Angular distribution of coherent bremsstrahlung
International Nuclear Information System (INIS)
The angular distribution of the linearly polarised photon beam produced by coherent bremsstrahlung from an aligned diamond radiator has been measured at the MAMI A2 tagged photon facility. The measurements were made with a prototype position sensitive photon detector which utilises the pair production process and a double sided silicon strip detector. This polarised photon beam is used for nuclear and hadronic experiments and in their analysis the polarisation is obtained from a calculation, which matches the experimental intensity spectrum. As the polarisation is related to the photon beam angular distribution, the present measurements can be used to test this calculation. The overall agreement is found to be good although there are some regions where significant discrepancies exist.
Coherence effects in nuclear bremsstrahlung
Lohner, H
2002-01-01
The production of nuclear bremsstrahlung (Egamma > 30 MeV) has been studied in heavy-ion collisions, as well as proton and alpha-particle collisions with nuclei. In heavy-ion reactions the measured photon spectra show an exponential shape dominated by the incoherent sum of photons produced in first-
Neutrino-pair bremsstrahlung and the number of lepton generations
Tung, Wu-Ki
1980-12-01
Neutrino pair creation in bremsstrahlung processes of the typel to l{text{ }}v{text{ }}bar v contains vital information on the number of lepton generations, and is catalyzed by the coherent nuclear Coulomb effect or other forms of intense fields. Of particular interest is the ratioR_{vbar v} = σ [1mathop to limits_A l(vbar v)]/σ [1mathop to limits_A l'(vbar v)] (where l, l' are distinct charged leptons). It is sensitive to the number of neurino types and their couplings in the same way that the ratioR_{qbar q} = σ [e^ + e^ - to {text{hadrons}}]/σ [e^ + e^ - to μ ^ + μ ^ - ] is to those of quarks. In the Weinberg-Salam model with N lepton generations, the ratioR_{vbar v} is approximately given by[(N + 4) + 4(1 - 4sin ^2 θ _W )]/8.
Muon bremsstrahlung and muonic pair production in air showers
International Nuclear Information System (INIS)
The objective of this work is to report on the modifications in air shower development due to muon bremsstrahlung and muonic pair production. In order to do that we have implemented new muon bremsstrahlung and muonic pair production procedures in the AIRES air shower simulation system, and have used it to simulate ultra high energy showers in different conditions. The influence of the mentioned processes in the global development of the air shower is important for primary particles of large zenith angles, while they do not introduce significant changes in the position of the shower maximum
The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators
International Nuclear Information System (INIS)
This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.
Bremsstrahlung Pair Production In Relativistic Heavy Ion Collision
Meier, H; Hencken, K.; Trautmann, D.; Baur, G.
1997-01-01
We calculate production of electron- and muon-pairs by the bremsstrahlung process in hadron collisions and compare it with the dominant two-photon process. Results for the total cross section are given for proton-proton and heavy-ion collisions at energies of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).
Axial coherent bremsstrahlung of type A in a diamond crystal
International Nuclear Information System (INIS)
Axial coherent bremsstrahlung of type A (ACBA) has not been intensively investigated either theoretically or experimentally. Making use of the many-beam (two-dimensional quantum treatment) formalism for transversely bound electrons moving through crystal lattices, we have computed ACBA spectra for 17 MeV electrons passing through a 10 μm thick diamond (C) crystal. We found that the momentum transfer occurs in the plane perpendicular to the axis of interest. Only momentum transfers along the scan direction (electron transverse momentum direction) result in a photon emission in the forward direction. Two different scans have shown that the energies of the coherent bremsstrahlung peaks depend strongly on the direction of the electron transverse momentum. We also present a comparison of the first order Born approximation and the many-beam formalism
Axial coherent bremsstrahlung of type A in a diamond crystal
Energy Technology Data Exchange (ETDEWEB)
Chouffani, K. E-mail: khalid@athena.physics.isu.edu; Endo, I.; Ueberall, H
2003-01-01
Axial coherent bremsstrahlung of type A (ACBA) has not been intensively investigated either theoretically or experimentally. Making use of the many-beam (two-dimensional quantum treatment) formalism for transversely bound electrons moving through crystal lattices, we have computed ACBA spectra for 17 MeV electrons passing through a 10 {mu}m thick diamond (C) crystal. We found that the momentum transfer occurs in the plane perpendicular to the axis of interest. Only momentum transfers along the scan direction (electron transverse momentum direction) result in a photon emission in the forward direction. Two different scans have shown that the energies of the coherent bremsstrahlung peaks depend strongly on the direction of the electron transverse momentum. We also present a comparison of the first order Born approximation and the many-beam formalism.
Neutrino-pair bremsstrahlung in a neutron star crust
Ofengeim, D D; Yakovlev, D G
2014-01-01
Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.
Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals
Parazian, V V
2010-01-01
We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.
Coherent Bremsstrahlung and Channeling Radiation at low energies
International Nuclear Information System (INIS)
The theory of the two radiative processes, Channeling Radiation (CR) and Coherent Bremsstrahlung (CB), is studied using the dynamical theory of scattering familiar in electron diffraction. The results are applicable to low energies where photon energies are much less than the electron rest energy (at higher energies some spin effects become important). The dynamical theory is reviewed. The interaction of the electron with the photon field is described in the electron frame of reference and then transformed to the lab. Fine structure is predicted for the CB (or juddering radiation) due to the effect of transitions between many different Bloch waves. The splitting may be useful in accurately determining interatomic potentials. CR is seen to be the special case of CB when there is no Umklapp. Explicit analytic results for the energy dependence of the emission energies and intensities are given, and compared with that of a dipole radiator. Experimental results for CB from higher order reciprocal lattice planes are presented and discussed, including the first study of axial CB variation with specimen tilt
Observation of coherent bremsstrahlung in quasicrystalline Al-Cu-Co-Si
International Nuclear Information System (INIS)
Quasicrystalline Al-Cu-Co-Si was irradiated with 200 and 400 keV electrons approximately along the zone axes. Under these conditions the X-ray spectrum contains, apart from characteristic X-ray lines, additional peaks. From the dependence of the peak energies on the kinetic electron energy it is concluded that these lines stem from coherent bremsstrahlung. The ratio of some peak energies is very close to the golden mean τ=(51/2 + 1)/2. These measurements show that atoms in quasicrystalline Al-Cu-Co-Si are arranged in fairly well defined planes. It is confirmed for the first time that for the generation of coherent bremsstrahlung a periodic arrangement of atoms is not essential. (author)
Monte Carlo simulation and analytical calculation of coherent Bremsstrahlung and its polarisation
Energy Technology Data Exchange (ETDEWEB)
Natter, F.A.; Grabmayr, P. E-mail: grabmayr@uni-tuebingen.de; Hehl, T.; Owens, R.O.; Wunderlich, S
2003-12-01
Spectral distributions for coherent and incoherent Bremsstrahlung produced by electrons on thin diamond radiators are calculated accurately by a Monte Carlo procedure. Realistic descriptions of the electron beam and the physical processes within the radiator have been implemented. Results are compared to measured data. A faster calculation at only a slight loss of precision is possible using analytical expressions which can be derived after simplifying assumptions.
Dynamical diffraction theory for the parametric X-rays and coherent bremsstrahlung
Feranchuk, Ilya D.; Lugovskaya, O.; Ulyanenkov, A.
2005-01-01
The various mechanisms of X-ray radiation from relativistically charged particles in a crystal are analyzed from a common point of view, based on quantum electrodynamics in a medium. Parametric X-rays (PXR), diffraction radiation (DR) and coherent bremsstrahlung (CB) lead to different contributions to the amplitude of the radiation process but because of their interference they cannot be considered separately in the radiation intensity. The role of the dynamical diffraction effect...
Chiral baryon in the coherent pair approximation
Aly, T S T
1999-01-01
We revisit the work of K. Goeke, M. Harvey, F. Grümmer, and J. N. Urbano (Phys. Rev. {\\bf D37}, 754 (1988)) who considered a chiral model for the nucleon based on the linear sigma model with scalar-isoscalar scalar-isovector mesons coupled to quarks and solved using the coherent-pair approximation. In this way the quantum pion field can be treated in a non-perturbative fashion. In this work we review this model and the coherent pair approximation correcting several errors in the earlier work. We minimize the expectation value of the chiral hamiltonian in the ansatz coherent-pair ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with the Hedgehog model and experiment. Using the corrected equations yield slightly different values for nucleon observables but do not correct the large virial deviation in the $\\pi$-nucleon coupling. Our results therefore do not significantly alter the conclusions of Goeke, et ...
Planar and axial coherent bremsstrahlung of type A from a 17-MeV electron beam in a diamond crystal
International Nuclear Information System (INIS)
Making use of the many-beam (one- and two-dimensional quantum treatment) formalism for transversely bound electrons moving through crystal lattices, we have computed planar and axial coherent bremsstrahlung (type A) spectra for 17-MeV electrons passing through a 10-μm thick diamond (C) crystal. We found that in the planar case the momentum transfer occurs in the direction perpendicular to the plane and results in a photon emission in the forward direction (electron-beam direction). In the axial case, the momentum transfer occurs in the plane perpendicular to the axis of interest. Only momentum transfers along the scan direction (electron transverse momentum direction) result in a photon emission in the forward direction. Two different scans have shown that the energies of the coherent bremsstrahlung peaks depend strongly on the direction of the electron transverse momentum but the intensities of the strongest peaks do not show any considerable change
International Nuclear Information System (INIS)
The observation of sharp peaks in the x-ray spectrum from 1 to 3 MeV electrons striking thin single crystals of silicon and gold is reported. These peaks were observed in the range 1 to 25 keV. The peaks are of two different origins, both direct results of the periodic nature of the target crystals. The first kind of radiation is caused by the interference of incoming and scattered electron wave functions. Because of the periodicity of the target material there is a coherence effect for certain bremsstrahlung wave vectors. This coherent bremsstrahlung, though well known at very high electron energies, has never been adequately studied at electron energies below several hundred MeV. Detailed agreement between theoretical prediction and observation in silicon is shown. The second kind of radiation is caused by electrons channeled along major crystal axes. The electrons enter certain quantized orbits as they channel and may emit photons as a consequence of transitions between the various orbits. Observations of channeling radiation for various crystal axes in silicon are presented. Both phenomena were observed in gold, the first such observation for any metallic target
Fischer, Tobias
2016-01-01
In this article the neutrino-pair production from nucleon-nucleon (NN) bremsstrahlung is explored via medium-modifications of the strong interactions at the level of the one-pion exchange approximation. It governs the bulk part of the NN interaction at low densities relevant for the neutrino physics in core-collapse supernova studies. The resulting medium modified one-pion exchange rate for the neutrino-pair processes is implemented in simulations of core collapse supernovae in order to study the impact on the neutrino signal emitted from the deleptonization of the nascent proto-neutron star. Consequences for the nucleosynthesis of heavy elements of the material ejected from the PNS surface are discussed.
Coherent Pion Pairs from Heavy-Ion Collisions
Pratt, Scott; Haglin, Kevin
1996-01-01
The degree to which a nucleus can act as a source for coherent pion pairs is investigated for intermediate-energy heavy-ion collisions. Creation through both isovector and isoscalar channels is considered. Two experimental signals are proposed for evidence of two-pion coherent production, two-pion enhancement and the focusing of outgoing pions along the beam axis.
The LPM effect in sequential bremsstrahlung 2: factorization
Arnold, Peter; Iqbal, Shahin
2016-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue analysis of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper analyzes the subtle problem of how to precisely separate overlapping double splitting (e.g.\\ overlapping double bremsstrahlung) from the case of consecutive, independent bremsstrahlung (which is the case that would be implemented in a Monte Carlo simulation based solely on single splitting rates). As an example of the method, we consider the rate of real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; large $N_c$; and neglect for the mome...
Coherent Pair Production in Deformed Crystals with a Complex Base
Mkrtchyan, A. R.; Saharian, A. A.; Parazian, V. V.
We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.
Coherent pair production in deformed crystals with a complex base
Mkrtchyan, A R; Saharian, A A
2006-01-01
We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $\\mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.
The LPM effect in sequential bremsstrahlung
Arnold, Peter
2015-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We analyze the case when the coherence lengths of two consecutive splitting processes overlap, which is important for understanding corrections to standard treatments of the LPM effect in QCD. Previous authors have analyzed this problem in the case of overlapping double bremsstrahlung where at least one of the bremsstrahlung gluons is soft. Here we show how to generalize to include the case where both splittings are hard. A number of techniques must be developed, and so in this paper we simplify by (i) restricting attention to a subset of the interference effects, which we call the "crossed" diagrams, and (ii) working in the large-$N_c$ limit. We first develop some general formulas that could in principle be implemented numerically (with substantial difficulty). To make more analytic progress...
International Nuclear Information System (INIS)
The graviton bremsstrahlung in the process of scattering of two charged spinless particles is considered. One of the particles is assumed to be massive. The cross sections of this process and of energy losses on graviton radiation are calculated. The possibility to apply the Weizsaecker-Williams method to this process is discussed. The results show that for both relativistic and nonrelativistic energies the graviton bremsstrahlung is approximately Gm2/α times smaller than electromagnetic one (G is the Newton gravitational constant, m - the mass of scattered particle). The results are in agreement with the statement about the weak character of interaction of gravitons with matter
The LPM effect in sequential bremsstrahlung: 4-gluon vertices
Arnold, Peter; Iqbal, Shahin
2016-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.
Nuclear spin pair coherence in diamond for atomic scale magnetometry
Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wen, Tsz-Kai; Liu, R. B.
2010-01-01
The nitrogen-vacancy (NV) centre, as a promising candidate solid state system of quantum information processing, its electron spin coherence is influenced by the magnetic field fluctuations due to the local environment. In pure diamonds, the environment consists of hundreds of C-13 nuclear spins randomly spreading in several nanometers range forming a spin bath. Controlling and prolonging the electron spin coherence under the influence of spin bath are challenging tasks for the quantum inform...
Pantel, R
2011-11-01
In this paper, during dopant analysis of silicon devices, we have observed a phenomenon generally neglected in EDX analysis: the coherent Bremsstrahlung (CB). We discussed the reason why and came to the conclusion that the analytical TEM used for these experiments presents a configuration and performances, which makes this equipment very sensitive to the CB effect. This is due to large collection solid angle and high counting rate of the four silicon drift EDX detectors (SDD), a high brightness electron source providing large probe current and moreover a geometry favorable to on axis crystal observations. We analyzed silicon devices containing Si [110] and Si [100] crystal areas at different energies (80-120-200keV). We also observed relaxed SiGe (27 and 40at% of Ge). The CB effect, whose intensity is maximum near zone axis beam alignment, manifests as characteristic broad peaks present in the X-ray spectrum background. The peak energies are predicted by a simple formula deduced for the CB models found in the literature and that we present simply. We evaluate also the CB peak intensities and discuss the importance of this effect on the detection and quantification traces of impurities. The CB peaks also give information on the analyzed crystal structure (measurement of the periodicity along the zone axis) and allow, in every particular experiment or system, to determine the median take off angle of the EDX detectors. PMID:21946001
International Nuclear Information System (INIS)
In this paper, during dopant analysis of silicon devices, we have observed a phenomenon generally neglected in EDX analysis: the coherent Bremsstrahlung (CB). We discussed the reason why and came to the conclusion that the analytical TEM used for these experiments presents a configuration and performances, which makes this equipment very sensitive to the CB effect. This is due to large collection solid angle and high counting rate of the four silicon drift EDX detectors (SDD), a high brightness electron source providing large probe current and moreover a geometry favorable to on axis crystal observations. We analyzed silicon devices containing Si [110] and Si [100] crystal areas at different energies (80–120–200 keV). We also observed relaxed SiGe (27 and 40 at% of Ge). The CB effect, whose intensity is maximum near zone axis beam alignment, manifests as characteristic broad peaks present in the X-ray spectrum background. The peak energies are predicted by a simple formula deduced for the CB models found in the literature and that we present simply. We evaluate also the CB peak intensities and discuss the importance of this effect on the detection and quantification traces of impurities. The CB peaks also give information on the analyzed crystal structure (measurement of the periodicity along the zone axis) and allow, in every particular experiment or system, to determine the median take off angle of the EDX detectors. -- Highlights: ► STEM EDX dopant distribution analysis (As and P) in Si devices is carried out. ► High brightness electron source and four EDX Silicon Drift detectors are used. ► The obtained signal dynamics (four decades) allows detection down to 0.01 at%. ► During silicon axis analysis coherent Bremmsstrahlung is observed. ► This effect is studied at different energies and Si crystal orientations.
International Nuclear Information System (INIS)
The possibility of detecting the high-energy cosmic rays by the magnetobremsstrahlung coherent low-frequency radiation of the extensive air shower is studied. It is shown that the field intensity for such a radio emission constitutes approximately 200 μkV/m MHz at the distance of 100 km for the particle with the initial energy of 1021 eV. The high intensity of the field, caused by this radiation mechanism, makes it possible to consider that it is the cause of the earlier determined high intensity of the shower radio emission on the low frequencies. The possibility of radio detection of the cosmic rays with the energy above 1021 eV is considered. The studies on the radio pulses accompanying the extensive air shower (EAS), are carried out by means of high-speed electronics. The EAS signal duration is evaluated as 10-20 μs
Korol, Andrey V
2014-01-01
This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties. Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required f...
Generation of Pair Coherent States in Two-dimensional Trapped Ion
Institute of Scientific and Technical Information of China (English)
WANG Kai-Ge; S Maniscalco; A Napoli2, A Messina
2001-01-01
We consider a two-dimensional (2D) trapped ion model in which two laser beams drive the corresponding vibrational motions and are carrier resonant with the two-level of the ion. Due to the coherent superposition of two sub-Rabi oscillations involved in the bimodal vibrations, the Rabi frequency degeneration and offset may occur in this model. This provides the possibility of generating the pair coherent state in the 2D trapped ion.
Institute of Scientific and Technical Information of China (English)
S. Salimi; A. Mohammadzadet
2011-01-01
Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU（2） coherent states.
THREE-DIMENSIONAL PAIRING OF COHERENT STRUCTURES IN A PLANE MIXING LAYER
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The three-dimensional (3D) pairing process of coherent structures in a plane mixing layer was simulated numerically with the pseudo-spectral method. The behaviors of spanwise cup-shaped vortices, streamwise rib-shaped vortices and quadrupoles were obtained in terms of their iso-surfaces. The results show that three-dimensional structures are strongly influenced by the initial ampiitude of the 3D disturbance, and that in most cases the local pairing finishes in a roughly two-dimensional manner. In pairing region, the streamwise vortices are chaotic after pairing due to the breakdown of the engulfed ribs and especially the subsequent breakdown of the quadrupoles. The surviving ribs extend to the top (or bottom) of the paired vortices under the stretch of them. In addition, it is revealed that three dimensional vortices pairing can enhance the mixing of fluid. Finally, some patterns of numerical flow visualization are presented by computing the passive scalar.
International Nuclear Information System (INIS)
Authored by leading experts in the field. Self-contained introduction to the subject matter. Suitable as graduate text on the topic. This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties. Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required for e.g. plasma diagnostics as well as astrophysical and medical applications (such as radiation therapy). This book primarily addresses graduate students and researchers with a background in atomic, molecular, optical or plasma physics, but will also be of benefit to anyone wishing to enter the field.
Baryon--antibaryon pair decay of eta/sub c/ in coherent production
International Nuclear Information System (INIS)
The feasibility of observing eta/sub c/ by its OZI-rule-forbidden baryon-antibaryon pair decay in the coherent production (Primakoff effect) of eta/sub c/ is investigated. The cross sections are estimated as a function of photon energy, and the CM angular distribution is calculated
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
Zhang, Yiteng; Kais, Sabre
2015-01-01
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects o...
Coherent combs of anti-matter from nonlinear electron-positron pair creation
Krajewska, K
2014-01-01
Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.
Coherent combs of antimatter from nonlinear electron-positron-pair creation
Krajewska, K.; Kamiński, J. Z.
2014-11-01
Electron-positron-pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to the appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse, thus resembling the Young-type double-slit experiment for antimatter (matter) waves.
Superconductivity driven by pairing of the coherent parts of the physical electrons
Su, Yuehua; Zhang, Chao
2016-01-01
How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal state is the superconductivity is {\\em normal} with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which su...
Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs
Chia, A.; Tan, K. C.; Pawela, Ł.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.
2016-03-01
Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013), 10.1063/1.4844355], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010), 10.1016/j.cplett.2010.01.063]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.
The LPM effect in sequential bremsstrahlung: dimensional regularization
Arnold, Peter; Iqbal, Shahin
2016-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-level amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.
Quantitative study of coherent pairing modes with two neutron transfer: Sn-isotopes
Potel, G; Barranco, F; Vigezzi, E; Broglia, R A
2012-01-01
Pairing rotations and pairing vibrations are collective modes associated with a field, the pair field, which changes the number of particles by two. Consequently, they can be studied at profit with the help of two-particle transfer reactions on superfluid and in normal nuclei, respectively. The advent of exotic beams has opened, for the first time, the possibility to carry out such studies in medium heavy nuclei, within the same isotopic chain. In the case studied in the present paper that of the Sn-isotopes (essentially from closed (Z=N=50) to closed (Z=50,N=82) shells). The static and dynamic off-diagonal, long range order phase coherence in gauge space displayed by pairing rotations and vibrations respectively, leads to coherent states which behave almost classically. Consequently, these modes are amenable to an accurate nuclear structure description in terms of simple models containing the right physics, in particular BCS plus QRPA and HF mean field plus RPA respectively. The associated two- nucleon trans...
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-02
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.
Angular distribution of positrons in coherent pair production in deformed crystals
Parazian, V V
2008-01-01
We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for ${\\mathrm{SiO}}_{2}$ single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.
Angular distribution of positrons in coherent pair production in deformed crystals
Parazian, V. V.
2009-05-01
We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.
Matched slow optical soliton pairs via biexciton coherence in quantum dots
International Nuclear Information System (INIS)
We theoretically investigate the simultaneous formation and stable propagation of slow optical soliton pairs in semiconductor quantum dots with a four-level biexciton-exciton cascade configuration. Owing to the destructive interference set up by two continuous wave control fields that couple to a biexciton state, the linear as well as nonlinear dispersion can be dramatically enhanced simultaneously with the absorptions of two weak probe fields being almost suppressed. These results reveal that the detrimental distortions of the two weak-pulsed probe fields due to dispersion effects can be well balanced by the self-phase modulation effect under very low input light intensity, which leads to the slow temporal optical soliton pairs with matched group velocity and amplitude. We also show that the propagation of slow optical solitons can be strongly modified by the biexciton coherence.
Nuclear bremsstrahlung, a tool to study the free and in-medium NN interaction
International Nuclear Information System (INIS)
At the AGOR cyclotron of the KVI a series of bremsstrahlung measurements has been carried out with proton and α beams. The elementary bremsstrahlung process for real and virtual photons has been studied in the pp system. Coherent bremsstrahlung has been found in the α+p system. A strong quenching of bremsstrahlung is observed in the low-energy regime of the photon spectrum in p+nucleus reactions
International Nuclear Information System (INIS)
The use is emphasised of the ppγ process as laboratory to study among others, relativistic effects and role of non-nucleonic degrees of freedom below the pion threshold. The process of bremsstrahlung, in particular pp-bremsstrahlung, forms a very sensitive probe to effects which are often ignored because they are difficult to calculate and are estimated to be small. The proton-proton bremsstrahlung (ppγ) process is unique since it is the simplest process where one is sensitive to the off-shell nucleon-nucleon T-matrix, the role of the Δ-isobar in nuclear Compton scattering and other
Bremsstrahlung in $\\alpha$ Decay
Takigawa, N; Hagino, K; Ono, A; Brink, D M
1999-01-01
A quantum mechanical analysis of the bremsstrahlung in $\\alpha$ decay of $^{210}$Po is performed in close reference to a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions and from the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.
International Nuclear Information System (INIS)
The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, MQQbar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5
Bremsstrahlung from relativistic heavy ions in matter
International Nuclear Information System (INIS)
The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact ('ultraperipheral collisions'). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ MeV for a lead ion (γ≡E/Mc2 is the Lorentz factor of the projectile of energy E and mass M). The maximum exceeds the bremsstrahlung from a hypothetical structureless, pointlike particle of the same charge and mass as the incoming nucleus, but rapid depletion follows on the high-energy side of the peak. As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions. In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit photon-energy interval essentially constant up to (γ-1)Mc2] at relatively low photon energies (for lead roughly below 0.2γ GeV, a limit which is about an order of magnitude above the position of the bremsstrahlung peak). Results are presented for bare lead ions penetrating a solid lead target at energies of 158 GeV/n (γ=170) and beyond.
Measurement-device-independent quantum key distribution with heralded pair coherent state
Wang, Xiang; Wang, Yang; Chen, Rui-Ke; Zhou, Chun; Li, Hong-Wei; Bao, Wan-Su
2016-06-01
Measurement-device-independent QKD (MDI-QKD) can solve security loophole problems brought by imperfections of detectors and provide enhanced practical security compared to traditional QKD. We propose an active-passive-combined decoy state MDI-QKD protocol with heralded pair coherent state (HPCS) source. By calculating the lower bound of the single-photon counting rate and the upper bound of the single-photon error rate, we present formulas of the secure key rate in our protocol. Based on the linear lossy channel model, we present calculation methods of estimating the overall gain and quantum bit error rate for HPCS source with full phase randomization. We numerically compare secure key rates for different decoy MDI-QKD protocol with different sources. The result shows that the active-passive-combined decoy state MDI-QKD protocol with HPCS source has certain superiority in the secure key rate. It can provide an important theoretical reference for practical implementations of MDI-QKD.
Polarization of Bremsstrahlung
International Nuclear Information System (INIS)
The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author)
Simulation of Bremsstrahlung production
Energy Technology Data Exchange (ETDEWEB)
Patau, J.P.; Malbert, M.; Terrissol, M. (Centre de Physique Atomique, Toulouse (France))
1981-10-01
Electron slowing down and related phenomena are often greatly affected by bremsstrahlung production. Each creation of photon is individually simulated on the basis of a cross-section pack advised by Koch and Motz with corrections in the high energy frequency limit region. An accurate and fast sampling method is described. Its applicability covers a range between 50 keV and 80 MeV for target atoms whose atomic number is from 5 up to 90.
Coherent Control of Resonant Two-Photon Transitions by Counter-Propagating Ultrashort Pulse Pairs
Lee, Woojun; Kim, Kyungtae; Ahn, Jaewook
2015-01-01
We describe optimized coherent control methods for two-photon transitions in atoms of a ladder-type three-state energy configuration. Our approach is based on the spatial coherent control scheme which utilizes counter-propagating ultrashort laser pulses to produce complex excitation patterns in an extended space. Since coherent control requires constructive interference of constituent transition pathways, applying it to an atomic transition with a specific energy configuration requires specially designed laser pulses. Here, we show, in an experimental demonstration, that the two-photon transition with an intermediate resonant energy state can be coherently controlled and retrieved out from the resonance-induced background, when phase-flipping of the laser spectrum near the resonant intermediate transition is used. A simple reason for this behavior is the fact that the transition amplitude function (to be added to give an overall two-photon transition) changes its sign at the intermediate resonant frequency, t...
Polarization bremsstrahlung in α decay
International Nuclear Information System (INIS)
A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay
Electron polarimetry with bremsstrahlung
International Nuclear Information System (INIS)
Due to the spin-orbit interaction, the electron scattering from the nucleus is sensitive to the spin orientation of that electron. This is used for polarimetry of electron beams in the Mott method. The spin-orbit interaction was also observed in bremsstrahlung. In this article we analyze its potential for polarimetry as an alternative to the Mott method. It can simultaneously measure all three electron polarization components. It should work in the energy range of 50 keV up to several MeV and can be applied at beam intensities higher than 100 nA. It needs a thin heavy element target, two or four x-ray detectors and one x-ray linear polarimeter
Coherence features of the spin-aligned neutron-proton pair coupling scheme
Qi, C; Bäck, T; Cederwall, B; Johnson, A; Liotta, R J; Wyss, R
2012-01-01
The seniority scheme has been shown to be extremely useful for the classification of nuclear states in semi-magic nuclei. The neutron-proton ($np$) correlation breaks the seniority symmetry in a major way. As a result, the corresponding wave function is a mixture of many components with different seniority quantum numbers. In this contribution we show that the $np$ interaction may favor a new kind of coupling in $N=Z$ nuclei, i.e., the so-called isoscalar spin-aligned $np$ pair mode. Shell model calculations reveal that the ground and low-lying yrast states of the $N = Z$ nuclei $^{92}$Pd and $^{96}$Cd may mainly be built upon such spin-aligned $np$ pairs each carrying the maximum angular momentum $J = 9$ allowed by the shell $0g_{9/2}$ which is dominant in this nuclear region.
International Nuclear Information System (INIS)
A full quantum microscopic theory is developed to analyze a biexciton radiative cascade coupled to bulk acoustic phonons in a quantum dot. By considering the phonon sub-system in coherent state representation a new approach is proposed for investigating the phonon effects. Via this approach it is possible to obtain an exact analytical result for the phonon kernel in this system. This approach is introduced in the context of an example: the process of generating polarization-entangled photon pairs from the biexciton cascade in a quantum dot. We calculate the exact density matrix (using quantum state tomography) of photons and their concurrence. We show that the exchange interaction and temperature have remarkable effects on the degree of entanglement of the emitted photons. The approach introduced provides an exact analytical result for finite discrete electron states interacting with phonons. (paper)
Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers
International Nuclear Information System (INIS)
We experimentally demonstrated coherent beam combining of a pair of thulium-doped fiber lasers using an all-fiber Fox–Smith resonator. We built two thulium-doped fiber lasers from PM fibers and pumped them at 793 nm. Each laser provided a power of more than 10 W at a wavelength of 2000 nm with a slope efficiency of more than 0.5. Then a compound Fox–Smith resonator was created using the PM coupler. The obtained laser power was more than 20 W due to a constructive interference at the output of the laser, while the slope efficiency decreased to a value of 0.35. A stable CW output signal was achieved despite the fact that the individually operated lasers had the tendency to self-pulsate. (letter)
Revisiting Bremsstrahlung emission associated with Light Dark Matter annihilations
Boehm, C; Uwer, P.
2006-01-01
We compute the single bremsstrahlung emission associated with the pair annihilation of spin-0 particles into electrons and positrons, via the t-channel exchange of a heavy fermion. We compare our result with the work of Beacom et al. . Unlike what is stated in the literature, we show that the Bremsstrahlung cross section is not necessarily given by the tree-level annihilation cross section (for a generalized kinematics) times a factor related to the emission of a soft photon. Such a factoriza...
International Nuclear Information System (INIS)
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states. (fundamental areas of phenomenology (including applications))
Cardoso B., W.; Almeida G. de, N.
2008-07-01
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.
Institute of Scientific and Technical Information of China (English)
W. B. Cardosol; N. G. de Almeida
2008-01-01
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.
Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation
Energy Technology Data Exchange (ETDEWEB)
Bell, Nicole F.; Brennan, Amelia J.; Jacques, Thomas D., E-mail: n.bell@unimelb.edu.au, E-mail: a.brennan@pgrad.unimelb.edu.au, E-mail: thomas.jacques@asu.edu [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010 (Australia)
2012-10-01
Bremsstrahlung of W and Z gauge bosons, or photons, can be an important dark matter annihilation channel. In many popular models in which the annihilation to a pair of light fermions is helicity suppressed, these bremsstrahlung processes can lift the suppression and thus become the dominant annihilation channels. The resulting dark matter annihilation products contain a large, energetic, neutrino component. We consider solar WIMP annihilation in the case where electroweak bremsstrahlung dominates, and calculate the resulting neutrino spectra. The flux consists of primary neutrinos produced in processes such as χχ→ν-bar νZ and χχ→ν-bar lW, and secondary neutrinos produced via the decays of gauge bosons and charged leptons. After dealing with the neutrino propagation and flavour evolution in the Sun, we consider the prospects for detection in neutrino experiments on Earth. We compare our signal with that for annihilation to W{sup +}W{sup −}, and show that, for a given annihilation rate, the bremsstrahlung annihilation channel produces a larger signal by a factor of a few.
Diffractive Bremsstrahlung in Hadronic Collisions
Directory of Open Access Journals (Sweden)
Roman Pasechnik
2015-01-01
Full Text Available Production of heavy photons (Drell-Yan, gauge bosons, Higgs bosons, and heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high energy hadronic collisions.
Diffractive bremsstrahlung in hadronic collisions
Pasechnik, Roman; Potashnikova, Irina
2015-01-01
Production of heavy photons (Drell-Yan), gauge bosons, Higgs bosons, heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered as a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high-energy hadronic collisions.
International Nuclear Information System (INIS)
It is shown that the addition of down-converted photon pairs to coherent laser light enhances the N-photon phase sensitivity due to the quantum interference between components of the same total photon number. Since most of the photons originate from the coherent laser light, this method of obtaining non-classical N-photon states is much more efficient than methods based entirely on parametrically down-converted photons. Specifically, it is possible to achieve an optimal phase sensitivity of about δφ2 = 1/N3/2, equal to the geometric mean of the standard quantum limit and the Heisenberg limit, when the average number of down-converted photons contributing to the N-photon state approaches √N/2
Polarizational bremsstrahlung in non-relativistic collision
Korol, A V
2004-01-01
We review the developments made during the last decade in the theory of polarization bremsstrahlung in the non-relativistic domain. A literature survey covering the latest history of the phenomenon is given. The main features which distinguish the polarization bremsstrahlung from other mechanisms of radiation are discussed and illustrated by the results of numerical calculations.
Bremsstrahlung from Electrons and Positrons in Peripheral Relativistic Heavy Ion Collisions
Hencken, Kai; Trautmann, Dirk; Baur, Gerhard
1999-01-01
We study the spectrum of the bremsstrahlung photons coming from the electrons and positrons, which are produced in the strong electromagnetic fields present in peripheral relativistic heavy ion collisions. We compare different approaches, making use of the exact pair production cross section in heavy ion collisions as well as the double equivalent photon approximation.
Grand partition function of hadronic bremsstrahlung
International Nuclear Information System (INIS)
The grand partition function of hadronic bremsstrahlung is obtained using saddle-point procedures. Several levels of approximation are considered. The results are qualitatively consistent with earlier simple approximations
Nucleus-Nucleus Bremsstrahlung from Ultrarelativistic Collisions
Jeon, Sangyong; Kapusta, Joseph; Chikanian, Alexei; Sandweiss, Jack
1998-01-01
The bremsstrahlung produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider. Soft photons can be used to infer the rapidity distribution of the outgoing charge. An experimental design is outlined.
International Nuclear Information System (INIS)
Interference between Cabibbo-Kobayashi-Maskawa (CKM) favored b→cu-bard and doubly-CKM-suppressed b-bar→u-barcd-bar amplitudes in final states used for B-flavor tagging gives deviations from the standard time evolution assumed in CP-violation measurements at B factories producing coherent B0B-bar0 pairs. We evaluate these deviations for the standard time-dependent CP-violation measurements, the uncertainties they introduce in the measured quantities, and give suggestions for minimizing them. The uncertainty in the measured CP asymmetry for CP eigenstates is ≅2% or less. The time-dependent analysis of D*π, proposed for measuring sin(2β+γ), must incorporate possible tag-side interference, which could produce asymmetries as large as the expected signal asymmetry
Impact of Nucleon-Nucleon Bremsstrahlung Rates Beyond One-Pion Exchange
Bartl, Alexander; Janka, Hans-Thomas; Schwenk, Achim
2016-01-01
Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on a modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only $\\lesssim$5% changes of the neutrino luminosities and an increase of $\\lesssim$0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by $\\lesssim$0.5-1 s.
Spectra and rates of bremsstrahlung neutrino emission in stars
Guo, Gang; Qian, Yong-Zhong
2016-08-01
We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.
The free and In medium N-N interaction studied by nuclear Bremsstrahlung
International Nuclear Information System (INIS)
Full text: At the AGOR cyclotron of the KVI a series of Bremsstrahlung measurements has been carried out with proton and c beams using the combination of a highly segmented photon spectrometer (TAPS) with the smallangle large-acceptance detector (SALAD) for charged-particles. High precision cross sections and analysing powers have been measured for p+p Bremsstrahlung with 190 MeV polarized protons. For the first time exclusive differential cross sections of virtual bremsstrahlung could be determined. In 200 MeV +p reactions coherent Bremsstrahlung has been found, dominated by direct capture into the unbound 5 Li ground and first excited state. The dynamic range of the present bremsstrahlung data allows one to test for the first time the consistency of models that attempt to describe these two aspects within a single theoretical framework. In 190 MeV proton-nucleus reactions the influence of the nuclear medium on the photon production has been studied by analyzing coincidences of photons with leading protons. Stronger than at lower incident energies, our data reveal a suppression of the soft-photon yield with respect to the expectation from quasi-free scattering. This effect can partly be attributed to soft-photon quenching due to an interference of photon amplitudes in multiple- collision processes. Other possible mechanisms might be considered such as a medium-modified elementary photon production cross section. The new data indicate the need for a quantum transport theory which includes consistently the medium modifications and the interference phenomena. First results from calculations of Bremsstrahlung production in nuclear matter derived from a realistic NN interaction indicate the suppression of Bremsstrahlung in the soft part of the photon spectrum. An alternative approach based on the formalism of two-particle Greens functions in non-equilibrium matter yields similar results and relates the soft-photon suppression to the scattering properties in nuclear
The free and In medium N-N interaction studied by nuclear Bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Lohner, H.; Van Goethem, M.J.; Hoefman, M.; Wilschut, H.W. [Kernfysisch Versneller Institut, Groningen (Netherlands)
2001-09-01
Full text: At the AGOR cyclotron of the KVI a series of Bremsstrahlung measurements has been carried out with proton and c beams using the combination of a highly segmented photon spectrometer (TAPS) with the smallangle large-acceptance detector (SALAD) for charged-particles. High precision cross sections and analysing powers have been measured for p+p Bremsstrahlung with 190 MeV polarized protons. For the first time exclusive differential cross sections of virtual bremsstrahlung could be determined. In 200 MeV +p reactions coherent Bremsstrahlung has been found, dominated by direct capture into the unbound {sup 5} Li ground and first excited state. The dynamic range of the present bremsstrahlung data allows one to test for the first time the consistency of models that attempt to describe these two aspects within a single theoretical framework. In 190 MeV proton-nucleus reactions the influence of the nuclear medium on the photon production has been studied by analyzing coincidences of photons with leading protons. Stronger than at lower incident energies, our data reveal a suppression of the soft-photon yield with respect to the expectation from quasi-free scattering. This effect can partly be attributed to soft-photon quenching due to an interference of photon amplitudes in multiple- collision processes. Other possible mechanisms might be considered such as a medium-modified elementary photon production cross section. The new data indicate the need for a quantum transport theory which includes consistently the medium modifications and the interference phenomena. First results from calculations of Bremsstrahlung production in nuclear matter derived from a realistic NN interaction indicate the suppression of Bremsstrahlung in the soft part of the photon spectrum. An alternative approach based on the formalism of two-particle Greens functions in non-equilibrium matter yields similar results and relates the soft-photon suppression to the scattering properties in
Innovative bremsstrahlung research at Physics International Company
International Nuclear Information System (INIS)
For bremsstrahlung diodes optimized for X-ray production below 2 MeV, the area-weighted mean dose in the near-field is controlled by the atomic number, Z, of the converter material, and the electrical power, P, into the diode, scaling approximately as ZP. However, given the constraints of a fixed electrical power pulse from a generator, one can still vary the end-point voltage of the bremsstrahlung radiation without significant sacrifice in X-ray dose, or sharpen the risetime of the X-ray pulse without sacrificing the average dose-rate. In this paper, the authors review the design of a triple series diode on the Double-EAGLE generator which reduces the end-point voltage of the bremsstrahlung source from 1.5 MV down to 0.3 MV. In addition, they discuss pulse sharpening of the radiation from a pinched beam diode by optimizing the dimension of the tantalum converter. Also, they review some recent work on a linear bremsstrahlung diode which in principle can form part of a large-area bremsstrahlung source for a multi-module pulsed power generator
Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy
Komarov, S; Churazov, E; Schekochihin, A
2016-01-01
Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is $\\sim 0.1 \\%$ at energies $\\gtrsim kT$. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scale...
Anomalous fluorescence line intensity in megavoltage bremsstrahlung
Pereira, Nino; Litz, Marc; Merkel, George; Schumer, Joseph; Seely, John; Carroll, Jeff
2009-11-01
A Cauchois transmission crystal spectrometer intended for laser plasma diagnostics has measured an anomalous ratio between the fluorescence lines in megavoltage bremsstrahlung. When observed in reflection, Kα1 fluorescence is twice as strong as the Kβ line, as is usual. However, in forward-directed bremsstrahlung from a 2 MV end point linear accelerator with a tungsten converter, the Kα1 and Kβ fluorescence are approximately equal. The anomalous fluorescence line ratio, unity, reflects the large amount of fluorescence generated on the side of the converter where the electrons enter, and the differential attenuation of the fluorescence photons as they pass through the converter to opposite side. Understanding of fluorescence in megavoltage bremsstrahlung is relevant to the explanation of anomalous line ratios in spectra produced by high-energy electrons generated by intense femtosecond laser irradiation.
Pb isotopes induced Bremsstrahlung in bone, muscle and teeth
International Nuclear Information System (INIS)
The few isotopes Pb such as 210Pb, 211Pb, 212Pb, 213Pb, 214Pb and 215Pb are good beta emitters. These beta emitting Pb isotopes induces Bremsstrahlung radiation and could have different energies and intensities. The Bremsstrahlung yield is a function of two components namely internal Bremsstrahlung and external Bremsstrahlung. The intensity of external Bremsstrahlung (EB) largely depends on the energy of the emitted beta particles an atomic number of the surrounding matrix material. On the other hand, internal Bremsstrahlung component inherently depends on the interaction of the emitted beta particle with the nucleus of the source radionuclide itself. The shapes of Bremsstrahlung spectra are a basic ingredient in the understanding and quantification of beta-ray dosimetry. It is useful to have a convenient reference on the shapes of Bremsstrahlung spectra from various nuclides. The Bremsstrahlung spectra produced by Pb beta isotopes such as 210Pb, 211Pb, 212Pb, 213Pb, 214Pb and 215Pb in bone, muscle and teeth are computed. The computed spectral distributions are presented. The spectral shapes are primarily responsible for variations in the shapes of depth-dose distributions. They are intended to provide a quick and convenient reference for spectral shapes and to give an indication of the wide variation in these shapes. The computed Bremsstrahlung spectrum is used in the evaluation of Bremsstrahlung dose. The evaluated beta Bremsstrahlung dose as a function distance for the studied nuclides is also presented. The beta Bremsstrahlung dose decreases with the increase of distance. (author)
Bremsstrahlung from relativistic heavy ions in matter
DEFF Research Database (Denmark)
Sørensen, Allan Hvidkjær
2010-01-01
MeV for a lead ion (γ≡E/Mc2 is the Lorentz factor of the projectile of energy E and mass M). The maximum exceeds the bremsstrahlung from a hypothetical structureless, pointlike particle of the same charge and mass as the incoming nucleus, but rapid depletion follows on the high-energy side of the peak. As....... In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit...
Bremsstrahlung gamma rays from light dark matter
International Nuclear Information System (INIS)
We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the γ-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is sometimes the dominant component of the γ-ray spectrum. We also find that, in regions in which bremsstrahlung dominates energy losses, the related γ-ray emission is only moderately sensitive to possible large variations in the gas density. Still, we stress that, for computing precise spectra in the (sub-)GeV range, it is important to obtain a reliable description of the Galaxy gas distribution as well as to compute self-consistently the γ-ray emission and the solution to the diffusion-loss equation. For example, these are crucial issues to quantify and interpret meaningfully γ-ray map 'residuals' in the inner Galaxy
Cottet, Audrey; Kontos, Takis; Yeyati, Alfredo Levy
2011-01-01
We suggest a way to characterize the coherence of the split Cooper pairs emitted by a double-quantum-dot based Cooper pair splitter (CPS), by studying the radiative response of such a CPS inside a microwave cavity. The coherence of the split pairs manifests in a strongly nonmonotonic variation of the emitted radiation as a function of the parameters controlling the coupling of the CPS to the cavity. The idea to probe the coherence of the electronic states using the tools of Cavity Quantum Ele...
Bremsstrahlung: an experimentalists personal perspective on the post modern era
International Nuclear Information System (INIS)
In this brief review I will discuss the recent experimental work on the doubly differential cross section, i.e. the photon energy and angular distribution, for electron Bremsstrahlung from thin solid film and gas targets. Since the beginning of the modern era in the study of Bremsstrahlung with the publication of the 1971 paper by Ts eng and Pratt, Professor Pratt has been the dominant influence in Bremsstrahlung research. Most, if not all, experimental research during the modern era has been motivated by the interest in comparing data with the theory of Pratt and his coworkers. As Bremsstrahlung research has moved into its post modern era, new experiments with increasing precision are concentrating on determining under what conditions ordinary Bremsstrahlung theory needs to be supplemented by a contribution from polarization Bremsstrahlung. Efforts to improve the comparison of thin-target experiment with theory have also led to new experimental and modeling work on Bremsstrahlung from thick solid targets. Thick-target Bremsstrahlung is interesting in its own right, but we also want to understand it better since it is the ever-present background in the thin-target experiments and the limiting factor in the effort to distinguish the polarization contribution to the total Bremsstrahlung spectrum. Professor Pratt ushered in the modern era in Bremsstrahlung research and has recently guided the transition into the post modern era. It can be expected that he will continue to have a formative influence on the developments of Bremsstrahlung research into the foreseeable future.
Z-dependence of external bremsstrahlung production
International Nuclear Information System (INIS)
The n constant which determines Z dependence of external bremsstrahlung (EB) production, in the empirical equation I=KNZsup(n)exp(-σsub(β)t) suggested by Mudhole, has been experimentally calculated using Ge(Li) solid-state detector and β-rays from 32P and compared with theory. It is established that the experimental result (n=1,98+-0.03) is in close agreement by the theory (n=2). (author)
Modeling the bremsstrahlung emission from converters
Mirea, M; Clapier, F; Hassaïne, M; Ibrahim, F; Müller, A C; Pauwels, N; Proust, J; Verney, D; Antoni, R; Bourgeois, L; Kandri-Rody, S
2001-01-01
The bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are reported. This study is focussed on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large radiative yields able to induce the $^{238}$U fission. These results offer the possibility to evaluate the required shielding for a neutron rich nuclei source.
Radiative corrections to pion-nucleus bremsstrahlung
Kaiser, N.(Physik Department T39, Technische Universität München, Garching, D-85747, Germany); Friedrich, J. M.
2008-01-01
We calculate the one-photon loop radiative corrections to virtual pion Compton scattering $\\pi^- \\gamma^* \\to \\pi^- \\gamma$, that subprocess which determines in the one-photon exchange approximation the pion-nucleus bremsstrahlung reaction $\\pi^- Z\\to \\pi^- Z \\gamma$. Ultraviolet and infrared divergencies of the loop integrals are both treated by dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the virtual Compton scattering amplitudes, $A(s,u,Q)$ a...
Bremsstrahlung Radiation At a Vacuum Bubble Wall
Lee, Jae-Weon; Lee, Chul H; Jang, Ji-ho
2007-01-01
When charged particles collide with a vacuum bubble, they can radiate strong electromagnetic waves due to rapid deceleration. Owing to the energy loss of the particles by this bremsstrahlung radiation, there is a non-negligible damping pressure acting on the bubble wall even when thermal equilibrium is maintained. In the non-relativistic region, this pressure is proportional to the velocity of the wall and could have influenced the bubble dynamics in the early universe.
Absolute determination of bremsstrahlung deposition (Hydra)
International Nuclear Information System (INIS)
A technique developed to measure electron energy deposition in metals has been applied to the determination of bremsstrahlung deposition. In this method a square-wave beam modulation is employed and the time-derivative of a calorimeter temperature is used to obtain the energy deposited. This paper presents the results of bremsstrahlung deposition measurements in gold and aluminum. Data are presented for dose to a material as a function of converter material, converter thickness, and angle of electron incidence for electron energies in the range from 0.2 to 1.0 MeV. In addition, measurements of dose as a function of calorimeter position as it was moved both laterally and axially with respect to the beam axis are reported. Utilizing the facility and technique developed to make these measurements, a thorough study of the bremsstrahlung measuring calorimeters used with the pulsed electron beam machine Hydra was accomplished. The goal of this study was to determine accurately the correction factor for the loading effect of the thermocouple wires. The loading correction factor was measured to be 1.72 with an uncertainty of +- 5 percent. This value should be used when determining true dose to gold with the standard Hydra calorimeters instead of the value of 1.5 obtained from data on Hydra, since there is a larger uncertainty in the latter value. (U.S.)
Thermal Bremsstrahlung Radiation in a Two-Temperature Plasma
Luo, Bin; Zhang, S. Nan
2002-01-01
In the normal one-temperature plasma the motion of ions is usually neglected when calculating the Bremsstrahlung radiation of the plasma. Here we calculate the Bremsstrahlung radiation of a two-temperature plasma by taking into account of the motion of ions. Our results show that the total radiation power is always lower if the motion of ions is considered. We also apply the two-temperature Bremsstrahlung radiation mechanism for an analytical Advection-Dominated Accretion Flow (ADAF) model; w...
Pb isotopes induced Bremsstrahlung in bone, muscle and teeth
International Nuclear Information System (INIS)
The few isotopes of lead such as 210Pb, 211Pb, 212Pb, 213Pb, 214Pb and 215Pb are good beta emitters. These beta emitting Pb isotopes induces Bremsstrahlung radiation and could have different energies and intensities. The Bremsstrahlung yield is a function of two components namely internal Bremsstrahlung and external Bremsstrahlung. The intensity of external Bremsstrahlung (EB) largely depends on the energy of the emitted beta particles and atomic number of the surrounding matrix material. On the other hand, internal Bremsstrahlung component inherently depends on the interaction of the emitted beta particle with the nucleus of the source radionuclide itself. The shapes of Bremsstrahlung spectra are a basic ingredient in the understanding and quantification of beta-ray dosimetry. It is useful to have a convenient reference on the shapes of Bremsstrahlung spectra from various nuclides. It is important to study the radiation hazards of lead isotopes. Hence in the present work we have formulated the method to study the Bremsstrahlung dose induced by the lead isotopes in human bone, muscle and teeth
Internal bremsstrahlung spectrum of 139Ce
International Nuclear Information System (INIS)
The internal bremsstrahlung spectrum which accompanies the electron capture decay of 139Ce to the first excited state of 139La has been measured in coincidence with the nuclear gamma ray which deexcites that state. The measured intensity above 42 keV is found to be (1.070±0.024) times that predicted by the recent calculations of Suriacute c et al. The QEC value is found to be 264.6±2.0 keV. copyright 1996 The American Physical Society
Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy
Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.
2016-09-01
Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.
Radiative corrections to pion-nucleus bremsstrahlung
Kaiser, N
2008-01-01
We calculate the one-photon loop radiative corrections to virtual pion Compton scattering $\\pi^- \\gamma^* \\to \\pi^- \\gamma$, that subprocess which determines in the one-photon exchange approximation the pion-nucleus bremsstrahlung reaction $\\pi^- Z\\to \\pi^- Z \\gamma$. Ultraviolet and infrared divergencies of the loop integrals are both treated by dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the virtual Compton scattering amplitudes, $A(s,u,Q)$ and $B(s,u,Q)$, are derived with their full dependence on the (small) photon virtuality $Q$ from 9 classes of contributing one-loop diagrams. Infrared finiteness of these virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. In the region of low $\\pi^- \\gamma$ center-of-mass energies, where the pion-nucleus bremsstrahlung process is used to extract the pion electric and magnetic polarizabilities, we find radiative corrections up to about -3% fo...
Soft X-ray bremsstrahlung and recombination radiation
International Nuclear Information System (INIS)
This report contains the theoretical background and computer codes for the calculation of soft X-ray bremsstrahlung and recombination radiation. These calculations are then used to calculate the effective Z of a plasma from the measured enhancement of the continuum radiation over that of pure hydrogen bremsstrahlung
Bremsstrahlung spectra from atoms and ions at low relativistic energies
International Nuclear Information System (INIS)
Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)
On the formation of bremsstrahlung in an absorptive QED/QCD medium
Bluhm, Marcus; Gousset, Thierry; Aichelin, Joerg
2012-01-01
The radiative energy loss of a relativistic charge in a dense, absorptive medium can be affected significantly by damping phenomena. The effect is more pronounced for large energies of the charge and/or large damping of the radiation. This can be understood in terms of a competition between the formation time of bremsstrahlung and a damping time scale. Discussing this competition in detail for the absorptive QED and QCD medium, we identify the regions in energy and parameter space, in which either coherence or damping effects are of major importance for the radiation spectrum. We show that damping mechanisms lead to a stronger suppression of the spectrum than coherence effects. This might be visible experimentally in correlations between hadrons at large momenta.
Dynamical model for Pion-Nucleon Bremsstrahlung
Mariano, A V
2000-01-01
A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off-shell effects. The $\\pi N \\gamma$ differential cross sections are calculated using three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behavior of the different T-matrices under consideration.
Coulomb correction calculations of pp Bremsstrahlung
International Nuclear Information System (INIS)
The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs
Internal bremsstrahlung endpoint energy of 54Mn
International Nuclear Information System (INIS)
For 54Mn there is a discrepancy between the QEC obtained from the endpoint energy of the internal bremsstrahlung (IB) spectrum which accompanies the electron capture decay (QEC=1353±8 keV) and that obtained from the accepted mass differences (QEC=1377±1 keV). This Q value is needed to deduce the partial-half life of the astrophysically interesting β- decay of 54Mn from the recently measured β+ partial half-life. To resolve this discrepancy, we have remeasured the endpoint energy of the IB spectrum, by recording coincidences between the IB and the 835-keV γ ray, both detected in Compton-suppressed Ge detectors. The QEC we deduce is 1379±8 keV, in agreement with the accepted mass differences. (c) 2000 The American Physical Society
International Nuclear Information System (INIS)
Full text : In the paper, there were calculated cross sections of photoproduction of lepton pair in crystal environment with due account for spin states of electron, positron and photon in the case of screening. All calculations indicated that proposed new screening method makes considerable impact on both cross sections of non-elastic radiation processes and polarization characteristics of reactions. The development and improvement of the accelerators used to form high-energy electron beams and the possibility of applying polarized beams stimulate further theoretical and experimental study of the interaction between fast particles and matter. Passage of fast charged leptons e and and high-energy photons through matter is accompanied by various electromagnetic phenomena, such as bremsstrahlung, photoproduction of leptonic pairs, channeling of charged particles, Cherenkov and transition radiation, etc. The characteristics of electromagnetic processes with participation of high-energy particles depend strongly on the medium structure and should significantly differ for ordered (crystalline) and disordered media. When fast particles interact with nuclei in crystals, diffraction amplification of the bremsstrahlung and pair photoproduction cross sections arises due to the coherent effects. There are various methods of screening nuclear field, and the most commonly used method is Schiff method.
Exposure of bremsstrahlung from beta-emitting therapeutic radionuclides
Energy Technology Data Exchange (ETDEWEB)
Manjunatha, H.C. [Department of Physics, Bangalore University, Bangalore-560056, Karnataka (India)], E-mail: manjunathhc@rediffmail.com; Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore-560056, Karnataka (India)
2009-02-15
There has been an increased interest in beta therapeutic nuclear medicine, which emits relatively high-energy (>1 MeV) {beta}-rays and the production in vivo of Bremsstrahlung sufficient for external imaging, the produced Bremsstrahlung radiation hazard warrants evaluation. The Bremsstrahlung dose from patient administered {beta}-ray emitted radionuclide has been calculated by extending the national council on Radiation Protection and measurement model of a point source in air to account for biologic elimination of activity. We have estimated the probability of bremsstrahlung production, specific Bremsstrahlung constant (defined by Zanzonico et al.) and activity (A{sub release}) in bone cortical, bone compact, different regions of tooth enamel (enamel dentin junction (EDJ), enamel middle surface, enamel inner surface), different regions of dentin (outer surface, middle surface, enamel dentin junction (EDJ)), soft tissue, lungs and skeleton for different therapeutic beta-emitting radionuclide. In the present calculations we have used modified atomic number (Z{sub mod}) defined for bremsstrahlung process. Proper localization and quantification of incorporated beta emitters in bone and tooth are possible, because Bremsstrahlung production is greater in bone and tooth than soft tissue due to their high modified atomic number (Z{sub mod}). Radionuclide therapy with pure {beta}-ray emitters emitted in bone, tooth, soft tissue, lungs and skeleton does not require medical confinement of patients for radiation protection.
Transrelativistic pair plasmas in AGN jets
DEFF Research Database (Denmark)
Bottcher, M.; Pohl, M.; Schlickeiser, R.
1999-01-01
Models of relativistic jets filled with ultrarelativistic pair plasma are very successful in explaining the broadband radiation of gamma-ray blazars. Assuming that the initial injection and cooling of ultrarelativistic pair plasma in an AGN jet has occurred, producing the observed high-energy gamma......-ray radiation, we investigate the further evolution of the pair plasma as it continues to move out from the central engine. The effects of thermalization and reacceleration, the emission of pair bremsstrahlung and annihilation radiation and the bulk Compton process, and the possible application to MeV blazars...
Bremsstrahlung dose of therapeutic beta nuclides in bone and muscle
Manjunatha, H. C.
2013-01-01
In the nuclear medicine, beta nuclides are released during the treatment. This beta interacts with bone and muscle and produces external Bremsstrahlung (EB) radiation. Present work formulated a new method to evaluate the EB spectrum and hence the Bremsstrahlung dose of therapeutic beta nuclides (Lu-177, Sr-90, Sm-153, I-153, Cs-137, Au-201, Dy-165, Mo-99, Sr-89, Fe-59, P-32, Ho-166, Sr-92, Re-188, Y-90, Pr-147, Co-60, K-42) in bone and muscle. The Bremsstrahlung yields of these beta nuclides ...
Polarization Bremsstrahlung in collissions of fast ions with multiatomic targets
Amusia, M Ya
2013-01-01
We consider the processes of polarization bremsstrahlung in collisions of fast ions with linear chains consisting of isolated atoms. We obtained intensities and angular distributions of radiation spectra for arbitrary number of atoms in the chain. It appeared that interference in the photon radiation amplitudes lead to prominent variation of spectral angular distributions of polarization bremsstrahlung as compared to these distribuitions in collisions with an isolated atom. The mean loss of energy due to radiation or the so-called rediative friction is estimated. The results obtained permit standard generalization to the case of polarization bremsstrahlung in fast ion chanelling above surfaces an and in solid body.
Bremsstrahlung spectra produced by kilovolt electron impact on thick targets
International Nuclear Information System (INIS)
Measurements of bremsstrahlung spectra generated by 5-25 keV electron impact on thick targets of aluminium, titanium, zirconium, molybdenum and tungsten are reported. The experimental data are compared with the simulation results of X-ray spectra obtained from the general-purpose Monte Carlo code PENELOPE, which implements accurate cross-sections for ordinary bremsstrahlung emission but disregards polarization bremsstrahlung. The agreement between the experimental and simulation results is satisfactory. This is in contrast with a recent study in which large discrepancies were observed between experimental and Monte Carlo simulation results. Our results provide evidence for the reliability of the combined choices of the interaction cross-sections and of the simulation algorithms implemented in PENELOPE for bremsstrahlung emission.
Feasibility Studies of the Diffractive Bremsstrahlung Measurement at the LHC
J.J. Chwastowski; Czekierda, S.; Kycia, R.; Staszewski, R.(The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland); Turnau, J.; Trzebiński, M
2016-01-01
Feasibility studies of an observation of the exclusive diffractive bremsstrahlung in proton-proton scattering at the LHC are reported. A simplified approach to the photon and the scattered proton energy reconstruction is used. The background influence is discussed.
Effect of bremsstrahlung radiation emission on fast electrons in plasmas
Embréus, Ola; Stahl, Adam; Fülöp, Tünde
2016-01-01
Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission ...
Calculation of the collimated bremsstrahlung flux from thin radiators
International Nuclear Information System (INIS)
A method is outlined for calculating the absolute flux of a bremsstrahlung beam created by passing an electron beam through thin radiators. Multiple scattering of the electron beam in the radiator and collimation of the bremsstrahlung flux are considered in this calculation. Separate measurements determine that this calculations has an absolute accuracy of 2.8% for an endpoint energy range from 120 to 360 MeV for a total radiator thickness of less than 0.012 radiation lengths. (orig.)
Bremsstrahlung and synchrotron radiation from planet magnetospheres
International Nuclear Information System (INIS)
Bremsstrahlung and synchrotron radiation from the moving charged particles was calculated in planet magnetospheres. A program package RADIATION was developed for these calculations. The radiative intensity is projected on a far sphere. The directional dependence of the radiation during the penetration of charged particles through the polar cusp was calculated. The program package RADIATION can be also used for treating the radiation of plasma cluster penetrating through the electric double layer, MHD and compress magnetic bow shock, plasma fibers and pinches and in other important situations. Intensity of radiation was derived from advanced and retarded potentials calculated from the Maxwell set of equations. Only radiative fields are displayed (I ∼ 1/r2) and the space intensity distribution does not depend on the distance of the projection sphere. In future non-radiative fields will be treated as well. In this case the distance of the projection sphere will be important parameter. The program was written in FORTRAN CVF 6.5A. The Earth magnetosphere and ionosphere form a natural protective shield from cosmic radiation and solar wind. Various models of the magnetosphere are compared (Tsyganenko, Safrankova-Nemecek, IGRF, and others) in the end of the contribution. (author)
Analytic approximate radiation effects due to Bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Ben-Zvi I.
2012-02-01
The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.
Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis
Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T
2002-01-01
Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...
Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi
2013-01-01
Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
Coherence vortices of partially coherent beams in the far field
Institute of Scientific and Technical Information of China (English)
Liu Pu-Sheng; Lü Bai-da
2007-01-01
Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator, zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points.If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
Coherent polarization radiation from crystals irradiated with relativistic charged particles
International Nuclear Information System (INIS)
When polarization radiation (polarization bremsstrahlung) occurs in a crystal, the radiation becomes coherent in X-ray wavelengths. This radiation, called coherent polarization radiation (CPR) in this paper, is considered as a possible compact X-ray source because CPR is intense, monochromatic, tunable, small background, and easy to extract. We present a simple theory of CPR with emphasis on its relation to Cherenkov radiation and transition radiation. Various properties of CPR are also discussed
Sum rules for the polarization correlations in photoionization and bremsstrahlung
Pratt, R. H.; Müller, R. A.; Surzhykov, A.
2016-05-01
The polarization correlations in doubly differential cross sections are investigated for photoionization and ordinary bremsstrahlung. These correlations describe the polarization transfer between incident light and ejected photoelectrons as well as between an incoming electron beam and bremsstrahlung light, respectively. They are characterized by a set of seven real parameters Ci j. We show that the squares of these parameters are connected by simple "sum rules." These sum rules can be applied for both one-electron systems and also for atoms, if the latter are described within the independent particle approximation. In particular, they are exact in their simplest form (i) for the photoionization of K -, LI ,I I-, and MI ,I I-atomic shells, as well as (ii) for bremsstrahlung in which the electron is scattered into s1 /2 or p1 /2 states, as in the tip (bremsstrahlung) region. Detailed calculations are performed to verify the derived identities and to discuss their possible applications for the analysis of modern photoionization and bremsstrahlung experiments. In particular, we argue that the sum rules may help to determine the entire set of (significant) polarization correlations in the case when not all Ci j are available for experimental observation.
Saorín, Manuel
2016-01-01
We show that, under particular conditions, if a t-structure in the unbounded derived category of a locally coherent Grothendieck category restricts to the bounded derived category of its category of finitely presented objects, then its heart is itself a locally coherent Grothendieck category. Those particular conditions are always satisfied when the Grothendieck category is arbitrary and one considers the t-structure associated to a torsion pair in the category of finitely presented objects. ...
Bremsstrahlung source term estimation for high energy electron accelerators
International Nuclear Information System (INIS)
Thick target bremsstrahlung source term for 450 MeV and 550 MeV electrons are experimentally determined using booster synchrotron of Indus facility at Raja Ramanna Centre for Advanced Technology, Indore, India. The source term is also simulated using EGSnrc Monte Carlo code. Results from experiment and simulation are found to be in very good agreement. Based on the agreement between experimental and simulated data, the source term is determined up to 3000 MeV by simulation. The paper also describes the studies carried out on the variation of source term when a thin target is considered in place of a thick target, used in earlier studies. - Highlights: • Experimental determination of bremsstrahlung source term at 450 and 550 MeV electrons. • Monte Carlo calculations performed for validation of experimental data. • Thick and thin target bremsstrahlung source term is studied. • Brensstrahlung Source term is determined up to 3 GeV electron energies
Electron collision effects on the bremsstrahlung emission in Lorentzian plasmas
International Nuclear Information System (INIS)
The electron-electron collision effects on the electron-ion bemsstranhlung process are investigated in warm Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by the electron-electron collisions with the effective Debye length in Lorentzian plasmas. The bremsstranhlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index, and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase of the plasma temperature. (author)
Coherent dynamics in semiconductors
DEFF Research Database (Denmark)
Hvam, Jørn Märcher
1998-01-01
Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic and...... as a tool to study the coherent exciton dynamics, and the importance of performing transform limited spectroscopy is demonstrated throughout....
High-power bremsstrahlung sources for radiation sterilization
International Nuclear Information System (INIS)
A theoretical investigation has been made of the radiation processing rate that can be achieved using Bremsstrahlung radiation produced by electrons from an electrostatic accelerator. Computer calculations were made using experimentally measured angular distributions to calculate the spatial distribution of Bremsstrahlung produced by scanned electron beams of 4 and 5 MeV. The calculations take into account scan angle, scan height, and source-product distance to calculate the dose distribution in a homogeneous absorber of uniform density. Several conveyor configurations are examined in order to determine the optimum in terms of overall power efficiency for a given dose uniformity requirement. (author)
Elastic photonuclear cross sections for bremsstrahlung from relativistic ions
Mikkelsen, R. E.; Sørensen, A H; Uggerhøj, U. I.
2015-01-01
In this paper, we provide a procedure to calculate the bremsstrahlung spectrum for virtually any relativistic bare ion with charge 6$e$ or beyond, $Z\\ge 6$, in ultraperipheral collisions with target nuclei. We apply the Weizs\\"{a}cker-Williams method of virtual quanta to model the effect of the distribution of nuclear constituents on the interaction of the ion with the radiation target. This leads to a bremsstrahlung spectrum peaking at $2\\gamma$ times the energy of the giant dipole resonance...
Effect of bremsstrahlung radiation emission on fast electrons in plasmas
Embréus, Ola; Fülöp, Tünde
2016-01-01
Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution.
Relatedness, Coherence, and Coherence Dynamics Empirical Evidence from Italian Manufacturing
Stefano Valvano; Davide Vannoni
2001-01-01
This paper investigates the determinants of coherence and coherence change using a sample of Italian leading firms in the period 1993-1996. Following a methodology developed by Teece et al (1994), the observed diversification patterns of our sample firms provide the information required to construct an index of relatedness between pair of sectors, which is in turn used to obtain a measure of firm’s coherence. The econometric analysis highlights that relatedness is higher when sectors share si...
Electron-electron bremsstrahlung emission and the inference of electron flux spectra in solar flares
Kontar, E. P.; Emslie, A. G.; Massone, A. M.; Piana, M.; Brown, J.C.; Prato, M.
2007-01-01
Although both electron-ion and electron-electron bremsstrahlung contribute to the hard X-ray emission from solar flares, the latter is normally ignored. Such an omission is not justified at electron (and photon) energies above $\\sim 300$ keV, and inclusion of the additional electron-electron bremsstrahlung in general makes the electron spectrum required to produce a given hard X-ray spectrum steeper at high energies. Unlike electron-ion bremsstrahlung, electron-electron bremsstrahlung cannot ...
Fereydooni, Abolhassan; Safapour, Ahmad
2011-01-01
In this paper a new concept related to the frame theory is introduced; the notion of pair frame. By investigating some properties of such frames, it is shown that pair frames are a generalization of ordinary frames. Some classes of of them are introduced such as (p, q)-pair frames and near identity pair frames.
A detector for use in high energy bremsstrahlung shielding studies
International Nuclear Information System (INIS)
The design, development and calibration of a detector based on the principle of the Moxon-Rae detector is discussed. It is ideally suited to the measurement of the energy fluence of photons transmitted through a thick shield which has been irradiated with high energy bremsstrahlung. The detection sensitivity is 104 to 105 times that of the P2 ion chamber
Spectra and rates of bremsstrahlung neutrino emission in stars
Guo, Gang
2016-01-01
We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average $\\bar{\
Exact Bremsstrahlung Function in N=2 Superconformal Field Theories.
Fiol, Bartomeu; Gerchkovitz, Efrat; Komargodski, Zohar
2016-02-26
We propose an exact formula for the energy radiated by an accelerating quark in N=2 superconformal theories in four dimensions. This formula reproduces the known bremsstrahlung function for N=4 theories and provides a prediction for all the perturbative and instanton corrections in N=2 theories. We perform a perturbative check of our proposal up to three loops. PMID:26967407
Observation of the Muon Inner Bremsstrahlung at LEP1
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, U; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, P; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A; Bérat, C; Berggren, M; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, B; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Kokkinias, P; Leinonen, L; Katsoufis, E; Kernel, G; Kersevan, B P; Krumshtein, Z; Lesiak, T; Kerzel, U; Liebig, W; King, B T; Lamsa, J; Liko, D; Kjaer, N J; Leder, G; Kluit, P; Kourkoumelis, C; Leitner, R; Kuznetsov, O; Kucharczyk, M; Ledroit, F; Lopes, J H; Lemonne, J; Lepeltier, V; Lipniacka, A; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Paganoni, M; Nassiakou, M; Paiano, S; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Ouraou, A; Parkes, C; Oblakowska-Mucha, A; Oyanguren, A; Obraztsov, V F; Olshevski, A; Palacios, J P; Onofre, A; Palka, H; Orava, R; Österberg, K; Pape, L; Papadopoulou, T D; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Tegenfeldt, F; Timmermans, J; Tkatchev, L; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2008-01-01
Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1 < E_gamma <= 10 GeV and p_T < 80 MeV/c . A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z^0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06 +/- 0.12 +/- 0.07 in the photon energy range 0.2 < E_gamma <= 1 GeV and 1.04 +/- 0.09 +/- 0.12 in the photon energy range 1 < E_gamma <= 10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.
Feasibility Studies of Exclusive Diffractive Bremsstrahlung Measurement at RHIC Energies
Chwastowski, Janusz; Cyz, Antoni; Fulek, Łukasz; Kycia, Radosław; Pawlik, Bogdan; Sikora, Rafał; Turnau, Jacek
2015-01-01
Feasibility studies of an observation of the exclusive diffractive bremsstrahlung at RHIC at $\\sqrt{s} = 200$~GeV and at $\\sqrt{s} = 500$~GeV are reported. A simplified approach to the photon and the scattered proton energy reconstruction is used. Influence of possible backgrounds is discussed.
Proton-proton bremsstrahlung towards the elastic limit
International Nuclear Information System (INIS)
In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed
Constructing the nuclear caloric curve from thermal bremsstrahlung
Ortega, R
2004-01-01
The behavior of the emission of thermal bremsstrahlung with the reaction centrality has been studied in Xe-121 + Sn-nat reactions at 50A MeV. A thermal hard photon component is present along the measured impact parameter range (0.1 less than or equal to b/b(max) less than or equal to 0.6) showing th
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
1960-01-01
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
Catalytic coherence transformations
Bu, Kaifeng; Singh, Uttam; Wu, Junde
2016-04-01
Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.
Tsirkov, D; Azaryan, T; Chiladze, D; Dymov, S; Dzyuba, A; Hartmann, M; Kacharava, A; Khoukaz, A; Kulikov, A; Kurbatov, V; Macharashvili, G; Merzliakov, S; Mielke, M; Mikirtychiants, S; Nekipelov, M; Rathmann, F; Serdyuk, V; Stroeher, H; Uzikov, Yu; Valdau, Yu; Wilkin, C
2010-01-01
Hard bremsstrahlung production in proton-proton collisions has been studied with the ANKE spectrometer at COSY-Juelich in the energy range of 353-800 MeV by detecting the final proton pair {pp}_s from the pp -> {pp}_s reaction with very low excitation energy. Differential cross sections were measured at small diproton c.m. angles from 0 to 20 degrees and the average over this angular interval reveals a broad peak at a beam energy around 650 MeV with a FWHM of about 220 MeV, suggesting the influence of Delta(1232)N intermediate states. Comparison with deuteron photodisintegration shows that the cross section for diproton production is up to two orders of magnitude smaller, due largely to differences in the selection rules.
Embréus, Ola; Newton, Sarah; Papp, Gergely; Hirvijoki, Eero; Fülöp, Tünde
2015-01-01
Bremsstrahlung radiation is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of bremsstrahlung radiation reaction on the electron distribution in 2D momentum space. We show that the emission of bremsstrahlung radiation leads to non-monotonic features in the electron distribution function and describe how the simultaneous inclusion of synchrotron and bremsstrahlung radiation losses affects the dynamics of fast electrons. We give quantitative expressions for (1) the maximum electron energy attainable in the presence of bremsstrahlung losses and (2) when bremsstrahlung radiation losses are expected to have a stronger effect than synchrotron losses, and verify these expressions numerically. We find that, in typical tokamak scenarios, synchrotron radiation losses will dominate over bremsstrahlung losses, except in cases of very high density, such as during massive gas injection.
Ji, Y.; Han, H.; Lee, H.
2014-12-01
Analysis of the surface properties of Antarctica is very important to study the change of environment and climate in the polar region. Synthetic aperture radar (SAR) has been widely used to study Antarctic surface properties because it is independent of sun altitude and atmospheric conditions. Interferometric SAR (InSAR) observes surface topography and deformation, by calculating the phase differences between two or more SAR images obtained over same area. InSAR technique can be used for height mapping in stable areas with a few meter accuracy. However, the InSAR-derived height map can have errors if the phase differences due to surface deformation or change of the scattering center by microwave penetration into snow are misinterpreted as the elevation. In this study, we generated the height maps around Terra Nova Bay in East Antarctica from 13 COSMO-SkyMed one-day tandem InSAR pairs obtained from December 2010 to January 2012. By analyzing the height maps averaged over the 13 interferograms and its standard deviation (STD) map, we could classify the surface types into glacier, mountains and basin areas covered with snow. The mountain areas showed very small STD because its surface property is unchanged with time, except for the small STD values caused by the errors from the unwrapping processing, satellite orbit or atmospheric phase distortion. Over the basin areas, however, the STD of the height was much larger than the mountain area due to the variation of scattering center either from the change in surface property such as snowfall and sublimation or by the surface displacement of snow mass that are too slow. A year-long constant motion of such slow-creeping snow body was positively identified by its linear relationship between the misinterpreted elevation and the baseline perpendicular component of InSAR pair. Analysis of time-series coherence maps and amplitude maps have also contributed to clarify the surface properties and its changes due to various
Bremsstrahlung during $\\alpha$-decay: quantum multipolar model
Maydanyuk, Sergei P
2008-01-01
In this paper the improved multipolar model of bremsstrahlung accompanied the $\\alpha$-decay is presented. The angular formalism of calculations of the matrix elements, being enough complicated component of the model, is stated in details. A new definition of the angular (differential) probability of the photon emission in the $\\alpha$-decay is proposed where direction of motion of the $\\alpha$-particle outside (with its tunneling inside barrier) is defined on the basis of angular distribution of its spacial wave function. In such approach, the model gives values of the angular probability of the photons emission in absolute scale, without its normalization on experimental data. Effectiveness of the proposed definition and accuracy of the spectra calculations of the bremsstrahlung spectra are analyzed in their comparison with experimental data for the $^{210}{\\rm Po}$, $^{214}{\\rm Po}$, $^{226}{\\rm Ra}$ and $^{244}{\\rm Cm}$ nuclei, and for some other nuclei predictions are performed (in absolute scale). With ...
Δ-excitation and exchange corrections for NN-Bremsstrahlung
International Nuclear Information System (INIS)
The role of the relativistic amplitudes for a number of O(k) processes usually neglected in potential model calculations of NN-bremsstrahlung is investigated. In particular, we consider the Δ-excitation pole contributions related to the one-pion and one-rho exchange and in addition include the exchange contributions induced by the radiative w, p → πγ decays. The contributions are calculated from relativistic Born amplitudes fitted to Δ-production and absorption data in the energy range up to 1 GeV and then used to supplement potential model and soft photon calculations for nucleon-nucleon bremsstrahlung. The effects on N N γ-observables, although moderate in general, are found to be important in some kinematic domains. (author). 39 refs., 1 tab., 6 figs
Bremsstrahlung and fluorescence in PMTs causing fast afterpulses
International Nuclear Information System (INIS)
LENA (Low Energy Neutrino Astronomy) is a next-generation liquid-scintillator neutrino detector with 50kt target mass. The broad spectrum of physics goals ranging from the sub-MeV to the GeV regime sets high demands on the photosensors. Currently, photomultipliers (PMTs) are the sensor of choice. However, besides detecting photons, they also emit light through bremsstrahlung or fluorescence induced by the electron avalanche in the dynode chain, which can produce further pulses in the same PMT or adjacent sensors. In order to study these effects and their connection to afterpulses occurring in the PMT, measurements of light emission and fast afterpulses have been carried through in collaboration with the CTA project. Both bremsstrahlung and fluorescence have been observed, with the first also being the origin of a type of fast afterpulses.
Distributed converter for high-brightness bremsstrahlung generation
International Nuclear Information System (INIS)
The novel type of the converter to transform a high-density electron beam into bremsstrahlung has been developed and investigated. To increase the thermal stability of the converter by means of a growth of the heat-exchange effectiveness in the area of the bremsstrahlung generation a braking media has been performed as the shot evenly distributed in the cooling water. The results of the computer simulation, thermophysical analysis and experimental study of the converter version on the basis of Pb shot are represented. The possibility of essential increase of the permissible electron beam density as well as reduction of the induced activity and water discharge in comparison with plate- type converter from tantalum is shown.
K shell parameters of some lanthanide elements using bremsstrahlung
International Nuclear Information System (INIS)
The spectrum of external bremsstrahlung (EB) transmitted through Tb and Ho is measured using a HPGe detector spectrometer. A sudden drop in transmitted intensity at K shell binding energy has been used to determine the K shell photoelectric parameters. The unwanted characteristic K x-ray photons generated just below the K edge has been avoided by carrying out a separate experiment in the same geometry. The measured values of K shell parameters have been compared with FFAST values. - Highlights: • Bremsstrahlung attenuation in Tb and Ho targets is measured. • At K edge a sharp decrease in intensity is used to determine the K shell parameters. • The K x-ray photons appear just below the K edge hinders the precise measurement. • This hindrance is avoided using monochromatic gamma source. • Measured values are compared with those obtained from FFAST tabulations
Cross sections for bremsstrahlung production and electron-impact ionization
International Nuclear Information System (INIS)
Electron transport codes require extensive information on the cross sections that govern electron interactions with the atoms that make up the medium. These processes include bremsstrahlung production in the atomic field, excitation and ionization of atomic electrons, and elastic scattering by screened atomic nuclei. These fundamental processes are of basic interest in many fields, but their inclusion in general purpose Monte Carlo transport codes imposes the requirement that reasonably accurate cross-section data be available over a very wide range of energies and for virtually any material. In this chapter, the author discusses two of these processes: bremsstrahlung production and electron-impact ionization. Both of these interactions result in the production of secondary radiations that can be important in radiation transport calculations
Reconstruction of 12 MV bremsstrahlung spectra from measured transmission data
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Transmission data for 12 MV bremsstrahlung beams produced by the process for continuous-pulsed 12 MV electrons coming from a linear accelerator hitting a 1.2mm thick plane tantalum target have been acquired with a combination of iron and Telfon attenuators. Two solid state dosimeters with LiF-TLD material surrounded Telfon were used as detectors. It has been checked that the experimental system achieves reasonably narrow-beam geometry by Monte Carlo simulations. From these transmission data, the original energy photon spectrum has been reconstructed using the iterative least-squares technique and compared with the spectrum calculated with Monte Carlo code system EGSnrc. The comparison shows that the numerical technique for analysis of transmission data can represent 12 MV bremsstrahlung spectrum acceptably well. The purpose of our work is to provide an effective way to reconstruct an unknown photon spectrum with high energy component and prove the correctness of this way.
Loopy constraints on leptophilic dark matter and internal bremsstrahlung
International Nuclear Information System (INIS)
A sharp and spatially extended peak in an astrophysical gamma ray spectrum would provide very strong evidence for the existence of dark matter (DM), given that there are no known astrophysical processes that could mimic such a signal. From the particle physics perspective, perhaps the simplest explanation for a gamma ray peak is internal bremsstrahlung in DM annihilation through a charged t-channel mediator η close in mass to the DM particle χ. Since DM annihilation to quarks is already tightly constrained in this scenario, we focus here on the leptophilic case. We compute the electromagnetic anapole and dipole moments that DM acquires at 1-loop, and we find an interesting enhancement of these moments if the DM particle and the mediator are close in mass. We constrain the DM anapole and dipole moments using direct detection data, and then translate these limits into bounds on the DM annihilation cross section. Our bounds are highly competitive with those from astrophysical gamma ray searches. In the second part of the paper, we derive complementary constraints on internal bremsstrahlung in DM annihilation using LEP mono-photon data, measurements of the anomalous magnetic moments of the electron and the muon, and searches for lepton flavor violation. We also comment on the impact of the internal bremsstrahlung scenario on the hyperfine splitting of true muonium
PIXE spectrum analysis taking into account bremsstrahlung spectra
International Nuclear Information System (INIS)
Continuous background appearing over the wide region of X-ray energy in the PIXE spectrum is very troublesome presence in the peak fitting. In the usual manner, the spectrum of continuous background is predicted as a function of polynomial and is subtracted from the X-ray spectrum. However, the parameters of the polynomial are determined with difficulty in the case that the continuous background exists under many peaks of characteristic X-rays. We calculated the production cross sections of continuous X-rays for several elements on the basis of the theories of quasi-free electron bremsstrahlung (QFEB), secondary electron bremsstrahlung (SEB) and atomic bremsstrahlung (AB), and obtained the continuous X-ray spectrum as a function of atomic number and X-ray energy. X-ray spectra of a standard sample and of a bovine liver sample were analyzed by a pattern analysis method assuming the reference spectra consisting of characteristic X-rays and continuous X-rays for each element. The results of analysis are quite satisfactory. By the present method, the PIXE spectra can be analyzed under little influence of the background subtraction, and it enables us a full auto-analysis of PIXE spectrum
Cherenkov radiation versus Bremsstrahlung in the Tamm problem
International Nuclear Information System (INIS)
The charge motion in medium on a finite space interval is considered. We analyze recent alternative attempts to interpret the radiation described by the Tamm formula as an interference of two instantaneous accelerations arising at the beginning and termination of motion. Exact solution of the Tamm problem in the time representation shows that in some time interval only the Bremsstrahlung shock wave associated with the beginning of motion and the Cherenkov shock wave exist, and there is no Bremsstrahlung shock wave associated with the end of motion. This proves that in the time representation the Cherenkov radiation is not necessarily related to the interference of initial and final Bremsstrahlung shock waves. In the spectral representation, we consider the motion consisting of accelerated, decelerated, and uniform parts. Analytic formulae are obtained describing electromagnetic fields and radiation intensities corresponding to this motion. Approximating the instantaneous acceleration in the original Tamm problem by the acceleration on a finite path and then tending its length to zero, we prove that the radiation intensity produced on the accelerated part of the charge trajectory also tends to zero (despite the infinite value of acceleration in this limit). This means that in the original Tamm problem the instantaneous acceleration and deceleration do not contribute to the radiation intensity (as it is usually believed). It seems that only the combined consideration of the Tamm problem in the time and spectral representations shows that the above-mentioned alternative interpretation of the Cherenkov relation fails
Raman Scattering in Coherently Prepared Atomic System
Institute of Scientific and Technical Information of China (English)
LIN Fu-Cheng(林福成); Yongjoo Rhee; Jonghoon Yi; Hyunmin Park
2001-01-01
Atoms in the coherent superposition state prepared by a pulse pair are used as a novel optical memory material where a single interrogation pulse will produce a new pulse pair preserving the relative amplitudes and phases of the preparing pulse pair. Such a coherent superposition state can also be specially tailored along the propagation path to generate Raman scattering in a relatively short distance with very high efficiency.
International Nuclear Information System (INIS)
Direct-photon pair production in high-energy hadron collisions is considered. After discussing general aspects of such reactions and giving a brief historical survey of that subject, we present some calculations on the contributions from q anti-q and g g collisions (the latter via the quark box) to the γγ continuum, and on possible resonant contributions. Finally, an estimation of the indirect-photon background (mainly due to π0 and eta decay, and to quark bremsstrahlung) is given for colliding-beam conditions at high energy; assuming both photons to be measured at 900 with equal and opposite momenta, and (within experimental limits) unaccompanied by any hadrons or additional photons, it is shown that this background can be sharply reduced
Bremsstrahlung of Fast Charged Particles on Clusters in a Wide Spectral Range
International Nuclear Information System (INIS)
Within the framework of the first Born approximation and a simple model of the structural factor, the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to the polarization mechanism in a wide spectral range including a domain of high frequencies. The role of cooperative phenomena in the static and polarization channels of bremsstrahlung is investigated. It is established that these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster to the polarization bremsstrahlung substantially increases its intensity and changes its dependence on the basic parameters of the problem compared with the case of bremsstrahlung on an isolated atom
Bremsstrahlung of fast charged particles when scattering on clusters in wide spectral range
International Nuclear Information System (INIS)
Within the framework of the first Born approximation and a simple model of the structural factor, the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to the polarization mechanism in a wide spectral range including a domain of high frequencies. The role of cooperative phenomena in the static and polarization channels of bremsstrahlung is investigated. It is established that these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster to the polarization bremsstrahlung substantially increases its intensity and changes its dependence on the basic parameters of the problem compared with the case of bremsstrahlung on an isolated atom
International Nuclear Information System (INIS)
Some considerations about the importance of coherence effects for bremsstrahlung processes in non-equilibrium dense matter (Landau-Pomeranchuk-Migdal-effect) are presented. They are of particular relevance for the application to photon - and di-lepton production from high energy nuclear collisions, to gluon radiation in QCD transport, or parton kinetics and to neutrino and axion radiation from supernova explosion and from hot neutron stars. The soft behavior of the bremsstrahlung from a source described by classical transport models is discussed and pocket correction formulas for the in-matter radiation cross sections are suggested in terms of standard transport coefficients. The radiation rates are also discussed within a non-equilibrium quantum field theory (Schwinger-Kadanoff-Baym-Keldysh) formulation. A classification of diagrams and corresponding resummation in physically meaningful terms is proposed, which considers the finite damping width of all source particles in matter. This way each diagram in this expansion is already free from the infra-red divergences. Both, the correct quasi-particle and quasi-classical limits are recovered from this subset of graphs. Explicit results are given for dense matter in thermal equilibrium. The diagrammatic description may suggest a formulation of a transport theory that includes the propagation of off-shell particles in non-equilibrium dense matter. (orig.)
International Nuclear Information System (INIS)
We have considered an irradiation effect on zooplankton eggs applied by bremsstrahlung induced from pulsed intense electron beam. Zooplankton eggs about 200 have been successfully inactivated using a bremsstrahlung at 3 kGy. We found that 63.9% of zooplankton eggs are inactivated by bremsstrahlung irradiation. It was the increase of 30 points in comparisons with 33.3% of zooplankton eggs inactivated for non-irradiation case. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Chul; Kim, Wun Hwan; Um, Soon Ho; Seo, Yeon Seok; Park, Eun Kyung; Oh, Sun Young; Han, You Mie [Korea Univ. Anam Hospital, Seoul (Korea, Republic of); Choe, Jae Gol [Hallym Univ. Hangang Secred Heart Hospital, Seoul (Korea, Republic of)
2011-03-15
Y 90 resin microsphere radioembolization is used to treat inoperable hepatic tumors. After injection of Y 90 resin microsphere, the only method to visualize the distribution of Y 90 is the scintigraphic imaging of bremsstrahlung radiation. The purpose of this study was to evaluate the characteristics and usefulness of bremsstrahlung imaging in Y 90 resin microsphere treatment. Twenty patients (22 administrations) underwent intra arterial Y 90 resin microsphere treatment. For pretreatment planning, images of Tc 99m albumin macroag gregate (MAA) arterial injection and hepatic contrast angiography were obtained. Post treatment bremsstrahlung images were taken and compared with pre treatment images. The extrahepatic activity was evaluated on bremsstrahlung images. To correlate the size and vascularity of the tumors with tumor visualization on bremsstrahlung images, the individual tumors were grouped according to visualization on each image and compared with one another by size and tumor to normal ratio. All post therapeutic bremsstrahlung images showed similar contours of the liver with pre treatment angiography. No extrahepatic activity was seen in all cases. The visualized tumors on bremsstrahlung images were significantly larger than the non visualized tumors on bremsstrahlung images were significantly higher than those of the non visualized tumors. Bremsstrahlung images after intra arterial Y 90 resin microsphere treatment are useful in evaluating the intrahepatic distribution of radioisotope and detecting possible extrahepatic activity.
Internal bremsstrahlung signatures in light of direct dark matter searches
International Nuclear Information System (INIS)
Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of a minimal mass-degenerate scenario consisting of a Majorana dark matter particle that couples to a fermion and a scalar via a Yukawa coupling. The upper limits on the annihilation cross section set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to one of the light quarks. In our minimal scenario we examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple predominantly to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires, depending on the concrete scenario, boost factors larger than 5–10
Internal bremsstrahlung signatures in light of direct dark matter searches
International Nuclear Information System (INIS)
Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than ∝10.
Internal bremsstrahlung signatures in light of direct dark matter searches
Energy Technology Data Exchange (ETDEWEB)
Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik Dept. T30d
2013-06-15
Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than {proportional_to}10.
Formation of bremsstrahlung in an absorptive QED/QCD medium
Bluhm, Marcus; Gossiaux, Pol Bernard; Gousset, Thierry; Aichelin, Joerg
2012-01-01
The radiative energy loss of a relativistic charge in a dense, absorptive medium can be affected significantly by damping phenomena. The effect is more pronounced for large energies of the charge and/or large damping of the radiation. This can be understood in terms of a competition between the formation time of bremsstrahlung and a damping time scale. We discuss this competition in detail for the absorptive QED and QCD medium, focusing on the case in which the mass of the charge is large com...
Laser field effects on the collective inverse Bremsstrahlung process
International Nuclear Information System (INIS)
The energy loss method has been applied to a large variety of transport problems in optics, solid state and fusion research. Usually, the transport equations are linearized, so they cannot deal with the multiphoton interaction in the presence of an intense laser field. In particular, not much attention has been given to collective contribution to the rates of the energy loss and inverse Bremsstrahlung process from a quantum mechanical viewpoint. On the basis of the center of mass approach, we show the proper way to calculate the collective part of these rates, which depend on the energy loss function Im{-1/ε(q-vector,w)}. (author). 31 refs
Diffraction structures in high-energy electron–nucleus bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Jakubassa-Amundsen, D.H.
2013-10-30
The emission of hard bremsstrahlung during the collision of relativistic spin-polarized electrons with inert spin 0 and spin 1/2 nuclei is calculated within the weak-potential approximation. Diffraction structures in the polarization correlations between the beam electron and the emitted photon are predicted for collision energies in the region 50–120 MeV if the photon is emitted at backward angles. The dynamical recoil plays a dominant role concerning the location and the shape of the structures. The target nuclei {sup 19}F, {sup 64}Zn and {sup 89}Y are investigated.
Atomic Bremsstrahlung in ion-atom collisions (stripping)
International Nuclear Information System (INIS)
Atomic Bremsstrahlung produced in high energy (non relativistic) ion-atom collisions including retardation effects is studied. Mechanical states of the system are described by the symmetrical eikonal approximation and Hartree-Fock electronic wave functions for the calculation of the shape factor of each atom. Photon energy spectra are presented for collisions of protons against noble gases, Ne, Ar, Kr and Xe. The contribution of each atomic shell to these spectra is studied, where lowest shell (1s) corresponds to the hard X-ray region and the higher shells correspond to lower photon energies. (Author)
Reconstruction of extensive air showers using the MIDAS molecular Bremsstrahlung detector
Energy Technology Data Exchange (ETDEWEB)
Castro, Andre Ramos de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politecnica; Bonifazi, Carla; Santos, Edivaldo Moura; Soares, Elvis do Amaral; Mello Neto, Joao Ramos Torres de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica; Almeida, Rogerio Menezes de [Universidade Federal Fluminense (EEIMVR/UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial Metalurgica de Volta Redonda
2011-07-01
Full text: The weakly ionized plasma created in the atmosphere after the passage of an Extensive Air Shower (EAS) gives rise to the emission of continuous radiation known as Molecular Bremsstrahlung Radiation (MBR) as free electrons scatter off neutral nitrogen (and less frequently oxygen) molecules. The isotropic and unpolarized nature of MBR rises the possibility of an EAS detection similar to that using fluorescence telescopes to capture the ultraviolet light emitted by the ionized nitrogen molecules. The MBR emission, however, falls into the centimeter wavelength range, requiring the use of radio/microwave antennas instead of optical telescopes. In order to test the feasibility of the technique, the MIDAS (Microwave Detection of Air Showers) Collaboration has built a prototype detector where a parabolical reflector illuminates a multi-pixel camera of commercial TV satellite C-band (3.4-4.2 GHz) feeds. This work addresses the geometrical reconstruction of EAS induced by Ultra High Energy Cosmic Rays (UHECR) using the MIDAS detector. The reconstruction chain is similar to that currently applied to the Auger Fluorescence detector events. We have simulated the shower MBR emission assuming two different scenarios: coherent and incoherent emission, i.e., radiation intensity scaling quadratically and linearly with the energy of the primary particle. The MIDAS prototype detector's response is then simulated. Finally, given the simulated events in real data format, we reconstruct the shower's arrival direction, including direction uncertainties and estimate the expected rate of observed events. (author)
Reconstruction of extensive air showers using the MIDAS molecular Bremsstrahlung detector
International Nuclear Information System (INIS)
Full text: The weakly ionized plasma created in the atmosphere after the passage of an Extensive Air Shower (EAS) gives rise to the emission of continuous radiation known as Molecular Bremsstrahlung Radiation (MBR) as free electrons scatter off neutral nitrogen (and less frequently oxygen) molecules. The isotropic and unpolarized nature of MBR rises the possibility of an EAS detection similar to that using fluorescence telescopes to capture the ultraviolet light emitted by the ionized nitrogen molecules. The MBR emission, however, falls into the centimeter wavelength range, requiring the use of radio/microwave antennas instead of optical telescopes. In order to test the feasibility of the technique, the MIDAS (Microwave Detection of Air Showers) Collaboration has built a prototype detector where a parabolical reflector illuminates a multi-pixel camera of commercial TV satellite C-band (3.4-4.2 GHz) feeds. This work addresses the geometrical reconstruction of EAS induced by Ultra High Energy Cosmic Rays (UHECR) using the MIDAS detector. The reconstruction chain is similar to that currently applied to the Auger Fluorescence detector events. We have simulated the shower MBR emission assuming two different scenarios: coherent and incoherent emission, i.e., radiation intensity scaling quadratically and linearly with the energy of the primary particle. The MIDAS prototype detector's response is then simulated. Finally, given the simulated events in real data format, we reconstruct the shower's arrival direction, including direction uncertainties and estimate the expected rate of observed events. (author)
Photoproduction of $\\pi^0$-pairs off protons and off neutrons
Dieterle, M.; Oberle, M.(Institut für Physik, University of Basel, Basel, CH-4056, Switzerland); Ahrens, J; Annand, J. R. M.; Arends, H.J.(Institut für Kernphysik, University of Mainz, Mainz, D-55099, Germany); Bantawa, K.(Kent State University, Kent, OH, 44242, USA); Bartolome, P. A.; Beck, R.; Bekrenev, V.; H. Berghäuser; Braghieri, A.; Branford, D.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.
2015-01-01
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of $\\pi^0\\pi^0$ pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557~MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam co...
Photoproduction of π0-pairs off protons and off neutrons
Dieterle, M.; Oberle, M.(Institut für Physik, University of Basel, Basel, CH-4056, Switzerland); Ahrens, J; Annand, J. R. M.; Arends, H.J.(Institut für Kernphysik, University of Mainz, Mainz, D-55099, Germany); Bantawa, K.(Kent State University, Kent, OH, 44242, USA); Bartolome, P. A.; Beck, R.; Bekrenev, V.; H. Berghäuser; Braghieri, A.; Branford, D.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.
2015-01-01
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π0π0 pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered ene...
Molecular Bremsstrahlung Radiation at GHz Frequencies in Air
Samarai, I Al; Deligny, O; Letessier-Selvon, A; Montanet, F; Settimo, M; Stassi, P
2016-01-01
A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be $2\\times10^{-21} $W cm$^{-2}$ GHz$^{-1}$ at 10 km from the shower core for a vertical shower induced by a proton of $10^{17.5}$ eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.
Molecular bremsstrahlung radiation at GHz frequencies in air
Al Samarai, Imen; Bérat, Corinne; Deligny, Olivier; Letessier-Selvon, Antoine; Montanet, François; Settimo, Mariangela; Stassi, Patrick
2016-03-01
A detection technique for ultra-high-energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons and neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be 2 ×1 0-21 W cm-2 GHz-1 at 10 km from the shower core for a vertical shower induced by a proton of 1 017.5 eV . In addition, a recent measurement of bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.
Polarization of bremsstrahlung at electron scattering in an anisotropic medium
International Nuclear Information System (INIS)
Bremsstrahlung from relativistic electrons is considered under conditions when some transverse direction of momentum transfer is statistically preferred. It is shown that in the dipole approximation all the medium anisotropy effects can be accumulated into a special modulus-bound transverse vector, N. To exemplify a target with N2∼1, we calculate radiation from an electron incident at a small angle on an atomic row in an oriented crystal. Radiation intensity and polarization dependencies on the emission angle and frequency for constant N are investigated. Net polarization for the angle-integral cross section is evaluated, which appears to be proportional to N2/2, and decreases with the increase of the photon energy fraction. A prominent feature of the radiation angular distribution is the existence of an angle at which the radiation may be completely polarized, in spite of the target complete or partial isotropy; that owes to existence of an origin-centered tangential circle for polarization in the fully differential radiation probability kernel. Possibilities for utilizing various properties of the polarized bremsstrahlung flux for preparation of polarized photon beams and for probing intrinsic anisotropy of the medium are analyzed.
Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung
International Nuclear Information System (INIS)
The x-ray bremsstrahlung spectrum emitted by the electron population in a 14.5 GHz ECR plasma source has been measured using a NaI(Tl) detector, and hence the electron temperature of the higher energy electron population in the plasma has been determined. The x-ray spectra for Ne and Ar gases have been systematically studied as a function of inlet gas pressure from 7 × 10−7 mbar to 7 × 10−5 mbar and for input microwave power ∼1 W to ∼300 W. At the highest input power and optimum pressure conditions, the end point bremsstrahlung energies are seen to reach ∼700 keV. The estimated electron temperatures (Te) were found to be in the range 20 keV–80 keV. The Te is found to be peaking at a pressure of 1 × 10−5 mbar for both gases. The Te is seen to increase with increasing input power in the intermediate power region, i.e., between 100 and 200 W, but shows different behaviour for different gases in the low and high power regions. Both gases show very weak dependence of electron temperature on inlet gas pressure, but the trends in each gas are different.
Koehn, Christoph
2012-01-01
Within thunderstorms electrons can gain energies of up to hundred(s) of MeV. These electrons can create X-rays and gamma-rays as Bremsstrahlung when they collide with air molecules. Here we calculate the distribution of angles between incident electrons and emitted photons as a function of electron and photon energy. We derive these doubly differential cross-sections by integrating analytically over the triply differential cross-sections derived by Bethe and Heitler; this is appropriate for light atoms like nitrogen and oxygen and for electron energies between 1 keV and 1 GeV. We also discuss some simplifying limit cases, and we derive some simple approximation for the most probable scattering angle. We also provide cross sections for the production of electron positron pairs from energetic photons when they interact with air molecules. This process is related to the Bremsstrahlung process by some physical symmetry. Therefore the results above can be transferred to predictions on the angles between incident p...
Superfluid characteristics of induced-pairing model
International Nuclear Information System (INIS)
We study electromagnetic and thermodynamic properties of a model coexisting local electron pairs and itinerant carriers coupled via the intersubsystem charge exchange. The calculations of the London penetration depth, energy gap, the magnetic critical fields and the coherence length in the superconducting phase are performed. The effects of reducing binding energy of local pairs are discussed. (author)
Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom
Job, P K; Semones, E
1999-01-01
High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...
Search of gamma-rays Bremsstrahlung mirror reflection
International Nuclear Information System (INIS)
Full text: Total external reflection of soft X-rays is widely used in many X-ray optic systems. At the same time in the wavelength range of gamma rays the corresponding total external reflection on macroscopic smooth surface hasn't been surely verified yet. Samarkand microtron MT-22S with 330 meter flying distance was used for a search experiment of detecting gamma-ray total external reflection. Measured slip angles (i.e. angles between incident ray and reflector surface) are negligible and don't exceed tens of micro-radian. And it is a complicated problem to get required characteristics of collimating, reflecting and detecting gamma rays. The experimental setup was described earlier. Here we report experimental results of very small-angle Bremsstrahlung scattering only in comparison with results of computer simulation by Monte-Carlo method. It is continuous energy spectrum of Bremsstrahlung gamma rays (described by Shift formula) that is the first characteristic property of the experiment. And it is air in the way of gamma rays that is the second one. Continuous energy spectrum provides a use of some range of reflector inclinations (but bounded above) that satisfy the conditions of the total reflection for a corresponding part of gamma ray beam. As for air it absorbs gamma rays on their long way to detectors lowering the ratio of searching effect to background. Horizontal belt type Bremsstrahlung beam was collimated for the experiment. So the beam's horizontal acceptance was relatively wide (∼ 34 mrad). A collimator with gap heights of 100, 50 and 20 μ limited the beam in vertical that results in beam vertical divergences of 125, 62 and 25 μrad, correspondingly. The gap height of 100 μ used for positioning procedure, and the ones of 50 and 20 μ used for measurements. No separate peak of reflected gamma rays was observed at the experiment. However when vertical profiles measured at the reflector inclinations of 0 and 40 μrad are compared one can see gamma
Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings
van de Bruck, Carsten; Burrage, Clare; Morrice, Jack
2016-08-01
The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.
Vacuum Cherenkov radiation and bremsstrahlung from disformal couplings
van de Bruck, Carsten; Morrice, Jack
2016-01-01
The simplest way to modify gravity is to extend the gravitational sector to include an additional scalar degree of freedom. The most general metric that can be built in such a theory includes disformal terms, so that standard model fields move on a metric which is the sum of the space time metric and a tensor constructed from first derivatives of the scalar. In such a theory gravitational waves and photons can propagate at different speeds, and these can in turn be different from the maximum speed limit for matter particles. In this work we show that disformal couplings can cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently in vacuum, depending on the background evolution of the scalar field. We discuss the implications of this for observations of cosmic rays, and the constraints that arise for models of dark energy with disformal couplings.
Decay energy of 55Fe from its inner Bremsstrahlung spectrum
Indian Academy of Sciences (India)
S L Keshava; K Gopala; P Venkataramaiah
2001-06-01
Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm. dia × 5.08 cm thick NaI (Tl) detector. It was subjected to suitable statistical treatment and various corrections using Liden and Starfelt procedure. The corrected spectrum agrees well with the Glauber and Martin theory for 1s electron capture beyond 100 keV. From the Jauch plot, the decay energy of 232.36 ± 0.64 keV was obtained.
Internal bremsstrahlung endpoint energy of {sup 54}Mn
Energy Technology Data Exchange (ETDEWEB)
Hindi, M. M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Larimer, R.-M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Norman, E. B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rech, G. A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2000-05-01
For {sup 54}Mn there is a discrepancy between the Q{sub EC} obtained from the endpoint energy of the internal bremsstrahlung (IB) spectrum which accompanies the electron capture decay (Q{sub EC}=1353{+-}8 keV) and that obtained from the accepted mass differences (Q{sub EC}=1377{+-}1 keV). This Q value is needed to deduce the partial-half life of the astrophysically interesting {beta}{sup -} decay of {sup 54}Mn from the recently measured {beta}{sup +} partial half-life. To resolve this discrepancy, we have remeasured the endpoint energy of the IB spectrum, by recording coincidences between the IB and the 835-keV {gamma} ray, both detected in Compton-suppressed Ge detectors. The Q{sub EC} we deduce is 1379{+-}8 keV, in agreement with the accepted mass differences. (c) 2000 The American Physical Society.
Proton-proton bremsstrahlung at 280 MeV
International Nuclear Information System (INIS)
A proton-proton bremsstrahlung experiment has been carried out at TRIUMF using a 280-MeV polarized proton beam impinging on a liquid-hydrogen target. All three outgoing particles were detected: the higher-energy proton in a magnetic spectrometer, the lower-energy proton with plastic scintillators, and the photon in lead-glass Cherenkov detectors. The experiment shows the first unambiguous evidence for off-shell effects in the free nucleon-nucleon interaction, in that the analyzing powers disagree strongly with the predictions of the soft-photon approximation (which incorporates only on-shell information) but are consistent with the results of calculations using the Bonn and Paris potentials
Calculation of electron and bremsstrahlung fields in heterogenous material layers
International Nuclear Information System (INIS)
The Ssub(N)-method, a numerical technique to solve the general transport equation is used to describe the passage of electrons through material layers and is discussed with respect to precision and difficulty in comparision with the Monte-Carlo-method. The production and tracking of secondary electrons and bremsstrahlung photons is taken into account. Therefore, the procedure allows investigations in a broad spectral region which is of interest for medical and technical applications. As results energy spectra and distributions in arrangements of different textures are reported for electron energies up to 20 MeV. With a reasonable need of computer time the influence of an inhomogeneous electron irradiation can be studied which is of great importance in electron radiation therapy. The integration of the necessary computer codes in the modular program system RSYST allows an almost automatic performance of calculation and data transfer. (orig./ORU)
The double copy: Bremsstrahlung and accelerating black holes
Luna, Andres; Nicholson, Isobel; O'Connell, Donal; White, Chris D
2016-01-01
Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently introduced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.
Rhodium M(o)ssbauer Effect Generated by Bremsstrahlung Excitation
Institute of Scientific and Technical Information of China (English)
CHENG Yao; XIA Bing; LIU Yi-Nong; JIN Qing-Xiu
2005-01-01
@@ A method for effectively generating long-lived Mossbauer photons and methods for proving the associated Mossbauer effects are reported. For the first time, we observed resonant propagation and resonant absorption of 40-keV Mossbauer photons emitted from 103Rh through (γ,γ′) process excited by bremsstrahlung. This is a new efficient way to generate long-lived isomer (＞ 1 ms) for Mossbauer spectroscopy with sufficient brilliance.An abnormally large ratio of resonant absorption between horizontal and vertical directions indicates horizontal trapping of Mossbauer photons and anisotropic Mossbauer emission, which can be attributed to gravitational effect on the 103Rh Mossbauer isomer with extremely narrow 10-19 eV linewidth.
Vircator in regime of x-ray Bremsstrahlung
International Nuclear Information System (INIS)
The power vircator with multi-flight electrons cross optical thin anode foil power pulses generation of X-ray radiation created and operated in first. The vircator realized on the base of direct action electron accelerator with supplies of inductive energy storage with plasma switch of current. In paper results of 2-D self-consistent calculations of electron beam dynamics in vircator camera and determined spectra of arise UHF-radiation. The results of first experiments on vircator X-ray Bremsstrahlung for thin (10 mkm, Ta) and thick (100 mkm, Ta) anode foils are presented. The dose of X-ray radiation for thin foil (Eγ > 30 keV) in 8 greater than dose received for thick anode, middle photon energy reduced from 80 keV to 30 keV
Koehn, Christoph; Chanrion, Olivier; Neubert, Torsten
2016-04-01
Streamers, the beginning stages of electric discharges, evolve differently depending on their polarity and on the ambient gas composition. One of the well-known supporting mechanisms is "UVphotoionization" where, in air, excited nitrogen emits a UV photon subsequently ionizing oxygen. In pure nitrogen, however, this mechanism is suppressed because of the lack of oxygen; hence this mechanism strongly depends on the ambient gas medium. In this paper we introduce Bremsstrahlung induced photoionization: In the ambient electric field,electrons gain energy and produce Bremsstrahlung photons through the collision with the ambient gas molecules; similarly to "UV-photoionization", the Bremsstrahlung photons ionize the gas molecules and, as such, create electron populations detached from the initial electron patch. For the study of this process we implemented the electron-nucleus Bremsstrahlung process as well as the photoionization by individual photons into an already existing 2.5 D Monte Carlo particle code for the simulation of streamers. We initiated plasma patches of electrons and ions with varying initial electron energies and peak densities in different ambient fields in air and pure nitrogen. We will compare the temporal evolution of the electron densities as well as of the electric field with and without modelling Bremsstrahlung. In air we will test the influence of Bremsstrahlung induced photoionization against "UV-photoionization". We will show that the influence of Bremsstrahlung is negligible in air, but plays a significant role in pure nitrogen at standard temperature and pressure.
Maydanyuk, Sergei P
2016-01-01
In this paper a role of many-nucleon dynamics in formation of the compound $^{5}{\\rm Li}$ nucleus in the scattering of protons off $\\alpha$-particles at the proton incident energies up to 20 MeV is investigated. We propose a bremsstrahlung model allowing to extract information about probabilities of formation of such nucleus on the basis of analysis of experimental cross-sections of the bremsstrahlung photons. In order to realize this approach, the model includes elements of microscopic theory and also probabilities of formation of the short-lived compound nucleus. Results of calculations of the bremsstrahlung spectra are in good agreement with the experimental cross-sections.
Coherent dynamics in semiconductors
DEFF Research Database (Denmark)
Hvam, Jørn Märcher
1998-01-01
Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...
Meson exchange currents in neutron-proton bremsstrahlung
International Nuclear Information System (INIS)
Background: The meson exchange current (MEC) contribution is important in the neutron-proton bremsstrahlung process (npγ) when the two nucleon-scattering angles are small. However, our understanding of such effects is limited, and the reason why meson exchange current effects dominate the npγ cross section has not been thoroughly investigated. Purpose: The primary focus of this investigation is to understand the origin of the MEC contribution, to identify the leading MEC amplitudes, and to comprehend why these MEC amplitudes dominate the npγ cross sections. Method: We used a new method that combines the one-boson-exchange (OBE) approach with the soft-photon approach to define 10 different npγ amplitudes. These amplitudes are used to calculate npγ cross sections at 225 MeV for nucleon laboratory scattering angles lying between 12 deg. and 43 deg. The results of these calculations are then compared to investigate the meson exchange current effect in npγ. Results: (i) The OBE amplitude Mnpγ,μPS and the two-u-two-t special (TuTts) soft-photon amplitude Mnpγ,μTuTts predict quantitatively similar npγ cross sections. (ii) The MEC effect is found to be significant when the two nucleon-scattering angles are far from the elastic limit (45 deg.), but the effect is insignificant when the nucleon angles approach the elastic limit. (iii) The origin of the MEC effect and the leading MEC amplitudes have been identified in this investigation. Furthermore, the reason is now clear why the leading MEC amplitudes dominate the npγ cross section when the nucleon-scattering angles are small. (iv) The contribution from the anomalous magnetic moments of the proton and the neutron is confirmed to be negligibly small. (v) In general, the theoretical cross sections using the amplitude Mnpγ,μPS, or the amplitude Mnpγ,μTuTts, are consistent with the triple differential cross sections recently measured at the Los Alamos National Laboratory. However, there exists an unexplained
International Nuclear Information System (INIS)
Gold-198 (βmax= 0.96 MeV (98.6%), γmax= 0.412 MeV (95.5%) and T1/2 = 2.7 days) is a well-known therapeutic beta emitter in the field of nuclear medicine, and is being used for the treatment of many different cancers. In the present study, the Bremsstrahlung exposure induced by 198Au in different human tissues, DNA and RNA has been calculated. The specific Bremsstrahlung constant (ΓBr), Probability of energy loss by beta during Bremsstrahlung emission (PBr) and Bremsstrahlung activity (Arelease)Br were estimated. We strongly recommend these parameters should be considered in absorbed dose calculations of radionuclide therapy via 198Au. (orig.)
Calculation of molecular bremsstrahlung radiation and air shower plasma conditions for CROME
International Nuclear Information System (INIS)
The possibility of the detection of extensive air showers by observation of isotropic microwave radiation due to molecular bremsstrahlung has been proposed in 2008. Ionization electrons, forming a short-lived, tenuous plasma in the wake of the shower, interact with atmospheric neutrals and produce bremsstrahlung. Concurrent with first measurements of microwave radiation by the CROME experiment in Karlsruhe, an independent, theory based model for emission of isotropic bremsstrahlung emission has been developed. In this talk, the assumptions of the model for bremsstrahlung emission and the findings concerning the state of the plasma in an air shower are discussed. The magnitude of the expected signal is calculated and compared to predictions made in the original proposal by Gorham et al. and to the observed GHz signals.
International Nuclear Information System (INIS)
Neutron energy spectra in carbon, nitrogen and oxygen were calculated for various bremsstrahlung end-point energies and, from these, tissue spectra were calculated using the tissue equivalent molecular formula C5H40O18N. The method involves folding the known bremsstrahlung spectrum shape with the cross section for each possible decay mode in each element which leads to neutron production. The partial photoneutron cross sections used have been derived from published data
Bremsstrahlung radiation from electron-atom collisions in high pressure mercury lamps
International Nuclear Information System (INIS)
Bremsstrahlung coefficients for electron-mercury-atom collisions were computed using the corrected phase-shift approximation. These corrected bremsstrahlung coefficients are a weighted average of coefficients from the phase-shift and momentum transfer approximations. Phase-shifts determined from solutions of the Dirac-Fock scattering equations including both static and dynamic polarization potentials and exchange effects were used. The corrected coefficients approach the same limit at longer wavelengths as coefficients from the simpler momentum transfer approximation, but are generally larger
Bremsstrahlung radiation from electron-atom collisions in high pressure mercury lamps
Energy Technology Data Exchange (ETDEWEB)
Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States)
2004-06-07
Bremsstrahlung coefficients for electron-mercury-atom collisions were computed using the corrected phase-shift approximation. These corrected bremsstrahlung coefficients are a weighted average of coefficients from the phase-shift and momentum transfer approximations. Phase-shifts determined from solutions of the Dirac-Fock scattering equations including both static and dynamic polarization potentials and exchange effects were used. The corrected coefficients approach the same limit at longer wavelengths as coefficients from the simpler momentum transfer approximation, but are generally larger.
Ropponen, Tommi
2010-01-01
This thesis is a study of Electron Cyclotron Resonance Ion Source (ECRIS) plasmas and their properties. The focus has been on time evolution studies of bremsstrahlung emission, ion beam current production and numerical studies of electron heating in ECRIS plasmas. The time scales for reaching steady state bremsstrahlung production at electron energies greater than 30 keV is shown to be on the order of several hundreds of milliseconds. The ion beam currents of different elements...
Screening Effects on Nonrelativistic Bremsstrahlung in the Scattering of Electrons by Neutral Atoms
Jung, Young-Dae; Lee, Kun-Sang
1995-01-01
Atomic screening effects on nonrelativistic electron-atom bremsstrahlung radiation are investigated using a simple analytic solution of the Thomas-Fermi model for many-electron atoms. The Born approximation is assumed for the initial and final states of the projectile electron. The results show that the screening effect is important in the soft radiation region and is decreasing with increasing radiation. These results help provide correct information about the behavior of bound electrons in the target atom in bremsstrahlung processes.
Effects of electron temperature and density on ion-dust bremsstrahlung
Jung, Young-Dae; MURAKAMI, Izumi
2009-01-01
The effects of electron temperature and density on the ion-dust grain bremsstrahlung process industy plasmas are studied. The ion-dust bremsstrahlung radiation cross section is obtained as afunction of the dust charge, dust radius, Debye length, collision energy, radiation energy, electrondensity, and electron temperature by using the Born approximation. It is shown that the ion-dustbremsstrahlung radiation cross section decreases with an increase in the electron density in dustyplasmas. It i...
Dose assessment of Bremsstrahlung induced by beta isotopes of Uranium-238 series in human tissues
International Nuclear Information System (INIS)
In the natural Uranium-238 decay series, pure beta isotopes such as 234Th, 234Pa, 214Pb, 214Bi, 210Pb and 210Bi are released. These beta isotopes having maximum beta energies and it induces the Bremsstrahlung radiation. The Bremsstrahlung component of these beta isotopes has been traditionally ignored in dosimetry calculations. This may be due to a lack of available methods for including this component in the calculations or to the belief that the contribution of this component is negligible compared to that of other emissions. The resulting hazard of Bremsstrahlung radiation may therefore be some of concern, at least theoretically, and should be systematically evaluated. In the present investigation, it has been estimated that the Bremsstrahlung dose of beta isotopes of Uranium-238 series such as 234Th, 234Pa, 214Pb, 214Bi, 210Pb and 210Bi in various body organs (Adrenals, Brain, Breasts, Gallbladder Wall, LLI Wall, Small Intestine, Stomach, ULI Wall, Heart Wall, Kidneys, Liver, Lungs, Muscle, Ovaries, Pancreas, Red Marrow, Bone Surfaces, Skin, Spleen, Testes, Thymus, Thyroid, Urine Bladder Wall, Uterus, Fetus, Placenta and Total Body). We have considered bone and muscle is target organs. These estimated values shows that the Bremsstrahlung radiation absorbed dose contribution from an organ to itself is very small compared to that from the beta source, but contribution to other organs is not always negligible. Hence the component of Bremsstrahlung dose to total dose should be considered in the environmental radioactivity dose calculations. (author)
Graded-Z flash-bremsstrahlung depth-dose spectrometer
International Nuclear Information System (INIS)
A depth-dose spectrometer is described for measuring photon spectra from a single, short, intense burst of photons in the energy range of 30-1000 keV. It consists of 13 layers of three each thermoluminescent dosimeters (TLDs) separated by metallic foils graded in Z and thickness such that depth-dose responses Dsub(j)(I) to photons of energy Esub(j) are step functions with positive initial slope and with an endpoint that increases monotonically with Esub(j), giving a unique measure of energy. These features enhance the stability of the solution phi(J) of the matrix equation D(I)=A(I, J)phi(J) to oscillations. The response vectors Dsub(j)(I) that make up the detector response matrix A(I, J) were calculated and compared with measurements using thin teflon TLDs loaded with a low-Z(LiF) and a medium-Z(CaF2) phosphor. These three sets of data yield phosphor grain-size corrections for CaF2 (manganese activated). A comparison with an independent measurement for a 1 MeV endpoint bremsstrahlung spectrum gives a measure of the confidence interval of the spectrometer. (Auth.)
Bremsstrahlung in carbon thick targets by proton incidence
International Nuclear Information System (INIS)
The subtraction of the continuum from an X-ray spectrum emitted by proton bombardment is usually carried out by means of a mathematical fitting. The purpose of the present work is to develop an analytical function to model the continuous spectrum generated in a PIXE experiment for different incident beam energies in carbon thick targets. With this purpose, PIXE spectra of a carbon bulk sample were measured in an ion accelerator. The proton beam energies were varied between 0.7 MeV and 2 MeV and the X-rays generated were collected by an energy dispersive spectrometer. The spectra analysis was performed taking into account the main effects underlying the production of the continuous spectrum. Nevertheless, for the cases considered here, it was found that the atomic bremsstrahlung is the most important and other contributions were neglected. The experimental spectra from carbon thick targets were corrected by self-absorption and detector efficiency. The results show that the spectral shape corresponding to thick targets corrected by these effects is similar to the functional behavior presented by thin targets
Beam-target interaction experiments for Bremsstrahlung converter applications
International Nuclear Information System (INIS)
The authors are investigating the possible adverse effects of (1) backstreaming ion emission from the Bremsstrahlung converter target and (2) the interaction of the resultant plasma with the electron beam during subsequent pulses for multi-pulse radiography facilities. These effects would primarily manifest themselves in a static focusing system as a rapidly varying x-ray spot. To study these effects, they are conducting beam-target interaction experiments on the ETA-II accelerator (a 6.0 MeV, 2.5 kA, 70 ns FWHM pulsed, electron accelerator). They are measuring spot dynamics and characterizing the resultant plasma for various configurations. Thus far, their experiments show that the first effect is not strongly present when the beam initially interacts with the target. Electron beam pulses delivered to the target after formation of a plasma are strongly affected. They have also performed initial experiments to determine the effect of the beam propagating through the plasma. This data shows that the head of the beam is relatively robust, but that backstreaming ions from the plasma can still manifest itself as a dynamic focus toward the tail of the beam. They report on the details of the experimental work to suppress these effects
A Single Bremsstrahlung Monitor to Measure Luminosity at LEP
2002-01-01
The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...
Development of bremsstrahlung detection type tritium gas monitoring system, (1)
International Nuclear Information System (INIS)
A tritium monitoring system by means of bremsstrahlung detecting was developed. A prototype system consisted of a sampling cylinder, a gas circulating apparatus, an NaI(T1) detector, an amplifier and a multichannel analyzer. The sizes of sampling cylinders used 208 mm phi x 290; 170; 70 mmH, 133 mm phi x 292; 172; 72 mmH and 55 mm phi x 294; 174; 74 mmH, respectively. The sensitivity of prototype system was from 12 to 57 cps/μCi.cm-3, depending on the size of sampling cylinder and an efficiency of NaI(T1) detector. When pulses due to breamsstrahlungs with energy from 4 to 17 keV were counted, the minimum detectable concentration of the prototype tritium monitoring system was obtained to be 5.2 x 10-3 μCi/cm3. It was evaluated that the detectable range of concentration was from 1 x 10-2 to 1 x 103 μCi/cm3. (author)
Studies of some isomeric yield ratios produced with bremsstrahlung
Kolev, D
1998-01-01
The experimental isomeric ratios for sup 5 sup 2 sup m sup , sup g Mn, sup 8 sup 6 sup m sup , sup g Y, sup 8 sup 7 sup m sup , sup g Y, sup 8 sup 9 sup m sup , sup g Zr, sup 1 sup 1 sup 0 sup m sup , sup g In, sup 1 sup 1 sup 1 sup m sup , sup g In, sup 1 sup 1 sup 2 sup m sup , sup g In, sup 1 sup 5 sup 2 sup m sup 1 sup , sup g Pm, sup 1 sup 5 sup 2 sup m sup 2 sup , sup m sup 1 Eu, sup 1 sup 6 sup 2 sup m sup , sup g Ho, sup 1 sup 6 sup 4 sup m sup , sup g Ho and sup 1 sup 7 sup 8 sup m sup , sup g Lu measured by the activation technique from different targets in (gamma, xnp) reactions (x<=3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final gamma-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate gamma-decay mode of isomeric nuclei was considered for some of the reactions investigated.
Electroencephalograpic coherence
Directory of Open Access Journals (Sweden)
Simon Brežan
2004-08-01
Full Text Available Different brain areas process various aspects of information in parallel as well as segregated way. It is not known, how is this information integrated into a unitary percept or action. The binding problem is one of the key problems in understanding brain function. Synchronized oscillatory activity of neurons is one possible mechanism of the functional integration of different communicating brain areas. The binding has been well-studied in the visual system, but it could also serve as a mechanism in visuomotor integration or functional coupling present with other brain processes and behavioural modes (perception, complex motor behaviour, selective attention, learning, working memory, etc.. Interregional synchronization of the electroencephalographic (EEG signal can be determined by EEG coherence analysis. In the article we present a research example of coherence changes in a visuomotor task. During this task, coherence between visual and motor brain areas increased. This might reflect functional coupling between those areas, but it could also be influenced by other cognitive processes (e.g. selective attention. Coherence analysis is suitable for studying integrative brain function. Because it measures only one of the possible mechanisms of integration, it offers promise especially when combined with other electrophysiological and functional imaging methods.
Korman, Simon; Avidan, Shai
2016-06-01
Coherency Sensitive Hashing (CSH) extends Locality Sensitivity Hashing (LSH) and PatchMatch to quickly find matching patches between two images. LSH relies on hashing, which maps similar patches to the same bin, in order to find matching patches. PatchMatch, on the other hand, relies on the observation that images are coherent, to propagate good matches to their neighbors in the image plane, using random patch assignment to seed the initial matching. CSH relies on hashing to seed the initial patch matching and on image coherence to propagate good matches. In addition, hashing lets it propagate information between patches with similar appearance (i.e., map to the same bin). This way, information is propagated much faster because it can use similarity in appearance space or neighborhood in the image plane. As a result, CSH is at least three to four times faster than PatchMatch and more accurate, especially in textured regions, where reconstruction artifacts are most noticeable to the human eye. We verified CSH on a new, large scale, data set of 133 image pairs and experimented on several extensions, including: k nearest neighbor search, the addition of rotation and matching three dimensional patches in videos. PMID:26372204
Coherence, Pseudo-Coherence, and Non-Coherence.
Enkvist, Nils Erik
Analysis of the factors that make a text coherent or non-coherent suggests that total coherence requires cohesion not only on the textual surface but on the semantic level as well. Syntactic evidence of non-coherence includes lack of formal agreement blocking a potential cross-reference, anaphoric and cataphoric references that do not follow their…
Coherence and Sense of Coherence
DEFF Research Database (Denmark)
Dau, Susanne
2014-01-01
that sense of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections...
Coherence and Sense of Coherence
DEFF Research Database (Denmark)
Dau, Susanne
2014-01-01
that sense of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections...... upon these terms and conditions if the student shall be able acquire the necessary competencies....
International Nuclear Information System (INIS)
Application of the 'photon fluence scaling theorem' allows the ionization chamber to be placed at points in media where the photon fluence is the same, hence eliminating problems with energy response. The theorem is applicable to Compton scattered photons. For photon energies greater than 1.02 MeV, pair production alters the photon fluence in such a way as to invalidate the scaling theorem. In this report the effect of pair production is examined, so that a correction may be applied to the photon fluence scaling theorem. This correction extends application of the theorem for bremsstrahlung spectra up to at least 25 MeV peak energy. 10 refs., 4 tabs., 1 fig
From an insulating to a superfluid pair-bond liquid
Cuoco, Mario; Ranninger, Julius
2006-01-01
We study an exchange coupled system of itinerant electrons and localized fermion pairs resulting in a resonant pairing formation. This system inherently contains resonating fermion pairs on bonds which lead to a superconducting phase provided that long range phase coherence between their constituents can be established. The prerequisite is that the resonating fermion pairs can become itinerant. This is rendered possible through the emergence of two kinds of bond-fermions: individual and compo...
Weber, G; Surzhykov, A; Yasuda, M; Yerokhin, V A; Stöhlker, Th
2012-01-01
We present a Monte Carlo code dedicated to the simulation of bremsstrahlung arising in collisions of polarized electrons with thin target foils. The program consists of an electron transport algorithm taking into account elastic electron-nucleus scattering and inelastic collisions with target electrons as well as a treatment of polarized-electron bremsstrahlung emission. Good agreement is found between the predictions of the electron transport code and data stemming from other simulation programs and experiments. In addition, we present first results from the bremsstrahlung simulation which indicate a significant decrease in the degree of linear polarization of bremsstrahlung even for the thinnest gold targets considered.
Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code
Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.
2016-02-01
Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.
Effective dose and organ doses due to gas Bremsstrahlung from electron storage rings
International Nuclear Information System (INIS)
Bremsstrahlung on residual gas is an important source of beam losses in electron-positron storage rings. The Bremsstrahlung photons are emitted in a narrow cone in the forward direction, which produces a 'hot spot' of dose at the end of a straight section. Estimates of radiation hazard due to gas Bremsstrahlung have so far been performed by calculating the maximum dose equivalent (MADE) or similar quantities. However, the use of quantities conceived for broad parallel beams in the case of very narrow beams significantly overestimates the organ doses and effective dose. In this paper a more sophisticated computational model was used to calculate values of effective dose and absorbed doses in various organs due to gas Bremsstrahlung X-rays generated by 0.1-10 GeV electrons. The Bremsstrahlung photons generated by the interaction of a mono-energetic electron beam in a 1 m long air target were made to impinge on a selected organ of an hermaphrodite anthropomorphic mathematical model placed at 1 and 10 m distances from the end of the target. Organ dose and effective dose were calculated for five representative organs, namely the right eye, ovaries, breast, testes and thyroid. Fits to the calculated values are given, as well as the dependence of photon fluence and dosimetric quantities on various parameters. The results are compared with previous estimates based on MADE and with values of ambient dose equivalent. (authors)
Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons
Czarnecki, S.; Short, A.; Williams, S.
2016-07-01
The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.
Can a many-nucleon structure be visible in bremsstrahlung emission during $\\alpha$ decay?
Maydanyuk, Sergei P; Zou, Li-Ping
2015-01-01
We analyze if the nucleon structure of the $\\alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $\\alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $\\alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{\\rm Te}$ nucleus ($Q_{\\alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the ...
Bright-dark incoherently coupled soliton pairs composed of spatially incoherent solitons
Institute of Scientific and Technical Information of China (English)
Jielong Shi; Yuanyuan Chen; Qi Wang
2005-01-01
It is shown that bright-dark incoherently coupled soliton pairs can exist in photorefractive (PR) crystals under steady-state conditions, each soliton constituent of which is spatially incoherent. The characteristics of bright-dark incoherently coupled soliton pairs are studied by the coherent density approach and the intensity expressions of soliton pairs are obtained. The propagation properties of coherent components of each constituent in a soliton pair are also discussed in detail.
Vector bremsstrahlung by ultrarelativistic collisions in higher dimensions
International Nuclear Information System (INIS)
A classical computation of vector bremsstrahlung in ultrarelativistic gravitational-force collisions of massive point particles is presented in an arbitrary number d of extra dimensions. Our method adapts the post-linear formalism of General Relativity to the multidimensional case. The total emitted energy, as well as its angular and frequency distribution and characteristic values, are discussed in detail. For an electromagnetic mediation propagated in the bulk, the emitted energy Eem of scattering with impact parameter b has magnitude Eem∼e4e′2γd+2 /(m2b3d+3), with dominant frequency ωem∼γ2 /b. For the gravitational force the charge emits via vector field, propagated in the bulk, energy Erad∼[GDm′e]2γd+2 /b3d+3 for d⩾2, with dominant frequency ω∼γ2 /b; and energy Erad∼[G5m′e5]2 γ3ln γ/b6 for d=1, with most of the energy coming from a wide frequency region ω∈[O(γ/b),O(γ2 /b)]. For the UED model with extra space volume V=(2πR)d the emitted energy is EUED∼(bd/V)2Erad. Finally, for the ADD model, including four dimensions, the electromagnetic field living on 3-brane, loses on emission the energy EADD∼[GDm′e]2 γ3 /(Vb2d+3), with characteristic frequency ωADD∼γ/b. The contribution of the low frequency part of the radiation (soft photons) to the total radiated energy is shown to be negligible for all values of d. The domain of validity of the classical result is discussed. The result is analyzed from the viewpoint of the de Witt-Brehme-Hobbs equation (and corresponding equations in higher dimensions). The different frequency domains and their competition mentioned above, may be explained as coming from different terms in this equation. Thus the whole emission process may be naturally split in two sub-processes with drastically different spectral and temporal characteristics
Anomalous inverse bremsstrahlung heating of laser-driven plasmas
Kundu, Mrityunjay
2016-05-01
Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.
Bremsstrahlung emission probability in the {alpha} decay of {sup 210}Po
Energy Technology Data Exchange (ETDEWEB)
Boie, Hans-Hermann
2009-06-03
A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed. The measured differential emission probabilities, which could be followed up to {gamma}-energies of {proportional_to} 500 keV, allow for the first time for a serious test of various model calculations of the bremsstrahlung accompanied {alpha} decay. It is shown that corrections to the {alpha}-{gamma} angular correlation due to the interference between the electric dipole and quadrupole amplitudes and due to the relativistic character of the process have to be taken into account. With the experimentally derived angular correlation the measured energydifferential bremsstrahlung emission probabilities show excellent agreement with the fully quantum mechanical calculation. (orig.)
Electron spectroscopy at the high-energy endpoint of electron-nucleus bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Hillenbrand, Pierre-Michel [GSI Darmstadt (Germany); Univ. Giessen (Germany); Hagmann, Siegbert [GSI Darmstadt (Germany); Univ. Frankfurt (Germany); Banas, Dariusz [Univ. Kielce (Poland); Brandau, Carsten [Extreme Matter Institute Darmstadt (Germany); Univ. Giessen (Germany); Doerner, Reinhard [Univ. Frankfurt (Germany); De Filippo, Enrico [INFN Catania (Italy); Gumberidze, Alexandre [Extreme Matter Institute Darmstadt (Germany); Guo, Dalong [IMP Lanzhou (China); Univ. Beijing (China); Jakubassa-Amundsen, Doris [Univ. Muenchen (Germany); Lestinsky, Michael; Spillmann, Uwe [GSI Darmstadt (Germany); Litvinov, Yuri [GSI Darmstadt (Germany); Univ. Heidelberg (Germany); Mueller, Alfred; Schippers, Stefan [Univ. Giessen (Germany); Rothard, Hermann [CIRIL GANIL Caen (France); Surzhykov, Andrey [Helmholtz-Institut Jena (Germany); Trotsenko, Sergey [GSI Darmstadt (Germany); Helmholtz-Institut Jena (Germany); Voitkiv, Alexander [MPI-K Heidelberg (Germany); Yerokhin, Vladimir [Petersburg State Univ. (Russian Federation); Stoehlker, Thomas [GSI Darmstadt (Germany); Helmholtz-Institut Jena (Germany); Univ. Jena (Germany)
2014-07-01
The high-energy endpoint of electron-nucleus bremsstrahlung has been studied in inverse kinematics: For collisions U{sup 88+}+N{sub 2} → U{sup 88+}+[N{sub 2}{sup +}]{sup *} + e{sup -} + γ the energy distribution of electrons scattered under θ{sub e}{sup lab} = 0 {sup circle} with v{sub e} ∼ v{sub proj} was measured coincident with the bremsstrahlung photons emitted under various angles θ{sub γ}{sup lab}. The triple-differential cross sections provide a stringent test for the fully relativistic theory of electron-nucleus bremsstrahlung. Furthermore the studied process, also termed radiative electron capture to continuum RECC, was compared to the competing processes of non-radiative electron capture to continuum ECC and the electron loss to continuum ELC.
Institute of Scientific and Technical Information of China (English)
何明烈; 戢焕奇
2008-01-01
Based on the investigation of the origin and definition of topic as well as the classification of textual coherence, this paper ana-lyzes the function of topic to non-coherence, imphcit coherence and explicit coherence, and concludes that topic relevance is the primary cri-terion for textual coherence.
Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source
International Nuclear Information System (INIS)
High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m0c2/E) radian with respect to the electron beam path, where m0c2 is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10-9 Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air
Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source
Energy Technology Data Exchange (ETDEWEB)
Pisharody, M.; Job, P.K.; Magill, S. [and others
1997-03-01
High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.
ELBA, Bremsstrahlung Dose from Isotropic Electron Flux on Plane Al Shield
International Nuclear Information System (INIS)
1 - Description of problem or function: ELBA takes an incident isotropic electron flux with a given differential energy spectrum and calculates the dose rate received from Bremsstrahlung produced in a plane aluminium shield placed in front of the receiver. There is an option to also calculate the electron dose rate from the same source. 2 - Method of solution: The electron differential spectrum as a function of depth is inferred by assuming that electrons travel straight ahead and that distance travelled and energy are related by a range-energy relationship. The electron dose rate at a given depth is calculated by integrating, over energy and direction, the product of the electron flux, the stopping power, and the appropriate flux- to-dose rate conversion factor. The Bremsstrahlung source is assumed to be plane and isotropic at a given depth. This source is defined as the integral over energy and direction of the product of photon energy, the differential Bremsstrahlung spectrum from electrons of a given energy, and the electron flux differential spectrum. The differential Bremsstrahlung spectrum is derived from the Born approximation cross section multiplied by a correction factor. The Bremsstrahlung dose rate is obtained by integrating, over photon energy and slab volume, the product of the Bremsstrahlung source, photon energy flux-to-dose rate conversion factor, buildup factor, and attenuation kernel. The buildup factor assumed is a plane isotropic buildup factor generate by Monte Carlo calculations. The integrations are performed by evaluating the integrand at the midpoint of each integration step, multiplying by the step width, and summing the result. The incident electron spectrum, dose rate conversion factors, and range formula coefficients are input by the user. The buildup factor information is contained in three Data statements in subroutine BURP. 3 - Restrictions on the complexity of the problem: There are limitations on the dimensions of certain arrays
Evaluation of bremsstrahlung contribution to photon transport in coupled photon-electron problems
Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio; Salvat, Francesc
2015-11-01
The most accurate description of the radiation field in x-ray spectrometry requires the modeling of coupled photon-electron transport. Compton scattering and the photoelectric effect actually produce electrons as secondary particles which contribute to the photon field through conversion mechanisms like bremsstrahlung (which produces a continuous photon energy spectrum) and inner-shell impact ionization (ISII) (which gives characteristic lines). The solution of the coupled problem is time consuming because the electrons interact continuously and therefore, the number of electron collisions to be considered is always very high. This complex problem is frequently simplified by neglecting the contributions of the secondary electrons. Recent works (Fernández et al., 2013; Fernández et al., 2014) have shown the possibility to include a separately computed coupled photon-electron contribution like ISII in a photon calculation for improving such a crude approximation while preserving the speed of the pure photon transport model. By means of a similar approach and the Monte Carlo code PENELOPE (coupled photon-electron Monte Carlo), the bremsstrahlung contribution is characterized in this work. The angular distribution of the photons due to bremsstrahlung can be safely considered as isotropic, with the point of emission located at the same place of the photon collision. A new photon kernel describing the bremsstrahlung contribution is introduced: it can be included in photon transport codes (deterministic or Monte Carlo) with a minimal effort. A data library to describe the energy dependence of the bremsstrahlung emission has been generated for all elements Z=1-92 in the energy range 1-150 keV. The bremsstrahlung energy distribution for an arbitrary energy is obtained by interpolating in the database. A comparison between a PENELOPE direct simulation and the interpolated distribution using the data base shows an almost perfect agreement. The use of the data base increases
International Nuclear Information System (INIS)
Strontium-89 chloride (89Sr) bremsstrahlung single photon emission computed tomography (SPECT) imaging was evaluated for detecting more detailed whole body 89Sr distribution. 89Sr bremsstrahlung whole body planar and merged SPECT images were acquired using two-detector SPECT system. Energy window A (100 keV ± 50%) for planar imaging and energy window A plus adjacent energy window B (300 keV ± 50%) for SPECT imaging were set on the continuous spectrum. Thirteen patients with multiple bone metastases were evaluated. Bone metastases can be detected with 99mTc-HMDP whole body planar and merged SPECT images and compared with 89Sr bremsstrahlung whole body planar and merged SPECT images. Based on the location of metastatic lesions seen as hot spots on 99mTc-HMDP images as a reference, the hot spots on 89Sr bremsstrahlung images were divided into the same bone parts as 99mTc-HMDP images (a total of 35 parts in the whole body), and the number of hot spots were counted. We also evaluated the incidence of extra-osseous uptakes in the intestine on 89Sr bremsstrahlung whole body planar images. A total of 195 bone metastatic lesions were detected in both 99mTc-HMDP whole body planar and merged SPECT images. Detection of hot spot lesions in 89Sr merged SPECT images (127 of 195; 66%) was more frequent than in 89Sr whole body planar images (108 of 195; 56%), based on metastatic bone lesions in 99mTc-HMDP whole body planar and merged SPECT images. A large intestinal 89Sr accumulation was detected in 5 of the 13 patients (38%). 89Sr bremsstrahlung-merged SPECT imaging could be more useful for detailed detection of whole body 89Sr distribution than planar imaging. Intestinal 89Sr accumulation due to 89Sr physiologic excretion was detected in feces for 4 days after tracer injection. (author)
Investigation of external bremsstrahlung produced in various elements by beta rays
International Nuclear Information System (INIS)
Variation of external bremsstrahlung yield with thickness of some elements with atomic numbers between 13 and 82, is determined by using a Ge(Li) solid-state detector and multi-channel analyzer. It is observed that the thickness which corresponds to the maximum yield is a characteristic of target material. Assuming external bremsstrahlung yield changes with the empirical equation, I = KNZsup(n)exp(-σsub(B)t) suggested by Mudhole, the coefficient σsub(B) has been determined and the possibility of σsub(B) being the mass absorption coefficient is discussed. (author)
Complete gluon bremsstrahlung corrections to the process b -> s l+ l-
Asatryan, H. H.; Asatrian, H. M.; Greub, C.; M. Walker
2002-01-01
In a recent paper, we presented the calculation of the order (alpha_s) virtual corrections to b->s l+ l- and of those bremsstrahlung terms which are needed to cancel the infrared divergences. In the present paper we work out the remaining order(alpha_s) bremsstrahlung corrections to b->s l+ l- which do not suffer from infrared and collinear singularities. These new contributions turn out to be small numerically. In addition, we also investigate the impact of the definition of the charm quark ...
Complete gluon bremsstrahlung corrections to the process b -> s l+ l-
Asatryan, H H; Greub, Christoph; Walker, M
2002-01-01
In a recent paper, we presented the calculation of the order (alpha_s) virtual corrections to b->s l+ l- and of those bremsstrahlung terms which are needed to cancel the infrared divergences. In the present paper we work out the remaining order(alpha_s) bremsstrahlung corrections to b->s l+ l- which do not suffer from infrared and collinear singularities. These new contributions turn out to be small numerically. In addition, we also investigate the impact of the definition of the charm quark mass on the numerical results.
Nuclear structure effects in high-energy bremsstrahlung from spin-0 and spin-1/2 nuclei
Energy Technology Data Exchange (ETDEWEB)
Jakubassa-Amundsen, Doris [University of Munich (Germany)
2014-07-01
Bremsstrahlung from relativistic spin-polarized electrons colliding with inert nuclei is calculated by taking into account the nuclear form factors and the kinematical recoil. For the spin-1/2 nuclei additional contributions from the anomalous magnetic moment and the dynamical recoil are considered. Electron bremsstrahlung is described with the help of semirelativistic wavefunctions while nuclear bremsstrahlung, when present, is treated within the Born approximation. The triply differential bremsstrahlung cross section is integrated over the electron scattering angle to study the polarization correlations between the beam electron and the emitted photon. Results are shown for 20-120 MeV electrons colliding with protons, 19F, 64Zn and 89Y. It is also attempted to explain the background in electron spectra from nuclear excitation in terms of bremsstrahlung. As an example the 180 degree spectrum from exciting the giant M2 resonance in 90Zr by 42.7 MeV electrons is analyzed.
International Nuclear Information System (INIS)
Thunderstorms emit terrestrial gamma-ray flashes with photon energies of up to tens of MeV and electron-positron beams that are created by photons with energies above 1.022 MeV. These photons are produced through the bremsstrahlung process when energetic electrons collide with air molecules. However, presently used cross sections for bremsstrahlung treat only the interaction of the electrons with the nuclei of molecules while we here include their interaction with shell electrons. We simulate the production of energetic photons by a negative stepped lightning leader, and we find that electron–electron bremsstrahlung contributes significantly, although the direct photon emission is less than from electron–nucleus bremsstrahlung. However, electron–electron bremsstrahlung also ejects shell electrons and therefore feeds the electron population above 1 MeV significantly. We find that it hence dominates the photon spectrum of the stepped lightning leader at 10 MeV. (fast track communication)
Revealing Hidden Coherence in Partially Coherent Light
Svozilík, Jiří; Peřina, Jan; Torres, Juan P
2015-01-01
The coherence of a system can be ultimately related to the nature of its correlations with the surroundings (outside world). The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system do not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.
International Nuclear Information System (INIS)
Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed
Determination of the effective charge number of plasma ions from bremsstrahlung in the near infrared
International Nuclear Information System (INIS)
The ASDEX Thomson scattering apparatus measures the scattered light of the laserbeam (λ=10640 A) in the near infrared to obtain density and temperature profiles. Furthermore this kind of apparatus can be used to analyse plasma radiation for determining radial Zeff profiles, as has been demonstrated at ASDEX for the first time. This method provides correct results, if the measured plasma radiation consists almost completly of bremsstrahlung. But besides bremsstrahlung the plasma emits recombination and line radiation. As shown by theoretical deliberations, recombination radiation is negligible, but line radiation can't be excluded. Therefore a spectral resolved measurement was performed, which made it possible to choose those of the different spectral measuring ranges of the Thomson scattering apparatus which are influenced least by line radiation. Furthermore the obtained results enables to allow for the remaining line radiation in order to get a radial profile of bremsstrahlung. This profile and the data of the Thomson scattering apparatus is used to determine Zeff. The statistical errors are less then 10% in the plasma centre. There is a good agreement between Zeff-profiles obtained by bremsstrahlung and the results of the charge exchange recombination spectroscopy. (orig.)
Dilepton bremsstrahlung from pion-pion scattering in a relativistic one boson exchange model
International Nuclear Information System (INIS)
We have made a detailed and quantitative study of dilepton production via bremsstrahlung of a virtual photon during collisions of two free pions. Most calculations of electromagnetic radiation from strong interaction processes rely on the soft photon approximation (SPA). The conditions underlying this approximation are generally violated when dilepton spectra are calculated in terms of their invariant mass, so that an approach going beyond the SPA becomes necessary. Superseding previous derivations, we derive an exact formula for the bremsstrahlung cross section. The resulting formulation is compared to various forms based on the SPA, the two-particle phase space approximation, and Rueckl close-quote s formula using a relativistic one boson exchange (OBE) model. Within the OBE approach, we show that approximations to the bremsstrahlung dilepton cross sections often differ greatly from the exact result; discrepancies become greater both with rising temperature and with invariant mass. Integrated dilepton production rates are overestimated by Rueckl-based approximations by factors 1.5 endash 8.0. The largest discrepancies occur for the reaction π+π+→π+π+l+l-, where such approximations overestimate the exact rate by factors ranging from 2 to 30 for invariant masses between 10 and 500 MeV. Our findings, combined with recent estimates of the Landau-Pomeranchuk effect, indicate that bremsstrahlung dilepton rates in ultrarelativistic heavy ion collisions should be even more suppressed than had been thought before. copyright 1996 The American Physical Society
Strong linear polarization of bremsstrahlung emissivity in photospheres of magnetic white dwarfs
Energy Technology Data Exchange (ETDEWEB)
Bubukina, I I; Koryagin, S A, E-mail: koryagin@appl.sci-nnov.r [Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova str., Nizhny Novgorod 603950 (Russian Federation)
2009-06-01
We discuss the strong linear polarization and the appreciable decrease of the bremsstrahlung emissivity at frequencies below the electron cyclotron frequency (infrared wave band) in the photospheres of the isolated magnetic white dwarfs. In the photospheres of strongly magnetized white dwarfs (B > 10{sup 7} G, T approx 10{sup 4} K), the electron's Larmor radius becomes smaller than the characteristic impact parameter of close Coulomb collisions in a non-magnetized plasma. Thus, the cyclotron period of the electron becomes smaller than the duration of all distant collisions and of most close collisions. The magnetic field effectively 'freezes' the electron motion in the plane transverse to the magnetic field lines. The resulting motion is nearly one-dimensional and parallel to the magnetic field, inducing a strong linear polarization of the bremsstrahlung emission. Being attached to a magnetic field line, an electron cannot approach an ion as closely as it does in the case in which the magnetic field is absent. Thus, the bremsstrahlung emissivity appreciably decreases. We analytically compute an approximation to the spectrum of the strongly linear polarized bremsstrahlung emissivity at the frequencies below the electron cyclotron frequency.
Bremsstrahlung polarization correlations and their application for polarimetry of electron beams
International Nuclear Information System (INIS)
The correlation between electron spin and photon linear polarization in atomic-field bremsstrahlung was measured with a polarized electron beam. The angle of photon polarization and the photon emission intensity were found to be correlated with the spin orientation. These effects are interpreted in terms of spin-orbit interaction. They lead to a new technique of electron beam polarimetry.
THE BREMSSTRAHLUNG ISOCHROMAT SPECTRA OF D(0) TRANSITION-METAL OXIDES
SORIANO, L; ABBATE, M; ALDERS, D; SANZ, JM
1994-01-01
We present and discuss the bremsstrahlung isochromat spectra (BIS) of four d0 transition-metal oxides, namely ZrO2, HfO2, Nb2O5, and Ta2O5. The spectra are related to the density of unoccupied states in the conduction band. They give directly the magnitude of the crystal-field splitting and the disp
DEFF Research Database (Denmark)
Jensen, Tue Vissing; Sørensen, Allan Hvidkjær
2013-01-01
A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....
Virtual-bremsstrahlung production in proton-proton scattering and proton-deuteron capture
Messchendorp, Johannes Gerhardus
1999-01-01
The well-known coupling of the photon with the nucleon together with the fact that photons (or any electromagnetic (e.m.) probe) interact only relatively weakly with nucleons, make bremsstrahlung production an ideal tool to study details of the nucleon-nucleon interaction. In this thesis dilepton pr
EFFECTS OF MESON-DECAY DIAGRAMS IN PROTON-PROTON BREMSSTRAHLUNG
DEJONG, F; NAKAYAMA, K
1995-01-01
We investigate the effect of meson-decay diagrams on the proton-proton bremsstrahlung process. We explicitly include short-range correlations by calculating single- and double-scattering diagrams using an NN T-matrix interaction. We find that in general these diagrams interfere destructively with th
Absolute intensity of internal bremsstrahlung from the electron capture decay of 125I
International Nuclear Information System (INIS)
The absolute intensity of the internal bremsstrahlung spectrum accompanying the electron capture decay of 125I has been measured and compared to the recent calculation of Suric et al. The measured intensity above the 1s end point is found to be (86±10)% of the calculated intensity
Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.
We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting
Quasi-coherent Hecke category and Demazure descent
DEFF Research Database (Denmark)
Arkhipov, Sergey; Kanstrup, Tina
2015-01-01
Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G- scheme X we construct a monoidal action of the Hecke category on the derived category of B-equivariant quasi-coherent sheaves on X. Using the...
International Nuclear Information System (INIS)
The spectrum of bremsstrahlung due to photoelectrons ejected by incident photons of energy 59.5 keV was measured. The coincidence setup with two HP germanium detectors was applied, in which the target-detector recorded the energy of ejected photoelectron after it radiated a bremsstrahlung photon, and another (second) detector detected energy of radiated bremsstrahlung photon. A detailed analysis of the measurement was made taking into account various detector-to-detector cross-talk processes. As expected, the experimental method gave a clean spectrum, which can be reliably determined on absolute scale in the low- and mid-energy range. The condition for reliable measurement are that the asymmetry ratio (the ratio of number of incident photons which reached the target detector and the second detector) is higher than approximately 1000 to reduce reverse-Compton scattering, and solid angle is smaller than about 0.15 sr to reduce the influence of double-cross-talk processes. (We name a group of processes double-cross-talk processes in which incident radiation produces secondary radiation in target detector, the secondary radiation escapes it and reaches the second detector where it induces tertiary radiation, which reaches the target detector and is absorbed therein.) Almost any line source of photons can be used even if of a complex spectrum. Therefore, simultaneous measurements at several incident energies are possible in one experiment. Application of a very weak source is possible because of very high signal-to-background ratio and high efficiency of the applied experimental method. The simple theoretical model of bremsstrahlung radiation due to photoelectrons in infinity-thick target gives results in a good agreement with the experimental data. The bremsstrahlung cross-section calculated using the well-known semi-empirical thick-target formula gives also a good agreement with the experimental data. (author)
Coherent analysis of quantum optical sideband modes
Huntington, E H; Robilliard, C; Ralph, T C
2005-01-01
We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments.
Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics
Land, Martin
2016-01-01
In this paper we calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz-Piron electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events $x^\\mu(\\tau)$ parameterized by a chronological time $\\tau$ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five $\\tau$-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the standard Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics.
Photoelectric converters with quantum coherence
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.
Fereydooni, Abolhassan; Safapour, Ahmad; Rahimi , Asghar
2012-01-01
The concept of (p,q)-pair frames is generalized to (l,l^*)-pair frames. Adjoint (conjugate) of a pair frames for dual space of a Banach space is introduced and some conditions for the existence of adjoint (conjugate) of pair frames are presented.
Robustness of quantum critical pairing against disorder
Kang, Jian; Fernandes, Rafael M.
2016-06-01
The remarkable robustness of high-temperature superconductors against disorder remains a controversial obstacle towards the elucidation of their pairing state. Indeed, experiments report a weak suppression rate of the transition temperature Tc with disorder, significantly smaller than the universal value predicted by extensions of the conventional theory of dirty superconductors. However, in many high-Tc compounds, superconductivity appears near a putative magnetic quantum critical point, suggesting that quantum fluctuations, which suppress coherent electronic spectral weight, may also promote unconventional pairing. Here we investigate theoretically the impact of disorder on such a quantum critical pairing state, considering the coupling of impurities both to the low-energy electronic states and to the pairing interaction itself. We find a significant reduction in the suppression rate of Tc with disorder near the magnetic quantum critical point, shedding new light on the nature of unconventional superconductivity in correlated materials.
Superconductivity of electron-hole pairs in a bilayer graphene system in a quantizing magnetic field
Fil, D. V.; Kravchenko, L. Yu.
2009-01-01
The state with a spontaneous interlayer phase coherence in a graphene based bilayer quantum Hall system is studied. This state can be considered as a gas of superfluid electron-hole pairs with the components of the pair belonging to different layers. Superfluid flux of such pairs is equivalent to two electrical supercurrents in the layers. It is shown that the state with the interlayer phase coherence emerges in the graphene system if a certain imbalance of the Landau level filling factors of...
Generation of photon pairs using polarization-dependent two-photon absorption
Nakanishi, T; Kitano, M
2003-01-01
We propose a new method for generating photon pairs from coherent light using polarization-dependent two-photon absorption. We study the photon statistics of two orthogonally polarized modes by solving a master equation, and show that when we prepare a coherent state in one polarization mode, photon pairs are created in the other mode. The photon pairs have the same frequency as that of the incident light.
Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements
DEFF Research Database (Denmark)
Karadjov, A. G.; Hansen, Jørgen-Walther
1980-01-01
Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each...... material, namely: Al, 0.13 g/cm2; Cu, 0.06 g/cm2; and Pb, 0.045 g/cm2. The corresponding peak bremsstrahlung doses at 20 Mrad electron dose in water are 376,460 and 940 rad, respectively. A relation is given enabling prediction of optimal converter thickness and peak bremsstrahlung dose for converter...
Coherent particle production from relativistic heavy-ion collisions
International Nuclear Information System (INIS)
The production of charged vector boson pairs from the coherent electromagnetic field of colliding nuclei is calculated within the framework of a classical field approximation. The approximation is derrived for both lepton and boson pairs in terms of two-photon Feynman diagrams. 17 refs., 4 figs
Measurement of gas Bremsstrahlung at the Pohang Light Source by using a CeF3 scintillator
International Nuclear Information System (INIS)
We have measured the gas Bremsstrahlung photon energy from the 2.5-GeV electron storage ring at the Pohang Light Source (PLS). Gas Bremsstrahlung was generated in the straight section of the beam-diagnosis beamline 1C1 with an effective length of 5.3 m. We present the measurement results for the Bremsstrahlung photon energy spectrum and the photon flux, which were obtained by using a CeF3 calorimeter. The calorimeter consisted of nine CeF3 blocks, each being 3.3 x 3.3 x 33 cm3, stacked into a 3 x 3 array. The Bremsstrahlung photon flux above 40 MeV was measured to be 218 s-1 at an electron beam current of 180 mA.
Gould, Victoria; Hartmann, Miklos; Ruskuc, Nik
2014-01-01
A monoid $S$ is said to be right coherent if every finitely generated subact of every finitely presented right $S$-act is finitely presented. Left coherency is defined dually and $S$ is coherent if it is both right and left coherent. These notions are analogous to those for a ring $R$ (where, of course, $S$-acts are replaced by $R$-modules). Choo, Lam and Luft have shown that free rings are coherent. In this note we prove that, correspondingly, any free monoid is coherent, thus answering a qu...
Experimental and analytical study of the bremsstrahlung radiation production at low energies
International Nuclear Information System (INIS)
The bremsstrahlung photon beam from an X-ray tube with chromium anode has been studied, for an electron energy of 60 Kev. In the experimental step, a new measurement method has been developed. This is based on the detection and measurement of the fluorescence produced when the photons from the tube impinge on targets which are used as calibrated flux monitors. The composition and physical characteristics of the targets are well-known. In the steps of experimental data treatment, an analytical study of the theoretical models describing thick target bremsstrahlung yield is performed. A factorization which accounts for the elemental physical processes is obtained, employing simple mathematical functions. The characteristic parameters found in the numerical fit process lead to results in good agreement with the experimental observations from other authors and predict theoretical exposure values in perfect agreement with the exposures measured for X-ray beams generated in several operating conditions. (author)
Bremsstrahlung from relativistic heavy ions in a fixed target experiment at the LHC
Mikkelsen, Rune E; Uggerhøj, Ulrik I
2015-01-01
We calculate the emission of bremsstrahlung from lead and argon ions in A Fixed Target ExpeRiment (AFTER) that uses the LHC beams. With nuclear charges of $Ze$ equal $208$ and $18$ respectively, these ions are accelerated to energies of $7$ TeV$\\times Z $. The bremsstrahlung peaks around $\\approx 100$ GeV and the spectrum exposes the nuclear structure of the incoming ion. The peak structure is significantly different from the flat power spectrum pertaining to a point charge. Photons are predominantly emitted within an angle of $1/\\gamma$ to the direction of ion propagation. Our calculations are based on the Weizs\\"{a}cker-Williams method of virtual quanta with application of existing experimental data on photonuclear interactions.
Zhang, Le; Qin, Guang-You
2016-01-01
We study the production of jet-bremsstrahlung photons through the scattering with the constituents of a dense nuclear matter within the framework of deep-inelastic scattering off a large nucleus. Applying a gradient expansion up to the second order for the exchanged three-dimensional momentum between jet and medium, we derive the single photon bremsstrahlung spectrum with the inclusion of the contributions from the transverse broadening as well as the longitudinal drag and diffusion of the hard parton's momentum. We also compare the medium-induced photon radiation spectra for single scattering and from the resummation of multiple scatterings. It is found that the coupling between different scatterings can give additional contribution to medium-induced photon radiation, while for small momentum exchange, the leading contribution from the drag and diffusions to the photon emission spectra remain the same for single and multiple scatterings.
International Nuclear Information System (INIS)
A method is described for determining an effective, depth dose consistent bremsstrahlung spectra for high-energy photon beams using depth dose curves measured in water. A simple, analytical model with three parameters, together with the nominal accelerating potential is used to characterise the bremsstrahlung spectra. The model is used to compute weights for depth dose curves from monoenergetic photons. These monoenergetic depth doses, calculated with the convolution method from Monte Carlo generated point spread functions (PSF), are added to yield the pure photon depth dose distribution. The parameters of the analytical spectrum model are determined using an iterative technique to minimise the difference between calculated and measured depth dose curves. The influence from contaminant electrons is determined from the difference between the calculated and the measured depth dose. (author)
International Nuclear Information System (INIS)
An indigenous setup for studying the process of atomic-field Bremsstrahlung produced from the interaction of keV electrons with a solid or a gaseous target has been developed and described. The setup consists of a high-vacuum scattering chamber, a home-built keV electron gun with a replaceable tungsten filament cathode, an isolated floating high-voltage control unit, signal processing electronic modules and a data-acquisition system comprising of an IBM PC/XT 4-K multichannel analyser. The performance of the setup has been tested and used for accumulating data for Bremsstrahlung spectra from 7.0 keV electrons incident on thin Ag and Au targets. These spectra have been analyzed and discussed in light of the semiclassical and the quantum calculations. The agreement between experiment and theory is found to be satisfactory within the experimental uncertainty of the measurements. (author). 10 refs., 5 figs., 1 tab
Effect of Degenerated Particles on Internal Bremsstrahlung of Majorana Dark Matter
Okada, Hiroshi
2014-01-01
Gamma-ray generated by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-ray coming from internal bremsstrahlung of dark matter is promising since it can be a leading emission of sharp gamma-ray. However if thermal production of Majorana dark matter is considered, the derived cross section for internal bremsstrahlung becomes too small to be observed by future gamma-ray experiments. We consider a framework to achieve an enhancement of the cross section by taking into account degenerated particles with dark matter. We find that the enhancement of about order one is possible without conflict with the dark matter relic density. Due to the enhancement, it would be tested by the future experiments such as GAMMA-400 and CTA.
Modeling the Bremsstrahlung of 30-60 MeV electrons. Source term calculation
International Nuclear Information System (INIS)
The photofission process has been recently considered for the production of neutron rich isotopes and the development of radioactive beams. The radioprotection hazard should be studied accordingly. A survey of the radiative electron energy loss theory is reported in order to estimate numerically the Bremsstrahlung production of thick targets. The resulted Bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are presented and compared with previous results. This study is focused on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large photon yields able to induce the 238U fission. The source term for 50 MeV incident electrons is reported for radioprotection purposes. (authors)
Dose topography of the sample, analyzed by the Bremsstrahlung irradiation on microtron
International Nuclear Information System (INIS)
In the radiation experiments on microtron, there are difficulties in determination of exposition and absorbed doses of electron Bremsstrahlung (EB) in irradiated samples. Bremsstrahlung is characterized by anisotropy and therefore one has to take into account the geometry of irradiation. According to our measured differential spectra of EB from thick tungsten target at the electron beam energy of 11.8; 13; 20 MeV it is possible to determine the distribution of doses in front hemisphere, where the sample is usually irradiated. The spectral and angular transformation of EB spectra into doses was done using interpolation and extrapolation. For the determination of absorbed doses in sample of known micro-composition, one can use the values of exposition doses, for which the EB spectrum is used in 'monoenergetic' type
Studies of nucleon-nucleon potentials with pp- and np-Bremsstrahlung
International Nuclear Information System (INIS)
A comprehensive study of pp and np bremsstrahlung based upon the potential model formalism was initiated to explore properties of two nucleon t-matrices. Underlying potentials of t-matrices either were generated by Gelfand-Levitan-Marchenko inversion of the latest NN phase shifts or are the Paris and Bonn-R potentials. The bremsstrahlung amplitudes associated with external, internal and exchange currents, by exact treatment of the Coulomb potential in on- and half-off-shell t-matrices, and the relativistic spin corrections were all computed and for both coplanar and non coplanar geometries. The results are a successful analysis of ppγ TRIUMF data and allow us to set experimental boundaries for planned new experiments. They also give a perspective of the off-shell t-matrix information inherent in this reaction. (orig.)
Krychowiak, M.; König, R.; Klinger, T.; Fischer, R.
2004-11-01
At the stellarator Wendelstein 7-AS (W7-AS) a spectrally resolving two channel system for the measurement of line-of-sight averaged Zeff values has been tested in preparation for its planned installation as a multichannel Zeff-profile measurement system on the stellarator Wendelstein 7-X (W7-X) which is presently under construction. The measurement is performed using the bremsstrahlung intensity in the wavelength region of ultraviolet to near infrared. The spectrally resolved measurement allows to eliminate signal contamination by line radiation. For statistical data analysis a procedure based on Bayesian probability theory has been developed. With this method it is possible to estimate the bremsstrahlung background in the measured signal and its error without the necessity to fit the spectral lines. For evaluation of the random error in Zeff the signal noise has been investigated. Furthermore, the linearity and behavior of the charge-coupled device detector at saturation has been analyzed.
Investigation of the partner-potentials from supersymmetric quantum mechanics by bremsstrahlung
International Nuclear Information System (INIS)
With the explicit example of α + α scattering we emphasize the incompleteness of using just the on-shell properties in any inversion procedure. A deep, energy-independent and angular-momentum-independent effective local potential is constructed to reproduce the phase shifts from a single-configuration microscopic resonating-group method (RGM) calculation for α + α scattering up to E = 16 MeV. From this we derive its phase-shift-equivalent shallow supersymmetric partner-potentials by eliminating the bound states which are unphysical due to the Pauli principle. These deep and shallow potentials are used to calculate bremsstrahlung emission in α + α collision and compared with the results from RGM as a means to investigate their wave functions. While the bremsstrahlung cross sections from RGM and the deep potential resemble each other, those of the shallow potentials are distinctly different. (orig.)
International Nuclear Information System (INIS)
Currently used dosimetry protocols for absolute dose determination of electron beams from accelerators in radiation therapy do not account for the effect of the bremsstrahlung contamination of the beam. This results in slightly erroneous doses calculated from ionization chamber measurements. In this report the deviation is calculated and an improved algorithm, which accounts for the effect of the bremsstrahlung component of the beam, is suggested. (author). 14 refs, 2 figs, 1 tab
Energy Technology Data Exchange (ETDEWEB)
Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-01-01
A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.
The internal bremsstrahlung accompanying the β-dacay from 185W
International Nuclear Information System (INIS)
The internal bremsstrahlung (IB) spectrum accompanying the β-decay from 185W radionuclide has been measured. The obtained spectrum was analyzed into its constituting gamma lines taking into account all the proper corrections. The analyzed spectrum was compared with those theoretically calculated. The experimental results for the IB probability were found to be in good agreement with theoretical calculations especially with the shape corrected modified KUB theory of Nilsson up to 357.7 keV. (author)
Interference Peak in the Spectrum of Bremsstrahlung on Two Amorphous Targets
Bondarenco, M. V.; Shul'ga, N. F.
2014-01-01
We investigate the interference pattern in the spectrum of non-dipole bremsstrahlung on two amorphous foils. Apart from suppression at lowest $\\omega$, the spectrum exhibits an enhancement adjacent to it. In classical electrodynamics, the net effect of suppression and enhancement proves to be zero. We study the location and the origin of the spectral features, comparing predictions of full Moli\\`ere averaging with those of the Gaussian averaging with Coulomb corrections to the rms multiple sc...
Self-absorption correction factor for a sample excited by the bremsstrahlung radiation
International Nuclear Information System (INIS)
A method of calculating the self-absorption correction factor for fluorescent X-rays from a sample excited by the bremsstrahlung has been described. As a typical example, the correction factors for Kα of Si and Cu for different tube voltages have been calculated. Polynomial fit of the correction factor against the tube voltage in the range 10-100 kV has been given for both the elements
Possibility of 117mSn production using high-energy electron bremsstrahlung
International Nuclear Information System (INIS)
The method of 117mSn production using an electron accelerator is described and its photonuclear reaction yield and specific activities for 117mSn and enriched isotope 118Sn are estimated. The specific activities and photonuclear reaction yields of 117mSn and 111In are also estimated using the high-energy electron bremsstrahlung of the linear electron accelerator of the IREN facility, FLNP, JINR at irradiation of high-purity tin targets
Screening effect on the inverse bremsstrahlung in a plasma in the presence of two laser fields
International Nuclear Information System (INIS)
The effect of Coulomb screening on the inverse bremsstrahlung heating process in a plasma illuminated by two laser fields is discussed. It is shown that, although the screening effect actually lowers the Coulomb interaction, one might accomplish a reduction of the weakening effect and consequently and enhancement of the collisional plasma heating, by illuminating the plasma with the two electromagnetic waves having a differnce in frequency close to the plasma frequency. (M.W.O.)
International Nuclear Information System (INIS)
The validation of diagnostic date from a nuclear fusion experiment is an important issue. The concept of an Integrated Data Analysis (IDA) allows the consistent estimation of plasma parameters from heterogeneous data sets. Here, the determination of the ion effective charge (Zeff) is considered. Several diagnostic methods exist for the determination of Zeff, but the results are in general not in agreement. In this work, the problem of Zeff estimation on the TEXTOR tokamak is approached from the perspective of IDA, in the framework of Bayesian probability theory. The ultimate goal is the estimation of a full Zeff profile that is consistent both with measured bremsstrahlung emissivities, as well as individual impurity spectral line intensities obtained from Charge Exchange Recombination Spectroscopy (CXRS). We present an overview of the various uncertainties that enter the calculation of a Zeff profile from bremsstrahlung date on the one hand, and line intensity data on the other hand. We discuss a simple linear and nonlinear Bayesian model permitting the estimation of a central value for Zeff and the electron density ne on TEXTOR from bremsstrahlung emissivity measurements in the visible, and carbon densities derived from CXRS. Both the central Zeff and ne are sampled using an MCMC algorithm. An outlook is given towards possible model improvements
International Nuclear Information System (INIS)
The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (Eγ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar36 + Au197, Ag107, Ni58, C12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)
Dose calculation and measurement for bremsstrahlung at BL18U beamline of SSRF
International Nuclear Information System (INIS)
Background: Gas bremsstrahlung is one of the most important radiation sources that needs to be taken into consideration for shielding design of beamlines at the third generation synchrotron radiation light source. Shanghai Synchrotron Radiation Facility (SSRF) is one of the third generation synchrotron radiation light source in the world. The Protein Micro-crystallography Beamline (BL18U) is one of the commissioning beamlines and is a representative insertion device beamline at SSRF. Purpose: Estimation of radiation dose induced by scattering bremsstrahlung and photoneutrons at BL18U. Methods: Dose rate distribution induced by scattering bremsstrahlung and photoneutrons at BL18U are performed by Monte Carlo simulation code FLUKA. The radiation dose was analyzed with the variation of slits size, beam current at storage ring and the vacuum. Dose rate of photons and photoneutrons at the outside of the optical enclosure of BL18U were measured by using high sensitivity photon and neutron monitors. Results: The measurement results show that the reliability of the simulation. Conclusion: The simulation and measurement methods presented in this study can be applied to evaluate the dose rate level of other beamline stations at SSRF, and provide references to the shielding design for the following beamlines at SSRF in the near future. (authors)
Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams
Emslie, A. G.; Brown, J. C.
1985-01-01
The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.
Optimal design of Anger camera for bremsstrahlung imaging: Monte Carlo evaluation.
Directory of Open Access Journals (Sweden)
Stephan eWalrand
2014-06-01
Full Text Available A conventional Anger camera is not adapted to bremsstrahlung imaging and, as a result, even using a reduced energy acquisition window, geometric x-rays represent less than 15% of the recorded events. This increases noise, limits the contrast, and reduces the quantification accuracy.Monte Carlo simulations of energy spectra showed that a camera based on a 30mm-thick BGO crystal and equipped with a high energy pinhole collimator is well adapted to bremsstrahlung imaging. The total scatter contamination is reduced by a factor ten versus a conventional NaI camera equipped with a high energy parallel hole collimator enabling acquisition using an extended energy window ranging from 50 to 350 keV. By using the recorded event energy in the reconstruction method, shorter acquisition time and reduced orbit range will be usable allowing the design of a simplified mobile gantry. This is more convenient for use in a busy catheterization room. After injecting a safe activity, a fast SPECT could be performed without moving the catheter tip in order to assess the liver dosimetry and estimate the additional safe activity that could still be injected.Further long running time Monte Carlo simulations of realistic acquisitions will allow assessing the quantification capability of such system. Simultaneously, a dedicated bremsstrahlung prototype camera reusing PMT-BGO blocks coming from a retired PET system is currently under design for further evaluation.
Singh, Amrit; Dhaliwal, A S
2016-09-01
In the present paper, the formation of bremsstrahlung spectra by ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB) in metallic targets by (35)S beta particles has been investigated in the photon energy region of 1-100keV. From the experimental measurements and the theoretical results obtained from Elwert corrected (non-relativistic) Bethe Heitler (EBH) theory, modified Elwert factor (relativistic) (FmodBH) theories for OB and Avdonina and Pratt (FmodBH+PB) theory for total bremsstrahlung (BS) having the contribution of PB into OB, it has been found that the contribution of PB into BS in a target is limited to a low energy region only and also varies with the atomic number of target material. The FmodBH+PB theory is in agreement with the experimental results in low energy regions of the target, whereas at high energy region FmodBH is found to give better agreement. Further, the present experimental results indicate that the screening effects in the Coulombic bremsstrahlung process cannot be neglected in the high energy region, and the multiple scattering and secondary electron emissions effects in thick target are required to be taken into account in describing the bremsstrahlung process. PMID:27400163
Partially coherent imaging and spatial coherence wavelets
International Nuclear Information System (INIS)
A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)
Chemical Nonlinearities and Radical Pair Lifetime Estimation
Robinson, Gregory
2013-03-01
Much attention has recently developed around chemical reactions that depend on applied static magnetic fields as weak as earth's. This interest is largely motivated by experiments that implicate the role of spin-selective radical pair recombination in biological magnetic sensing. Existing literature uses a straightforward calculation to approximate the expected lifetime of coherent radical pairs as a function of the minimum RF amplitude that is observed to disrupt magnetic navigation, apparently by decohering the radical pair via electronic Zeeman excitations. But we show that chemical nonlinearities can preclude direct computation of coherent pair lifetime without considering the cellular signalling mechanisms involved, and discuss whether it can explain the surprising fragility of some animals' compass sense. In particular, we demonstrate that an autocatalytic cycle can introduce threshold effects on the disruption sensitivity to applied oscillatory magnetic fields. We will show examples in the mean-field limit and consider the consequences of noise and fluctuations in the Freidlin-Wentzell picture of perturbed dynamical systems.
On Longitudinal Spectral Coherence
DEFF Research Database (Denmark)
Kristensen, Leif
1979-01-01
It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...
Narrowband Photon Pair Source for Quantum Networks
Monteiro, F; Sanguinetti, B; Zbinden, H; Thew, R T
2013-01-01
We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.
Myatt, J.; Delettrez, J. A.; Maximov, A. V.; Meyerhofer, D. D.; Short, R. W.; Stoeckl, C.; Storm, M.
2009-06-01
Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5×1011 pairs can be produced on the OMEGA EP laser system [L. J. Waxer , Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.
International Nuclear Information System (INIS)
Praseodymium-142 [T1/2=19.12 h, Eβ-=2.162 MeV (96.3%), Eγ=1575 keV (3.7%)] is one of the 141Pr radioisotopes. Many studies have been attempted to assess the significance of usage 142Pr in radionuclide therapy. In many studies, the dosimetric parameters of 142Pr sources were calculated by modeling 142Pr sources in the water phantom and scoring the energy deposited around it. However, the medical dosimetry calculations in water phantom consider Bremsstrahlung production, raising the question: ''How important is to simulate human tissues instead of using water phantom?'' This study answers these questions by estimation of 142Pr Bremsstrahlung parameters. The Bremsstrahlung parameters of 142Pr as therapeutic beta nuclides in different human tissues (adipose, blood, brain, breast, cell nucleus, eye lens, gastrointestinal tract, heart, kidney, liver, lung deflated, lymph, muscle, ovary, pancreas, cartilage, red marrow, spongiosa, yellow marrow, skin, spleen, testis, thyroid and different skeleton bones) were calculated by extending the national council for radiation protection model. The specific Bremsstrahlung constant (ΓBr), probability of energy loss by beta during Bremsstrahlung emission (PBr) and Bremsstrahlung activity (Arelease)Br were estimated. It should be mentioned that Monte Carlo simulation was used for estimation of 142Pr Bremsstrahlung activity based on the element compositions of different human tissues and the calculated exposures from the anthropomorphic phantoms. ΓBr for yellow marrow was smallest amount (1.1962 x 10-3 C/kg-cm2/MBq-h) compared to the other tissues and highest for cortical bone (2.4764 x 10-3 C/kg-cm2/MBq-h), and, overall, ΓBr for skeletal tissues were greater than other tissues. In addition, ΓBr breast was 1.8261 x 10-3 C/kg-cm2/MBq-h which was greater than sacrum and spongiosa bones. Moreover, according to (Arelease)Br of 142Pr, the patients receiving 142Pr do not have to be hospitalized for radiation precautions and the
Spin polarization transfer by the radical pair mechanism
Energy Technology Data Exchange (ETDEWEB)
Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113 (United States)
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.
Spin polarization transfer by the radical pair mechanism
International Nuclear Information System (INIS)
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants
Energy Technology Data Exchange (ETDEWEB)
Tarvainen, Ollie [Los Alamos National Laboratory; Ropponen, Tommi [JYFL; Jones, Peter [JYFL; Kalvas, Taneli [JYFL
2008-01-01
Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.
The Impact of Hot Electrons on X-ray Spectra: e-e Bremsstrahlung and κ Distributions
Smith, Randall K.; Cui, Xiaohong; Foster, Adam; Yuasa, Takayuki
2016-06-01
Shocks, turbulence, and winds all influence the electron velocity distribution in hot plasmas, exciting lower-energy electrons and generating a high-energy (typically power-law) tail. Sufficiently energetic electrons will emit via an electron-electron (e-e) bremsstrahlung, a process not previously included in the AtomDB. We have added this process and calculate the impact e-e bremsstrahlung has on the spectra from the post-shock regions of an accreting magnetic cataclysmic variable (CV). We find the contribution of e-e bremsstrahlung to the total spectra exceeds 10% at ~100 keV, with the total emissivity in the post-shock accretion stream differing by more than 10% at energies above 60 keV. More generally a Maxwellian with a power law tail, typically termed a κ distribution, can have significant effects on the line and continuum X-rays emitted. In addition to the e-e bremsstrahlung term, there will be effects due to the impact of the electrons on the charge state distribution and the collisional excitation rates. We use the ``Maxwellian decomposition'' approach as described in Hahn & Savin (2015) to generate the rate coefficients for a κ distributions based on the recently-released AtomDB v3.0 atomic database. These values are compared to exact calculations done for selected recombination and bremsstrahlung rates, and are also compared to results from the CHIANTI KAPPA package.
International Nuclear Information System (INIS)
We present in this paper the influence of a synergistic radiation effect of both bremsstrahlung photons with maximum energy of 60 MeV and intense laser radiation (up to 60 KW cm−2) on the structural properties of carbon nanotubes (CNTs). The defect formation (damage) in CNTs under separate irradiations of 60 MeV bremsstrahlung photon or intense laser and their combined irradiations has been investigated by Raman spectroscopy. The experimental results show that (i) our obtained natural CNTs are multi-walled carbon nanotubes (MWCNTs) with a large number of structural defects, which are non-nanotube carbon impurities; (ii) the MWCNTs were not damaged by the irradiations of an intense laser and a bremsstrahlung photon beam with low electron fluency and the irradiation even leads to more purification/ordering; (iii) the reversible modification in non-irradiated and 60 MeV bremsstrahlung photon irradiated MWCNTs with variation of laser power density (LPD) have been received; (iv) the influence on the structural properties of MWCNTs induced by the combined irradiation was greater than the separate irradiation of a 60 MeV bremsstrahlung photon or intense laser radiation. The result also demonstrates that micro-Raman spectroscopy is a valuable, fast and non-destructive tool for the investigation of purification/ordering of CNTs
RHESSI IMAGING SURVEY OF γ-RAY BREMSSTRAHLUNG EMISSION IN SOLAR FLARES
International Nuclear Information System (INIS)
We present a high-energy (>150 keV) imaging survey of all solar γ-ray flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to study bremsstrahlung emission from relativistic electrons. Using RHESSI rear segment data, images in the energy range from 150 to 450 keV integrated over the total duration of the impulsive phase of the flare are derived. Out of the 29 γ-ray peaks in 26 RHESSI flares, we successfully obtained images for 21 γ-ray peaks in 20 flares. The remaining eight peaks have >150 keV fluences of less than a few hundred photons per cm2 and counting statistics are too poor for detailed imaging. The flux ratio of the footpoint sources is found to be similar at 50 keV and above 150 keV, indicating that relativistic electrons are present in both footpoints of the flare loop. No correlation between the footpoint separation and the fluence ratio of the 2.2 MeV line and the >300 keV photons is found. This indicates that the relative efficiency of proton to electron acceleration does not depend on loop length, as could have been expected from stochastic acceleration models. As previously reported, the three flares with the best counting statistics show not only footpoint emission, but also a coronal γ-ray bremsstrahlung source. For events with lower counting statistics, no coronal source could be identified. However, instrumental limitation could easily hide a coronal source for events with lower statistics, suggesting that coronal γ-ray bremsstrahlung sources are nevertheless a general feature of γ-ray flares.
On meson exchange currents and nucleon polarizability effects in proton-proton Bremsstrahlung
International Nuclear Information System (INIS)
The proton-proton Bremsstrahlung below the pion production threshold is considered. The corrections to leading potential model amplitudes include newly introduced, nucleon polarizability dependent term and the meson exchange currents with account for the Δ-isobar excitation and the vector meson-pion transition currents. Both unpolarized and polarized cross sections are considered with conclusion that measurements of the proton spin-correlation coefficients are most promising to pin down the new, nucleon spin- and structure-dependent corrections. 17 refs., 4 figs
Virtual- and bremsstrahlung corrections to b -> d l+ l- in the standard model
Asatrian, H. M.; Bieri, K.; Greub, C.; M. Walker
2003-01-01
We present the calculation of the virtual- and bremsstrahlung corrections of O(alpha_s) to the matrix elements . This is the missing piece in the NNLL results for various observables associated with the process B-> X_d l+ l-, like the branching ratio, the CP-rate asymmetry and the forward-backward asymmetry. This paper is an extension of analogous calculations done by some of us for the process B-> X_s l+ l-. As the contributions of the diagrams induced by the operators O_1^u and O_2^u with a...
Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT
International Nuclear Information System (INIS)
The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves
Pion mass effects on axion emission from neutron stars through NN bremsstrahlung processes
International Nuclear Information System (INIS)
The rates of axion emission by nucleon-nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron-neutron (nn), proton-proton ( pp) and neutron-proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass bounds. The trend of these nuclear effects is to diminish the emissivities.
Interference Peak in the Spectrum of Bremsstrahlung on Two Amorphous Targets
Bondarenco, M V
2014-01-01
We investigate the interference pattern in the spectrum of non-dipole bremsstrahlung on two amorphous foils. Apart from suppression at lowest $\\omega$, the spectrum exhibits an enhancement adjacent to it. In classical electrodynamics, the net effect of suppression and enhancement proves to be zero. We study the location and the origin of the spectral features, comparing predictions of full Moli\\`ere averaging with those of the Gaussian averaging with Coulomb corrections to the rms multiple scattering angle. Comparison with experimental data, and with previous theoretical predictions is presented.
Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations
International Nuclear Information System (INIS)
The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table
International Nuclear Information System (INIS)
Inverse bremsstrahlung absorption of the pump laser beam in a backward Raman amplifier over the round-trip light transit time through the subcritical density plasma can more than double the electron temperature of the plasma and produce time-varying axial temperature gradients. The resulting increased Landau damping of the plasma wave and detuning of the resonance can act to stabilize the pump against unwanted amplification of Langmuir noise without disrupting nonlinear amplification of the femtosecond seed pulse. Because the heating rate increases with the charge state Z, only low-Z plasmas (hydrogen, helium, or helium-hydrogen mixtures) will maintain a low enough temperature for efficient operation
Electronic temperature measurement on the deca II plasma using the Bremsstrahlung
International Nuclear Information System (INIS)
The electronic temperature of the DECA II machine's plasma is determined by studying the Bremsstrahlung. Two types of detectors are used for this measurement, a set scintillator-photo-multiplicator and a photoelectric effect detector with a massive silver target. The method used is the classical 'absorbent method', The absorbents used are thin formvar foils whose thickness is between 600 and 12 500 angstrom. The measurements done in two different working conditions of the DECA II machine have given: Te ≅ 200 eV in the first case and Te ≅ 70 eV in the second case. (author)
The development of a high power bremsstrahlung radiator for the production of monochromatic X-rays
International Nuclear Information System (INIS)
An experimental setup for the production of monochromatic X-ray beams tunable in the energy region between 75 KeV and 700 KeV was built at our facility. The concept is based on monochromatization of a broad energy bremsstrahlung spectrum by Laue diffraction on a curved single crystal and by selection of the desired energy with an appropriate slit system, 10.45 meters behind the crystal. The bremsstrahlung spectrum is created when accelerated electrons from a high power 20 kW linac lose energy in a radiator. In this study, the radiator has been optimized for the creation of a bremsstrahlung spectrum suitable for monochromatization with a crystal. Monte-Carlo Simulations (using the BEAM-EGS4 code) of electrons incident with different energies on a radiator with varying composition (aluminum, carbon and tantalum) and thickness were carried out. Furthermore a study of the thermal properties of these materials when being exposed to a high power electron beam was done. This lead to the remarkable conclusion that a thin radiator composed of a low Z material should be used. This result is quite surprising as usually a high Z material is used for efficient transformation of charged particle energy to bremsstrahlung photons. A low Z radiator however will create a less divergent photon beam, leading to more photons on the effective surface area of the crystal. A set of radiators was designed to have an optimal configuration for different monochromatic beams needed. Because only a small fraction of the electrons are stopped in these thin radiators, a cleaning magnet and a beamstop need to be inserted in the setup. Due to the high power of the electron beam on the one hand and its divergency after traversing the radiator on the other, a special magnet system had to be designed to remove the electrons from the photon beam. This was done by means of Monte-Carlo simulations and a ray tracing program. Finally it was estimated that, when using this new setup, the intensity of the
High-power vircator in the regime of warm bremsstrahlung X-ray pulses generation
International Nuclear Information System (INIS)
The article presents the results of 2D self-consistent calculations of electron beam dynamics in vircator cell alongside with the resulting spectra of the accompanying microwave radiation. Also presented are the results of 1D calculations of electron beam dynamics with consideration for dissipation at the anode foil alongside with the resulting spectra of X-ray radiation. Being presented are the results of the first experiments aimed at investigation of bremsstrahlung X-ray radiation of the vircator for thin (10 μm, Ta) and thick (100 μm, Ta) anode foil
On the bremsstrahlung background correction to the high-energy Compton spectroscopy
Indian Academy of Sciences (India)
S Mathur; B L Ahuja
2005-07-01
A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS background contribution in high-energy Compton profile experiments like those employing third generation synchrotron radiation sources comes out to be significant and non-linear. Further, it is found that the incorporation of BS correction in data reduction of such an experiment performed on Hg at 662 keV energy helps in reconciliation of theory and experiment.
Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale
Ciafaloni, Marcello; Colferai, Dimitri; Veneziano, Gabriele
2015-10-01
We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-Planckian-energy (E ≫MP ) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-Planckian characteristic energies of order MP2/E ≪MP (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.
Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale
Ciafaloni, Marcello; Veneziano, Gabriele
2015-01-01
We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-planckian-energy ($E\\gg M_P$) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-planckian characteristic energies of order $M_P^2/E \\ll M_P$ (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.
Shimony-Wolf states and hidden coherences in classical light
Eberly, J. H.
2015-10-01
The classical theory of polarisation coherence is briefly summarised and then extended. The extension is motivated by the recognition that the traditional theory of two-point coherence provides only what we identify as 'diagonal' correlation functions and their associated two-point coherence matrices. It is pointed out that a wider focus is possible when taking account of the three-sector vector space underlying all two-point coherences in classical optics. This reveals the possibility of observing a new type of 'off-diagonal' correlations that arise when the correlation functions under investigation are associated with points in two distinct vector spaces, pairs of points that are not analogous to the pairs of space points or time points that underlie traditional measures of spatial and temporal coherence. Quantum theory has experience with correlations engaging such 'cross-sector' coherences, for example in tests of Bell inequalities, and the quantum formulations are shown to be easily adopted by classical theory without incorporating quantum features in the optical signals. The familiar theory of classical coherence that is associated with the pioneering work of Emil Wolf is extended in conformance with three criteria advanced by Abner Shimony to obtain formulas for correlation functions and for the Bell measure ? of coherence. Values of ? greater than the standard upper limit ? are predicted for certain classical Shimony-Wolf fields, indicating strong cross-sector coherence, but only when standard measures of coherence such as degree of polarisation ? are minimised. Experimental results confirming the predictions for cross-sector coherence are exhibited.
Atomic Coherent Trapping and Properties of Trapped Atom
Institute of Scientific and Technical Information of China (English)
YANG Guo-Jian; XIA Li-Xin; XIE Min
2006-01-01
Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.
Yukalov, V. I.; E. P. Yukalova
2004-01-01
The main part of this review is devoted to the comprehensive description of coherent radiation by nuclear spins. The theory of nuclear spin superradiance is developed and the experimental observations of this phenomenon are considered. The intriguing problem of how coherence develops from initially incoherent quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are discussed, which are: free nuclear induction, collective induction, maser generation, pure sup...
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, P.H.; Veldhuis, R.N.J.
2009-01-01
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Application Coherency Manager Project
National Aeronautics and Space Administration — This proposal describes an Application Coherency Manager that implements and manages the interdependencies of simulation, data, and platform information. It will...
Eesley, G L
1981-01-01
Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter
Electromagnetic spatial coherence wavelets
International Nuclear Information System (INIS)
The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)
On -Coherent Endomorphism Rings
Indian Academy of Sciences (India)
Li-Xin Mao
2008-11-01
A ring is called right -coherent if every principal right ideal is finitely presented. Let $M_R$ be a right -module. We study the -coherence of the endomorphism ring of $M_R$. It is shown that is a right -coherent ring if and only if every endomorphism of $M_R$ has a pseudokernel in add $M_R; S$ is a left -coherent ring if and only if every endomorphism of $M_R$ has a pseudocokernel in add $M_R$. Some applications are given.
Critical Schwinger Pair Production.
Gies, Holger; Torgrimsson, Greger
2016-03-01
We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162
Nazaryan, T A; Hakobyan, A A; Adibekyan, V Zh; Kunth, D; Mamon, G A; Turatto, M; Aramyan, L S
2013-01-01
We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.
The origins of macroscopic quantum coherence in high temperature superconductivity
International Nuclear Information System (INIS)
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
Electromagnetic pair production in relativistic heavy-ion collisions
International Nuclear Information System (INIS)
We survey the phenomenon of pair production by the transient electromagnetic fields produced in relativistic heavy-ion collisions, as it impinges upon atomic, nuclear, and particle physics, and the design of accelerators and detectors. The subject is naturally divided between coherent production in peripheral collisions, and incoherent production in central collisions. We discuss examples illustrating both regimes
Directory of Open Access Journals (Sweden)
Hui Xue
2016-04-01
Full Text Available Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a possible probe to study the high-momentum component in nucleon momentum distribution of finite nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU transport model, the effects of high-momentum component on the production of bremsstrahlung photons in the reaction of C12+12C collisions at different incident beam energies are studied. It is found that the high-momentum component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the ratio of photon production at different incident beam energies is suggested as a potential observable to probe the high-momentum component in nucleon momentum distribution of finite nucleus.
Ordering states with coherence measures
Liu, C. L.; Yu, Xiao-Dong; Xu, G. F.; Tong, D. M.
2016-07-01
The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.
Pair plasma in pulsar magnetospheres
International Nuclear Information System (INIS)
The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able
International Nuclear Information System (INIS)
Radiation hazard at synchrotron radiation (SR) beam lines of Indus-2 Synchrotron Radiation Source (SRS) consists of synchrotron radiation (SR) and Bremsstrahlung radiation (BR). These hazards were quantified experimentally in Lithography beam line (BL-07) of Indus-2 SRS. Measurement was performed during the initial trial operation of the beam line. Transmission of SR through the beam line was optimized by providing bump to the electron beam, prior to the measurement. Thin window ion chamber was used for the SR measurement in the direct beam. Ion current obtained is converted to exposure rate using a calibration factor obtained w.r.t. 60Co source. Copper absorber of 6 mm thick was used for eliminating SR contribution during BR dose measurement. The exposure rates obtained are 3.83E05 R/h-mA and 0.042 R/h-mA for SR and BR respectively. Energy of Bremsstrahlung radiation was also experimentally evaluated using attenuation technique. Details of these measurement and results are presented in this paper. (author)
Z-effective from Bremsstrahlung Emission in the C-2*FRC
Garate, Eusebio; Bolte, Nathan; Gupta, Deepak; Gota, Hiroshi; Allfrey, Ian; Kinley, John; Knapp, Kurt; TAE Team
2014-10-01
An absolutely-calibrated 12-chord Bremsstrahlung array has been implemented on C-2 and is being used to infer Z-effective profiles and line-averaged values. Electron-ion Bremsstrahlung light at a given wavelength is a function of electron temperature, electron density, and the average ionic charge, Z-effective. Electron density is measured with interferometry and electron temperature is measured directly with Thompson scattering or is inferred by pressure balance. Custom band-pass filters at 523.4 nm were chosen to avoid line-radiation. Z-effective radial profiles show a peak near the separatrix and line-averaged values show an increase in time. For shots where density and temperature profiles were available, Z-effective inside the separatrix was found to be 1.28 for the first ms. These data suggest that C-2 FRC's do not suffer from high levels of edge-light contamination, which allows Z-effective monitoring with a single chord. M. W. Binderbauer, High Performance Field Reversed Configurations (APS DPP 2014 Invited Talk).
International Nuclear Information System (INIS)
Conventional radiation monitors have been found to underestimate the personal dose equivalent in the high-energy Bremsstrahlung photon radiation fields encountered near electron storage rings. Depth-dose measurements in a water phantom were carried out with a radiation survey meter in the Bremsstrahlung photon radiation fields from a 450 MeV electron storage ring to find out the magnitude of the underestimation. Dose equivalent indicated by the survey meter was found to build up with increase in thickness of water placed in front of the meter up to certain depth and then reduce with further increase in thickness. A dose equivalent build up factor was estimated from the measurements. An absorbed dose build up factor in a water phantom was also estimated from calculations performed using the Monte Carlo codes, EGS-4 and EGSnrc. The calculations are found to be in very good agreement with the measurements. The studies indicate inadequacy of commercially available radiation monitors for radiation monitoring within shielded enclosures and in streaming high-energy photon radiation fields from electron storage rings, and the need for proper correction for use in such radiation fields. (authors)
Energy Technology Data Exchange (ETDEWEB)
Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)
1995-12-31
One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.
Photoactivation of the p-nucleus {sup 92}Mo with bremsstrahlung at ELBE
Energy Technology Data Exchange (ETDEWEB)
Erhard, M; Grosse, E; Junghans, A R; Klug, J; Nair, C; Rusev, G; Schilling, K D; Schwengner, R; Wagner, A, E-mail: erhard@pd.infn.i [Institut f. Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden (Germany)
2010-01-01
In nuclear network calculations especially the p-nucleus {sup 92}Mo is frequently underproduced. Since experimental data of the photodisintegration of {sup 92}Mo so far do not exist, it was necessary to measure the reaction yields with the photoactivation method using the brems-strahlung facility ELBE at FZ Dresden-Rossendorf. Also the reaction {sup 100}Mo({gamma},n) could be tested while irradiating Mo samples of natural composition. The photon fluence was measured with nuclear resonance fluorescence (NRF) of strong and well-known transitions in {sup 11}B. As a normalization standard the photoactivation reaction {sup 197}Au({gamma},n) was used. For the 65 s half-life of {sup 91m}Mo a fast pneumatic delivery was used. The photoactivation yields of the ({gamma},p) and ({gamma},n) reactions are compared to yield integrals of the bremsstrahlung spectral shape folded with the cross sections derived from Hauser-Feshbach nuclear model calculations using the TALYS program and cross sections from earlier experiments.
Photoactivation of the p-nucleus 92Mo with bremsstrahlung at ELBE
Erhard, M.; Grosse, E.; Junghans, A. R.; Klug, J.; Nair, C.; Rusev, G.; Schilling, K. D.; Schwengner, R.; Wagner, A.
2010-01-01
In nuclear network calculations especially the p-nucleus 92Mo is frequently underproduced. Since experimental data of the photodisintegration of 92Mo so far do not exist, it was necessary to measure the reaction yields with the photoactivation method using the brems-strahlung facility ELBE at FZ Dresden-Rossendorf. Also the reaction 100Mo(γ,n) could be tested while irradiating Mo samples of natural composition. The photon fluence was measured with nuclear resonance fluorescence (NRF) of strong and well-known transitions in 11B. As a normalization standard the photoactivation reaction 197Au(γ,n) was used. For the 65 s half-life of 91mMo a fast pneumatic delivery was used. The photoactivation yields of the (γ,p) and (γ,n) reactions are compared to yield integrals of the bremsstrahlung spectral shape folded with the cross sections derived from Hauser-Feshbach nuclear model calculations using the TALYS program and cross sections from earlier experiments.
Bremsstrahlung from nuclear scattering at low energy near a resonance. Final report
International Nuclear Information System (INIS)
The understanding of almost all low-energy reaction processes depends upon a distorted wave Born approximation (DWBA) analysis. DWBA procedures, in turn, depend crucially upon a correct optical model description of the projectile-target elastic scattering process. An assumption that the potential is local together with measurements of the elastic scattering data at all energies (0 -infinity) would completely determine that potential, including its off-shell or short-range properties. However, one does not have the luxury of knowing the elastic scattering phase shifts for all energies nor are we so naive as to believe that the potential is completely local. Thus, an alternative approach is called for. The present proposal describes a program to contribute to the general understanding of nuclear reactions by determining as many of the off-shell properties of the proton-nucleus interaction as possible through the study of the proton-nucleus bremsstrahlung process. We seek to establish the limits of validity of a model independent analysis of these reactions in the neighborhood of a resonance or a breakup threshold, and to utilize the differences between this analysis and the data to elucidate those off-shell constraints which any valid proton-nucleus model interaction must satisfy. The bremsstrahlung process provides a method for determining the off-shell properties of the proton-nucleus potential, and the Brooklyn College program offers a unique opportunity to measure these crucial aspects of the low energy proton-nucleus interaction. 18 references
A high-power vircator operating as an X-ray bremsstrahlung generator
International Nuclear Information System (INIS)
A vircator capable of generating high-power X-ray pulses due to the multiple transitions of electrons through a thin anode foil transparent to X radiation has been created and put into operation for the first time. The vircator is created on the basis of a direct-action electron accelerator supplied from an inductive energy storage operating with a plasma opening switch. Self-consistent two-dimensional simulations of the electron beam dynamics in the vircator chamber are performed, and the spectra of the generated microwave radiation are determined. Self-consistent one-dimensional simulations of the beam dynamics with allowance for electron scattering in the foil were also carried out, and the X-ray bremsstrahlung spectra were measured. Results are presented from the first experiments on the generation of X-ray bremsstrahlung in vircators with thin (10 μm) and thick (100 μm) tantalum anode foils. For a thin foil, the X-ray (Eγ > 30 keV) dose is eight times as high as that for a thick foil and the average photon energy is 30 keV (against 80 keV for a thick foil)
Effect of degenerate particles on internal bremsstrahlung of Majorana dark matter
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2015-11-01
Full Text Available Gamma-rays induced by annihilation or decay of dark matter can be its smoking gun signature. In particular, gamma-rays generated by internal bremsstrahlung of Majorana and real scalar dark matter is promising since it can be a leading emission of sharp gamma-rays. However in the case of Majorana dark matter, its cross section for internal bremsstrahlung cannot be large enough to be observed by future gamma-ray experiments if the observed relic density is assumed to be thermally produced. In this paper, we introduce some degenerate particles with Majorana dark matter, and show they lead enhancement of the cross section. As a result, increase of about one order of magnitude for the cross section is possible without conflict with the observed relic density, and it would be tested by the future gamma-ray experiments such as GAMMA-400 and Cherenkov Telescope Array (CTA. In addition, the constraints of perturbativity, positron observation by the AMS experiment and direct search for dark matter are discussed.
International Nuclear Information System (INIS)
A particle produced in a hard collision can lose energy through bremsstrahlung. It has long been of interest to calculate the effect on bremsstrahlung if the particle is produced inside a finite-size QCD medium such as a quark-gluon plasma. For the case of very high-energy particles traveling through the background of a weakly coupled quark-gluon plasma, it is known how to reduce this problem to an equivalent problem in nonrelativistic two-dimensional quantum mechanics. Analytic solutions, however, have always resorted to further approximations. One is a harmonic oscillator approximation to the corresponding quantum mechanics problem, which is appropriate for sufficiently thick media. Another is to formally treat the particle as having only a single significant scattering from the plasma (known as the N=1 term of the opacity expansion), which is appropriate for sufficiently thin media. In a broad range of intermediate cases, these two very different approximations give surprisingly similar but slightly differing results if one works to leading logarithmic order in the particle energy, and there has been confusion about the range of validity of each approximation. In this paper, I sort out in detail the parametric range of validity of these two approximations at leading logarithmic order. For simplicity, I study the problem for small αs and large logarithms but αslog<<1.
Flood Mapping Using InSAR Coherence Map
Selmi, S.; W. Ben Abdallah; Abdelfatteh, R.
2014-01-01
Classic approaches for the detection of flooded areas are based on a static analysis of optical images and/or SAR data during and after the event. In this paper, we aim to extract the flooded zones by using the SAR image coupled with the InSAR coherence. A new formulation of the ratio approach for flood detection is given considering InSAR coherence. Our contribution is to take advantage from the coherence map provided using the InSAR pairs (one before and one after the event) to enh...
International Nuclear Information System (INIS)
In the ASDEX Thomson scattering system the scattered light of a Nd:YAG laser beam (λ = 1064 nm) is measured to obtain electron density and temperature profiles every 16 ms. The same system is continuously used to measure bremsstrahlung in the near infrared, allowing determination of radial Zeff profiles. Furthermore, the diagnostic can also be used for real time control of the electron density. This applies in particular in cases where large sawteeth and pellet injection generate counting errors in the interferometer signal. The relation between the line density n and the central chord bremsstrahlung signal Ub was investigated for different heating scenarios in a wide density range. (orig.)
Electron pairing without superconductivity
Levy, Jeremy
Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.
García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.
2009-05-01
In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
Zheng, Yanping
2009-01-01
In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…
International Nuclear Information System (INIS)
Properties of the system of generalized coherent states for the simpliest Lie groups are reviewed. Coherent states for the group of rotations of the three-dimensional space SO(3) and the structure of the group are considered. Irreducible unitary representations of the SU(2) group are plotted, as well as a contineous series of concepts of the SU(1, 1) group
García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.
2008-01-01
In this letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well known coherent information. This lead to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
Partially coherent ultrafast spectrography
Bourassin-Bouchet, C.; Couprie, M.-E.
2015-01-01
Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080
International Nuclear Information System (INIS)
The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs
Quantum coherence and sensitivity of avian magnetoreception
Bandyopadhyay, Jayendra N; Kaszlikowski, Dagomir
2012-01-01
Migratory birds and other species have the ability to navigate by sensing the geomagnetic field. Recent experiments indicate that the essential process in the navigation takes place in bird's eye and uses chemical reaction involving molecular ions with unpaired electron spins (radical pair). Sensing is achieved via geomagnetic-dependent dynamics of the spins of the unpaired electrons. Here we utilize the results of all behavioral experiments conducted on European Robins to argue that the average life-time of the radical pair is of the order of a microsecond and therefore agrees with experimental estimations of this parameter for cryptochrome --- a pigment believed to form the radical pairs. We also found a reasonable parameter regime where sensitivity of the avian compass is enhanced by environmental noise, showing that long coherence time is not required for navigation and may even spoil it.
Waveguide-based OPO source of entangled photon pairs
International Nuclear Information System (INIS)
In this paper, we present a compact source of narrow-band energy-time-entangled photon pairs in the telecom regime based on a Ti-indiffused periodically poled lithium niobate (PPLN) waveguide resonator, i.e. a waveguide with end-face dielectric multi-layer mirrors. This is a monolithic doubly resonant optical parametric oscillator (OPO) far below threshold, which generates photon pairs by spontaneous parametric down-conversion (SPDC) at around 1560 nm with a 117 MHz (0.91 pm)-bandwidth. A coherence time of 2.7 ns is estimated by a time correlation measurement and a high quality of the entangled states is confirmed by a Bell-type experiment. Since highly coherent energy-time-entangled photon pairs in the telecom regime are suitable for long distance transmission and manipulation, this source is well suited to the requirements of quantum communication.
Photon and neutrino-pair emission from circulating quantum ions
Yoshimura, M
2015-01-01
The recent proposal of photon and neutrino pair beam is extensively investigated. Production rates, both differential and total, of single photon, two-photon and neutrino-pair emitted from quantum ions in circular motion are calculated for any velocity of ion. This part is an extension of our previous results at highest energies to lower energies of circulating ions, and helps much to identify the new process at a low energy ion ring. We clarify how to utilize the circulating ion for a new source of coherent neutrino beam despite of much stronger background photons. Once one verifies that the coherence is maintained in the initial phases of time evolution after laser irradiation, large background photon emission rates are not an obstacle against utilizing the extracted neutrino pair beam.
Schwinger pair production with ultracold atoms
Kasper, V.; Hebenstreit, F.; Oberthaler, M. K.; Berges, J.
2016-09-01
We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.
Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media
Kumar, Sudhir; Nahum, Alan E.
2016-02-01
Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of ‘secondary bremsstrahlung’ along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV ‘clinical’ radiotherapy qualities. Concerning depth-dependence, the ‘area under the kerma, K, curve’ exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the ‘double counting’ of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma ‘liberated’ in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this ‘violation’ amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a ‘clinical’ 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of ≈51 g cm-2 for both very high and very low charged-particle transport cut
International Nuclear Information System (INIS)
A time-of-flight spectrometer is being installed at the COSY accelerator for experimental investigations of the proton-proton bremsstrahlung. The TOF spectrometer is to detect the times of flight, the flight directions, and the multiplicities of charged particles. The design of the start detector is explained as well as initial test results for the ppγ experiment. (orig./HP)
Coherent diffractive ρ production
International Nuclear Information System (INIS)
Coherent diffractive ρ production by neutrinos occurs at low four-momentum transfer and high energy transfer. These interactions are generally understood to occur via the coupling of the weak charged current to the vector meson, which scatters diffractively from the target nucleus. Since coherent events are those in which the nucleus interacts as a whole, ie without breakup, and with small recoil energy, these events have a very sharp |t|-distribution. This presentation deals mostly with the Monte Carlo simulation of the coherent diffractive production of the ρ production and in particular with the reconstruction algorithm (description and efficiency) and the |t| distribution
Institute of Scientific and Technical Information of China (English)
Michael Thomas
2005-01-01
@@ What makes a coherent EFL curriculum? How can curriculum planners avoid a mismatch between policy and pragmatics to produce an effective decision-making process? In The Second Language Curriculum, Johnson describes the coherent curriculum as one in which decision outcomes from the various stages of development are mutually consistent and complementary,and learning outcomes reflect curriculum aims.The achievement of coherence is said to depend crucially in most educational contexts upon the formalisation of decision-making processes and products. This formalisation facilitates consensus among those involved and is a prerequisite for effective evaluation and subsequent renewal (1994: xiii)
Efficient far-infrared thermal bremsstrahlung radiation from a heterojunction bipolar transistor
International Nuclear Information System (INIS)
We investigate the far-infrared thermal radiation properties of a heterojunction bipolar transistor. The device conveniently provides a high electric field for electrons to heat the lattice and the electron gas in a background with ions embedded. Because of very high effective temperature of the electron gas in the collector, the electron-ion bremsstrahlung makes efficient the thermal radiation in the far-infrared region. The transistor can yield a radiation power of 0.1 mW with the spectral region between 2 and 75 THz and a power conversion efficiency of 6 × 10−4. Such output contains a power of 20 μW in the low-frequency part (2–20 THz) of the spectrum
Bremsstrahlung x ray spectra of Jupiter and Saturn: Predictions for future planetary spacecraft
International Nuclear Information System (INIS)
Calculations of X ray spectra due to bremsstrahlung from precipitating auroral electrons at Jupiter and Saturn are presented. The model assumes that a field-aligned potential drop accelerates a primary beam of electrons into the atmosphere where a population of secondary electrons having a power law energy dependence is generated. The spectrum at Jupiter is normalized to the soft X ray observations of Metzger et al (1983) at the low-energy end and constrained at the high-energy end by UV auroral energy requirements. The spectrum at Saturn is constructed by analogy to the Jovian case allowing for variation of the beam energy, energy flux, and scale size of the Saturnian aurora. The resulting indicate that a significant flux of X rays is emanating from both planets which may serve as a basis for conducting planetary X ray astronomy as part of future spacecraft missions to the planets
Aranha, R F; Soares, I Damião; Tonini, E V
2008-01-01
We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency $\\Delta$ of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter $q \\simeq 1/2$; the result extends and validates analysis based on the linearized t...
International Nuclear Information System (INIS)
The leading behaviour of planckian energy superstring scattering in D space-time dimensions was described in previous papers by an eikonal function which, at large distances, could be interpreted in terms of an effective Aichelburg-Sexl metric yielding the first-order Einstein deflection. We compute here the subleading terms of such an eikonal function up to two loops and, for D=4, we find: a finite and positive classical correction to the Einstein deflection, implying a deviation from the external metric picture; an IR divergent absorptive part which admits a Bloch-Nordsieck interpretation in terms of soft graviton bremsstrahlung. The derivation of the above results is based on a novel treatment of the IR behaviour of quantum gravity around D=4, proving the absence of inelastic Coulomb singularities and the lack of renormalization of the infinite Coulomb phase. (orig.)
International Nuclear Information System (INIS)
Following Wilson's suggestion of electron acceleration by the electric fields in thunderclouds, a number of experiments were attempted to investigate whether or not energetic electrons and bremsstrahlung X-rays were generated by thunderstorm electric fields or lightning discharge processes. In recent years, enhanced radiation at high altitude has been detected in experiments using scintillation detectors on a jet and an artificial satellite, demonstrating that radiation is indeed associated with lightning activities. However there are few experimental reports of detection near the ground since Whitmire's investigation using thermoluminescent dosimeters (TLDs) in 1979. In winter, many thunderstorms occur on the west coast of Japan, and it has been suggested that gamma-ray dose may increase occasionally during winter thunderstorms. Recently, a gamma-ray dose enhancement which might be caused by the lightning activity was measured by TLDs and environmental radiation monitors around the site of the fast breeder reactor 'Monju', a nuclear power plant facing the Japan Sea. (author)
Jeffrey, Natasha
2011-01-01
This paper aims to study the polarization of hard X-ray (HXR) sources in the solar atmosphere, including Compton backscattering of photons in the photosphere (the albedo effect) and the spatial distribution of polarization across the source. HXR photon polarization and spectra produced via electron-ion bremsstrahlung are calculated from electron distributions typical for solar flares. Compton scattering and photoelectric absorption are then modelled using Monte Carlo simulations of photon transport in the photosphere. Polarization maps across HXR sources (primary and albedo components) for each of the modelled electron distributions are calculated at various source locations from the solar centre to the limb. We show that Compton scattering produces a distinct polarization variation across the albedo patch at peak albedo energies of 20-50 keV for all anisotropies modelled. The results show that there are distinct spatial polarization changes in both the radial and perpendicular to radial directions across the...
Samarai, I Al; Lebrun, D; Letessier-Selvon, A; Salamida, F
2014-01-01
A detection technique of ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy electrons left after the passage of the showers in the atmosphere. The emission mechanism is expected from quasi-elastic collisions of electrons produced in the shower by the ionisation of the molecules in the atmosphere. In this article, a detailed calculation of the spectral intensity of photons at ground level originating from the transitions between unquantised energy states of free ionisation electrons is presented. In the absence of absorption of the emitted photons in the plasma, the obtained spectral intensity is shown to be 5 10^{-26} W m^{-2}Hz^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 10^{17.5} eV.
Bremsstrahlung photons - an ideal tool in nuclear structure and nuclear astrophysics
International Nuclear Information System (INIS)
Full text of publication follows. Bremsstrahlung photons, produced by decelerating electrons, are a very useful probe to investigate current topics in nuclear structure and nuclear astrophysics. The photon scattering facility of the superconducting electron accelerator S-DALINAC at the Darmstadt University of Technology allows for high resolution Nuclear Resonance Fluorescence (NRF) experiments up to 10 MeV. One current topic of interest in nuclear structure is the investigation of Pygmy Dipole Resonances (PDR), which are located near the particle threshold. Recently, experiments have been carried out on Ca isotopes [1] as well as on several N=82 nuclei [2] in order to understand the structure of the PDR. Moreover, important astrophysical questions can be investigated using real photons (g,n) reaction rates, which play a major role in nucleosynthesis, can be measured at the S-DALINAC by simulating a quasi-stellar photon bath with variable temperature [3,4
Studies on inner bremsstrahlung from a few β-emitting isotopes
International Nuclear Information System (INIS)
Past experimental studies on the inner bremsstrahlung (IB) emission from the forbidden β transitions have shown marked deviations from the theoretical calculations of Lewis and Ford, Ford and Martin, Chang and Falkoff, Madansky and Gebhardt. In this paper we have re-analysed the data of IB emissions from four β-emitting isotopes, namely 89Sr, 141Ce, 111Ag and 99Tc, whose transitions are classified as forbidden. The raw experimental data already available in the literature are critically examined in the light of relevant statistics in order to arrive at meaningful conclusions. The unfolding of the IB spectra was done following the step-by-step procedure of Liden and Starfelt. The results obtained were different from those reported in the literature. (author)
Determination of the anomalous scattering factors of high-Z atoms using bremsstrahlung radiation
International Nuclear Information System (INIS)
The anomalous scattering factors (f' and f'') of tungsten, gold and lead atoms have been determined using external bremsstrahlung (EB) photons. The EB photons are produced by the interaction of a beta particle from a beta source with a nickel target. These photons are allowed to pass through thin targets of tungsten, gold and lead. The transmitted photons have been measured by using a GMX-type HPGe detector coupled to an 8K multichannel analyser. The transmitted spectra show a sharp decrease in intensity at the K shell binding energies of the target atoms. The regions around the decreased portion have been used to determine the anomalous scattering factors. The experimentally measured values are compared with the available theoretical values.
Determination of the anomalous scattering factors of high-Z atoms using bremsstrahlung radiation
Energy Technology Data Exchange (ETDEWEB)
Hosur, Savita B; Naik, L R; Badiger, N M [Department of Physics, Karnatak University, Dharwad 580003 (India)], E-mail: nagappa123@yahoo.co.in
2009-02-14
The anomalous scattering factors (f' and f'') of tungsten, gold and lead atoms have been determined using external bremsstrahlung (EB) photons. The EB photons are produced by the interaction of a beta particle from a beta source with a nickel target. These photons are allowed to pass through thin targets of tungsten, gold and lead. The transmitted photons have been measured by using a GMX-type HPGe detector coupled to an 8K multichannel analyser. The transmitted spectra show a sharp decrease in intensity at the K shell binding energies of the target atoms. The regions around the decreased portion have been used to determine the anomalous scattering factors. The experimentally measured values are compared with the available theoretical values.
Chen, Yingjie; Wu, Zhenwei; Gao, Wei; Ti, Ang; Zhang, Ling; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Xu, Zong; Zhao, Junyu
2015-02-01
The multi-channel visible bremsstrahlung measurement system has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to providing effective ion charge Zeff as a routine diagnostic, this diagnostic can also be used to estimate other parameters. With the assumption that Zeff can be seen as constant across the radius and does not change significantly during steady state discharges, central electron temperature, averaged electron density, electron density profile, and plasma current density profile have been obtained based on the scaling of Zeff with electron density and the relations between Zeff and these parameters. The estimated results are in good coincidence with measured values, providing an effective and convenient method to estimate other plasma parameters. PMID:25725844
Study on the dose distribution of 8-MeV bremsstrahlung in mantle field techniques
International Nuclear Information System (INIS)
The dose distribution within the patient was studied with 8-MeV bremsstrahlung from a linear accelerator during mantle field irradiation using molded shielding blocks. Doses and dose distributions in the different layers of a modified Alderson phantom were measured by means of film dosimetry and related to the dose in the central ray beam at the middle of the body. Dose distribution within unshielded regions perpendicular to the central ray beam generally being relatively homogeneous, the highest relative doses, amounting to ca. 115%, are found in the region of the mandibular angle and in the supraclavicular region; the dose to superficial lymph nodes at the supraclavicular region reaches 100% of the dose in the central ray beam. As a cause for these important doses near the surface of the body are discussed the extension of mantle fields as well as the increased exit dose of the opposed field and the oblique incidence of radiation. (orig.)
Measurement of the mean ionic charge on Tore supra by visible bremsstrahlung radiation
International Nuclear Information System (INIS)
The effective plasma charge Zeff (proportional to plasma impurity ratio) is of prime importance for controlled fusion by magnetic confinement because it is involved for plasma ignition. From bremsstrahlung radiation theory in the visible part of the spectrum it is shown how effective charge in the plasma is deduced. A validity criterion is established from experiments (radiation at λ = 5235 A) to obtain Zeff profile and error estimation. This profile allows the calculation of resistivity profiles from different theories which are compared to a magnetohydrodynamic code. Calculation time is reduced by a fast analysis method from global parameters given time evolution of Zeff. This last measurement is essentially used for interpretation of experimental results of the Tore Supra physical program
The production of neutral vector mesons by bremsstrahlung in electron-positron colliding beams
International Nuclear Information System (INIS)
The authors study the bremsstrahlung production of the rho meson in the reaction e+e- → e+e-rho (→ e+e- π+π-). This reaction gives a C = -1 background which complicates the study of C = +1 two-photon processes at the new colliding-beam facilities. The cross section for the reaction rises from approximately 0.3 nb to 0.7 nb as the beam energy increases from 2 GeV to 15 GeV. From a study of the distributions of the final leptons and pions, one finds a suitable choice of cuts which will reduce the event rate down to a small fraction of R. It is not possible to attribute the three-prong events seen at DELCO and PLUTO to this particular production mechanism. (Auth.)
Search for a 17 keV neutrino in the internal bremsstrahlung spectrum of 125I
International Nuclear Information System (INIS)
We have searched for evidence of the emission of a 17 keV neutrino in the internal bremsstrahlung (IB) spectrum accompanying the electron capture decay of 125I. The IB spectrum, recorded in a planar Ge detector, has 1.2x106 counts per keV at 17 keV below the 2p end point. We set an upper limit of 0.4% for the admixture of a 17 keV neutrino, at the 90% confidence level, and exclude a 0.8% admixture at the 99.6% confidence level. The QEC value is found to be 185.77±0.06 keV. We also find that the recent calculations of Suric et al., which employ relativistic self-consistent-field atomic wave functions, reproduce the shape and relative intensity of IB partial spectra within a few percent
Study of the inner Bremsstrahlung following the electron-capture decay of 193 Pt
International Nuclear Information System (INIS)
We are measuring the inner Bremsstrahlung (I B) photons emitted in some of the electron-capture decays of 193 Pt. The source was prepared with highly pure metal Pt. It was irradiated with neutron for 52 days and let to cool down for eight months. The remaining activities were due to 193 Ptg (half-life 50 yr) and 192 Ir (half-life 74 d), the latter coming from (n, γ) reactions on a small content of Ir. We have used a radiochemistry method to reduce the Ir content of the source. The resulting Pt compound will be dissolved in a plastic scintillator disk. Most of the 192 Ir decays are β- and their signal in the plastic will be used as a veto for the I B-photon detector. We have performed simulations of the efficiency and absorption effects in the detection geometry. (author)
Nature of strong hole pairing in doped Mott antiferromagnets.
Zhu, Zheng; Jiang, Hong-Chen; Sheng, D N; Weng, Zheng-Yu
2014-01-01
Cooper pairing instability in a Fermi liquid is well understood by the BCS theory, but pairing mechanism for doped Mott insulators still remains elusive. Previously it has been shown by density matrix renormalization group (DMRG) method that a single doped hole is always self-localized due to the quantum destructive interference of the phase string signs hidden in the t-J ladders. Here we report a DMRG investigation of hole binding in the same model, where a novel pairing-glue scheme beyond the BCS realm is discovered. Specifically, we show that, in addition to spin pairing due to superexchange interaction, the strong frustration of the phase string signs on the kinetic energy gets effectively removed by pairing the charges, which results in strong binding of two holes. By contrast, if the phase string signs are "switched off" artificially, the pairing strength diminishes significantly even if the superexchange coupling remains the same. In the latter, unpaired holes behave like coherent quasiparticles with pairing drastically weakened, whose sole origin may be attributed to the resonating-valence-bond (RVB) pairing of spins. Such non-BCS pairing mechanism is therefore beyond the RVB picture and may shed important light on the high-T(c) cuprate superconductors. PMID:24957467
Radical-ion-pair reactions are the biochemical equivalent of the optical double-slit experiment.
Kominis, Iannis K
2011-05-01
Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts. Here we show that radical-ion-pair reactions essentially form a nonlinear biochemical double-slit interferometer. Quantum coherence effects are visible when "which-path" information is limited, and the incoherent limit is approached when measurement-induced decoherence sets in. Based on this analogy with the optical double-slit experiment we derive and elaborate on the fundamental master equation of spin-selective radical-ion-pair reactions that covers the continuous range from complete incoherence to maximum singlet-triplet coherence. PMID:21728616
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
workers from the global South, the first article demonstrates how Facebook can be a fruitful methodological tool in the aspiration to open up the research to new themes of inquiry. However, rather than disregarding the au pairs’ economic problems, the dissertation shows how their family participation and......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...... pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...
Nazaryan, T A; Hakobyan, A A; Adibekyan, V Zh; Kunth, D; Mamon, G A; Turatto, M; Aramyan, L S
2013-01-01
We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies.
Coherence in Industrial Transformation
DEFF Research Database (Denmark)
Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær
2003-01-01
The notion of coherence is used to illustrate the general finding, that the impact of environmental management systems and environmental policy is highly dependent of the context and interrelatedness of the systems, procedures and regimes established in society....
Bromley, Thomas R; Adesso, Gerardo
2014-01-01
We analyse under which dynamical conditions the coherence of an open quantum system is totally unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coherence monotones are left invariant during the entire evolution. This finding also provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain analytical results for distance-based measures of coherence in two-qubit states with maximally mixed marginals.
... Cardiac Magnetic Resonance Imaging (MRI and MRA) Computed Tomography (CT) Scan Diagnostic Tests and Procedures Echocardiography Electrocardiogram ... Ultrasound Nuclear Stress Test Nuclear Ventriculography Positron Emission Tomography (PET) Stress ... Optical Coherence Tomography | ...
Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.
2006-12-01
The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two
Partially coherent ultrafast spectrography
Bourassin-Bouchet, C.; Couprie, M.-E.
2015-01-01
Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse c...
International Nuclear Information System (INIS)
We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.
Spohn, Wolfgang
1999-01-01
The paper proposes two principles of coherence (thus taking up work started in Spohn (1991) "A Reason for Explanation: Explanations Provide Stable Reasons"). The latter indeed serves as a weak, but precise explication of the notion of coherence as it is used in the current epistemological discussion. After discussing their epistemological setting, the paper considers four ways of establishing these principles. They may be inferred neither from enumerative induction, nor from the nature of pro...
A J Seeds; Fice, M. J.; Balakier, K; M Natrella; Mitrofanov, O.; Pepper, M.; Renaud, C.C.; M. Lamponi; M Chtioui; Van Dijk, F.; Aeppli, G.; A G Davies; Dean, P.; Linfield, E
2013-01-01
We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance...
Yanping Zheng
2009-01-01
In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can utilize the following approaches: retention of the continuity of senses of a text; reconstruction of the target text for the purpose of continuity;...
International Nuclear Information System (INIS)
Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter 90Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (FmodBH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (FmodBH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of FmodBH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the FmodBH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends
Energy Technology Data Exchange (ETDEWEB)
Singh, Amrit; Dhaliwal, A. S., E-mail: dhaliwalas@hotmail.com [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal(Sangrur) -148106, Punjab (India)
2015-08-28
Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter {sup 90}Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of F{sub mod}BH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the F{sub mod}BH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.
Singh, Amrit; Dhaliwal, A. S.
2015-08-01
Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter 90Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (FmodBH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (FmodBH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of FmodBH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the FmodBH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.
Crossover from BCS superconductivity to superfluidity of local pairs
International Nuclear Information System (INIS)
We review some recent results concerning crossover from cooperative Cooper pairing to independent bound states formation and their superfluidity, and a possible relevance of the crossover behavior to the anomalous properties of short-coherence length superconductors. Using the extended Hubbard model with on-site attraction (EHM), we analyze the behavior of collective modes, thermodynamic and electromagnetic properties versus the coupling strength and electron concentration. The normal state properties of the 2D attractive Hubbard model obtained with the conserving, self-consistent T-matrix approach, are presented. These studies also indicate possible deviations from conventional Fermi-liquid behavior, above Tc, in 2D short coherence length superconductors. (orig.)
Quantum-coherent mixtures of causal relations
MacLean, Jean-Philippe W; Spekkens, Robert W; Resch, Kevin J
2016-01-01
Understanding the causal influences that hold among the parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common cause acting on both. Here, we show that it is possible to have a coherent mixture of these two possibilities. We realize such a nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's paradox. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, such as Bell's theorem and the search for quantum gravity, but could also provide a resource for novel quantum technologies.
Entanglement and coherence in quantum state merging
Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-01-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...
Hadronic lepton pair production
International Nuclear Information System (INIS)
The author describes a beam dump experiment at the CERN SPS for the study of μ pair production by π+-, K+-, and p(anti p) beams on a copper target at 39.5 GeV/c. The dependence of the cross sections from various parameters is discussed. (HSI)
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel;
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types of...
Stimulated coherent transition radiation
International Nuclear Information System (INIS)
Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed
Direct measurement of exciton valley coherence in monolayer WSe2
Hao, Kai; Moody, Galan; Wu, Fengcheng; Dass, Chandriker Kavir; Xu, Lixiang; Chen, Chang-Hsiao; Sun, Liuyang; Li, Ming-Yang; Li, Lain-Jong; MacDonald, Allan H.; Li, Xiaoqin
2016-07-01
In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time--a crucial quantity for valley pseudospin manipulation--is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron-hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron-hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.
Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons
Yan, Hui; Zhang, Shanchao; Chen, J. F.; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2011-01-01
We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second.
SAR image effects on coherence and coherence estimation.
Energy Technology Data Exchange (ETDEWEB)
Bickel, Douglas Lloyd
2014-01-01
Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.
Coherent Photoproduction from Nuclei
Frankfurt, L L; Zhalov, M B
2003-01-01
We argue that study of the cross section of coherent photo(electro) production of vector mesons off nuclear targets provides an effective method to probe the leading twist hard QCD regimes of color transparency and perturbative color opacity as well as the onset of black body limit (BBL) in the soft and hard QCD interactions. In the case of intermediate energies we use the Generalized Vector Dominance Model to take into account coherence effects for two distinctive limits - the soft interactions for production of $\\rho$ and $\\rho'$-mesons and the color transparency regime for production of charmonium states. We demonstrate that GVDM describes very well $\\rho$-meson coherent photoproduction at $6 \\leq E_{\\gamma} \\leq 10$ GeV and predict an oscillating energy dependence for the coherent charmonium production. In the limit of small $x$ we find that hard QCD leads to onset of the perturbative color opacity even for production of very small onium states, like $\\Upsilon$. The advantages of the process of coherent d...
A Numerical Study of On-Axis Dose Rate from Ta and W Bremsstrahlung Converter Targets
International Nuclear Information System (INIS)
The bremsstrahlung converter target in radiographic accelerators is not, in general, considered a high-technology piece of equipment. In its essential form it is merely a solid plate of high-Z metal, usually tungsten (W) or tantalum (Ta); electrons go in, X-rays come out [1]. However, there are some important factors to keep in mind for this kind of target system. One is a constraint on the target itself: the proper thickness of material. Too little material reduces the probability that an electron will have a significant nuclear collision before exiting the plate. Too much material has a number of effects: small-angle scattering will occur to such an extent that bremsstrahlung photons will not be pointed in the forward direction. Electrons which small-angle scatter away and then back to the forward direction will have moved to larger radii as they traverse the target, increasing the effective source size. Electrons ''backscattered'' from the target --primaries or secondaries ejected from the upstream surface after sufficient angular scatter--exert a defocusing force on the incoming beam due to increased space charge at fixed (or even slightly reduced) current. Finally, a sufficiently thick target will begin to self-attenuate the X-ray photons produced in the upstream portion of the plate. A second constraint is obvious but is harder to accommodate when designing a radiographic accelerator system. The angular distribution of the incoming electron beam will change the forward dose. Just as electrons which have undergone small-angle scatter will no longer produce forward dose, electrons which have large angles before they ever enter the target cannot produce forward dose. Accurate prediction of dose requires incorporating the effect of the initial angle of the electron coming into the target material. The further step of controlling the angular distribution--which means keeping it as close to zero as possible--is difficult since it tends to drive important beam
Energy Technology Data Exchange (ETDEWEB)
D' Enterria, D.G
2000-05-15
The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)
Dynamic coherent backscattering mirror
Energy Technology Data Exchange (ETDEWEB)
Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)
2016-02-15
The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.
Maximal privacy without coherence.
Leung, Debbie; Li, Ke; Smith, Graeme; Smolin, John A
2014-07-18
Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N(d) with input dimension d(2), quantum capacity Q(N(d)) ≤ 1, and private capacity P(N(d)) = log d. These channels asymptotically saturate an interesting inequality P(N) ≤ (1/2)[log d(A) + Q(N)] for any channel N with input dimension d(A) and capture the essence of privacy stripped of the confounding influence of coherence. PMID:25083622
International Nuclear Information System (INIS)
Full text: The aim of investigations was the study of spectral and relaxation characteristics of radiation induced emission in the FSHA-800 type quartz-polymer optical fibres (OF) which are used as active media of Cherenkov's detectors in the CMS experiment (CERN). The part of OF with the length L turned in to ring of 5 cm of diameter was placed right of the way of a bunch of Bremsstrahlung gamma - rays. At the same time this OF was used for transportation of induced light which has been detected by EPP 2000C model Miniature Fiber Optic Spectrometer. The emission kinetics was measured by TDS 3032 model TEKTRONIX digital storage oscilloscope. Tungstate target plate being irradiated by electrons beam of MT-22C model microthrone (frequency of 400 Hz at a current of 7 μA) was as Bremsstrahlung gamma irradiation source (average energy of 7 MeV). For changing of irradiating dose rate the sample investigated was placed at the different distance from the target. The results of investigations The emission spectra are characterized by several bands with the maximum at 370, 420, 470, 520 and 670 nm. The transformation of the spectra take place for the different length of irradiating (L) of OF. The dose dependence of the observed emission depends on the irradiating length too. For the small value of L (0.5 m) the increasing of irradiation dose result in increasing of emission intensity. In the case of large L (5 m) we have opposite effect. The emission decay kinetics are characterized by (i) fast (time constant τ<1 μs) and slow (II) components (time constant τ- a few μs). The both spectra were measured at the irradiating dose of D=0.36 Mrad. The given curves are corrected on spectral sensitivity of the equipment. The nature of observed emission and its peculiarities are discussed in terms of existing models of radiation defect formation in the quartz glass. The influence of induced absorption on emission spectra transformation is considered. The authors express the
Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies
Energy Technology Data Exchange (ETDEWEB)
Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)
2008-10-15
Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos
Pisharody, M; Berkvens, P; Colomp, P
2000-01-01
The absorbed-dose distributions for Bremsstrahlung, incident on a tissue-equivalent phantom, were measured with LiF : Mg,Ti thermoluminescent dosimeters at two insertion device beamlines of the European Synchrotron Radiation Facility (ESRF). The measurements were carried out for two different electron beam energies of 4 and 6 GeV. The corresponding Bremsstrahlung spectra and power were measured using a high-resolution lead glass total absorption calorimeter. The results are compared with similar measurements carried out at other facilities. The normalized Bremsstrahlung absorbed dose in a cross-sectional area of 100 mm sup sup 2 , at a depth of 150 mm of the phantom, was measured as 6.1 and 3.6 kGy h sup sup - sup sup 1 W sup sup - sup sup 1 for the corresponding Bremsstrahlung spectra of 4 and 6 GeV.
Maintaining Web Cache Coherency
Directory of Open Access Journals (Sweden)
2000-01-01
Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.
Fragment Characteristics from Photofission of 234U and 238U Induced by 6.0 - 9.0 Mev Bremsstrahlung
Göök, A.; Barday, R.; Chernykh, M.; Eckardt, C.; Enders, J.; Neumann-Cosel, P. Von; Poltoratska, Y.; Wagner, M.; Richter, A.; Oberstedt, S.; Hambsch, F.-J.; Oberstedt, A.
2011-10-01
As a preparatory experiment for a search for parity violation in photofission, fission of 238U and 234U induced by 6 - 9 MeV bremsstrahlung has been investigated at the superconducting Darmstadt electron linear accelerator S-DALINAC. Using a twin Frisch grid ionization chamber fission fragment energy and mass distributions have been determined by means of the double kinetic energy technique. The experiment was performed in order to test the ionization chamber's performance in a bremsstrahlung environment. Results on the fission fragment characteristics from the 238U(γ,f) reaction are found to be in good agreement with literature values. In addition results on fission fragment mass and energy distributions from the 234U(γ,f) reaction are presented for the first time in this energy region.
International Nuclear Information System (INIS)
The BioXAS beamlines consist of an undulator beamline followed by two wiggler beamlines sharing the same insertion device. To contain gas bremsstrahlung in the primary optical enclosure (POE), three tungsten blocks are placed, one of which is common to all the three beamlines. A radiation shielding study is carried out for primary and secondary gas bremsstrahlung of the BioXAS beamlines. Dose rates behind the back wall, side wall and the top of the roof are obtained by calculating energy depositions in a water phantom, which surrounds the POE. Discussion is made regarding the adequacy of radiation shielding for the BioXAS beamlines, which will be built in the near future at the Canadian Light Source.
Coherent soliton communication lines
Energy Technology Data Exchange (ETDEWEB)
Yushko, O. V., E-mail: olesya.yushko@gmail.com; Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K. [Novosibirsk State University (Russian Federation)
2014-11-15
The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.
International Nuclear Information System (INIS)
Recollections are reported about the attitude of N.G. Basov to the problem of coherence of stimulated transitions at the very beginning of studies devoted the creation of masers and lasers. It is shown that the problem of coherence of stimulated transitions can be solved in a multiparticle system. The role of stimulated transitions in a variety of processes proceeding in the nature is discussed. The contribution of N.G. Basov and his school to the development of quantum electronics and laser physics is briefly discussed. (special issue devoted to the 80th anniversary of academician n g basov's birth)
Ferraro, Pietro; Zalevsky, Zeev
2011-01-01
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th
Cherny, Alexander S.
2006-01-01
This paper deals with applications of coherent risk measures to pricing in incomplete markets. Namely, we study the No Good Deals pricing technique based on coherent risk. Two forms of this technique are presented: one defines a good deal as a trade with negative risk; the other one defines a good deal as a trade with unusually high RAROC. For each technique, the fundamental theorem of asset pricing and the form of the fair price interval are presented. The model considered includes static as...
International Nuclear Information System (INIS)
Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to
Czech Academy of Sciences Publication Activity Database
Jadrníčková, Iva; Spurný, František
2006-01-01
Roč. 41, č. 4 (2006), s. 421-429. ISSN 0033-8451 R&D Projects: GA ČR GA202/04/0795; GA ČR(CZ) GD202/05/H031 Institutional research plan: CEZ:AV0Z10480505 Keywords : linear energy transfer * bremsstrahlung beam * onboard aircraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders
International Nuclear Information System (INIS)
Rat liver removed from the abdominal cavity was subjected to a single local bremsstrahlung exposure from a linear electron accelerator in doses 1000, 2300, 4600 and 6900 R. Such an exposure was shown to have a blastomogenic action which manifested itself mainly in the occurrence of cholangiocellular timours. The most frequent occurrence of neoplasms (55,5%) was observed at the dose of 4600 R
International Nuclear Information System (INIS)
Computer calculations of the values of integral (effective) and differential linear factors of X-ray bremsstrahlung attenuation for radiation flaw detection were conducted. The values of effective build up factors of scattered radiation were calculated as well. Calculations were conducted in geometry of ''narrow'' beam in 20-400 kV range of tube voltage for Mg, Al, Ti, Fe base alloys of 1-500 mm thickness. Calculation data are tabulated
One-loop corrections to the process e+e- → tt-bar including hard bremsstrahlung
International Nuclear Information System (INIS)
Radiative corrections to the process e+e- → tt-bar are Calculated in one-loop approximation of the Standard Model. There exist results from several groups. This talk provides further comparisons of the complete electroweak contributions, including hard bremsstrahlung. The excellent final agreement of the different groups allows to continue by working on a code for an event generator for TESLA and an extension to e+e- → 6 fermions. (author)
Coherence Constraints and the Last Hidden Optical Coherence
Qian, Xiao-Feng; Malhotra, Tanya; Vamivakas, A. Nick; Eberly, Joseph H.
2016-01-01
We have discovered a new domain of optical coherence, and show that it is the third and last member of a previously unreported fundamental triad of coherences. These are unified by our derivation of a parallel triad of coherence constraints that take the form of complementarity relations. We have been able to enter this new coherence domain experimentally and we describe the novel tomographic approach devised for that purpose.
X-rays from Proton Bremsstrahlung: Evidence from Fusion Reactors and Its Implication in Astrophysics
Luo, Nie
2009-01-01
In a fusion reactor, a proton and a neutron generated in previous reactions may again fuse with each other. Or they can in turn fuse with or be captured by an un-reacted deuteron. The average center-of-mass (COM) energy for such reaction is around 10 keV in a typical fusion reactor, but could be as low as 1 keV. At this low COM energy, the reacting nucleons are in an s-wave state in terms of their relative angular momentum. The single-gamma radiation process is thus strongly suppressed due to conservation laws. Instead the gamma ray released is likely to be accompanied by x-ray photons from a nuclear bremsstrahlung process. The x-ray thus generated has a continuous spectrum and peaks around a few hundred eV to a few keV. The average photon energy and spectrum properties of such a process are calculated with a semiclassical approach. The results give a peak near 1.1 keV for the proton-deuteron fusion and a power-to-the-minus-second law in the spectrum's high-energy limit. An analysis of some prior tokamak disc...
Virtual- and bremsstrahlung corrections to b -> d l+ l- in the standard model
Asatrian, H M; Greub, C; Walker, M
2003-01-01
We present the calculation of the virtual- and bremsstrahlung corrections of O(alpha_s) to the matrix elements . This is the missing piece in the NNLL results for various observables associated with the process B-> X_d l+ l-, like the branching ratio, the CP-rate asymmetry and the forward-backward asymmetry. This paper is an extension of analogous calculations done by some of us for the process B-> X_s l+ l-. As the contributions of the diagrams induced by the operators O_1^u and O_2^u with a u-quark running in the quark loop are strongly CKM suppressed, they were omitted in the analysis of B->X_s l+ l-. This is no longer possible for B-> X_d l+ l-, as the corresponding contributions are not suppressed. The main new work therefore consists of calculating the O(alpha_s) corrections to . In this paper we restrict ourselves to the range 0.05 X_d l+ l- as expansions in the small parameters s/m_b^2, z = m_c^2/m_b^2 and s/(4 m_c^2). In the phenomenological analysis at the end of the paper we discuss the impact of ...
Study of the inner Bremsstrahlung following the electron-capture decay of {sup 193} Pt
Energy Technology Data Exchange (ETDEWEB)
Chavez, J.Y.Z.; Cruz, M.T.F. da; Martins, M.N.; Santos, R.T. dos [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zamboni, C.B.; Hamada, M.M.; Camargo, S.P. de; Medeiros, J.A.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Hindi, M.M. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics
1997-12-31
We are measuring the inner Bremsstrahlung (I B) photons emitted in some of the electron-capture decays of {sup 193} Pt. The source was prepared with highly pure metal Pt. It was irradiated with neutron for 52 days and let to cool down for eight months. The remaining activities were due to {sup 193} Pt{sup g} (half-life 50 yr) and {sup 192} Ir (half-life 74 d), the latter coming from (n, {gamma}) reactions on a small content of Ir. We have used a radiochemistry method to reduce the Ir content of the source. The resulting Pt compound will be dissolved in a plastic scintillator disk. Most of the {sup 192} Ir decays are {beta}{sup -} and their signal in the plastic will be used as a veto for the I B-photon detector. We have performed simulations of the efficiency and absorption effects in the detection geometry. (author) 6 refs., 1 fig.; juan at if.usp.br; czamboni at net.ipen.br; hindi at hindi.physics.tntech.edu
Hydramite II screening tests of potential bremsstrahlung converter debris shield materials
International Nuclear Information System (INIS)
Results of a brief test series aimed at screening a number of potential bremsstrahlung converter debris shield materials are reported. These tests were run on Sandia National Laboratories' Hydramite II accelerator using a diode configuration which produces a pinched electron beam. The materials tested include: (1) laminated Kevlar 49/polyester and E-glass/polyester composites, (2) a low density laminated Kevlar 49 composite, and (3) two types of through-the-thickness reinforced Kevlar 49 composites. As expected, tests using laminated Kevlar 49/polyester shields showed that shield permanent set (i.e., permanent deflection) increased with increasing tantalum conversion foil thickness and decreased with increasing shield thickness. The through-the-thickness reinforced composites developed localized, but severe, back surface damage. The laminated composites displayed little back surface damage, although extensive internal matrix cracking and ply delaminations were generated. Roughly the same degree of permanent set was produced in shields made from the low density Kevlar 49 composite and the Kevlar 49/polyester. The E-glass reinforced shields exhibited relatively low levels of permanent set
Electron spectroscopy in the fundamental process of electron-nucleus bremsstrahlung
International Nuclear Information System (INIS)
Within the scope of this thesis the fundamental process of electron-nucleus bremsstrahlung was studied in inverse kinematics at the Experimental Storage Ring ESR at GSI. For the system U88+ + N2 at 90 MeV/u it was shown, that by using inverse kinematics coincidence measurements between the scattered electron and the emitted photon can be performed for the case, in which the incoming electron transfers almost all of its kinetic energy onto the emitted photon. The sensitivity to the fundamental process could be achieved by measuring triple differential cross sections as a function of the emission angle of the photon and the scattered electron as well as the energy of the scattered electron. The optics of the magnetic electron spectrometer used were thoroughly revised and optimized to the experimental requirements. Analyzing different coincidences in this collision system, it was possible to determine the contributions to the electron distribution arising from radiative electron capture to the projectile continuum, nonradiative electron capture to the projectile continuum, and electron loss to the projectile continuum. The experimental results of each of these processes were compared to theoretical calculations. The electron spectra for the radiative and the nonradiative electron capture to continuum clearly reproduce the opposite asymmetry predicted by theory. Furthermore electron spectra for collisions of U28+ with different gases were measured.
Pauli principle in the soft-photon approach to proton-proton bremsstrahlung
International Nuclear Information System (INIS)
A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-photon amplitude is the first two-u-two-t special amplitude to satisfy all theoretical constraints. The conventional Low amplitude can be obtained as a special case. It is demonstrated that previously proposed amplitudes for this process, both the (u,t) and (s,t) classes, violate the Pauli principle at some level. The origin of the Pauli principle violation is shown to come from two sources: (i) For the (s,t) class, the two-s-two-t amplitude transforms into the two-s-two-u amplitude under the interchange of two initial-state (or final-state) protons. (ii) For the (u,t) class, the use of an internal emission amplitude determined from the gauge-invariance constraint alone, without imposition of the Pauli principle, causes a problem. The resulting internal emission amplitude can depend upon an electromagnetic factor which is not invariant under the interchange of the two protons. copyright 1996 The American Physical Society
The bremsstrahlung tagged photon beam in Hall B at the Jefferson Laboratory
International Nuclear Information System (INIS)
We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (Jlab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefly described, and performance results to date under real operating conditions are presented. The entire photon-tagging system has met or exceeded its design goals
A consistent meson-field-theoretical description of pp-bremsstrahlung
Eden, J A
1996-01-01
A parameter-free and relativistic extension of the RuhrPot meson-baryon model is used to define the dominant isoscalar meson-exchange currents. We compute pp-bremsstrahlung observables below the \\pi-production threshold using a relativistic hadronic current density that includes impulse, wave function re-orthonormalization, meson-recoil, \\bar{{\\rm N}}N creation and annihilation, \\rho\\pi\\gamma + \\omega\\pi\\gamma + \\rho\\eta\\gamma + \\omega\\eta\\gamma vector-meson decay and N\\Delta\\gamma(\\pi,\\rho) exchange currents. We obtain a good description of the available data. The N\\Delta\\gamma(\\pi) current is shown to dominate the large two-body contributions and closed-form expressions for various non-relativistic approximations are analyzed. An experimental sensitivity to the admixture of pseudo-scalar and pseudo-vector admixture of the NN\\pi interaction is demonstrated. We examine the Lorentz invariance of the NN\\rightleftharpoonsNN t-matrices and show a dominantly pseudo-vector NN\\pi coupling renders impulse approximati...
Hidden Photon Compton and Bremsstrahlung in White Dwarf Anomalous Cooling and Luminosity Functions
Chang, Chia-Feng
2016-01-01
We computed the contribution of the Compton and Bremsstrahlung processes with a hidden light $U(1)_D$ neutral boson $\\gamma_D$ to the white dwarf G117-B15A anomalous cooling rate, as well as the white dwarf luminosity functions (WDLF). We demonstrated that for a light mass of hidden photon ($m_{\\gamma_D} \\ll$ a few keV), compatible results are obtained for the recent Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey observation, but the stringent limits would be imposed on the kinetic mixing $\\epsilon$. We performed $\\chi^2$-tests to acquire a quantitative assessment on the WDLF data in the context of our model, computed under the assumption of different kinetic mixing $\\epsilon$, the age of the oldest computed stars $T_D$, and a constant star formation rate $\\psi$. Then taken together, the WDLF analysis of 2$\\sigma$ confidence interval $\\epsilon = \\left( 0.37^{+0.35}_{-0.37}\\right) \\times 10^{-14}$ is barely consistent with the cooling rate analysis at 2$\\sigma$ regime $\\epsilon = \\left( 0.97^{+0.35}_{...
Davidson, M P
2003-01-01
The mathematical expression for the electromagnetic current of a quantum particle describes an extended charge in the sense that it is non-vanishing over the volume of the wave packet or the Schroedinger wave for the particle. In the hydrodynamic model this charge current and associated density are interpreted as a physical reality. Coupling such a current to a classical electromagnetic field in the soft photon limit then results in a theory for radiation. It is shown that this predicts that bremsstrahlung is sometimes greatly suppressed when the force acting on the particle is due to a classical potential field and when the volume over which the force is active is small compared to the volume of the particle's wave packet. Solving the same problem using conventional quantum radiation theory gives a different result. Therefore it is possible to test this effect experimentally and either confirm or rule out a hydrodynamic model for Schroedinger wave mechanics. An experiment is proposed to make such a test. It ...
Measurement of the virtual bremsstrahlung in the p+p and p+d systems
International Nuclear Information System (INIS)
Virtual bremsstrahlung yields measured in p+p→p+p+e+ +e- and p+d→3He+e+ +e- are presented. The experiments were performed with a 190 MeV polarized proton beam obtained from the cyclotron AGOR at KVI in Groningen. Differential cross sections, response functions and analyzing powers were obtained for both reactions in exclusive measurements in which all outgoing particles were measured in a coincidence setup between SALAD and TAPS. The data are compared with gauge-invariant calculations using a NN T-matrix fitted to elastic phase-shifts. For pp→ppe+ e- a reasonable agreement is found for all measured virtual-photon invariant masses, Mγ >15 MeV/c2 up to 80 MeV /c2. For the pd→3He e+e- angular distributions, the calculations underestimate the data for θCM >100 o similar to what is found in the real-photon capture reaction. Refs. 7, figs. 2 (author)
Search for 17-keV neutrinos in the internal bremsstrahlung spectrum of 125I
International Nuclear Information System (INIS)
We have conducted an experiment to search for the signature of a 17-keV neutrino in the internal bremsstrahlung (IB) spectrum of 125I. Gamma rays from a ∼ 100 mCi 125I point source were counted in a planar HPGe detector which is 16 mm in diameter and 10 mm in depth and which has a resolution of 560 eV at 122 keV. The source was counted for 61 d and the background for 17 d. At the start of the counting period the count rate was 650 s-1; the number of counts 17 keV below the 2p endpoint is 106 per keV. Data in the energy interval 120-150.5 keV were fitted with a theoretical spectrum calculated using nonrelativistic Hartree-Fock atomic wavefunctions. The preliminary fits reject the hypothesis of a 0.8% 17-keV neutrino at a confidence level of ≥ 98%. We are in the process of reanalyzing the data using recent relativistic theoretical shapes
Deformation of coherent structures
Fledderus, E.R.; Groesen, van E.
1996-01-01
In this review we investigate the mathematical description of the distortion of clearly recognisable structures in phenomenological physics. The coherent structures we will explicitly deal with are surface waves on a layer of fluid, kink transitions in magnetic material, plane vortices, swirling flo
DEFF Research Database (Denmark)
Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten;
2016-01-01
During the past decade, politicians and health care providers have strived to create a coherent health care system across primary and secondary health care systems in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care and lack ...
Measuring a coherent superposition
Vitanov, N V; Unanyan, R G; Bergmann, K
1999-01-01
We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.
Hobson, R. Peter
2014-01-01
There is a growing body of opinion that we should view autism as fractionable into different, largely independent sets of clinical features. The alternative view is that autism is a coherent syndrome in which principal features of the disorder stand in intimate developmental relationship with each other. Studies of congenitally blind children…
Dental Optical Coherence Tomography
Kun-Feng Lin; Jui-che Tsai; Ching-Cheng Chuang; Shyh-Yuan Lee; Yi-Ching Ho; Yao-Sheng Hsieh; Chia-Wei Sun
2013-01-01
This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.
Coherence in multilevel systems
International Nuclear Information System (INIS)
Mathematical descriptions of an excited state multilevel system are developed to include progressively the effects of coherent coupling, feeding, decay and relaxation, and the expressions are illustrated with several pulse coherence experiments utilizing zero field optically detected magnetic resonance of excited triplet states. A new method is described in which the time development of the coherent components in a multilevel system is monitored by using an observable that can measure only relative populations between the levels. The method is illustrated. By treating a coherently driven excited state system as two levels in contact with a population reservoir, exact expressions are obtained for both transient and steady-state behavior in the presence of transverse and spin lattice relaxation, constant incoherent pumping, spontaneous emission between the two levels, and also decay back into the reservoir. The general mathematical development is applied specifically to zero field microwave phosphorescence double resonance. Experimental methods and apparatus are discussed in detail and results of optically detected transient mutations, spin echoes, and Fourier transform spectroscopy are presented. (26 figs, 220 refs)
Coherent detection spectroscopy
Bueren, H.G. van
1969-01-01
Various methods of optical spectroscopy are compared, with special emphasis on resolution and acceptance of the systems. It is shown that coherent detection with a laser as a local oscillator has important advantages for specific applications in astronomical spectroscopy and interferometry, especial
DEFF Research Database (Denmark)
Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina;
2014-01-01
Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the...
Superpower monochromatic coherent synchrotron radiation
International Nuclear Information System (INIS)
Here a special case of coherent synchrotron radiation from relativistic electron bunches distributed uniformly on a circular orbit is investigated. The possibility to obtain a monochromatic intense coherent radiation in the long-wavelength region is shown
International Nuclear Information System (INIS)
Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)
Coherent states in quantum mechanics
International Nuclear Information System (INIS)
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex
International Nuclear Information System (INIS)
Observations of long-lived coherence between excited states in several photosynthetic antenna complexes has motivated interest in developing a more detailed understanding of the role of the protein matrix in guiding the underlying dynamics of the system. These experiments suggest that classical rate laws may not provide an adequate description of the energy transfer process and that quantum effects must be taken into account to describe the near unity transfer efficiency in these systems. Recently, it has been shown that coherences between different pairs of excitons dephase at different rates. These details should provide some insight about the underlying electronic structure of the complex and its coupling to the protein bath. Here we show that a simple model can account for the different dephasing rates as well as the most current available experimental evidence of excitonic coherences in the Fenna–Matthews–Olson complex. The differences in dephasing rates can be understood as arising largely from differences in the delocalization and shared character between the underlying electronic states. We also suggest that the anomalously low dephasing rate of the exciton 1–2 coherence is enhanced by non-secular effects. (paper)
Operational Resource Theory of Coherence
Winter, Andreas; Yang, Dong
2016-03-01
We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts—"coherence distillation" and "coherence cost"—in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J.; Guenther, David C.
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Operational Resource Theory of Coherence.
Winter, Andreas; Yang, Dong
2016-03-25
We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states. PMID:27058063
Physiological aspects of paired stimulation
Meijler, F.L.; Durrer, D.
1965-01-01
In this paper some physiological and clinical aspects of paired stimulation are discussed. I) The augmenting effect of paired stimulation on rnyocardial contractility is due to potentiation (increase in speed of restitution) and fusion of two contractions. 2) While using paired stimulation the oxyg
Parallel computation of cryptographic pairings
International Nuclear Information System (INIS)
The efficiency of multiprocessor systems for pairing computation has been estimated. Various schemes of efficient implementation of Miller's algorithm for computations of Weyl and Tate pairings in a multiprocessor computing system have been considered. The complexity of pairing computation in uniprocessor and multiprocessor computing systems has been theoretically estimated
Maximally coherent mixed states: Complementarity between maximal coherence and mixedness
Singh, Uttam; Bera, Manabendra Nath; Dhar, Himadri Shekhar; Pati, Arun Kumar
2015-05-01
Quantum coherence is a key element in topical research on quantum resource theories and a primary facilitator for design and implementation of quantum technologies. However, the resourcefulness of quantum coherence is severely restricted by environmental noise, which is indicated by the loss of information in a quantum system, measured in terms of its purity. In this work, we derive the limits imposed by the mixedness of a quantum system on the amount of quantum coherence that it can possess. We obtain an analytical trade-off between the two quantities that upperbound the maximum quantum coherence for fixed mixedness in a system. This gives rise to a class of quantum states, "maximally coherent mixed states," whose coherence cannot be increased further under any purity-preserving operation. For the above class of states, quantum coherence and mixedness satisfy a complementarity relation, which is crucial to understand the interplay between a resource and noise in open quantum systems.
Geoacoustic inversion of noise coherence in shallow water
Thomson, David J.; Desharnais, Francine; Drover, Matthew L.; Gillard, Chris A.
2002-11-01
It is known that the geoacoustic properties of a shallow-water sea-bed can be inferred from relatively simple measurements of the ambient noise coherence between a pair of vertically separated hydrophones [D. M. F. Chapman, ''Surface-generated noise in shallow water: A model,'' Proc. Inst. Acoust. 9, 1-11 (1987)]. The design of an autonomous buoy package for acquiring geoacoustic information by this method is currently being considered by DRDC-Atlantic in support of matched-field localization efforts that are being developed for use with rapidly deployable arrays. Initially, vertical coherence estimates from a simple shallow water noise model were fit to measured coherences by adjusting geoacoustic parameters by a trial and error procedure. A more systematic approach involves combining noise coherence models with nonlinear global optimization methods based on matched-coherence processing concepts to search the space of possible sea-bed parameters more efficiently. In this paper, we report on recent efforts to use a hybrid simplex simulated annealing scheme [M. R. Fallat and S. E. Dosso, ''Geoacoustic inversion via local, global, and hybrid algorithms,'' J. Acoust. Soc. Am. 105, 3219-3230 (1999)] to match an increasingly realistic suite of candidate geoacoustic parametrizations to some acoustic noise coherent data measured with modified sonobuoys deployed at several shallow water locations on the Scotian Shelf.
Institute of Scientific and Technical Information of China (English)
De Xu ZHOU
2009-01-01
Assume that S is an almost excellent extension of R. Using functors Hom R(S,-) and -(×)R S, we establish some connections between classes of modules (L)R and (L)S, cotorsion pairs ((A)R, (A)R)and ((A)S, (B)S). If (L)S is a T-extension or (and) H-extension of (L)R, we show that (L)S is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is (L)R. If (S, S) is a TH-extension of ((A)R,(B)R), we obtain that ((A)S,(B)S) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is ((A)R,(B)R).
International Nuclear Information System (INIS)
A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)
Multiprocessor switch with selective pairing
Energy Technology Data Exchange (ETDEWEB)
Gara, Alan; Gschwind, Michael K; Salapura, Valentina
2014-03-11
System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus
Calibration of airborne SAR interferograms using multisquint-processed image pairs
Prats, Pau; Mallorqui, Jordi J.; Reigber, Andreas; Broquetas, Antoni
2004-01-01
This paper presents two different approaches to detect and correct phase errors appearing in interferometric airborne SAR sensors due to the lack of precision in the navigation system. The first one is intended for interferometric pairs with high coherence, and the second one for low coherent ones. Both techniques are based on a multisquint processing approach, i.e., by processing the same image pairs with different squint angles we can combine the information of different interferograms to obtain the desired phase correction. Airborne single- and repeat-pass interferometric data from the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Experimental airborne SAR is used to validate the method.
Coherent OCDMA communication systems
Wang, Xu
2012-01-01
Coherent optical code division multiple access (OCDMA) technique, where encoding and decoding are based on the phase and amplitude of optical field instead of its intensity, is receiving much attention for the overall superior performance over incoherent OCDMA and the development of compact and reliable en/decoders (E/D) such as spatial light phase modulator (SLPM), superstructured fiber Bragg grating (SSFBG) and multi-port array waveguide grating (AWG)-type E/D. In this paper, we will discuss several recent progresses in coherent OCDMA: a. Novel coding technology such as multi-phase-level SSFBG encoder, 50x50 multiport en/decoder and reconfigurable time domain spectral phase en/decoding; b. New signal modulation formats in OCDMA including DPSK, DQPSK, CSK and M-ary CSK; and c. Field trials of high capacity WDM/OCDMA systems.
Hsu, Liang-Yan; Rabitz, Herschel
2015-07-01
We introduce a tunneling effect by a driving field, referred to as coherent revival of tunneling (CRT), corresponding to complete tunneling (transmission coefficient =1 ) that is revived from the circumstance of total reflection (transmission coefficient ≈0 ) through application of an appropriate perpendicular high-frequency ac field. To illustrate CRT, we simulate electron transport through fish-bone-like quantum-dot arrays by using single-particle Green's functions along with Floquet theory, and we explore the corresponding current-field amplitude characteristics as well as current-polarization characteristics. In regard to the two characteristics, we show that CRT exhibits entirely different features than coherent destruction of tunneling and photon-assisted tunneling. We also discuss two practical conditions for experimental realization of CRT.
Acoustic coherent perfect absorbers
International Nuclear Information System (INIS)
In this paper, we explore the possibility of achieving acoustic coherent perfect absorbers. Through numerical simulations in two dimensions, we demonstrate that the energy of coherent acoustic waves can be totally absorbed by a fluid absorber with specific complex mass density or bulk modulus. The robustness of such absorbing systems is investigated under small perturbations of the absorber parameters. We find that when the resonance order is the lowest and the size of the absorber is comparable to the wavelength in the background, the phenomenon of perfect absorption is most stable. When the wavelength inside both the background and the absorber is much larger than the size of the absorber, perfect absorption is possible when the mass density of the absorber approaches the negative value of the background mass density. Finally, we show that by using suitable dispersive acoustic metamaterials, broadband acoustic perfect absorption may be achieved. (papers)
International Nuclear Information System (INIS)
A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride (CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/γ-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)
Jeffrey, N. L. S.; Kontar, E. P.
2011-12-01
Aims: We study the polarization of hard X-ray (HXR) sources in the solar atmosphere, including Compton backscattering of photons in the photosphere (the albedo effect) and the spatial distribution of polarization across the source. Methods: HXR photon polarization and spectra produced via electron-ion bremsstrahlung emission are calculated from various electron distributions typical for solar flares. Compton scattering and photoelectric absorption are then modelled using Monte Carlo simulations of photon transport in the photosphere to study the observed (primary and albedo) sources. Polarization maps across HXR sources (primary and albedo components) for each of the modelled electron distributions are calculated at various source locations from the solar centre to the limb. Results: We show that Compton scattering produces a distinct polarization variation across the albedo patch at peak albedo energies of 20-50 keV for all anisotropies modelled. The results show that there are distinct spatial polarization changes in both the radial and perpendicular to radial directions across the extent of the HXR source at a given disk location. In the radial direction, the polarization magnitude and direction at specific positions along the HXR source will either increase or decrease with increased photon distribution directivity towards the photosphere. We also show how high electron cutoff energies influence the direction of polarization at above ~100 keV. Conclusions: Spatially resolved HXR polarization measurements can provide important information about the directivity and energetics of the electron distribution. Our results indicate the preferred angular resolution of polarization measurements required to distinguish between the scattered and primary components. We also show how spatially resolved polarization measurements could be used to probe the emission pattern of an HXR source, using both the magnitude and the direction of the polarization.
International Nuclear Information System (INIS)
Nucleon-nucleon bremsstrahlung, NNγ, is a fundamental process, which involves the strong and electromagnetic fields acting simultaneously. Since the electromagnetic interaction is well known, NNγ provides a calculable tool for comparing off-energy-shell effects from different two-nucleon potentials compared to experiment and also provides a simple testing ground, which is sensitive to meson-exchange-current contributions that are so important in electronuclear physics. Historically, experimental studies have focused on ppγ, with only a few measurements of npγ. The present workshop was organized primarily to investigate the interest in, the value of, and the feasibility of doing an npγ experiment using the neutron white source at LANL. An increasing amount of US nuclear physics dollars are being spent on electronuclear physics. npγ is a fundamental process with large meson-exchange currents. In the npγ calculations of Brown and Franklin, the meson-exchange contributions increase the cross section by a factor of roughly two and later the angular distribution of the emitted photon dramatically. The details of these calculated effects have never been verified experimentally, but the proper quantum-mechanical inclusion of meson-exchange contributions, using the methods of brown and Franklin, has proved to be essential in understanding the heavy-ion results. The understanding of the importance of such terms is extremely important inelectronuclear processes, such as are presently under investigation or being planned at Bates, SLAC, and CEBAF. Just one example is in the electrodisintegration of the deuteron, where meson-exchange contributions must be included properly before any conclusions about nuclear models, such as QCD versus meson-exchange potentials can be made
Spectral coherence in windturbine wakes
Energy Technology Data Exchange (ETDEWEB)
Hojstrup, J. [Riso National Lab., Roskilde (Denmark)
1996-12-31
This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.
Quantum Dynamics of Radical-Ion-Pair Reactions
Kominis, I K
2010-01-01
Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts, casting doubt on the validity of the theoretical treatment of these reactions and the results thereof that has been at the core of spin chemistry for several decades now. The ensued scientific debate, although exciting, is plagued with several misconceptions. We will here provide a comprehensive treatment of the quantum dynamics of radical-ion-pair reactions, generalizing our recent work and elaborating on the analogy with the double-slit experiment having partial "which-path" information. This analogy directly leads to the general treatment of radical-ion pair reactions covering the whole range between the two extremes, that of perfect singlet-triplet coherence and that of complete incoherence.
Multiple origins of asteroid pairs
Jacobson, Seth A.
2016-01-01
Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.
Symmetric, coherent, Choquet capacities
Kadane, Joseph B.; Wasserman, Larry
1996-01-01
Choquet capacities are a generalization of probability measures that arise in robustness, decision theory and game theory. Many capacities that arise in robustness are symmetric or can be transformed into symmetric capacities. We characterize the extreme points of the set of upper distribution functions corresponding to coherent, symmetric Choquet capacities on [0, 1]. We also show that the set of 2-alternating capacities is a simplex and we give a Choquet representation of this set.
Bidirectional coherent classical communication
Harrow, Aram W.; Leung, Debbie W.
2005-01-01
A unitary interaction coupling two parties enables quantum or classical communication in both the forward and backward directions. Each communication capacity can be thought of as a tradeoff between the achievable rates of specific types of forward and backward communication. Our first result shows that for any bipartite unitary gate, bidirectional coherent classical communication is no more difficult than bidirectional classical communication — they have the same achievable rate regions. ...
Interleaved optical coherence tomography.
Lee, Hee Yoon; Sudkamp, Helge; Marvdashti, Tahereh; Ellerbee, Audrey K
2013-11-01
We present a novel and cost-effective technique--interleaved optical coherence tomography (iOCT)--to enhance the imaging speed of swept source OCT systems by acquiring data from multiple lateral positions simultaneously during a single wavelength sweep, using a single detector and a virtually imaged phase array (VIPA) as a multi-band demultiplexer. This technique uses spectral encoding to convert coherence length into higher imaging speed; the speed enhancement factor is independent of the source speed or center wavelength, and the effective A-scan rate scales linearly with sweep speed. The optical configuration requires only a change in the sample arm of a traditional OCT system and preserves the axial resolution and fall-off characteristic of a traditional SS-OCT using the same light source. Using 10 kHz, 20 kHz and 100 kHz sources we provide a first demonstration of image speed enhancement factors of up to 12, 6 and 10, respectively, which yield effective A-scan rates of 120 kHz, 120 kHz and 1 MHz for B-scan imaging, with a sensitivity of up to 82.5 dB. We also show that iOCT can image faster dynamics than traditional OCT B-scan imaging and is capable of 3D biological imaging. The iOCT concept suggests a new route to high-speed OCT imaging for laser developers: that is, by focusing on improving the coherence length and linewidth of existing and emerging sources. Hence, iOCT is a nice complement to ongoing research and commercial efforts to enable faster imaging through development of lasers with faster sweep rates, and offers new hope for existing sources with slow sweep rates and potential for enhancement of coherence length to compete with faster sources to achieve high-speed OCT. PMID:24216876
Photoacoustics with coherent light
Directory of Open Access Journals (Sweden)
Emmanuel Bossy
2016-03-01
Full Text Available Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging.
Photoacoustics with coherent light.
Bossy, Emmanuel; Gigan, Sylvain
2016-03-01
Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging. PMID:27069874
Energy Technology Data Exchange (ETDEWEB)
Litvinenko,V.
2009-05-04
Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.
Energy Technology Data Exchange (ETDEWEB)
Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)
1995-10-01
The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.
International Nuclear Information System (INIS)
In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as the gauge-invariant projection of a product over links of Hall's heat kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). These states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.
International Nuclear Information System (INIS)
The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system
Directory of Open Access Journals (Sweden)
Catarino Ana
2013-01-01
Full Text Available Abstract Background Autism Spectrum Conditions (ASC are a set of pervasive neurodevelopmental conditions characterized by a wide range of lifelong signs and symptoms. Recent explanatory models of autism propose abnormal neural connectivity and are supported by studies showing decreased interhemispheric coherence in individuals with ASC. The first aim of this study was to test the hypothesis of reduced interhemispheric coherence in ASC, and secondly to investigate specific effects of task performance on interhemispheric coherence in ASC. Methods We analyzed electroencephalography (EEG data from 15 participants with ASC and 15 typical controls, using Wavelet Transform Coherence (WTC to calculate interhemispheric coherence during face and chair matching tasks, for EEG frequencies from 5 to 40 Hz and during the first 400 ms post-stimulus onset. Results Results demonstrate a reduction of interhemispheric coherence in the ASC group, relative to the control group, in both tasks and for all electrode pairs studied. For both tasks, group differences were generally observed after around 150 ms and at frequencies lower than 13 Hz. Regarding within-group task comparisons, while the control group presented differences in interhemispheric coherence between faces and chairs tasks at various electrode pairs (FT7-FT8, TP7-TP8, P7-P8, such differences were only seen for one electrode pair in the ASC group (T7-T8. No significant differences in EEG power spectra were observed between groups. Conclusions Interhemispheric coherence is reduced in people with ASC, in a time and frequency specific manner, during visual perception and categorization of both social and inanimate stimuli and this reduction in coherence is widely dispersed across the brain. Results of within-group task comparisons may reflect an impairment in task differentiation in people with ASC relative to typically developing individuals. Overall, the results of this research support the value of WTC
Positron--Electron, Pair-Plasma Production on OMEGA EP
Myatt, J.; Maximov, A. V.; Short, R. W.
2006-10-01
It is shown that an e^+e^- pair-plasma can be created on OMEGA EP, a feat yet to be achieved in the laboratory. We calculate that a yield of between 10^11 and 10^12 positrons can be produced on OMEGA EP by a combination of the Bethe--Heitler conversion of hard x-ray bremsstrahlung and the trident process, assuming a total laser energy of 5 kJ. For this expanding e^+e^- cloud to be a plasma, there must be many particles in a Debye sphere, and the cloud must be many Debye lengths in size. A magnetic field produced by a second OMEGA EP beam will provide the necessary confinement. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, International Series in Pure and Applied Physics (McGraw-Hill, New York, 1964); D. A. Gryaznykh, Ya. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002). E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998).
2000-01-01
Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth
Loss of quantum coherence through scattering off virtual black holes
Hawking, Stephen William; Ross, Simon F.
1997-01-01
In quantum gravity, fields may lose quantum coherence by scattering off vacuum fluctuations in which virtual black hole pairs appear and disappear. Although it is not possible to properly compute the scattering off such fluctuations, we argue that one can get useful qualitative results, which provide a guide to the possible effects of such scattering, by considering a quantum field on the $C$ metric, which has the same topology as a virtual black hole pair. We study a scalar field on the Lorentzian $C$ metric background, with the scalar field in the analytically-continued Euclidean vacuum state. We find that there are a finite number of particles at infinity in this state, contrary to recent claims made by Yi. Thus, this state is not determined by data at infinity, and there is loss of quantum coherence in this semi-classical calculation.
Loss of quantum coherence through scattering off virtual black holes
Hawking, S. W.; Ross, Simon F.
1997-11-01
In quantum gravity, fields may lose quantum coherence by scattering off vacuum fluctuations in which virtual black hole pairs appear and disappear. Although it is not possible to properly compute the scattering off such fluctuations, we argue that one can get useful qualitative results, which provide a guide to the possible effects of such scattering, by considering a quantum field on the C metric, which has the same topology as a virtual black hole pair. We study a scalar field on the Lorentzian C metric background, with the scalar field in the analytically continued Euclidean vacuum state. We find that there are a finite number of particles at infinity in this state, contrary to recent claims made by Yi. Thus, this state is not determined by data at infinity, and there is loss of quantum coherence in this semiclassical calculation.
Stereo Pair, Pasadena, California
2000-01-01
This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA
Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure
Energy Technology Data Exchange (ETDEWEB)
Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC
2010-08-26
The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.
Coherent photon scattering cross sections for helium near the delta resonance
Delli Carpini, D.; Booth, E. C.; Miller, J. P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M. A.; Nathan, A. M.; Wells, D. P.
1991-04-01
The angular distributions for coherent photon scattering from 4He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV.
Coherent photon scattering cross sections for helium near the delta resonance
International Nuclear Information System (INIS)
The angular distributions for coherent photon scattering from 4He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV
International Nuclear Information System (INIS)
Dependence of spectral shape of total bremsstrahlung spectra i.e. the sum of ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB), on the atomic number (Z) of target materials (Al, Ti, Sn and Pb), produced by continuous beta particles of 90Sr and 204Tl, has been investigated in the photon energy region of 5-30 keV. It has been found that the spectral shape of total bremsstrahlung spectra, in terms of S (k, Z) i.e. the number of photons of energy k per moc2 per beta disintegration, is not linearly dependent on the atomic number (Z) of the target material and rather it is proportional to Zn. At lower photon energies, the index values ‘n’ of Z-dependence are much higher than unity, which is due to the larger contribution of PB into OB. The decrease in ‘n’ values with increase of photon energy is due to the decrease in contribution of PB into OB. It is clear that the index ‘n’ values obtained from the modified Elwert factor (relativistic) Bethe-Heitler theory, which include the contribution PB into OB, are in agreement with the experimentally measured results using X-PIPS Si(Li) detector. Hence the contribution of PB into the formation of a spectral shape of total bremsstrahlung spectra plays a vital role.
Ionica, Sorina
2011-01-01
Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...
Propagation of some coherent and partially coherent laser beams
Cai, Yangjian
2006-01-01
In this thesis, we investigate the propagation of some coherent and partially coherent laser beams, including a dark hollow beam (DHB), an elliptical Gaussian beam (EGB), a flat-topped beam and a twisted anisotropic Gaussian Schell-model (TAGSM) beam, through a paraxial optical system or a turbulent atmosphere. Several theoretical models are proposed to describe a DHB of circular or non-circular symmetry. Approximate analytical formulas for a DHB and a partially coherent TAGSM beam propagatin...
Radical-ion-pair reactions are the biochemical equivalent of the optical double slit experiment
Kominis, I. K.
2010-01-01
Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts. We here show that radical-ion-pair reactions essentially form a non-linear biochemical double slit interferometer. Quantum coherence effects are visible when "which-path" information is limited, and the incoherent limit is approached when measurement-induced decoherence sets in. Based on this analogy with the optical double slit expe...
International Nuclear Information System (INIS)
Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5x1011 pairs can be produced on the OMEGA EP laser system [L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.
Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar
Directory of Open Access Journals (Sweden)
Mark Preiss
2005-12-01
Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.
International Nuclear Information System (INIS)
The structureless 'background' at x-ray and low energy γ-ray region, resulting from bremsstrahlung due to the stopping of β-radiations, causes serious problems in nuclear spectroscopy. In order to reduce the background and therefore to increase the sensitivity of the nuclear analytical technique and the number of elements observable, a methodology is developed to deflect the β-particles by a magnetic field. The experimental setup consists of a permanent magnet (∼1 kG), Ge(Li) solid-state detector and multichannel analyzer. (author) 10 refs.; 3 figs.; 3 tabs
International Nuclear Information System (INIS)
Inverse bremsstrahlung absorption of the pump laser beam in a backward Raman amplifier over the round-trip light transit time through the sub-critical density plasma can more than double the electron temperature of the plasma and produce time-varying axial temperature gradients. The resulting increased Landau damping of the plasma wave and detuning of the resonance can act to stabilize the pump against unwanted amplification of Langmuir noise without disrupting nonlinear amplification of the femtosecond seed pulse. Because the heating rate increases with the charge state Z, only low-Z plasmas (hydrogen, helium, or helium-hydrogen mixtures) will maintain a low enough temperature for efficient operation
International Nuclear Information System (INIS)
In the context of Bayesian probability theory, we discuss a model for estimating the plasma ion effective charge Zeff, integrating data from both bremsstrahlung spectroscopy and individual impurity concentrations obtained via charge exchange spectroscopy (CXS). The validity of the model, taking into account statistical as well as systematic uncertainties, is shown via the deviance information criterion. The consistency of the continuum and CXS data regarding Zeff is improved, as measured by the symmetrized Kullback-Leibler divergence and the geodesic distance between the respective Zeff marginal posterior densities.
International Nuclear Information System (INIS)
The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/μm. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)
Multiple origins of asteroid pairs
Jacobson, Seth A
2015-01-01
Rotationally fissioned asteroids produce unbound daughter asteroids that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have high mass ratios with possibly fast rotating primaries. However, secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.
International Nuclear Information System (INIS)
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2008-12-15
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Milincic, R; Saltzberg, D; Field, R C; Guillian, G; Walz, D; Williams, D
2005-01-01
We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the linear polarization and track the change of direction of the electric-field vector around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. Based on these results we have performed a simulation of a realistic GZK neutrino teles...
Nanoampere pumping of Cooper pairs
Vartiainen, Juha J.; Möttönen, Mikko; Pekola, Jukka P.; Kemppinen, Antti
2007-01-01
The authors have employed a tunable Cooper-pair transistor, the sluice, with radio frequency control to pump current over a resistive circuit. They find that the charge transferred per pumping cycle can be controlled with the resolution of a single Cooper pair up to hundreds of pairs. The achieved nanoampere current features more than an order of magnitude improvement over the previously reported results and it is close to the theoretical maximum value for the measured sample.
Nanoampere pumping of Cooper pairs
Vartiainen, Juha J.; Mottonen, Mikko; Pekola, Jukka; Kemppinen, Antti
2006-01-01
We have employed a tunable Cooper-pair transistor, the sluice, with radio frequency control to pump current over a resistive circuit. We find that the charge transferred per pumping cycle can be controlled with the resolution of a single Cooper-pair up to hundreds of pairs. The achieved nanoampere current features more than an order of magnitude improvement over the previously reported results and it is close to the theoretical maximum value for the measured sample.
Coherent orthogonal polynomials
International Nuclear Information System (INIS)
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L2 functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L2 and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the
Assisted Distillation of Quantum Coherence
Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M. N.; Adesso, G.; Lewenstein, M.
2016-02-01
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
Assisted Distillation of Quantum Coherence.
Chitambar, E; Streltsov, A; Rana, S; Bera, M N; Adesso, G; Lewenstein, M
2016-02-19
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed. PMID:26943512
Quantum Coherence as a Resource
Streltsov, Alexander; Plenio, Martin B
2016-01-01
The coherent superposition of states, in combination with energy quantization, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics. In recent years, research on the presence and functional role of quantum coherence in biological systems has also attracted a considerable interest. Despite the fundamental importance of quantum coherence, the development of a rigorous theory of quantum coherence as a physical resource has only been initiated recently. In this Colloquium we discuss and review the development of this rapidly growing research field that encompasses the characterization, quantification, manipulation, dynamical evolution, and operational application of quantum coherence.
Volitional Control of Neuromagnetic Coherence
Directory of Open Access Journals (Sweden)
Matthew D Sacchet
2012-12-01
Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.
Controversies in kidney paired donation.
Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L
2012-07-01
Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities. PMID:22732046
Pair Production by Ultraintense Lasers
International Nuclear Information System (INIS)
We consider the production of electron-positron pairs by the interaction of relativistic superthermal electrons, generated by ultraintense laser pulses, with high-Z material. We discuss the laser and target parameters required in order to optimize the pair-production rate. We explore the regime when the pairs, if sufficiently confined, can start to exponentiate in number and explore the feasibility of achieving a pair density approaching 1021cm-3 , (1) /(50) th that of solid-ion density. copyright 1998 The American Physical Society
Dussel, G G; Dukelsky, J; Sarriguren, P
2007-01-01
We consider the development of Cooper pairs in a self-consistent Hartree Fock mean field for the even Sm isotopes. Results are presented at the level of a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson ansatz. While projected BCS captures much of the pairing correlation energy that is absent from BCS, it still misses a sizable correlation energy, typically of order $1 MeV$. Furthermore, because it does not average over the properties of the fermion pairs, the exact Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective.
Monte-Carlo method simulation of the Bremsstrahlung mirror reflection experiment
International Nuclear Information System (INIS)
Full text: To detect gamma-ray mirror reflection on macroscopic smooth surface a search experiment at microtron MT-22S with 330 meter flying distance is in progress. Measured slip angles (i.e. angles between incident ray and reflector surface) don't exceed tens of micro-radian. Under such angles an effect of the reflection could be easily veiled due to negative background conditions. That is why the process needed to be simulated by Monte-Carlo method as accurate as possible and corresponding computer program was developed. A first operating mode of the MT-22S generates 13 MeV electrons that are incident on a Bremsstrahlung target. So energies of gamma-rays were simulated to be in the range of 0.01†12.5 MeV and be distributed by known Shift formula. When any gamma-quantum was incident on the reflector it resulted in following two cases. If its slip angle was more than the critical one, gamma-quantum was to be absorbed by the reflector and the program started to simulate next event. In the other case the program replaced incident gamma-quantum trajectory parameters by the reflected ones. The gamma-quantum trajectory behind the reflector was traced till its detector. Any gamma-quantum that got the detector was to be registered. As any simulated gamma-quantum was of random energy the critical slip angle of every simulated event was evaluated by the following formula: αcrit = eh/E √ZNAρ/πAm. Table values of the absorption coefficients were used for random simulation of gamma-quanta absorption in the air. And it was assumed that any gamma-quantum interaction with air resulted in its disappearance. Dependence of different flying distances (120 and 330 m), gap heights (10, 20 and 50 μ) of the gap collimator and inclinations (20 and 40 μrad) of the reflector's plane on detected gamma-quanta energy distribution and vertical angle one was studied with a help of the developed program
Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam
Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.
2014-05-01
In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton
DEFF Research Database (Denmark)
Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina;
2014-01-01
Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the...... optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a...