s after the trigger distinguish this burst from others and present a challenge to the fireball model. The lack of a cooling or jet break in the afterglow up to \\~10^5s constrains any model that can produce the large luminosity observed in GRB061007, which we found to require either an excessively large kinetic energy or highly collimated outflow. Analysis of the multi-wavelength spectral and high-resolution temporal data taken wit...

  4. Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst?

    CERN Document Server

    Schady, P; Cummings, J; Page, M J; Pandey, S B; Wang, X Y; Vetere, L; Zhang, B; Zane, S; Breeveld, A; Burrows, D N; Gehrels, N; Gronwall, C; Ger, S H; Markwardt, C; Mason, K O; Mészáros, P; Oates, S R; Pagani, C; Poole, T S; Roming, P W A; Smith, P; Vanden Berk, D E

    2006-01-01

    GRB 061007 is the most energetic gamma-ray burst (GRB) to be detected by \\swift and is accompanied by an exceptionally luminous afterglow that had a $V$-band magnitude $< 11.1$ at 80 s after the prompt emission. From the start of the \\swift observations the afterglow decayed as a power law with a slope of $\\alpha_X=1.66\\pm 0.01$ in the X-ray and $\\alpha_{opt}=1.64\\pm 0.01$ in the UV/optical, up to the point that it was no longer detected above background in the optical or X-ray bands. The brightness of this GRB and the similarity in the decay rate of the X-ray, optical and $\\gamma$-ray emission from 100 s after the trigger, distinguish this burst from others and present a challenge to the fireball model. The lack of a cooling or jet break in the afterglow up to $\\sim 10^{5}$ s constrains any model that can produce the large luminosity observed in GRB 061007, which we found to require either an excessively large kinetic energy or highly collimated outflow. The multi-wavelength spectral and high-resolution t...

  5. The triple-shell structure and collimated outflows of the planetary nebula NGC 6891

    CERN Document Server

    Guerrero, M; Manchado, A; Vázquez, R A

    1999-01-01

    Narrow-band H$\\alpha$ and [N {\\sc ii}] images and high-dispersion spatially-resolved echelle spectroscopy of the planetary nebula NGC 6891 are presented. These observations show a great wealth of structures. The bright central nebula is surrounded by an attached shell and a detached outer halo. Both the inner and intermediate shells can be described as ellipsoids with similar major to minor axial ratios, but different spatial orientations. The kinematical ages of the intermediate shell and halo are 4,800 and 28,000 years, respectively. The inter-shell time lapse is in good agreement with the evolutionary inter-pulse time lapse. A highly collimated outflow is observed to protrude from the tips of the major axis of the inner nebula and impact on the outer edge of the intermediate shell. Kinematics and excitation of this outflow provide conclusive evidence that it is deflected during the interaction with the outer edge of the intermediate shell. At the same time, both the kinematics and the morphology of the int...

  6. An energy-optimized collimator design for a CZT-based SPECT camera

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial

  7. A crystal routine for collimation studies in circular proton accelerators

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2015-07-01

    A routine has been developed to simulate interactions of protons with bent crystals in a version of SixTrack for collimation studies. This routine is optimized to produce high-statistics tracking simulations for a highly efficient collimation system, like the one of the CERN Large Hadron Collider (LHC). The routine has recently been reviewed and improved through a comparison with experimental data, benchmarked against other codes and updated by adding better models of low-probability interactions. In this paper, data taken with 400 GeV/c proton beams at the CERN-SPS North Area are used to verify the prediction of the routine, including the results of a more recent analysis.

  8. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s-1 and 30 m s-1, corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  9. Night sky brightness at sites from DMSP-OLS satellite measurements

    OpenAIRE

    Cinzano, Pierantonio; Elvidge, Cristopher D.

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the ...

  10. Solar Divergence Collimators for Optical Characterisation of Solar Components

    OpenAIRE

    D. Fontani; P. Sansoni; E. Sani; Coraggia, S.; D. Jafrancesco; Mercatelli, L.

    2013-01-01

    Experimentation and laboratory optical tests on solar components are central aspects of the research on renewable energies. The key element of the proposed testing systems is a solar divergence collimator, which exactly reproduces in laboratory the sunlight divergence, while commercial solar simulators are mainly aimed to replicate intensity and spectrum of the sun. Precise solar divergence reproduction is essential to correctly assess the optical properties and to simulate the operative cond...

  11. Calculation of the collimated bremsstrahlung flux from thin radiators

    International Nuclear Information System (INIS)

    A method is outlined for calculating the absolute flux of a bremsstrahlung beam created by passing an electron beam through thin radiators. Multiple scattering of the electron beam in the radiator and collimation of the bremsstrahlung flux are considered in this calculation. Separate measurements determine that this calculations has an absolute accuracy of 2.8% for an endpoint energy range from 120 to 360 MeV for a total radiator thickness of less than 0.012 radiation lengths. (orig.)

  12. Plasma tubes becoming collimated as a result of magnetohydrodynamic pumping

    OpenAIRE

    Yun, Gunsu S.; Bellan, Paul M.

    2010-01-01

    Collimated magnetized plasma structures are commonly observed on galactic, stellar, and laboratory scales. The Caltech plasma gun produces magnetically driven plasma jets bearing a striking resemblance to astrophysical jets and solar coronal loops by imposing boundary conditions analogous to those plasmas. This paper presents experimental observations of gun-produced plasma jets that support a previously proposed magnetohydrodynamic (MHD) pumping model [ P. M. Bellan, Phys. Plasmas 10, 1999 (...

  13. New Distant Comet Headed for Bright Encounter

    Science.gov (United States)

    1995-08-01

    of a dense dust cloud around the nucleus. It is in fact likely that most of the light observed from the central condensation in the comet's head is sunlight reflected from the particles in this cloud. The nucleus is probably completely hidden from view inside this cloud and we do not see it at all. When we cannot observe the nucleus of a comet directly, we can only judge its size indirectly from the amount of dust it produces; a larger dust production will normally correspond to a larger nucleus. However, a temporarily high dust production rate during an outburst from the nucleus will lead to an overestimate of its size. In this case, the comet's brightness will begin to fade after a while, as the dust particles ejected during the outburst slowly disperse into space. A main goal of future observations is therefore to decide whether or not Comet Hale-Bopp has just undergone an outburst. For this, the brightness of the central condensation and the size and shape of the dust cloud must be carefully monitored as long as possible. In this connection, the relatively bright pre-discovery images from April 1993 and May 1995 (see above) seem to argue against a recent outburst. How bright will the comet be at perihelion ? The main question now asked from many sides is obviously how bright the comet will be when it passes perihelion in 1997. Will it, as some headlines have already stated, and in view of its current brightness, become the `comet of the century, if not of the millennium' ? From the above, it is clear that no firm prediction can be made before we have learned whether the present brightness is `stable' or whether it undergoes important variations which indicate that there has been a recent outburst. Astronomers are therefore very reluctant to express themselves on this point until further observations become available. However, if the comet did not undergo a recent outburst and the nucleus is indeed as large as the current brightness would appear to indicate, then

  14. Collimated neutron probe for soil water content measurements

    International Nuclear Information System (INIS)

    The use of uncollimated (undirected) neutron moisture meters is common in the biological and geophysical sciences. A collimated neutron probe was designed to enable measurements in specific directions from the access tube. To determine the size and shape of soil volume affecting the neutron counts, experiments were conducted to evaluate: (i) the vertical distance of soil above and below the probe that influences neutron counts, (ii) the horizontal distance away from the probe into the soil that influences neutron counts, (iii) the angle of soil viewed by the probe from the collimator, and (iv) the three-dimensional thermal-neutron density field. The distance and the angular dimensions of the volume of influence were defined as the horizontal distance of neutron penetration from the edge of the probe, the vertical distance above and below the center of the effective measurement of the probe, and the angle from the center of the probe, which would allow the determination of relative water content to within 95%. The vertical distance was approximately 0.5 m, the horizontal distance was approximately 0.2 m, and the angle of soil viewed by the probe from the collimator was approximately 120 degrees. Thermal neutrons detected from distances or angles larger than these values influence the determination of relative water content by 5% or less

  15. The Practical Pomeron for High Energy Proton Collimation

    CERN Document Server

    Appleby, R B; Molson, J. G; Serluca, M.; Toader, A.

    2016-01-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation n high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer~$t$,as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus ...

  16. Independent checks of linear accelerators equipped with multileaf collimators

    International Nuclear Information System (INIS)

    National Radiation Protection Institute (NRPI) provides independent checks of therapeutic equipment as a part of state supervision. In the end of 2003, the audit was broaden for linear accelerators equipped with multileaf collimators (MLC). NRPI provides TLD postal audits and on-site independent checks. This contribution describes tests for multileaf collimators and intensity modulated radiation therapy (IMRT) technique that are accomplished within the independent on-site check of linear accelerators. The character and type of tests that are necessary to pursue for multileaf collimator depends on application technique. There are three basic application of the MLC. The first we call 'static MLC' and it serves for replacing conventional blocking or for adjusting the field shape to match the beam's-eye view projection of a planning target volume during an arc rotation of the x-ray beam. This procedure is called conformal radiotherapy. The most advanced technique with MLC is intensity modulated radiation therapy. The dose can be delivered to the patient with IMRT in various different ways: dynamic MLC, segmented MLC and IMRT arc therapy. Independent audits represent an important instrument of quality assurance. Methodology for independent check of static MLC was successfully verified on two types of accelerators: Varian and Elekta. Results from pilot measurements with dynamic MLC imply that the methodology is applicable for Varian accelerators. In the future, the experience with other types of linear accelerators will contribute to renovation, modification, and broaden independent checks methodology. (authors)

  17. Evaluation of the penumbras of a Philips multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lafay, F.; Malet, C.; Mombard, C.; Ginestet, C. [Centre de Lutte Contre le Cancer Leon-Berard, 69 - Lyon (France); Blondel, E. [Isotec, Saint-Quentin (France); Desfarges, Y.; Dupin, G. [Philips Medical System, Lyon (France)

    1995-12-01

    Since January 1995, a Philips SL20 linear accelerator which is connected to a multileaf collimator has been used. Computer-controlled multileaf collimators open up the opportunity to practice conformal radiotherapy. Its aim is to adjust as well as possible the Planning Target Volume (PTV) to the effective treated volume with an homogeneous dose distribution in the PTV, and to protect healthy tissues and delicate organs. This is possible by means of a multileaf collimator by increasing the number of complex fields with different incidences during a same session. Moreover, the Beam`s Eye View function of the three-dimensional treatment planning system allows to define the shape of complex fields. For rectangular fields, the penumbra is defined by the distance between the 80% and 20% isodoses relative to the beam axis. In addition, the distances between, respectively, the 95% and 50% isodoses, the 90% and 50% isodoses, the 50% and 20% isodoses relative to the beam axis have been analysed. Different penumbras were evaluated. The result of this work will enable to adjust the reference isodose to the PTV either by integrating this result into dosimetry software, or by taking it into account for drawing the PTV.

  18. The first "water fountain" collimated outflow in a planetary nebula

    CERN Document Server

    Gomez, J F; Bendjoya, Ph; Rizzo, J R; Miranda, L F; Green, J A; Uscanga, L; Garcia-Garcia, E; Lagadec, E; Guerrero, M A; Ramos-Larios, G

    2014-01-01

    "Water fountains" (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in evolved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103--5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [NeII] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range ~75 km/s and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and k...

  19. Temporal properties of bright BGO GRBs detected by Fermi

    CERN Document Server

    Bissaldi, Elisabetta; Longo, Francesco

    2015-01-01

    We present results of an analysis of a sample of bright Gamma-Ray Bursts (GRBs) detected by Fermi-GBM up to more than 1 MeV, which were collected during six years of Fermi operations. In particular, we focus on the GRB durations over several energy bands of the prompt emission of a subsample of bright GRBs detected up to 10 MeV by GBM and, when possible, up to 1 GeV by Fermi-LAT, thus expanding the Duration-Energy relationship in GRB light curves to high energies for the first time. We find that the relationship for these energetic GRBs is flatter than reported for other samples, suggesting that the high- and low-energy emission mechanisms are closely related.

  20. Microwave Brightness Temperature and Lunar Son Dielectric Property Retrieve

    Institute of Scientific and Technical Information of China (English)

    J. Wu; D.H. Li; A.T. Altyntsev; B.I. Lubyshev

    2005-01-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer, γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  1. Extraordinary refraction and self-collimation properties of multilayer metallic-dielectric stratified structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liwei, E-mail: zlwhpu@hotmail.com [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Chen, Liang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Zhang, Zhengren [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Wang, Wusong [Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009 (China); Zhao, Yuhuan; Song, Kechao; Kang, Chaoyang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-01-15

    The extraordinary refraction with negative or zero refraction angle of the layered metamaterial consisting of alternating dielectric and plasmonic layers is theoretically studied. It is shown that the electromagnetic properties can be tuned by the filling factor, the permittivity of the dielectric layer and the plasma frequency of the metallic layer. At different frequency, the layered structures possess different refraction properties with positive, zero or negative refraction angle. By choosing appropriate parameters, positive-to-zero-to-negative-to positive refraction at the desired frequency can be realized. At the frequency with flat equal frequency contour, self-collimation and slow light properties are also found. Such properties can be used in the performance of negative refraction, subwavelength imaging and information propagation.

  2. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  3. Neutron collimator design of neutron radiography based on the BNCT facility

    CERN Document Server

    Yang, XP; Li, YG; Peng, D; Lu, J; Zhang, GL; Zhao, H; Zhang, AW; Li, CY; Liu, WJ; Hu, T; Lv, JG

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimator is greater than 10^6 n/cm^2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  4. Neutron collimator design of neutron radiography based on the BNCT facility

    International Nuclear Information System (INIS)

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography. (authors)

  5. Mechanical Engineering and Design of Novel Collimators for HL-LHC

    CERN Document Server

    Carra, F; Dallocchio, A; Gentini, L; Gradassi, P; Maitrejean, G; Manousos, A; Mariani, N; Mounet, N; Quaranta, E; Redaelli, S; Vlachoudis, V

    2014-01-01

    In view of High Luminosity LHC (HL-LHC) upgrades, collimator materials may become a limit to the machine performance: the high RF impedance of Carbon-Carbon composites used for primary and secondary collimators can lead to beam instabilities, while the Tungsten alloy adopted in tertiary collimators exhibits low robustness in case of beam-induced accidents. An R&D program has been pursued to develop new materials overcoming such limitations. Molybdenum-Graphite, in addition to its outstanding thermal conductivity, can be coated with pure molybdenum, reducing collimator impedance by a factor of 10. A new secondary collimator is being designed around this novel composite. New high-melting materials are also proposed to improve the robustness of tertiary collimators. New collimators will also be equipped with BPMs, significantly enhancing the alignment speed and the beta-star reach. This implies additional constraints of space, as well as detailed static and fatigue calculations on cables and connectors. This...

  6. Soliton fay identities: II. Bright soliton case

    International Nuclear Information System (INIS)

    We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz–Ladik hierarchy. (paper)

  7. Incoherently coupled dark-bright photorefractive solitons

    Science.gov (United States)

    Chen, Zhigang; Segev, Mordechai; Coskun, Tamer H.; Christodoulides, Demetrios N.; Kivshar, Yuri S.; Afanasjev, Vsevolod V.

    1996-11-01

    We report the observation of incoherently coupled dark-bright spatial soliton pairs in a biased bulk photorefractive crystal. When such a pair is decoupled, the dark component evolves into a triplet structure, whereas the bright one decays into a self-defocusing beam.

  8. Soliton Fay identities. II. Bright soliton case

    OpenAIRE

    Vekslerchik, V. E.

    2015-01-01

    We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz-Ladik hierarchy.

  9. Galaxy selection and the surface brightness distribution

    CERN Document Server

    McGaugh, S S; Schombert, J M

    1995-01-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney (1976) suggested that the constancy of disk central surface brightness noticed by Freeman (1970) was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (\\ie approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity ...

  10. Characterization of parallel-hole collimator using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator

  11. Usefulness of low- and medium-energy collimators in 123I-MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    The heart-to-mediastinum (H/M) ratio on myocardial scintigraphy with 123I-metaiodobenzylguanidine (MIBG) is used as a semi-quantitative index. However, the scatter from a photopeak of 529 keV on 123I is thought to affect the H/M ratio, and collimator selection is important as well. We attempted to determine the usefulness of low- and medium-energy general purpose (LME) collimators by comparing them with low-energy high-resolution (LEHR) and medium-energy low-penetration (MELP) collimators in phantom and clinical studies. In the phantom study, we used a thoracic phantom and plastic bottles filled with 123I-MIBG solution as upper limbs. Phantom images were acquired with LEHR, LME, and MELP collimators. Regions of interest were placed on the lung, mediastinum, heart, and liver. The average counts in the lung, coefficient of variation (CV%) in the heart, mediastinum, and liver, and H/M ratio were calculated. The H/M ratios obtained with the LEHR collimator and LME collimator were compared in a clinical study. We found that the average count in the lung measured with the LME collimator was reduced to about 30% of that obtained with the LEHR collimator in the phantom study. CV% measured with the LME collimator improved about 10% compared with that determined with the MELP collimator. The H/M ratio measured with the LME collimator was close to that measured with the MELP collimator. In the clinical study, the H/M ratios measured with the LEHR and LME collimators showed a positive relationship (y=2.1 x-1.3, x; H/M with LEHR, y; H/M with LME). LME collimators provided improved contrast and signal-to-noise ratio in evaluation of the H/M ratio on 123I-MIBG myocardial scintigraphy. (author)

  12. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  13. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  14. Why does the Northern Light shine so brightly?

    DEFF Research Database (Denmark)

    Bjørnskov, Christian; Svendsen, Gert Tinggaard

    2002-01-01

    , means less lobbyism because access to economically harmful rent seeking is more costly. Consequently, social capital and the trust in other people and the political leadership will increase. This model, suggesting one single social capital measure, is applied to countries in both Western and Eastern...

  15. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  16. Designers predict a bright future

    International Nuclear Information System (INIS)

    As power plant designers and builders, there is a bright future for the industry. The demand for electricity will continue to grow, and the need for new plants will increase accordingly. But companies that develop and supply these plants must adapt to new ways of doing business if they expect to see the dawn of this new age. Several factors will have a profound effect on the generation and use of electricity in future years. Instant communications now reach all corners of the globe, making people everywhere aspire to a higher standard of living. The economic surge needed to satisfy these appetites will, in turn, be fed by a network of suppliers who are themselves restructuring to serve global markets, unimpeded by past nationalistic barriers to trade. The strong correlation between economic progress and the growing demand for electricity is well recognized. A ready supply of affordable electricity is a necessary underpinning for any economic expansion. As economies advance and jobs increase, electric demand grows geometrically, fueled by an ever-improving quality of life. Coupled with increasing demand is the worldwide trend toward privatization of the generation industry. The reasons may vary in different parts of the world, but the effect is the same--companies are battling intensely for the right to build or purchase generating facilities. Those companies, like the industry they serve, are themselves in a period of transition. Once a closed, monopolistic group of owners in a predominantly services-based market, they are, thanks to competitive forces, being driven steadily toward a product-based structure

  17. But for the bad, there would not be good: Grounding valence in brightness through shared relational structures

    OpenAIRE

    Semin, Gün Refik; Lakens, Daniel; Foroni Francesco

    2011-01-01

    Light and dark are used pervasively to represent positive and negative concepts. Recent studies suggest that black and white stimuli are automatically associated with negativity and positivity. However, structural factors in experimental designs, such as the shared opposition in the valence (good vs. bad) and brightness (light vs. dark) dimensions might play an important role in the valence– brightness association. In 6 experiments, we show that while black ideographs are consistently judged ...

  18. Bright boys the making of information technology

    CERN Document Server

    Green, Tom

    2010-01-01

    Everything has a beginning. None was more profound-and quite as unexpected-than Information Technology. Here for the first time is the untold story of how our new age came to be and the bright boys who made it happen. What began on the bare floor of an old laundry building eventually grew to rival in size the Manhattan Project. The unexpected consequence of that journey was huge---what we now know as Information Technology. For sixty years the bright boys have been totally anonymous while their achievements have become a way of life for all of us. "Bright Boys" brings them home. By 1950 they'd

  19. A dosimetric characterization of a novel linear accelerator collimator

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C. M.; Weston, S. J., E-mail: steve.weston@leedsth.nhs.uk; Cosgrove, V. C. [Leeds Cancer Centre, Bexley Wing, St. James’ University Hospital, Leeds LS9 7TF (United Kingdom); Thwaites, D. I. [Institute of Medical Physics, School of Physics, University of Sydney, Sydney NSW 2006, Australia and Division of Medical Physics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-03-15

    Purpose: The aim of this work is to characterize a new linear accelerator collimator which contains a single pair of sculpted diaphragms mounted orthogonally to a 160 leaf multileaf collimator (MLC). The diaphragms have “thick” regions providing full attenuation and “thin” regions where attenuation is provided by both the leaves and the diaphragm. The leaves are mounted on a dynamic leaf guide allowing rapid leaf motion and leaf travel over 350 mm. Methods: Dosimetric characterization, including assessment of leaf transmission, leaf tip transmission, penumbral width, was performed in a plotting tank. Head scatter factor was measured using a mini-phantom and the effect of leaf guide position on output was assessed using a water phantom. The tongue and groove effect was assessed using multiple exposures on radiochromic film. Leaf reproducibility was assessed from portal images of multiple abutting fields. Results: The maximum transmission through the multileaf collimator is 0.44% at 6 MV and 0.52% at 10 MV. This reduced to 0.22% and 0.27%, respectively, when the beam passes through the dynamic leaf guide in addition to the MLC. The maximum transmission through the thick part of the diaphragm is 0.32% and 0.36% at 6 and 10 MV. The combination of leaf and diaphragm transmission ranges from 0.08% to 0.010% at 6 MV and 0.10% to 0.14% depending on whether the shielding is through the thick or thin part of the diaphragm. The off-axis intertip transmission for a zero leaf gap is 2.2% at 6 and 10 MV. The leaf tip penumbra for a 100 × 100 mm field ranges from 5.4 to 4.3 mm at 6 and 10 MV across the full range of leaf motion when measured in the AB direction, which reduces to 4.0–3.4 mm at 6 MV and 4.5–3.8 mm at 10 MV when measured in the GT direction. For a 50 × 50 mm field, the diaphragm penumbra ranges from 4.3 to 3.7 mm at 6 MV and 4.5 to 4.1 mm at 10 MV in the AB direction and 3.7 to 3.2 mm at 6 MV and 4.2 to 3.7 mm when measured in the GT direction. The

  20. Completion of the brightness upgrade of the ALS

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) at Berkeley Lab remains one of the brightest sources for soft x-rays worldwide. A multiyear upgrade of the ALS is underway, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade [1], which reduces the horizontal emittance from 6.3 to 2.0 nm (2.5 nm effective). Magnets for this upgrade were installed in late 2012 and early 2013 followed by user operation with the reduced emittance.

  1. South African night sky brightness during high aerosol epochs

    CERN Document Server

    Winkler, Hartmut; Marang, Fred

    2014-01-01

    Sky conditions in the remote, dry north-western interior of South Africa are now the subject of considerable interest in view of the imminent construction of numerous solar power plants in this area. Furthermore, the part of this region in which the core of the SKA is to be located (which includes SALT) has been declared an Astronomical Advantage Zone, for which sky brightness monitoring will now be mandatory. In this project we seek to characterise the sky brightness profile under a variety of atmospheric conditions. Key factors are of course the lunar phase and altitude, but in addition the sky brightness is also significantly affected by the atmospheric aerosol loading, as that influences light beam scattering. In this paper we chose to investigate the sky characteristics soon after the Mount Pinatubo volcanic eruption in 1991, which resulted in huge ash masses reaching the stratosphere (where they affected solar irradiance for several years). We re-reduced photometric sky measurements from the South Afric...

  2. Design and characterization of a dynamic multileaf collimator

    International Nuclear Information System (INIS)

    The characteristics of a prototype computer-assisted dynamic multileaf collimator (DMLC), specifically designed for small-field conformal radiotherapy, were evaluated at the Istituto Nazionale Tumori of Milan. The collimating device consists of two opposing banks of 16 pairs of 8 cm thick, 3.6 mm wide tungsten leaves and allows shaping of a radiation field up to a size of 10x10cm2 at the isocentre. The screening thickness of each leaf is 6.25 mm at the accelerator gantry isocentre. The leaves have a trapezoidal cross section and move along an arched path, thus providing a 'double focused' collimation system. The DMLC was installed on the head of a Varian Clinac 2100C linear accelerator. Mechanical and dosimetric evaluations were performed to test the stability of the mechanical isocentre and to determine leaf leakage, penumbra width, accuracy of leaf positions and uniformity of leaf speed. Displacement of the mechanical isocentre was less than 1 mm at all gantry angles. Standard radiographic films exposed to 6 MV x-ray radiation were used for dosimetric evaluations. Leakage between leaves was less than 2.5%, and leakage through abutted leaves was less than 5.5%. The penumbra width between 20% and 80% isodose at different positions of leaf banks was 2.7 mm in the direction of the leaf motion and 3.1 mm along the side of the leaf with a standard deviation of 0.2 mm in both directions. Accuracy in the positioning of the leaf was 0.3 mm, whereas the maximum repositioning error was less than 0.2 mm. Finally, during movement of the leaves at the maximum speed of 0.5 mm s-1, the standard deviation of the leaf positioning error was 0.2 mm, proving an accurate uniformity of leaf speed. (author)

  3. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging

    OpenAIRE

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-01-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator i...

  4. SPECT imaging of feet using uniplanar fad-beam collimators

    International Nuclear Information System (INIS)

    Background: This study was performed to assess the utility of bone SPECT in the feet using a new commercially available uniplanar fan-beam collimator originally designed for cardiac imaging. Methods: 18 patients with symptoms or signs of probable skeletal pathology in either the foot or ankle were imaged using a two headed gamma camera fitted with uniplanar fan-beam collimators. All patients were imaged 2.5-4 h after administration of 500-750 MBq 99mTc MDP. If indicated planar dynamic and blood pool images were also obtained. The SPECT acquisition was performed in a 128 x 128 matrix, giving a pixel size of 2.00-2.30 mm depending on the radius of orbit. Images were displayed as transaxial, coronal and sagittal slices and a three dimensional volume rendered image and displayed for reading by three readers blind to the clinical results. Sites of abnormal uptake on the foot SPECT scan were then compared with the site of known or suspected pathology and in 17 patients with planar radiology. Results: The SPECT images produced using the uniplanar fan-beam collimators were of good quality in all patients with all three readers finding localisation easiest on the sagittal and three-dimensional images. In 10 patients abnormalities were found which could explain the patient's symptoms or signs and at the site expected from the patient's clinical history. In 5 patients there were abnormalities on the bone scan in the ipsilateral foot but at a different site, all were interpreted as degenerative disease. 2 patients had contralateral degenerative disease to side suggested by the clinical history and no abnormality in the bones of the foot with symptoms. One patient had bilateral degenerative disease. Planar radiology was normal or unhelpful in 13 of the 17 patients in which it was performed. Conclusion: SPECT imaging of feet is possible and provides accurate localisation of abnormal uptake when performed using uniplanar fan-beam collimators with a standard acquisition time of 15

  5. Versatile collimating crystal stage for Bonse-Hart USAXS instrument

    International Nuclear Information System (INIS)

    An advanced ultra-small-angle X-ray scattering (USAXS) instrument, using the Bonse-Hart design and installed at APS, is a robust and reliable instrument, providing a scattering vector (q) range of nearly 4 decades (0.00015 to 1 (angstrom)-1), an intensity dynamic range of up to 9 decades, standard-less absolute intensity calibration, and USAXS imaging capabilities. This type of instrument typically uses channel-cut crystals in both the collimating (before sample) and analyzing (after sample) stages. The optical surfaces of these crystals are finished by etching processes, which leave an orange-peel surface texture, which would compromise the USAXS imaging quality. Therefore optics with highly polished surfaces using separated crystals in both collimating and analyzing stages were developed. A novel design of the optics and mechanical stage uses a fixed gap between the two separated collimating crystals in which a triangular section of the first crystal is removed, allowing for a variable number (1, 2, 4, 6, or 8) of crystal reflections for X-ray energies between 7 and 19 keV. The number of reflections is selected by lateral translation of the collimating crystal pair. Rotational alignment of the second crystal in the pair by an artificial channel-cut crystal mechanism, implemented with a novel high-stiffness weak link actuated by both a picomotor and a piezo-electric transducer, provides the capability to align or adjust an assembly of crystals to achieve the same performance as a single channel-cut crystal with integral weak link. The arrangement of both crystals is held on a removable base that can be remounted with precision within the Si(111) rocking curve on a three-point kinematic mount. Additional tilt adjustments are also provided for initial alignment. This monochromator has proven to be highly robust with respect to motions and vibrations, as well as flexible with respect to selection of number of reflections, and its performance directly resulted in the

  6. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  7. Caesium teletherapy revised: a collimation system for an antique

    International Nuclear Information System (INIS)

    A description is given on how, at the Newcastle Mater Misericordiae Hospital, it has been possible to utilise an old Telecaesium 137 unit to deliver radiation at a low dose rate. These rates are those normally used in conventional brachytherapy. This was achieved by using an extended point source and divergent beam collimation to produce a uniform beam with reduced penumbra. Attenuating filters of lead were then added to reduce the dose rate from greater than 1 Gy/min to between 0.6 and 4.8 Gy/hr. Patient stabilization and comfort has also been discussed. 3 refs., 7 figs., 2 tabs

  8. Active collimators in experiments with exotic nuclear beams

    International Nuclear Information System (INIS)

    The active collimator method for experiments with exotic nuclear beams at the energies near Coulomb barrier of nuclear reactions is described. The apparatus consists of two blocks of microchannel plates (MCP) and thin strips of metallic foils (Au, Ag, Al), oriented along X and Y axes. MCPs register electron emission during penetration of exotic nuclei through these foils. It gives possibility to obtain information about particle trajectory and time mark of the event. The proposed technique provides the smallest amount of matter on the particle path (17 cm-2), high efficiency (ε ∼ 90% for every MCP), good time resolution for additional identification of radioactive nuclei using the time-of-flight method

  9. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  10. High brightness laser-diode device emitting 500 W from a 200 μm/NA0.22 fiber

    Science.gov (United States)

    Junhong, Yu; Linhui, Guo; Hualing, Wu; Zhao, Wang; Hao, Tan; Songxin, Gao; Deyong, Wu; Kai, Zhang

    2016-06-01

    A practical method of achieving high brightness and high power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by technologies of precision beam collimation, free space beam combining and polarization beam combining based on mini-bar diode laser chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 200 μm core diameter and 0.22 numerical aperture (NA) could reach 528 W, equalizing brightness is 11.0 MW/(cm2 sr) and electro-optical efficiency (defined as fiber output power divided by voltage and current of the module) is 43.0%. By this method, much wider applications of fiber-coupled laser-diode are anticipated.

  11. Campaign of sky brightness and extinction measurements using a portable CCD camera

    Science.gov (United States)

    Falchi, Fabio

    2011-03-01

    In this paper, we present the results of a 12-yr campaign devoted to monitoring the sky brightness affected by different levels of light pollution. Different sites characterized by different altitudes and atmospheric transparency have been considered. The standard photometric Johnson B and V bands were used. An extinction measurement was performed for each site and each night, along with a calibration of the instrument. These measurements have allowed us to build sky brightness maps of the hemisphere above each observing site; each map contains up to 200 data points spread around the sky. We have found a stop in zenith sky brightness growth at the two sites where a time series exists. Using zenith sky brightness measurements taken with and without extensive snow coverage, we weighted the importance of direct versus indirect flux in producing sky glow at several sites.

  12. The solar brightness temperature at millimeter wavelengths

    Science.gov (United States)

    Kuseski, R. A.; Swanson, P. N.

    1976-01-01

    Measurements of the brightness temperature of the sun near 36 GHz and 93 GHz were made using the new moon as a calibration source. Provided the brightness temperature of the moon is known and all measurements are reduced to the same zenith angle, a simple expression can be used for the sun-to-new moon ratio which is independent of antenna gain, atmospheric absorption and reemission, and radiometer calibration constants. This ratio was measured near 36 GHz and at two frequencies near 93 GHz with a Dicke switched superheterodyne radiometer system and a 2.4 m Cassegrain antenna. The slopes of the solar brightness temperature spectrum based on these ratios were measured. The absolute solar brightness spectrum derived from all current available measurements supplemented by the present ones is also plotted and discussed.

  13. A spectroscopic atlas of bright stars

    CERN Document Server

    Martin, Jack

    2009-01-01

    Suitable for amateur astronomers interested in practical spectroscopy or spectrography, this reference book identifies more than 70 (northern hemisphere) bright stars that are suitable observational targets. It provides finder charts for locating these sometimes-familiar stars.

  14. Surface Brightness Profiles of Seyfert Galaxies

    CERN Document Server

    Tugay, A V

    2014-01-01

    We built r-band surface brightness profiles by SDSS data for 16 Seyfert galaxies observed in Crimean Astrophysical Observatory. Obtained profiles can be used for finding more accurate lightcurves for these galaxies.

  15. Brightness of synchrotron radiation from wigglers

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2014-01-01

    According to literature, while calculating the brightness of synchrotron radiation from wigglers, one needs to account for the so called `depth-of-field' effects. In fact, the particle beam cross section varies along the wiggler. It is usually stated that the effective photon source size increases accordingly, while the brightness is reduced. Here we claim that this is a misconception originating from an analysis of the wiggler source based on geometrical arguments, regarded as almost self-evident. According to electrodynamics, depth-of-field effects do not exist: we demonstrate this statement both theoretically and numerically, using a well-known first-principle computer code. This fact shows that under the usually accepted approximations, the description of the wiggler brightness turns out to be inconsistent even qualitatively. Therefore, there is a need for a well-defined procedure for computing the brightness from a wiggler source. We accomplish this task based on the use of a Wigner function formalism. I...

  16. First Design of a Proton Collimation System for 50 TeV FCC-hh

    CERN Document Server

    Fiascaris, Maria; Mirarchi, Daniele; Redaelli, Stefano

    2016-01-01

    We present studies aimed at defining a first conceptual solution for a collimation system for the hadron-hadron option for the Future Circular Collider (FCC-hh). The baseline collimation layout is based on the scaling of the present LHC collimation system to the FCC-hh energy. It currently includes a dedicated betatron cleaning insertion as well as collimators in the experimental insertions to protect the inner triplets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at top energy taking into account mechanical and optics imperfections. Based on these studies the collimator settings needed to protect the machine are defined. The performance of the collimation system is then assessed with particle tracking simulation tools assuming a perfect machine.

  17. Cerrobend collimation effect on electron beams; Efeito de colimacoes de cerrobend em feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Furnari, Laura; Albino, Lucas D.; Ribeiro, Victor A.B.; Santos, Gabriela R., E-mail: laurafurnari@hotmail.com [Universidade de Sao Paulo (InRad/FM/USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas. Instituto de Radiologia

    2012-12-15

    The aim of this work was to discuss about the cerrobend collimation effect on clinical electron beams. When a cerrobend collimation is used, both the percentage depth dose (PDD) and the absolute dose that is delivered to the patient changes. It was analyzed how those parameters change and it was evaluated in which cases a correction factor should be applied due to this collimation. It was founded that, when the smallest dimension of the collimation is smaller than the minimum radius to lateral scatter equilibrium, the collimation will change the PDD in such a way that it should take into account in the treatment planning. For one specific collimation usually applied in head and neck treatments, it was found that no correction factor is necessary. (author)

  18. Off-momentum collimation and cleaning in the energy ramp in the LHC

    CERN Document Server

    Quaranta, Elena; Giulini Castiglioni Agosteo, Stefano Luigi Maria

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC is a two-beam proton collider, built to handle a stored energy of 360MJ for each beam. Since the energy deposition from particle losses could quench the superconducting magnets, a system of collimators has been installed in two cleaning insertions in the ring and in the experimental areas. The achievable LHC beam intensity is directly coupled to the beam loss rate and, consequently, to the cleaning eciency of the collimation system. This study analyses the collimation cleaning performance in dierent scenarios inside the accelerator. First, simulations are performed of the transverse losses in the LHC collimation system during the acceleration process. The results are compared with data taken during a dedicated session at the LHC machine. Simulations are also performed to predict the collimation eciency during future operation at higher energy. Furthermore, an investigation of t...

  19. A combined radial collimator and cooled beryllium filter for neutron scattering

    Science.gov (United States)

    Groitl, Felix; Rantsiou, Emmanouela; Bartkowiak, Marek; Filges, Uwe; Graf, Dieter; Niedermayer, Christof; Rüegg, Christian; Rønnow, Henrik M.

    2016-05-01

    A flexible, combined, radial collimator and beryllium (Be) filter have been designed and manufactured at the Paul Scherrer Institut (PSI), Switzerland. The Be is integrated in the radial collimator by placing thin Be slices between the collimator lamellas. The filter/collimator is mounted within a vacuum vessel and dry cooled. The flexible design allows for different degrees of collimation and for different Be lengths. Results of measurements carried out at the BOA beamline at PSI are presented. These experiments include rotation scans determining the focal full width half maximum (FWHM), transmission measurements, test of different collimator lamellas and performance tests of the cooling of the filter. This new combined device will be a crucial part of the CAMEA spectrometer at SINQ, PSI.

  20. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  1. Development of a high brightness ion source

    International Nuclear Information System (INIS)

    The brightness and emittance of an ion beam can depend on the ion temperature, aberrations and scattering, as well as other factors. However, it is the ion temperature which determines the irreducible minimum value of the emittance and hence brightness, as the other components can be eliminated by careful design. An ion source design is presented which has attained this minimum value for the emittance; the dependence of the ion temperature on the plasma source parameters is discussed

  2. Calibration and quality control of a multi leaf collimator using linear array of detectors; Calibracion y control de calidad de un colimador multilaminas mediante array lineal de detectores

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The protocol for calibration and quality control established by Siemens for the multi leaf collimator (MLC) of Primus electron linear accelerators, using the light field coincidence with the beam of radiation to determine the position of the blades. In this paper, we illustrate the use of a calibration method for determining the positions of MLC plates radiologically with the help of a linear array of detectors, based on the proposal Lopes et al (2007).

  3. The new world atlas of artificial night sky brightness

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo

    2016-01-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  4. The new world atlas of artificial night sky brightness.

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-06-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  5. The new world atlas of artificial night sky brightness

    CERN Document Server

    Falchi, Fabio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-01-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75{\\deg}N and 60{\\deg}S, 88% of Europe, and almost half of the United States experience light-polluted nights.

  6. Dosimetric dependence on the collimator angle in prostate volumetric modulated arc therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Isa

    2014-12-01

    Full Text Available Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV and organs-at-risk (OARs in prostate volumetric modulated arc therapy (VMAT when varying collimator angle. The collimator angle has the largest impact and is worth considering, so, its awareness is essential for a planner to produce an optimal prostate VMAT plan in a reasonable time frame. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o were created systematically using a Harold heterogeneous pelvis phantom. The conformity index (CI, homogeneity index (HI, gradient index (GI, machine monitor units (MUs, dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. On the other hand, the dose-volume histogram and mean and maximum doses of the OARs such as the bladder, rectum and femoral heads for different collimator angles were determined from the plans.Results: There was no significant difference, based on the planned dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. A higher CI (0.53 and lower HI (0.064 were found in the 45o collimator angle. In addition, the 15o collimator angle provided a lower value of HI similar to the 45o collimator angle. Collimator angles of 75o and 90o were found to be good for rectum sparing, and collimator angles of 75o and 30o were found to be good for sparing of right and left femur, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: Our study indicates that the dosimetric results provide support and guidance to allow the clinical radiation physicists to make careful decisions in implementing suitable collimator angles to improve the PTV coverage and OARs sparing in prostate VMAT.

  7. Neutron collimator design of neutron radiography based on the BNCT facility

    OpenAIRE

    Yang, XP.; Yu, BX; Li, YG; Peng, D; Lu, J.; Zhang, GL.; Zhao, H.; Zhang, AW.; Li, CY.; Liu, WJ; Hu, T.; Lv, JG.

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimat...

  8. Preliminary Comparison of the Response of LHC Tertiary Collimators to Proton and Ion Beam Impacts

    CERN Document Server

    Cauchi, M; Bertarelli, A; Carra, F; Cerutti, F; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The CERN Large Hadron Collider is designed to bring into collision protons as well as heavy ions. Accidents involving impacts on collimators can happen for both species. The interaction of lead ions with matter differs to that of protons, thus making this scenario a new interesting case to study as it can result in different damage aspects on the collimator. This paper will present a preliminary comparison of the response of collimators to proton and ion beam impacts.

  9. A condition on the spatial resolution of IR collimators for testing of thermal imaging systems

    Science.gov (United States)

    Chrzanowski, Krzysztof; Lee, Hee Chul; Wrona, Wieslaw

    2000-05-01

    A precise condition on the spatial resolution of the IR collimator for testing thermal imaging systems is presented. The condition can be used even if only the spatial resolution of the IR collimator and that of the system under test, measured using popular definitions, are known. It is shown that when the condition is fulfilled, the thermal image degradation caused by the IR collimator is negligible.

  10. Optimization of material in proton-therapy collimators with respect to neutron production

    OpenAIRE

    Gustafsson, Björn

    2009-01-01

    In this thesis, a study of neutron production properties for collimator materials is performed. Collimators are used in nuclear physics applications such as within the fields of nuclear energy and radiotherapy. The area of application is primarily reduction of static or unwanted radiation for detectors and treatment beams. This study focuses on a branch of radiotherapy called proton therapy where protons of high energies impinge on the collimator. Proton therapy has advantages compared to com...

  11. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    OpenAIRE

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by ...

  12. Calculating and measuring thermal neutrons exiting from neutron diffractometers collimators

    CERN Document Server

    Tafazolee, K

    2000-01-01

    process, effectiveness of them are studied for the enhancement of the available system. Final conclusion from the simulation process, indicates that the heavy water with the thickness of 50 to 60 cm. is the best moderator for gaining the better thermal neutrons flux for enhancement of P.N.D. in the T.R.R. Powder Neutron Diffractometer y (P.N.D.) is relatively good and practical way for identification of the 3 dimensional construction of materials. In order to exploit the capabilities of this method, in one of the neutron beam of the Tehran Research Reactor (T.R.R.), a collimator embedded inside the concrete wall, direct the neutrons produced in the core reactor towards a monochromator e. Neutrons having been monochromated by 2 nd collimator are then directed towards the sample. Then the pattern of diffracted neutrons from the sample are studied. In order to make the best out of it, neutrons coming to sit on the sample must be of the thermal type. That means the number/amount of thermal neutrons flux in compar...

  13. Collimation with tighter TCTs at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Valentino, Gianluca; Valloni, Alessandra; Garcia Morales, Hector; CERN. Geneva. ATS Department

    2015-01-01

    MD 310 was carried out on August 28 2015, in order to investigate the collimation performance using nominal optics with β* =40 cm, 2 σ retraction collimator settings in IR7, and the very tight TCT settings which are necessary to protect the small normalized aperture. With these tight settings, we expect higher losses on the TCTs which should cause also higher beam-halo background at the experiments. During the MD, a total of 70 betatron loss maps were performed over a range of TCT settings and for dierent settings of the TCLAs in IR7. ATLAS and CMS were exceptionally taking data outside stable beams, in order to monitor the background. Furthermore, betatron loss maps were performed with a small momentum oset of the whole beam, induced by a shift of the RF frequency. The MD results can therefore also be used to assess the cleaning eciency in IR7 with the β* =40 cm optics, as well as the eects of energy osets on the cleaning. At the end of the MD, an asynchronous dump test was performed, in order to monitor ...

  14. Performance evaluation of advanced industrial SPECT system with diverging collimator

    International Nuclear Information System (INIS)

    An advanced industrial SPECT system with 12-fold-array diverging collimator was developed for flow visualization in industrial reactors and was discussed in the previous study. The present paper describes performance evaluation of the SPECT system under both static- and dynamic- flow conditions. Under static conditions, the movement of radiotracer inside the test reactor was compared with that of color tracer (blue ink) captured with a high-speed camera. The comparison of the reconstructed images obtained with the radiotracer and the SPECT system showed fairly good agreement with video-frames of the color tracer obtained with the camera. Based on the results of the performance evaluation, it is concluded that the SPECT system is suitable for investigation and visualization of flows in industrial flow reactors. - Highlights: • Industrial SPECT system provides the flow behavior of industrial multiphase processes. • A 12-fold-array industrial SPECT system was constructed using diverging collimators. • The constructed system turned out to be very suitable to examine the fluid behavior

  15. The nuclear dust lane of Circinus: collimation without a torus

    CERN Document Server

    Mezcua, M; Fernández-Ontiveros, J A; Tristram, K R W

    2016-01-01

    In some AGN, nuclear dust lanes connected to kpc-scale dust structures provide all the extinction required to obscure the nucleus, challenging the role of the dusty torus proposed by the Unified Model. In this letter we show the pc-scale dust and ionized gas maps of Circinus constructed using sub-arcsec-accuracy registration of infrared VLT AO images with optical \\textit{Hubble Space Telescope} images. We find that the collimation of the ionized gas does not require a torus but is caused by the distribution of dust lanes of the host galaxy on $\\sim$10 pc scales. This finding questions the presumed torus morphology and its role at parsec scales, as one of its main attributes is to collimate the nuclear radiation, and is in line with interferometric observations which show that most of the pc-scale dust is in the polar direction. We estimate that the nuclear dust lane in Circinus provides $1/3$ of the extinction required to obscure the nucleus. This constitutes a conservative lower limit to the obscuration at t...

  16. Design and Performance Optimization of the LHC Collimation System

    CERN Document Server

    Robert-Démolaize, G

    2006-01-01

    The Large Hadron Collider (LHC) is presently under construction at CERN. The LHC is a circular accelerator that stores proton beams and accelerates them to a 7 TeV beam energy. The required bending fields are achieved with super-conducting magnets. The stored proton beams are collided in experimental detectors and produce a design luminosity of 1E+34 cm-2.s-1. Every storage ring encounters unavoidable proton losses. The protons that diffuse into the so-called beam halo can touch accelerator components. In order to avoid quenches of the superconducting magnets, the halo protons must be removed before reaching the magnets. This is achieved with a multi-stage cleaning system, built out of two-sided collimators that are located at adequate positions in the machine. Due to the high stored beam intensity (required for high luminosity), the efficiency of the LHC beam cleaning must be much better than in any other exisiting machine: not more than 0.00002% of protons hitting the collimators may escape and impact on an...

  17. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices. PMID:26764780

  18. Energy-exchange collisions of dark-bright-bright vector solitons

    Science.gov (United States)

    Radhakrishnan, R.; Manikandan, N.; Aravinthan, K.

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  19. The variability timescales and brightness temperatures of radio flares from stars to supermassive black holes

    CERN Document Server

    Pietka, M; Keane, E F

    2014-01-01

    In this paper we compile the analysis of ~ 200 synchrotron flare events from ~ 90 distinct objects/events for which the distance is well established, and hence the peak luminosity can be accurately estimated. For each event we measure this peak and compare it to the rise and decay timescales, as fit by exponential functions, which allows us in turn to estimate a minimum brightness temperature for all the events. The astrophysical objects from which the flares originate vary from flare stars to supermassive black holes in active galactic nuclei, and include both repeating phenomena and single cataclysmic events (such as supernovae and gamma ray burst afterglows). The measured timescales vary from minutes to longer than years, and the peak radio luminosities range over 22 orders of magnitude. Despite very different underlying phenomena, including relativistic and non-relativistic regimes, and highly collimated versus isotropic phenomena, we find a broad correlation between peak radio luminosity and rise/decay t...

  20. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron

    International Nuclear Information System (INIS)

    A high power [F-18] fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3 kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. - Highlights: • An experiment is performed to benchmark conjugate heat transfer models. • Modeling results for three RDS-112 collimator designs are compared. • New RDS-112 collimators are deployed and tested at two sites

  1. Development of a collimator blurring compensation method using fine angular sampling projection data in SPECT

    International Nuclear Information System (INIS)

    Due to the collimator aperture, spatial resolution of SPECT data varies with source-to-detector distance. Since the radius of detector rotation is bigger when scanning larger patients, spatial resolution is degraded in these cases. Emitted gamma rays travel not only along the central axis of the collimator hole but also off-axis due to the collimator aperture. However, an off-axis ray at one angle would be a central-axis ray at another angle; therefore, raw projection data at one angle can be thought of as an ensemble of central-axis rays collected from a small arc equal to the collimator aperture. Thus, fine angular sampling can compensate for collimator bluffing. By using a sampling pitch of less than half the collimator aperture angle, compensation was performed by subtracting the weighted sum of the projection data from the raw projection data. Collimator geometry and detector rotation radius determined the weighting function. Cylindrical phantom with four different-sized rods and torso phantom for Tl-201 cardiac SPECT simulation were used for evaluation. Aperture angle of the collimator was 7 degrees. Projection sampling pitch was 2 degrees. In both phantom studies, the proposed method showed improvement in contrast and reduction of partial volume effect, thereby indicating that the proposed method can compensate adequately for image bluffing caused by the collimator aperture. (author)

  2. MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC

    CERN Document Server

    Valloni, A.; Mereghetti, A.; Molson, J. G.; Appleby, R.; Bruce, R.; Quaranta, E.; Redaelli, S.

    2016-01-01

    The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  3. Semi-automatic beam-based alignment algorithm for the LHC collimation system

    CERN Document Server

    Valentino, G; Redaelli, S; Sammut, N; Wollmann, D

    2011-01-01

    Full beam-based alignment of the LHC collimation system was a lengthy procedure as the collimators were setup manually. A yearly alignment campaign has been sufficient for now, although in future this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can allow for more frequent alignments, therefore reducing this risk. This paper describes the design and testing of a semi-automatic algorithmas a first step towards a fully automatic setup. Its implementation in the collimator control software and future plans are described.

  4. Optimization of the collimation system for CSNS/RCS with the robust conjugate direction search algorithm

    CERN Document Server

    Ji, H F; Huang, M Y; Xu, S Y; Wang, N; Wang, S

    2016-01-01

    The Robust Conjugate Direction Search (RCDS) method is used to optimize the collimation system for Rapid Cycling Synchrotron (RCS) of the Chinese Spallation Neutron Source (CSNS). The parameters of secondary collimators are optimized for a better performance of the collimation system. To improve the efficiency of the optimization, the Objective Ring Beam Injection and Tracking (ORBIT) parallel module combined with MATLAB parallel computing is used, which can run multiple ORBIT instances simultaneously. This study presents a way to figure out an optimal parameter combination of the secondary collimators for a machine model in preparation for CSNS/RCS commissioning.

  5. Quantifying light pollution

    International Nuclear Information System (INIS)

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information. - Highlights: • We review new available indicators useful to quantify and monitor light pollution. • These indicators are a primary step in light pollution quantification. • These indicators allow to improve light pollution mapping from a 2D to a 3D grid. • These indicators allow carrying out a tomography of light pollution. • We show an application of this technique to an Italian region

  6. The new World Atlas of Artificial Sky Brightness

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Kyba, Christopher C. M.; Portnov, Boris A.

    2015-08-01

    I present the main steps toward the completion of the new World Atlas of Artificial Sky Brightness (WA II) and some results. The computational technique has been updated, in comparison to the first World Atlas, to take into account both sources and sites elevation. The elevation data are from USGS GTOPO30 global digital elevation model, with the same pixel size as the WA II maps. The upward emission function used to compute the Atlas is a three parameters function. The parameters can be constrained to the database of Earth based night sky brightness measurements. In this way we can use the better fitting upward function for the final map’s calibration. We maintained constant atmosphere parameters over the entire Earth, identical to those used for the first Atlas (Garstang atmospheric clarity coefficient k=1, equivalent to a vertical extinction at sea level of 0.33 magnitude in the V band). This was done in order to avoid introducing a local bias due to different conditions that may confound the light pollution propagation effects. The radiance data used are those from Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) on board the Suomi NPP satellite. The use of this newly available radiance data allows for an increased real resolution, even while maintaining the same 30"x30" lat-lon pixel size. Anyway, a higher resolution is really appreciable only in the immediate proximity of sources of light pollution (e.g. inside a big city). The VIIRS DNB data used for the input data were chosen from the months ranging from May to September in order to avoid introducing bias from the variable snow coverage in mid to high northern latitudes. In the southern hemisphere this problem is far less pronounced. The WA II takes advantage of the now enormous database of Earth based sky brightness measurements obtained mainly with Sky Quality Meters, but also with CCD measurements.

  7. The artificial night sky brightness mapped from DMSP Operational Linescan System measurements

    CERN Document Server

    Cinzano, P; Elvidge, C D; Baugh, K E

    2000-01-01

    We present a method to map the artificial sky brightness across large territories in astronomical photometric bands with a resolution of approximately 1 km. This is useful to quantify the situation of night sky pollution, to recognize potential astronomical sites and to allow future monitoring of trends. The artificial sky brightness present in the chosen direction at a given position on the Earth's surface is obtained by the integration of the contributions produced by every surface area in the surrounding. Each contribution is computed based on detailed models for the propagation in the atmosphere of the upward light flux emitted by the area. The light flux is measured with top of atmosphere radiometric observations made by the Defense Meteorological Satellite Program (DMSP) Operational Linescan System. We applied the described method to Europe obtaining the maps of artificial sky brightness in V and B bands.

  8. Ultra Low Surface Brightness Imaging with the Dragonfly Telephoto Array

    CERN Document Server

    Abraham, Roberto G

    2014-01-01

    We describe the Dragonfly Telephoto Array, a robotic imaging system optimized for the detection of extended ultra low surface brightness structures. The array consists of eight Canon 400mm f/2.8 telephoto lenses coupled to eight science-grade commercial CCD cameras. The lenses are mounted on a common framework and are co-aligned to image simultaneously the same position on the sky. The system provides an imaging capability equivalent to a 0.4m aperture f/1.0 refractor with a 2.6 deg X 1.9 deg field of view. The system has no obstructions in the light path, optimized baffling, and internal optical surfaces coated with a new generation of anti-reflection coatings based on sub-wavelength nanostructures. As a result, the array's point spread function has a factor of ~10 less scattered light at large radii than well-baffled reflecting telescopes. The Dragonfly Telephoto Array is capable of imaging extended structures to surface brightness levels below 30 mag/arcsec^2 in 10h integrations (without binning or foregro...

  9. Multi-resolution multi-sensitivity design for parallel-hole SPECT collimators.

    Science.gov (United States)

    Li, Yanzhao; Xiao, Peng; Zhu, Xiaohua; Xie, Qingguo

    2016-07-21

    Multi-resolution multi-sensitivity (MRMS) collimator offering adjustable trade-off between resolution and sensitivity, can make a SPECT system adaptive. We propose in this paper a new idea for MRMS design based on, for the first time, parallel-hole collimators for clinical SPECT. Multiple collimation states with varied resolution/sensitivity trade-offs can be formed by slightly changing the collimator's inner structure. To validate the idea, the GE LEHR collimator is selected as the design prototype and is modeled using a ray-tracing technique. Point images are generated for several states of the design. Results show that the collimation states of the design can obtain similar point response characteristics to parallel-hole collimators, and can be used just like parallel-hole collimators in clinical SPECT imaging. Ray-tracing modeling also shows that the proposed design can offer varied resolution/sensitivity trade-offs: at 100 mm before the collimator, the highest resolution state provides 6.9 mm full width at a half maximum (FWHM) with a nearly minimum sensitivity of about 96.2 cps MBq(-1), while the lowest resolution state obtains 10.6 mm FWHM with the highest sensitivity of about 167.6 cps MBq(-1). Further comparisons of the states on image qualities are conducted through Monte Carlo simulation of a hot-spot phantom which contains five hot spots with varied sizes. Contrast-to-noise ratios (CNR) of the spots are calculated and compared, showing that different spots can prefer different collimation states: the larger spots obtain better CNRs by using the larger sensitivity states, and the smaller spots prefer the higher resolution states. In conclusion, the proposed idea can be an effective approach for MRMS design for parallel-hole SPECT collimators. PMID:27359049

  10. High-resolution field shaping utilizing a masked multileaf collimator.

    Science.gov (United States)

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  11. Bright perspectives for nuclear photonics

    International Nuclear Information System (INIS)

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics, assisted by new γ-optical elements. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance or a new type of positron source with significantly increased brilliance, for the first time fully polarized, can be realized and lead to new applications in solid state physics or material sciences. (authors)

  12. Enhancement of viewing angle with homogenized brightness for autostereoscopic display with lens-based directional backlight

    Science.gov (United States)

    Mukai, T.; Kakeya, H.

    2015-03-01

    We have been developing an autostereoscopic display with directional backlight using Fresnel lens array. The system was originally composed of a dot matrix light source and a convex lens array and a LCD panel. We have previously proposed the methods to achieve uniform brightness and to expand the viewing zone free from crosstalk. The way to achieve uniform brightness is to add a vertical diffuser between the convex lens array and the LCD panel. The way to expand the viewing zone free from the crosstalk is to attach a large aperture convex lens onto the surface of the convex lens array. However, there still is a drawback that the viewing angle with homogenized brightness is narrow due to the darker peripheral part of the display region than the central part. In this paper two methods to enhance the viewing angle with homogenized brightness are proposed. The first one is to place two mirror boards on the upper end and the lower end between the convex lens array and the LCD panel horizontally. The second one is to place the large aperture convex lens just behind the LCD panel. By the first method, it is expected to reflect the directional light vertically and to make the upper and the lower part of the display region brighter, which enhances the viewing angle vertically. By the second method, it is expected that the directional light from the light source can be utilized more efficiently, which enhances the viewing angle horizontally and vertically.

  13. Spectroscopic Surface Brightness Fluctuations: Amplifying Bright Stars in Unresolved Stellar Populations

    Science.gov (United States)

    Mitzkus, M.; Dreizler, S.; Roth, M. M.

    2015-08-01

    We report on our early-stage efforts to resolve the Surface Brightness Fluctuations (SBFs) in the spectral dimension. Combining the diagnostic power of SBFs with the physical information content of spectra seems a tempting possibility to gain new insights into the bright stars in unresolved stellar populations. The new VLT integral field spectrograph MUSE is the first instrument that enables spectroscopic SBFs observationally.

  14. Gravitational Model of High Energy Particles in a Collimated Jet

    CERN Document Server

    Pacheco, J A de Freitas; Marcilhacy, G; Santos, N O

    2012-01-01

    Observations suggest that relativistic particles play a fundamental role in the dynamics of jets emerging from active galactic nuclei as well as in their interaction with the intracluster medium. However, no general consensus exists concerning the acceleration mechanism of those high energy particles. A gravitational acceleration mechanism is here proposed, in which particles leaving precise regions within the ergosphere of a rotating supermassive black hole produce a highly collimated flow. These particles follow unbound geodesics which are asymptotically parallel to the spin axis of the black hole and are characterized by the energy $E$, the Carter constant ${\\cal Q}$ and zero angular momentum of the component $L_z$. If environmental effects are neglected, the present model predicts at distances of about 140 kpc from the ergosphere the presence of electrons with energies around 9.4 GeV. The present mechanism can also accelerate protons up to the highest energies observed in cosmic rays by the present experi...

  15. Collimation of stellar winds by nonadiabatic de Laval nozzles

    International Nuclear Information System (INIS)

    The interaction between an isotropic stellar wind and a stratified environment can lead to the formation of de Laval nozzles (in the adiabatic case) or to the formation of an elongated cavity surrounded by a dense cold shell of shocked gas (in the limit of short cooling distances; i.e., in the highly nonadiabatic case). A preliminary exploration of the intermediate regime between the adiabatic and the highly nonadiabatic regimes yields very interesting results. While for cooling distances larger than about 5 times the environmental scale height the flow resembles the adiabatic de Laval nozzle, for shorter cooling distances the flow is considerably different, leading to the formation of very narrow well collimated cold jets. A preliminary comparison between observations of the HH 1/2 source and radio free-free spectra computed from these models gives very encouraging results. 24 refs

  16. Collection and collimation of fission fragments using electromagnetic fields

    International Nuclear Information System (INIS)

    Use of electromagnetic fields to collect and collimate energetic fission fragments into a charged particle beam has been proposed to either direct conversion to electrical power or, after neutralization, as a source of thrust for rocket propulsion systems. Highest efficiency for collection of the fragments produced in a fuel matrix is a very important requirement in this proposal. As Chapline and Matsuda of LLNL noted, the extraction of fission fragment power above way permits isotopic separation of fission fragments, leading to a convenient separation of more active radioisotopes from less active ones. However, it is also noted that there is no such thing as a quick trip to these high goals as this area of work is facing several inadequate methods and technologies. One of the major concerns is the stopping or energy degradation of fragments within the fuel matrix before they are collected

  17. Clinical significance of multi-leaf collimator calibration errors.

    Science.gov (United States)

    Norvill, Craig; Jenetsky, Guy

    2016-03-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2-5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques. PMID:26819078

  18. Simulations of the Fermilab Recycler for Losses and Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Eric [Fermilab; Ainsworth, Robert [Fermilab; Amundson, James [Fermilab; Brown, Bruce [Fermilab

    2015-06-01

    Fermilab has recently completed an upgrade to the com- plex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boost- ing beam power is to shorten the beam cycle by accumulating up to 12 bunches of 0.5 × 10 11 protons in the Recycler ring through slip-stacking during the Main Injector ramp. This introduces much higher intensities into the Recycler than it has had before. Meeting radiation safety requirements with high intensity operations requires understanding the ef- fects of space charge induced tune spreads and resulting halo formation, and aperture restrictions in the real machine to de- velop a collimation strategy. We report on initial simulations of slip-stacking in the Recycler performed with Synergia.

  19. Fermilab booster operational status: Beam loss and collimation

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Webber

    2002-06-11

    Beam loss reduction and control challenges confronting the Fermilab Booster are presented in the context of the current operational status. In Summer 2002 the programmatic demand for 8 GeV protons will increase to 5E20/year. This is an order of magnitude above recent high rates and nearly as many protons as the machine has produced in its entire 30-year lifetime. Catastrophic radiation damage to accelerator components must be avoided, maintenance in an elevated residual radiation environment must be addressed, and operation within a tight safety envelope must be conducted to limit prompt radiation in the buildings and grounds around the Booster. Diagnostic and performance tracking improvements, enhanced orbit control, and a beam loss collimation/localization system are essential elements in the approach to achieving the expected level of performance and are described here.

  20. Augmented reality aiding collimator exchange at the LHC

    International Nuclear Information System (INIS)

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities