WorldWideScience

Sample records for breeding fuel cycle

  1. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  2. Fuel cycles

    International Nuclear Information System (INIS)

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  3. Breeding of 233U in the thorium–uranium fuel cycle in VVER reactors using heavy water

    International Nuclear Information System (INIS)

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U–232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement

  4. Breeding of {sup 233}U in the thorium–uranium fuel cycle in VVER reactors using heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2015-12-15

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the {sup 233}U–{sup 232}Th oxide fuel of water-moderated reactors with variable water composition (D{sub 2}O, H{sub 2}O) that ensures breeding of the {sup 233}U and {sup 235}U isotopes. The method is comparatively simple to implement.

  5. Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water

    Science.gov (United States)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.

  6. Variants of closing the nuclear fuel cycle

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  7. Fuel cycle data survey

    International Nuclear Information System (INIS)

    A survey of the fuel cycle cost data published during 1977 and 1978 is presented in tabular and graphical form. Cost trends for the period 1965 onwards are presented for yellow cake, conversion, uranium enrichment, fuel fabrication and reprocessing

  8. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  9. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  10. Fuel cycle studies

    International Nuclear Information System (INIS)

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  11. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  12. Future fuel cycles

    International Nuclear Information System (INIS)

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  13. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  15. Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Deborah J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  16. HTGR fuel cycle

    International Nuclear Information System (INIS)

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL)

  17. The closed fuel cycle

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  18. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  19. A review of the breeding potentials of carbide, nitride and oxide fueled LMFBRs and GCFRs

    International Nuclear Information System (INIS)

    The effects of design parameters in large variation on compound system doubling time of large advanced-fueled LMFBR are described on the base of recent U.S. results. The fuel element design by Combustion Engineering Inc. in step-by-step substitution of the initial oxide fuel subassemblies with carbide ones is explained. Breeding characteristics of the oxide-fueled LMFBR and its potential design modifications are expounded. The gas cooled fast breeder program in West Germany and in the United States are briefed. Definitions of the breeding ratio and doubling time in overall fuel cycle are given. (auth.)

  20. The sub-annual breeding cycle of a tropical seabird.

    Science.gov (United States)

    Reynolds, S James; Martin, Graham R; Dawson, Alistair; Wearn, Colin P; Hughes, B John

    2014-01-01

    Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17,000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.

  1. Neutronic and thermohydraulic characteristics of a new breeding thorium–uranium mixed SCWR fuel assembly

    International Nuclear Information System (INIS)

    Highlights: • A new Th–U mixed fuel assembly for SCWR has been introduced and investigated. • Neutronic and thermohydraulic characteristics of the new assembly have been studied. • The new fuel assembly satisfies design rules of SCWR. • The introduced fuel assembly can fulfill the sustainable breeding Th–U cycle. • The new fuel assembly also has advantages with respect to lower generation of minor actinides and reactor safety. - Abstract: The exploitation of thorium fuel is a promising way to overcome the pressing problems of nuclear fuel supply, nuclear waste and nuclear proliferation. In this paper, a novel conceptual design of a breeding thorium–uranium (Th–U) mixed fuel assembly in SCWR is proposed, which is aimed to achieve the breeding ratio bigger than 1.0, so as to fulfill the sustainable breeding thorium–uranium cycle. Through the calculations of neutronics and neutronic/thermohydraulic (N–T) coupling, the results indicate that the introduced conceptual design of a breeding Th–U mixed fuel assembly in SCWR satisfies design rules of SCWR, with considerable advantages with respect to breeding performance, lower minor actinide generation and reactor safety

  2. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  3. Increasing Fuel Utilization of Breed and Burn Reactors

    Science.gov (United States)

    Di Sanzo, Christian Diego

    Breed and Burn reactors (B&B), also referred to Traveling Wave Reactors, are fast spectrum reactors that can be fed indefinitely with depleted uranium only, once criticality is achieved without the need for fuel reprocessing. Radiation damage to the fuel cladding limits the fuel utilization of B&B reactors to ˜ 18-20% FIMA (Fissions of Initial Metal Atoms) -- the minimum burnup required for sustaining the B&B mode of operation. The fuel discharged from this type of cores contain ˜ 10% fissile plutonium. Such a high plutonium content poses environmental and proliferation concerns, but makes it possible to utilize the fuel for further energy production. The objectives of the research reported in this dissertation are to analyze the fuel cycle of B&B reactors and study new strategies to extend the fuel utilization beyond ˜ 18-20% FIMA. First, the B&B reactor physics is examined while recycling the fuel every 20% FIMA via a limited separation processing, using either the melt refining or AIROX dry processes. It was found that the maximum attainable burnup varies from 54% to 58% FIMA -- depending on the recycling process and on the fraction of neutrons lost via leakage and reactivity control. In Chapter 3 the discharge fuel characteristics of B&B reactors operating at 20% FIMA and 55% FIMA is analyzed and compared. It is found that the 20% FIMA reactor discharges a fuel with about ˜ 80% fissile plutonium over total plutonium content. Subsequently a new strategy of minimal reconditioning, called double cladding is proposed to extend the fuel utilization in specifically designed second-tier reactors. It is found that with this strategy it is possible to increase fuel utilization to 30% in a sodium fast reactor and up to 40% when a subcritical B&B core is driven by an accelerator-driven spallation neutron source. Lastly, a fuel cycle using Pressurized Water Reactors (PWR) to reduce the plutonium content of discharged B&B reactors is analyzed. It was found that it is

  4. Fuel cycles using adulterated plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Brooksbank, R. E.; Bigelow, J. E.; Campbell, D. O.; Kitts, F. G.; Lindauer, R. B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with /sup 238/U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial.

  5. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  6. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  7. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  8. Proliferation resistance fuel cycle technology

    International Nuclear Information System (INIS)

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  9. Optimization of the fuel cycle

    International Nuclear Information System (INIS)

    The nuclear fuel cycle can be optimized subject to a wide range of criteria. Prime amongst these are economics, sustainability of resources, environmental aspects, and proliferation-resistance of the fuel cycle. Other specific national objectives will also be important. These criteria, and their relative importance, will vary from country to country, and with time. There is no single fuel cycle strategy that is optimal for all countries. Within the short term, the industry is attached to dominant thermal reactor technologies, which themselves have two main variants, a cycle closed by reprocessing of spent fuel and subsequent recycling and a once through one where spent fuel is stored in advance of geological disposal. However, even with current technologies, much can be done to optimize the fuel cycles to meet the relevant criteria. In the long term, resource sustainability can be assured for centuries through the use of fast breeder reactors, supporting high-conversion thermal reactors, possibly also utilizing the thorium cycle. These must, however, meet the other key criteria by being both economic and safe. (author)

  10. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  11. Characteristics of fast reactor core designs and closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N. [State Scientific Center of the Russian Federation, Institute for Physics and Power Engineering (IPPE), Obninsk, Kaluga Region (Russian Federation)

    2007-07-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  12. Fuel cycle of the AVR

    International Nuclear Information System (INIS)

    All the stages of development were secured by irradiation tests and by the use of the elements concerned in the AVR. Summarising, these were: The first charge with fuel elements from Union Carbide, with U-Th mixed carbide particles, wallpaper variants, U-Th mixed carbide particles, the pressed fuel element with U-Th mixed carbide particles, the pressed fuel element with U-Th mixed oxide particles, with an intermediate boundary layer; the present THTR element, the pressed fuel element with U-Th mixed oxide particles and low temperature PyC coating, the pressed fuel element with U-Th mixed oxide particles, with PyC and SiC layers, i.e.: TRISO particles, the pressed fuel element with pure uranium oxide particles for the low enrichment cycle, one coated only by 2 PyC layers, the other coated with PyC and SiC, i.e.: TRISO coating. (orig.)

  13. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  14. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  15. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  16. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  17. VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics

    International Nuclear Information System (INIS)

    The U.S. DOE Advanced Fuel Cycle Initiative's (AFCI) fundamental objective is to provide technology options that--if implemented--would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential ''exit'' or ''off ramp'' approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool ''DYMOND-US'' functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies

  18. Part 2. Design and performance characteristics of alternative fuels and fuel cycles

    International Nuclear Information System (INIS)

    This report documents performance characteristics of a wide range of fast breeder reactor designs and fuel cycle options to provide the bases for the study of alternatives that is the primary focus of the International Nuclear Fuel Cycle Evaluation. Since breeding performance is at the center of many of the feasibility questions connected with alternative forms of breeder development, particular attention was given to a consistent comparison between various alternatives and quantitative analyses that provide physical understanding of intrinsic differences in their breeding performance

  19. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  20. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.)

  1. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.)

  2. Fuel cycles for the 80's

    International Nuclear Information System (INIS)

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base

  3. Fuel Cycle Economics of Fast Breeders with Plutonium

    International Nuclear Information System (INIS)

    Pu-fuelled fast breeder systems are characterized by their attractive fuel cycle economics. Basically, the economics are influenced by a number of reactor parameters like fissile material rating, fuel bum-up, breeding ratio and thermal efficiency, on the one hand, and by a number of economic parameters like the plutonium price, the interest rate and the fabrication and reprocessing costs on the other. To a certain extent, the two sets of parameters are interdependent and the cost parameters are influenced by the existing nuclear industry as well. In the present paper it is shown, with the help of a number of specific examples, that the fuel cycle of Pu fast breeders is not a static and isolated property of the reactor but is dynamic in nature. Depending on the cost situation and other conditions, the fuel cycle can always be optimized anew to fit into the existing overall economics. A high Pu price, for example, requires a high fissile rating or a high breeding ratio, whereas, if the Pu price falls, neither a high rating nor a high breeding ratio is necessary to keep the fuel cycle costs low. The influence of fabrication costs may be regulated to some extent by varying the burn-up. The effect of reprocessing costs may be made comparatively insignificant provided reprocessing can be carried out in large centrally located multi-purpose plants for converter elements. Because of the high flexibility of the fuel cycle of Pu fast breeders, the attractiveness of their fuel cycle economics can be retained under a wide range of competitive conditions. (author)

  4. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  5. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  6. ITER-FEAT fuel cycle

    International Nuclear Information System (INIS)

    The Fuel Cycle, which includes plasma fuelling and exhaust, as well as exhaust processing and isotope separation, is one of the key elements on which the successful operation of ITER will depend. This paper provides an overview of this system, reviewing requirements, operational scenarios, and the integration of the various subsystems using the ITER fuel cycle dynamic simulation program CFTSIM. The requirements to provide a plasma fuelling rate of 200 Pam3s-1, with a flat-top burn of ∼400s and a repetition rate of two pulses per hour have the greatest influence on the design. However, while a flat-top burn of ∼400s is the initial design basis, the capability to extend the pulse to 3,000s in the longer term is essential from an operational perspective. (author)

  7. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  8. Sustainability Features of Nuclear Fuel Cycle Options

    OpenAIRE

    Stefano Passerini; Mujid Kazimi

    2012-01-01

    The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more...

  9. Thorium nuclear fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  10. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  11. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  12. Survey of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    A brief outline of the technical aspects of the fuel cycle, starting from the mining of uranium up to fuel element fabrication, is followed by a more detailed description of the management of the outer fuel cycle. This includes the system of contracts and their reciprocal technical and chronological interdepence, as well as financial aspects, market conditions and trends. (RB)

  13. Fuel Cycle System Analysis Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic

  14. Cryogenic hydrogen isotope distillation for the fusion fuel cycle

    International Nuclear Information System (INIS)

    Cryogenic distillation is an attractive method for the hydrogen isotopic separations required in fusion fuel cycles. The theoretical and practical aspects of designing and constructing such systems are well established. Practical considerations in the design of systems are presented and applied to the Isotope Separation System (ISS) at the Tritium Systems Test Assembly (TSTA), as well as systems of distillation columns that might be used for a reactor such as the Tokamak Fusion Core Experiment (TFCX) and the recovery of breeding blanket product

  15. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  16. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  17. Plutonium in an enduring fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world`s energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels.

  18. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  19. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  20. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  1. Multi-attribute analysis of nuclear fuel cycle resistance to nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Calculation study has been carried out to analyze the proliferation resistance of different scenarios of nuclear fuel cycle organization. Scenarios of stable and developing nuclear power were considered with involvement of thermal and fast reactors. The attention was paid mainly to the cycle with extended plutonium breeding on the basis of fast reactor technology, and to the schemes of fuel cycle organization allowing to minimize the proliferation risk

  2. Advanced fuel developments to improve fuel cycle cost in PWR

    International Nuclear Information System (INIS)

    Increasingly lower fuel cycle costs and higher plant availability factors have been two crucial components in keeping the overall cost of electricity produced by nuclear low and competitive with respect to other energy sources. The continuous quest to reduce fuel cycle cost has resulted in some consolidated trends in LWR fuel management schemes: smaller number of feed fuel assemblies with longer residence time; longer cycles, with 18-month cycle as the predominant option, and some plants already operating on, or considering, 24-month refueling intervals; higher power ratings with many plants undergoing power uprates. In order to maintain or improve fuel utilization for the longer cycles and/or higher power ratings, the licensed limits in fuel fissile content (5.0 w/o U235 enrichment) and discharge burnup (62 GWd/tHM for the peak pin) have been approached. In addition, Zr-based fuel cladding materials are also being challenged by the resulting increased duty. For the above reasons further improvements in fuel cycle cost have to overcome one or more of the current limits. This paper discusses an option to break through this 'stalemate', i.e. uranium nitride (UN) fuel with SiC clad. In UN the higher density of the nitride with respect to the oxide fuel leads to higher fissile content and reduction in the number of feed assemblies, improved fuel utilization and potentially higher specific powers. The SiC clad, among other benefits, enables higher clad irradiation, thereby exploiting the full potential of UN fuel. An alternative to employing UN fuel is to maintain UO2 fuel but boost the fissile content increasing the U235 enrichment beyond the 5 w/o limit. The paper describes and compares the potential benefits on fuel cycle cost of either option using realistic full-core calculations and ensuing economic analysis performed using Westinghouse in-house reactor physics tools and methodologies. (author)

  3. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  4. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  5. Physics challenges for advanced fuel cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  6. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  7. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  8. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  9. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  10. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  11. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Sites where radioactive wastes are found are solid waste burial grounds, soils below liquid stoage areas, surface ditches and ponds, and the terrestrial environment around chemical processing facilities that discharge airborne radioactive debris from stacks. This study provides information to help assess the environmental impacts and certain potentiall human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. Results will provide information to determine if waste management procedures on the Hanford Site have caused ecological perturbations, and if so, to determine the source, nature, and magnitude of such disturbances

  12. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  13. Innovation in the fuel cycle industry

    International Nuclear Information System (INIS)

    The fuel cycle industry will have to adapt to the production of new fuel and in the same time will have to improve its performance. Innovation will be a key factor of success. Innovation must be driven by the needs of the fuel cycle industry to achieve. The fuel cycle requirement of tomorrow, Innovative processes for mining high grade uranium, Innovative enrichment process, Sorting the pellets at Melox plant, Innovation in action, and Innovative waste management in la Hague are presented. A number of innovative solutions are already implemented and are in action on industrial facilities. As problems are becoming more and more tough to address, international cooperation will be required. The fuel cycle industry, as a part of the nuclear power industry, is committed to seek improvements through performance upgrade and innovation. (Cho. G. S.). 10 refs., 4 figs

  14. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  15. Back end of an enduring fuel cycle

    International Nuclear Information System (INIS)

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world's riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future

  16. Back end of an enduring fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

  17. Low cycle fatigue problem in RAPP fuel

    International Nuclear Information System (INIS)

    In a nuclear power plant, the fuel sheath is subjected to power cycling during start-up and shut-down, and also during normal operation. Power reactors operating in relatively small electrical grids, as for example RAPS-1 are prone to large number of such power cycles. RAPS fuel sheath being of the collapsible design is subjected to high initial plastic strains. These environmental conditions pose serious low cycle fatigue problem in RAPS fuel operations. The limitations on fuel life due to low cycle fatigue are described. The low cycle fatigue behaviour of zircaloy under normal and irradiation is discussed. UO2 expansion model used for calculating plastic strains is also described. (author)

  18. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  19. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO2) based fuel offers both fuel performance and safety advantages over urania (UO2) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  20. The DUPIC fuel cycle - Recycle without reprocessing

    International Nuclear Information System (INIS)

    Full text: The Generation IV International Forum, the IAEA's INPRO project and other international programs are pursuing enhanced proliferation resistance, in addition to enhancing economics, safety and radioactive waste management. Recent IAEA meetings have explored both technical and institutional aspects of this issue. Since 1991, KAERI (Korea Atomic Energy Research Institute), AECL (Atomic Energy of Canada Limited) and the USA (Department of State, Los Alamos National Laboratories), with the participation of IAEA, have been engaged in a practical exercise in developing a spent fuel recycle process to extend resources and reduce wastes, while enhancing proliferation resistance over typical recycle options. The concept of the DUPIC fuel cycle, DUPIC stands for Direct Use of PWR spent fuel In CANDU reactors, is to reuse spent pressurized water reactor fuel as a fuel for CANDU reactors without the reprocessing operations typical of recycling fuel cycles. The basic rationale of the DUPIC fuel cycle is that the typical fissile content of PWR spent fuel is approximately twice that of the natural uranium used in a CANDU reactor, and thus it can be used for fuel, even though it contains fission products and transuranic elements. This paper describes the basic requirements for the DUPIC fuel cycle development, the fuel fabrication process, the development and implementation of IAEA safeguards, the positive impact achieved on resource utilization and waste reduction and the factors resulting in enhanced proliferation resistance. DUPIC pellets and elements have been successfully manufactured at KAERI and AECL for irradiation tests at HANARO and NRU research reactors, respectively. The performance of DUPIC fuel is similar to that of conventional CANDU fuel, and more extensive work is under way to demonstrate DUPIC fuel performance under the power reactor condition. The technology and approach for safeguarding the DUPIC process has been developed and confirmed by the IAEA

  1. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  2. Challenges and directions in fuel cycle research and development

    International Nuclear Information System (INIS)

    -service inspection of equipment and process vessels. Use of sol-gel based techniques for fabricating the fuel can integrate reprocessing and fuel fabrication facilities resulting in compact plants, lesser waste generation and proliferation resistant fuel cycles. Similarly, application of novel technologies such as membrane separations, supercritical fluid extraction and ultrafiltration can minimise generation of secondary waste streams and contribute towards making the nuclear fuel cycle environmentally benign. These directions would contribute to significant improvements in thermal as well as fast reactor fuel cycles. Thorium is an excellent fertile host that can make fuel cycle more sustainable and proliferation resistant. Use of thorium also enables a much deeper plutonium burning with manageable reactor characteristics even when the entire core is loaded with plutonium bearing fuel assemblies. There are of course additional R and D challenges with thorium fuel cycle such as removal of U-232 from U-233 and three component (U, Pu, Th) separations. Fast reactors are emerging as important candidates for next generation reactors. Development of better materials for clad and structural components is important for increasing the burn-up to a value of 200,000 MWd/t and above resulting in improved economics. Metallic fuel cycle, with pyrochemical reprocessing, offers inherent safety and potential for breeding with proliferation resistance. The commercial scale development of the related technologies for deployment of metallic fuels requires R and D in a number of areas like materials development, physicochemical studies, remote refabrication, waste management, on-line measurement of fissile nuclides, etc. The paper discusses challenges in the above indicated areas and possible directions for research and development which would make nuclear energy competitive, proliferation resistant, safe and environmentally benign. (author)

  3. Challenges and directions of research and development in fuel cycle

    International Nuclear Information System (INIS)

    and in-service inspection of equipment and process vessels. Use of sol-gel based techniques for fabricating the fuel can integrate reprocessing and fuel fabrication facilities resulting in compact plants, lesser waste generation and proliferation resistant fuel cycles. Similarly, application of novel technologies such as membrane separations, supercritical fluid extraction and ultrafiltration can minimise generation of secondary waste streams and contribute towards making the nuclear fuel cycle environmentally benign. These directions would contribute to significant improvements in thermal as well as fast reactor fuel cycles. Thorium is an excellent fertile host that can make fuel cycle more sustainable and proliferation resistant. Use of thorium also enables a much deeper plutonium burning with manageable reactor characteristics even when the entire core is loaded with plutonium bearing fuel assemblies. There are of course additional R and D challenges with thorium fuel cycle such as removal of U-232 from U-233 and three component (U, Pu, Th) separations. Fast reactors are emerging as important candidates for next generation reactors. Development of better materials for clad and structural components is important for increasing the burn-up to a value of 200,000 MWd/t and above resulting in improved economics. Metallic fuel cycle, with pyrochemical reprocessing, offers inherent safety and potential for breeding with proliferation resistance. The commercial scale development of the related technologies for deployment of metallic fuels requires R and D in a number of areas like materials development, physicochemical studies, remote refabrication, waste management, on-line measurement of fissile nuclides, etc. The paper discusses challenges in the above indicated areas and possible directions for research and development which would make nuclear energy competitive, proliferation resistant, safe and environmentally benign. (author)

  4. Fuel cycle of BREST reactors. Solution of the radwaste and nonproliferation problems

    International Nuclear Information System (INIS)

    Fast reactors with a nitride fuel and a lead coolant (BREST) have low excessive in-core plutonium breeding (CBR ∼1.05) and do not have breeding blankets. The fuel cycle of BREST reactors includes stages that are traditionally considered in a closed fuel cycle of fast reactors excluding the breeding blanket cycle, namely in-pile fuel irradiation, post-irradiation cooling of spent FAs (SFAs); SFA transportation to the recovery shop, SFA dismantling, fuel extraction and separation of the SFA steel components, radiochemical treatment, adjustment of the fuel mixture composition, manufacturing of nitride pellets, manufacturing of fuel elements and fuel assemblies, interim storage and transportation to the reactor. There is a radioactive waste storage facility at the NPP site. The fuel cycle of fast reactors with CBR of ∼1 does not requires plutonium separation to produce 'fresh' fuel, so it should use a radiochemical technology that would not separate plutonium from the fuel in the recovery process. Besides, rough recovered fuel cleaning of fission products is permitted (the FP residue in the 'fresh' fuel is 10-2-10-3 of their content in the irradiated fuel) and the presence of minor actinides therein causes high activity of the fuel (radiation barrier for fuel thefts). The fuel cycle under consideration 'burns' uranium- 238 added to the fuel during reprocessing. And plutonium is a fuel component and circulates in a closed cycle as part of the high-level material. The radiation balance between natural uranium consumed by the nuclear power closed system and long-lived high-level radioactive waste generated in the BREST-type nuclear reactor system is provided by actinides transmutation in the fuel (U, Pu, Am, Np) and long-lived products (Tc, I) in the BREST reactor blanket and by monitored pre-disposal cooling of high-level waste for approximately 200 years. The design of the building and the entire set of the fuel cycle equipment has been completed for a BREST-OD-300

  5. Ecological effects of fuel cycle activities

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO2-induced global climate change are beyond the scope of this paper and are not discussed

  6. Examining fuel behaviour in longer operating cycles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M.G.; Lobre, J.A.

    1988-12-01

    U.S. utilities are continuing to move towards longer cycles. With these long operating cycles goes a trend for higher discharge burn-ups. C.E. has been examining fuel properties and finds that there is little Zircaloy-4 clad corrosion at extended lifetimes. The examinations used eddy current and ultrasonic techniques, as well as visual examination of single fuel rods. (U.K.).

  7. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  8. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  9. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  10. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  11. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  12. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast

  13. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  14. Pressurized water reactor thorium fuel cycle studies

    International Nuclear Information System (INIS)

    The use of a thorium fuel cycle in a PWR is studied. The thorium has no fissile isotope and a fissile nuclide must be added to the thorium fuel. This nuclide can be uranium 235, plutonium 239 or uranium 233. In this work we have kept the fuel assembly geometry and the control rod system of an usual PWR. Cell calculations showed that the moderation ratio of an usual PWR can be used with uranium 235 and plutonium 239 fuels. But this moderation ratio must be decreased and accordingly the pumping power must be increased in the case of a uranium 233 fuel. The three fuels can be controlled with soluble boron. The power distribution inside an assembly agrees with the safety rules and the worth of the control rods is sufficient. To be interesting the thorium fuels must be recycled. Because the activity and the residual power are higher for a thorium fuel than for a uranium fuel the shielding of the shipping casks and storage pools must be increased. The Uranium 235-Thorium fuel is the best even if it needs expensive enrichment work. With this type of fuel more natural uranium is saved. The thorium fuel would become very interesting if we observe again in the future an increase of the uranium cost

  15. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    The Center for Nuclear Engineering has shown expertise in the field of nuclear and energy systems ad correlated areas. Due to the experience obtained over decades in research and technological development at Brazilian Nuclear Program personnel has been trained and started to actively participate in the design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in the production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. The Nuclear Fuel Center is responsible for the production of the nuclear fuel necessary for the continuous operation of the IEA-R1 research reactor. Development of new fuel technologies is also a permanent concern

  16. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  17. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  18. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  19. Preliminary report on the promise of accelerator-driven natural-uranium-fueled light-water-moderated breeding power reactors

    International Nuclear Information System (INIS)

    A new concept for a power breeder reactor that consists of an accelerator-driven subcritical thermal fission system is proposed. In this system an accelerator provides a high-energy proton beam which interacts with a heavy-element target to produce, via spallation reactions, an intense source of neutrons. This source then drives a natural-uranium-fueled, light-water-moderated and -cooled subcritical blanket which both breeds new fuel and generates heat that can be converted to electrical power. The report given presents a general layout of the resulting Accelerator Driven Light Water Reactor (ADLWR), evaluates its performance, discusses its fuel cycle characteristics, and identifies the potential contributions to the nuclear energy economy this type of power reactor might make. A light-water thermal fission system is found to provide an attractive feature when designed to be source-driven. The equilibrium fissile fuel content that gives the highest energy multiplication is approximately equal to the content of 235U in natural uranium. Consequently, natural-uranium-fueled ADLWRs that are designed to have the highest energy generation per source neutron are also fuel-self-sufficient; that is, their fissile fuel content remains constant with burnup. This feature allows the development of a nuclear energy system that is based on the most highly developed fission technology available (the light water reactor technology) and yet has a simple and safe fuel cycle. ADLWRs will breed on natural uranium, have no doubling time limitation, and be free from the need for uranium enrichment or for the separation of plutonium. It appears that ADLWRs could also be efficiently operated with thorium fuel cycles and with denatured fuel cycles

  20. Study on PWR Thorium-uranium Breeding Cycle Using Uniformly Mixed Fuel Assembly%使用均匀混合型燃料组件的压水堆钍-铀增殖循环研究

    Institute of Scientific and Technical Information of China (English)

    周明; 沈季; 于悦海; 张文杰

    2014-01-01

    In order to improve the utilization rate of PWR nuclear fuel , a kind of uniformly mixed thorium-uranium assemblies which contain suitable quantity of 232 Th and 233 U were developed .Neutronics calculation and analysis show that kinf of the new assemblies decreases with the increase of burnup slowly .This property is very good for extending reactor core cycle lifetime .Unit 1 of Ling Ao Nuclear Power Plant was chosen as reference core , and thorium-uranium mixed core was formed by feeding thorium assemblies .Through corresponding analysis ,the conclusion indicates that uniformly mixed thorium-uranium assemblies suit exiting PWRs and have advantages in 235 U utilization and long cycle lifetime was obtained .%为提升压水堆燃料利用率,设计了一种包含适量232 T h和233 U的均匀混合型燃料组件。对该型燃料组件的核特性分析表明,其具备随燃耗增加 kinf下降更缓慢的特性,有利于堆芯获得更长的循环长度。以岭澳核电厂一号机组为例,对包含均匀混合型含钍燃料组件的堆芯进行了分析,结果表明,当前压水堆中采用均匀混合型含钍燃料组件是可行的,并且具备235 U利用率高、堆芯循环长度长的优势。

  1. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 5500C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  2. Fuel Cycle Requirements Code (FLYER). Summary report

    International Nuclear Information System (INIS)

    Planning for, and the analysis of, the fuel requirements of the nuclear industry requires the ability to evaluate contingencies in many areas of the nuclear fuel cycle. The areas of nuclear fuel utilization, both uranium and plutonium, and of separative work requirements are of particular interest. The Fuel Cycle Requirements (FLYER) model has been developed to provide a flexible, easily managed tool for obtaining a comprehensive analysis of the nuclear fuel cycle. The model allows analysis of the interactions among the nuclear capacity growth rate, reactor technology and mix, and uranium and plutonium recycling capabilities. The model was initially developed as a means of analyzing nuclear growth contingencies with particular emphasis on the uranium feed and separative work requirements. It served to provide the planning group with analyses similar to the OPA's NUFUEL code which has only recently become available for general use. The model has recently been modified to account for some features of the fuel cycle in a more explicit manner than the NUFUEL code. For instance, the uranium requirements for all reactors installed in a given year are calculated for the total lifetime of those reactors. These values are cumulated in order to indicate the total uranium committed for reactors installed by any given year of the campaign. Similarly, the interactions in the back end of the fuel cycle are handled specifically, such as, the impacts resulting from limitations on the industrial capacity for reprocessing and mixed oxide fabrication of both light water reactor and breeder fuels. The principal features of the modified FLYER code are presented in summary form

  3. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  4. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  5. International nuclear fuel cycle fact book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  6. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  7. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  8. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  9. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  10. A Concept of An Accelerator Closed Nuclear Fuel Cycle

    Science.gov (United States)

    Eremeev, I. P.

    1997-05-01

    The physical approach (I.P.Eremeev. Proc. of the PAC-95. Vol.1, p.98.) is applied for technology of nuclear fuel cycle. It is proposed the cycle to be closed by such an accelerator based process link, which would allow, on the one hand, the most hazardous of "equilibrium" radionuclides to be transmuted to stable isotopes or incinerated and, on the other hand, additional fissile fuel to be produced to compensate the energy consumption. Parameters of the technology, such as an intensity and energy "cost" of a transmutation event, a flux of photoneutrons produced have been determined for model targets. It is shown that the approach allows the above fission/transuranium radionuclides to be transmuted/ incinerated at a much greater rate than that of their build-up in operating NPP reactors at a much less energy consumption than an energy produced under their formation and at considerable compensation of the consumed energy through breeding fissile isotopes. A possibility of going to a closed Th-U fuel cycle is discussed. To realize the technology proposed requirements to a system of electron accelerators are formulated.

  11. Partially closed fuel cycle of WWER-440

    International Nuclear Information System (INIS)

    Position of nuclear energy at the energy sources competition is characterised briefly. Multi-tier transmutation system is outlined out as effective back-end solution and consequently as factor that can increase nuclear energy competitiveness. LWR and equivalent WWER are suggested as a first tier reactors. Partially closed fuel cycle with combined fuel assemblies is briefed. Main back-end effects are characterised (Authors)

  12. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  13. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    International Nuclear Information System (INIS)

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of 232Th is compared to that of 238U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of 232Th/233U fuel cycles is denaturisation of the 233U in the spent fuel by 232U, for which the highly radioactive decay chain potentially poses a large radiation as well as a detection risk

  14. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  15. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.)

  16. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    To support the evaluation of R and D needs and relevant technology requirements for future nuclear fuel cycles, the OECD/NEA WPFC Expert Group on Advanced Fuel Cycle Scenarios was created in 2010, replacing the WPFC Expert Group on Fuel Cycle Transition Scenario Studies (1) to assemble, organise and understand the scientific issues of advanced fuel cycles and (2) to provide a framework for assessing specific national needs related to the implementation of advanced fuel cycles. In this framework, a simulation of world transition scenarios towards possible future fuel cycles with fast reactors has been performed, using both a homogeneous and a heterogeneous approach involving different world regions. In fact, it has been found that a crucial feature of any world scenario study is to provide not only trends for an idealised 'homogeneous' description of the world, but also trends for different regions in the world, selected with simple criteria (mostly of geographical type), in order to apply different hypotheses to energy demand growth, different fuel cycle strategies and different reactor types implementation in the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new spectacular energy demand growth is expected, but to provide trends and conclusions that account for the features of countries that will be major future players in the world's energy development. The heterogeneous approach considered a subdivision of the world in four main macro-regions (where countries have been grouped together according to their economic development dynamics). An original global electricity production envelope was used in simulations and a specific regional energy share was defined. In the regional approach two different fuel cycles were analysed: a once-through LWR cycle was used as the reference and a transition to fast reactor closed cycle to enable a better management of resources and minimisation of waste

  17. Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.

    Science.gov (United States)

    Michaels, T. E.

    1993-01-01

    Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…

  18. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  19. Decision Analysis For Nuclear Fuel Cycle Policy

    International Nuclear Information System (INIS)

    The prime objective in this talk is to explore the impact of widely different (or hypothetical) fuel cycle requirement rather than to attempt to predict a probable scenario. In the course of preparation of this talk, it was realized that, despite the very speculative nature of this kind of endeavor, studies like these are considered essential to the long-range planning needs of the national nuclear power industry, utilities and those providing supporting services, even though the current presentation are extremely primitive in that purpose. A nuclear electricity utility tries to reduce fuel cycle costs. But the problems have to be approached with a long-term perspective, and the logical conclusion is that utility has to make technical progress. As nuclear generation gradually become great, supplies of the fuel cycle services are responsible for the R and D about the nuclear fuel cycle services which is useful to implement the technical choices they propose. Then it is for the utility to choose according to his knowledge, if necessary by carrying out additional research. But only the utility acquires real operating experience and prototype reactor or laboratory tests offer limited knowledge quantities. One way to ensure a good guarantee of supply is, obviously, to make the order far enough ahead of time to have a stock. But, on the other hand, stocks are expensive and should be kept to a strict minimum. Therefore, a detailed analysis of uncertainties is required, as well as an effort to optimize the handling of the overall problem. As mentioned earlier, in recent years, specifically the right way to handle the back-end of the fuel cycle has been always hotly contested and ultimately it was a question of reprocessing or direct disposal of spent fuel elements. Direct disposal of spent fuel is, at present, the only possibility of spent fuel disposal option available to the Korean utility. Korea, having virtually no indigenous uranium resources, can hardly afford to

  20. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  1. Thorium fuel cycle studies: fuel fabrication process and cost estimation

    International Nuclear Information System (INIS)

    Early in 1976 a study was made to assess the relative economics and fuel utilization of thorium and uranium fuel cycles in various types of reactors. It was to be completed in approximately two months, so all component parts had to be developed in a short time with a high degree of dependence on existing information. One of the components required for the study was a consistent set of relatively accurate fuel fabrication costs for the various reactor-fuel combinations. A report documents the rationale used in generating these cost estimates and presents in some detail the basis and methodology employed. Since three types of thermal flux reactors (LWR, HWR, and HTGR) and two types of fast flux reactors (liquid metal and gas cooled) together with three fuel forms (oxides, carbides, and metal) were included in the study with various combinations of the fissionable metals U, Th, and Pu, it was necessary to define a methodology that would permit a rapid relative estimate for each case. Existing cost studies were chosen for a Light-Water Reactor with low-enriched uranium fuel and for a High-Temperature Gas-Cooled Reactor with highly enriched uranium and thorium fuel as the reference cases which could be compared with other reactor-fuel combinations

  2. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  3. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle.

    Science.gov (United States)

    Hennicke, Janos C; James, David J; Weimerskirch, Henri

    2015-01-01

    In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi) were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas) allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle.

  4. Review of nuclear fuel cycle alternatives including certain features pertaining to weapon proliferation

    International Nuclear Information System (INIS)

    Largely as a result of concerns over nuclear weapon proliferation, the U.S. program to develop and commercialize the plutonium-fueled breeder reactor has been slowed down; interest in alternative fuel cycles has increased. The report offers an informal review of the various nuclear fuel cycle options including some aspects relevant to weapon proliferation, although no complete review of the latter subject is attempted. Basic principles governing breeding, reactor safety, and efficient utilization of fission energy resources (thorium and uranium) are discussed. The controversial problems of weapon proliferation and its relation to fuel reprocessing (which is essential for efficient fuel cycles) are reviewed and a number of proposed approaches to reducing proliferation risks are noted. Some representative specific reactor concepts are described, with emphasis on their development status, their potentials for resource utilization, and their implications for proliferation

  5. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  6. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  7. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  8. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  9. An analysis on the breeding capability and safety related parameters of advanced fast reactor fuels using recent cross-section set

    International Nuclear Information System (INIS)

    Highlights: • Breeding ratio of fast reactor fuels is computed with latest cross-section set. • Safety related parameters are also evaluated. • It is found that there are better prospects of utilization of thorium resources. • With large fast reactors, Th–233U fuel combination gives better B.G. -- Abstract: This study focuses on the evaluation of breeding capability as well as safety related neutronic parameters of advanced fast reactor fuels which comprises of fissile–fertile combination of metal, oxide, carbide and nitride, using the recent neutron cross-section set ENDF/B-VI.7. Sodium cooled fast breeder reactor similar to prototype Fast Breeder Reactor (PFBR) is used to evaluate the performance of various fuel types involving fissile isotopes of 233U and Pu and fertile isotopes of Th and 238U. The analysis is restricted to a comparison of neutronic parameters of a fresh core and does not take into account the effects of burnup and fission products. The breeding potential of the fuels are also compared with European cross-section set JEFF-3.1. The breeding ratio of advanced fuels evaluated with ENDF/B-VI.7 and JEFF-3.1 was found to be in good agreement. From this study, it is found that Th–233U combination for almost all fuel types with the present geometry and composition gives a lower breeding ratio value. Safety neutronic parameters such as effective delayed neutron fraction, Doppler defect and sodium void reactivity were also computed. In terms of breeding potential and safety neutronic parameters, the performance of Th–Pu system especially the metal fuel type can be a better option for future large fast reactors. The large negative Doppler feedback along with a negative sodium void reactivity for metal and hybrid combinations of Th–233U system makes it an attractive fuel cycle option even though there is a penalty over its breeding capability

  10. Examinations of consistency to fuel cycle in nuclear design for core

    International Nuclear Information System (INIS)

    As a part of phase-I of the Feasibility Studies of Commercialized Fast Reactor Cycle Systems (F/S), fast reactor core characteristics sensitivity study has been performed to understand the relationship between core performances of candidate concepts in the F/S and fuel specification variations, which correspond to the candidates of advanced fuel cycle technology concepts in the F/S, including fuel isotopic compositions. The major results of JFY2000 study are as follows:(1) It is indicated by neutronic calculation that change of core characteristic is not significant even the cases of variation of TRU composition and residual fission products in the recycled fuel which corresponds to advanced fuel cycle candidates. And such change is within a range in which significant modification of core design would not be required. (2) The core characteristic sensitivity study with oxide fuel concept options such as pellet, vi-pack, etc. indicated that the fuel smeared density variation has certain contribution to the core characteristic, especially to the breeding ration. The breeding ratio was calculated to be below 1.2 even in the radial heterogeneous core if the fuel smeared density is an low as 80%TD. (3) Accessibility of irradiated radial blanket sub-assembly is evaluated in a viewpoint of proliferation resistance of core concept with radial blanket. The results showed that the heavy shielding and remote handling, similar to the general reprocessing plants, are indispensable to handle the irradiated radial blanket even after 5 years cooling. (author)

  11. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  12. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  13. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  14. Survey of nuclear fuel-cycle codes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code.

  15. Non-judgemental Dynamic Fuel Cycle Benchmarking

    CERN Document Server

    Scopatz, Anthony Michael

    2015-01-01

    This paper presents a new fuel cycle benchmarking analysis methodology by coupling Gaussian process regression, a popular technique in Machine Learning, to dynamic time warping, a mechanism widely used in speech recognition. Together they generate figures-of-merit that are applicable to any time series metric that a benchmark may study. The figures-of-merit account for uncertainty in the metric itself, utilize information across the whole time domain, and do not require that the simulators use a common time grid. Here, a distance measure is defined that can be used to compare the performance of each simulator for a given metric. Additionally, a contribution measure is derived from the distance measure that can be used to rank order the importance of fuel cycle metrics. Lastly, this paper warns against using standard signal processing techniques for error reduction. This is because it is found that error reduction is better handled by the Gaussian process regression itself.

  16. Fuel Cycle Technologies 2014 Achievement Report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bonnie C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  17. Integrating ALWR and ALMR fuel cycles

    International Nuclear Information System (INIS)

    Recent progress in the design of the Advanced Liquid Metal Reactor (ALMR) and in the development of the pyro-metallurgical processing system (Actinide Recycle System) have the potential to allow the back end of the Light Water Reactor (LWR) fuel cycle to be closed in an economically viable and environmentally preferable way. The design and development progress that makes closing the ALWR fuel cycle (removing the fissionable and fertile material for re-use prior to disposal) the most cost effective and environmentally sound approach are presented. Key factors addressed include: resource extension, a reduction in the risk and cost of waste disposal, and the added proliferation resistance associated with the pyro-metallurgical processing system

  18. Integrating ALWR and ALMR fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, C.E.; Wadekamper, D.C. [General Electric Co., San Jose, CA (United States). Nuclear Energy Div.; Ehrman, C.S.; Hess, C.; Ocker, M. [Burns and Roe Co., Oradall, NJ (United States); Thompson, M. [Thompson (Marion), Fremont, CA (United States)

    1996-08-01

    Recent progress in the design of the Advanced Liquid Metal Reactor (ALMR) and in the development of the pyro-metallurgical processing system (Actinide Recycle System) have the potential to allow the back end of the Light Water Reactor (LWR) fuel cycle to be closed in an economically viable and environmentally preferable way. The design and development progress that makes closing the ALWR fuel cycle (removing the fissionable and fertile material for re-use prior to disposal) the most cost effective and environmentally sound approach are presented. Key factors addressed include: resource extension, a reduction in the risk and cost of waste disposal, and the added proliferation resistance associated with the pyro-metallurgical processing system.

  19. Analytical chemistry challenges at the back end of fuel cycle

    International Nuclear Information System (INIS)

    Among the various nuclear fuel cycle activities, spent fuel reprocessing and nuclear waste management play key role for adaptation of closed fuel cycle option and success of three stage Indian nuclear power programme. Reprocessing mainly aims to recover fissile and fertile component from spent fuel using well known PUREX/THOREX processes. Waste management deals with all the activities which are essential for safe management of radioactive wastes that get generated during entire nuclear fuel cycle operation

  20. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  1. Economic Analysis of Different Nuclear Fuel Cycle Options

    OpenAIRE

    Won Il Ko; Fanxing Gao

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyroprocessing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fu...

  2. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  3. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity

  4. Financing Strategies for Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    To help meet our nation's energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy

  5. Risk management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    If nuclear fuel is the answer to the future energy crisis, more must be done in the area of protecting financial interests. This paper discusses what has been done in the area of insurance to protect the owner, processor, vendors, etc. What is available in the insurance market is reviewed; the Nuclear Energy Liability Property Insurance Association is virtually the only nuclear insuror, except for the mutual company Nuclear Mutual Limited in Bermuda. Methods being used today to insure each phase of the processing for nuclear fuel are reviewed next. There are basically three (overlapping) types of primary insurance for the fuel cycle: conventional insurance, nuclear insurance pools, and Price-Anderson indemnification. There is no clearcut assumption of risk because the contract between owner, converter, fabricator or reprocessor is usually completed before insurance is considered. The need to educate the insurors about nuclear matters is emphasized

  6. Recycling in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The nuclear fuel cycle comprises the total scope from uranium mining to reprocessing and/or (direct) final disposal. In all stages there are waste arisings. Depending on the concentration of the activity, various degrees of shieldings are necessary. For many process wastes transport/storage casks are needed and repackaging for final disposal gives an unnecessary dose-rate. Thus it was almost natural to stretch the function of the packages also to final disposal. And since 1983 in Germany, most of the heavy casks are made from recycled scrap metal. For the spent fuel reprocessing gives a high percentage of recycling of energy-containing 'wastes'. However, this is combined with a complicated chemical process and the continuing trend towards higher burn-up is 'replacing' reprocessing and favouring final disposal. This is due to the deteriorating isotopic composition of uranium and plutonium in the spent fuel. (author) 2 figs., 5 refs

  7. International nuclear fuel cycle centers in global nuclear power infrastructure

    International Nuclear Information System (INIS)

    for realization and first International Center might be implemented not earlier than by 2040-2050. The authors propose for consideration another stage-by-stage approach. The main idea is to start at the first stage in organization of International Centers based on those elements of nuclear fuel cycle which have already been demonstrated or reached commercial level. It includes LWR SNF reprocessing, MOX fuel fabrication for FR, and sodium-cooled FR. In our opinion this approach may be realized in the nearest future. This approach will solve problems of thermal reactors SNF especially for new countries worldwide willing to use nuclear energy, by concentrating plutonium in limited numbers of IC under the IAEA control. In this way ecological problem related to thermal reactor SNF will be solved as well. The base of such IC will be economical sodium-cooled FRs with proved breeding ratio. At this stage SNF of FR is supposed to be stored in IC temporary storages until reprocessing technology and multi recycling of TRU fuel in FR are proved. The principal structure of such an International Center providing nuclear fuel cycle services for nuclear power plants (NPPs) with light water reactors of 10 GW of installed capacity may be as presented in the paper. 1. At the second stage for long-term perspective it is supposed that FRs deployed in a set of IC will solve the resource problem providing nuclear resources plutonium and uranium-233 for large-scale nuclear power comprising both thermal and fast reactors deployed worldwide. In this case altogether with ecological task connected with SNF management FRs will provide nuclear resources for the whole system of nuclear power. Fast reactors deployed in International Centers will use TRU fuel and have breeding ratio above 1. Fast reactors deployed in other countries besides International Centers are not supposed to have blankets with breeding ratio under 1. At the first stage of International Center development the number of such

  8. Immunocontraception in Wild Horses (Equus caballus) Extends Reproductive Cycling Beyond the Normal Breeding Season

    OpenAIRE

    Nuñez, Cassandra M. V.; Adelman, James S.; Rubenstein, Daniel I.

    2010-01-01

    BACKGROUND: Although the physiological effects of immunocontraceptive treatment with porcine zona pellucida (PZP) have been well studied, little is known about PZP's effects on the scheduling of reproductive cycling. Recent behavioral research has suggested that recipients of PZP extend the receptive breeding period into what is normally the non-breeding season. METHODOLOGY/PRINCIPAL FINDINGS: To determine if this is the case, we compiled foaling data from wild horses (Equus caballus) living ...

  9. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle.

    Directory of Open Access Journals (Sweden)

    Janos C Hennicke

    Full Text Available In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle.

  10. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  11. World nuclear fuel cycle requirements, 1984

    International Nuclear Information System (INIS)

    This report presents projections of the domestic and foreign requirements for uranium and enrichment services, as well as spent nuclear fuel discharges. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity published in a recent Energy Information Administration (EIA) report. Four scenarios (high, middle, low, and no new reactor orders) are included for domestic nuclear power capacity and three (high, middle, and low) for countries in the World Outside Planned Economies (WOCA). In addition, 4 sensitivity cases are presented for the US lower capacity factors, reactor aging, lower tails assay, and higher burnup. Six sensitivity cases are analyzed for the WOCA countries: (1) stable, instead of improving, capacity factors for the United States and for countries in the Other country group; (2) reactor aging; (3) recycling of uranium but not plutonium from spent fuel (the three standard scenarios assume recycling of both uranium and plutonium; (4) no recycling of spent fuels; (5) lower uranium enrichment tails assay; and (6) higher fuel burnup levels. The annual US requirements for uranium and for uranium enrichment service are projected to more than double between 1985 and 2020 in the middle case, and the cumulative amount of spent fuel discharged is projected to increase approximately 10-fold. Annual uranium requirements for the WOCA nations are projected to increase by about 60% between 1985 and 2000. In contrast, a 7- to 8-fold increase in U3O8 and enrichment service requirements is projected for the Other WOCA country group during this time period, as its relatively small existing nuclear power capacity undergoes rapid expansion

  12. On the International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    The president of U.S.A. proposed to various countries in his new policy on atomic energy to reevaluate nuclear fuel cycle internationally from the viewpoint of the prevention of nuclear proliferation. It was decided at the summit meeting of seven advanced countries in London from May 7 to 9, 1977, to start the INFCE taking the necessity of promoting atomic energy development and the importance of reducing the danger of nuclear proliferation as the objects. The preliminary conference was held in Paris in June and July, 1977, and the general meeting to establish the INFCE was held in Washington from October 19 to 21, 1977. 40 countries and 4 international organizations took part, and the plan of works to be completed in 2 years thereafter was decided. 8 working groups were set up to carry out the works. The response to these development and the basic concept of Japan are described. Japan was assigned to the chairman country of the 4th working group concerning fuel reprocessing, handling of plutonium and recycle. The state of activities of respective working groups, the intermediate general meeting held from November 27 to 29, 1978, and the technical coordinating committee is reported. As the post-INFCE problems, the concepts of International Plutonium Storage and International Spent Fuel Management and the guarantee system for nuclear fuel supply are discussed. (Kako, I.)

  13. Environmentally important radionuclides in nonproliferative fuel cycles

    International Nuclear Information System (INIS)

    Our analyses indicate that more in-depth research should be done on 3H, 14C, 99Tc, and 232U, especially because of their presence in nonproliferative fuel cycles. For increased 3H production by fast reactors, we can only speculate that such research could show that environmental releases might be significantly greater than for LWRs. Carbon-14 will likely not be a problem if a suitable decontamination factor can be agreed upon for reprocessing facilities and if a satisfactory regulatory limit can be established for global populations. Additional experimental research is urgently needed to determine the uptake of low levels of 99Tc by plants. These data are essential before an accurate assessment of 99Tc releases can be made. Finally, we recommend that investigators take a closer look at the potential problems associated with 232U and daughters. This radionuclide could contribute a significant portion of the dose in both environmental and occupational exposures from the nonproliferative fuels

  14. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  15. Nuclear fuel cycle requirements in WOCA

    International Nuclear Information System (INIS)

    OECD/NEA will publsih an updated version of its study 'Nuclear Fuel Cycle Requirements and Supply Considerations, Through the Long-Term.' The Nuclear Research Centre Karlsruhe (KfK) was involved in the work necessary to provide this book. Although KfK had only responsiblility for part of the required computations it performed all the calculations for its own documentation interests. This documentation was felt to be a helpful background material for the reader of the second 'Yellow Book'. In this sense the original strategy computer outprints are published now without any discussion of assumptions and results. (orig.)

  16. Economic viability of innovative nuclear reactor and fuel cycle technologies

    International Nuclear Information System (INIS)

    need to incorporate such changes of electricity market; This may suggest that small, modular-type reactor could be more advantageous than large scale, conventional reactor, especially in a low-growth, small grid market. This is especially true for low-growth and small grid market. A model cash flow analysis suggests that given the low (or uncertain) growth market, modular reactors have high economic advantage, while large scale reactor can enjoy scale-merit in faster growth market: Given high growth and large grid market in Asia, large reactor design should not be excluded from advanced reactor designs. It is important to note that for fast-growing or large grid market large reactor may be more advantageous than small reactor. It is, therefore, very important to keep the large scale designs in advanced reactor programs; Uncertainty infuel cycle (back end) costs should be minimized. This may be a unique issue for Japan and for other Asian market where back end of fuel cycle program is not well developed. Institutional mechanism can help to reduce such uncertainty in fuel cycle costs, but reactor and fuel cycle design should also aim to minimize the uncertainty; Breeding capability and/or fuel efficiency criteria are not the highest priority at present, but could become important factor in high growth scenario, and after the latter half of century. Based on the global resource availability and growth potential of nuclear power, it can be concluded that breeding or recycling capability are not the highest priority at present for next generation of advanced nuclear reactor. In general, it is desirable to have a standardized reactor design all over the world, so that production scale merit can be maximized. However, it is also important to recognize that market condition and need may vary and thus criteria for reactor design may also vary. Given the high risk of development of advanced reactor designs for future generation, therefore, it is critically important to keep

  17. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  18. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  19. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  20. Survey of nuclear fuel cycle economics: 1970--1985

    Energy Technology Data Exchange (ETDEWEB)

    Prince, B. E.; Peerenboom, J. P.; Delene, J. G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included.

  1. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  2. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  3. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  4. Strategy for the practical utilization of thorium fuel cycles

    International Nuclear Information System (INIS)

    There has been increasing interest in the utilization of thorium fuel cycles in nuclear power reactors for the past few years. This is due to a number of factors, the chief being the recent emphasis given to increasing the proliferation resistance of reactor fuel cycles and the thorium cycle characteristic that bred 233U can be denatured with 238U (further, a high radioactivity is associated with recycle 233U, which increases fuel diversion resistance). Another important factor influencing interest in thorium fuel cycles is the increasing cost of U3O8 ores leading to more emphasis being placed on obtaining higher fuel conversion ratios in thermal reactor systems, and the fact that thorium fuel cycles have higher fuel conversion ratios in thermal reactors than do uranium fuel cycles. Finally, there is increasing information which indicates that fast breeder reactors have significantly higher capital costs than do thermal reactors, such that there is an economic advantage in the long term to have combinations of fast breeder reactors and high-conversion thermal reactors operating together. Overall, it appears that the practical, early utilization of thorium fuel cycles in power reactors requires commercialization of HTGRs operating first on stowaway fuel cycles, followed by thorium fuel recycle. In the longer term, thorium utilization involves use of thorium blankets in fast breeder reactors, in combination with recycling the bred 233U to HTGRs (preferably), or to other thermal reactors

  5. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  6. Breeding cycles and reproductive behaviour in the river blenny Salaria fluviatilis

    NARCIS (Netherlands)

    Lengkeek, W.; Didderen, K.

    2006-01-01

    Female gravidity (assessed according to the roundness of the female's abdomen) in a population of Corsican river blennies Salaria fluviatilis showed a cyclical pattern over the breeding season. Behavioural interactions between males and females matched these cycles. The rate of female visits to male

  7. Improved analysis on multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2011-08-01

    An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.

  8. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  9. Part 6. Internationalization and collocation of FBR fuel cycle facilities

    International Nuclear Information System (INIS)

    This report examines some of the non-proliferation, technical, and institutional aspects of internationalization and/or collocation of major facilities of the Fast Breeder Reactor (FBR) fuel cycle. The national incentives and disincentives for establishment of FBR Fuel Cycle Centers are enumerated. The technical, legal, and administrative considerations in determining the feasibility of FBR Fuel Cycle Centers are addressed by making comparisons with Light Water Reactor (LWR) centers which have been studied in detail by the IAEA and UNSRC

  10. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  11. Economic analysis of alternative options in CANDU fuel cycle

    International Nuclear Information System (INIS)

    In this study, fuel cycle options for CANDU reactor were studied. Three main options in a CANDU fuel cycle involve use of : (1) natural uranium (0.711 weight percent U-235) fuel, (2) slightly enriched uranium (1.2 weight percent U-235) fuel, and (3) recovered uranium (0.83 weight percent U-235) fuel from light water reactor spent fuel. ORIGEN-2 computer code was used to identify composition of the spent fuel for each option , including the standard LWR fuel (3.3 weight percent U-235). Uranium and plutonium credit calculations were performed by using ORIGEN-2 output. WIMSD-5 computer code was used to determine maximum discharge burnup values for each case. Cost estimations were carried out using specially-developed computer programs. Comparison of levelized costs for the fuel cycle options and sensitivity analysis for the cost components are also presented

  12. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  13. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle.

    Science.gov (United States)

    Linnebjerg, Jannie Fries; Fort, Jérôme; Guilford, Tim; Reuleaux, Anna; Mosbech, Anders; Frederiksen, Morten

    2013-01-01

    When species competing for the same resources coexist, some segregation in the way they utilize those resources is expected. However, little is known about how closely related sympatric breeding species segregate outside the breeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alcatorda, common guillemot Uriaaalge and Brünnich's guillemot U. lomvia) breeding at the same colony in Southwest Greenland. By combining GPS and geolocation (GLS) tracking with dive depth and stable isotope analyses, we compared spatial and dietary resource partitioning. During the breeding season, we found the three species to segregate in diet and/or dive depth, but less in foraging area. During both the post-breeding and pre-breeding periods, the three species had an increased overlap in diet, but were dispersed over a larger spatial scale. Dive depths were similar across the annual cycle, suggesting morphological adaptations fixed by evolution. Prey choice, on the other hand, seemed much more flexible and therefore more likely to be affected by the immediate presence of potential competitors. PMID:24023663

  14. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle.

    Directory of Open Access Journals (Sweden)

    Jannie Fries Linnebjerg

    Full Text Available When species competing for the same resources coexist, some segregation in the way they utilize those resources is expected. However, little is known about how closely related sympatric breeding species segregate outside the breeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alcatorda, common guillemot Uriaaalge and Brünnich's guillemot U. lomvia breeding at the same colony in Southwest Greenland. By combining GPS and geolocation (GLS tracking with dive depth and stable isotope analyses, we compared spatial and dietary resource partitioning. During the breeding season, we found the three species to segregate in diet and/or dive depth, but less in foraging area. During both the post-breeding and pre-breeding periods, the three species had an increased overlap in diet, but were dispersed over a larger spatial scale. Dive depths were similar across the annual cycle, suggesting morphological adaptations fixed by evolution. Prey choice, on the other hand, seemed much more flexible and therefore more likely to be affected by the immediate presence of potential competitors.

  15. Shutdown Margin for High Conversion BWRs Operating in Th-233U Fuel Cycle

    CERN Document Server

    Shaposhnik, Yaniv; Elias, Ezra

    2013-01-01

    Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-233U fuel cycle (Th-RBWR). The studied has an axially heterogeneous fuel assembly structure with a single fissile zone sandwiched between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Instead, an alternative assembly design, also relying on heterogeneous fuel zoning, is proposed for achieving fissile inventory ratio (FIR) above unity, adequate SDM and meeting minimum CPR limit at thermal core output matching the ABWR power. The new concept was modeled as a single 3-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupl...

  16. World nuclear fuel cycle requirements 1985

    International Nuclear Information System (INIS)

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs

  17. Environmentally important radionuclides in nonproliferative fuel cycles

    International Nuclear Information System (INIS)

    T may become increasingly important because recent data from fast reactors (of the nonproliferative type) have confirmed production rates up to 12 times greater than previous estimates. Present radwaste systems do not selectively remove T. Recent projections indicate that releases of 14C by the global nuclear industry could exceed the natural production rate of 2.7 x 104 Ci/year by the year 1998 and could eventually stabilize at two times that rate. Recent experiments on the uptake of 99Tc reveal that soil-to-plant concentration factors for Tc appear to be two to three orders of magnitude greater than the value of 0.25 which is currently used in radiological assessments. Research is needed to determine reliable 99Tc soil-plant concentration factors because this radionuclide is released to the environment from fuel reprocessing and enrichment facilities. New calculations for certain reactors indicate that 232U may be formed in concentrations up to 4000 ppm. If these estimates are accurate, careful analysis should be made of possible releases of 232U which could result in external dose and food chain exposures. The environmental health aspects of these four radionuclides are discussed, as well as the potential for their release to the environment from nonproliferative fuel cycles. (orig./HP)

  18. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hyd...

  19. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  20. DUPIC technology as an alternative for closing nuclear fuel cycle

    International Nuclear Information System (INIS)

    The study of DUPIC technology as an alternative for closing nuclear fuel cycle has been carried out. The goal of this study is to understand the DUPIC technology and its possibility as an alternative technology for closing nuclear fuel cycle. DUPIC (Direct Use of PWR spent fuel In CANDU) is a utilization of PWR spent fuel to reprocess and fabricate become DUPIC fuel as nuclear fuel of Candu reactor. The synergy utilization is based on the fact that fissile materials contained in the PWR spent fuel is about twice as much as that in Candu fuel. Result of the study indicates that DUPIC is an alternative promising technology for closing nuclear fuel cycle. The DUPIC fuel fabrication technology of which the major process is the OREOX dry processing, is better than the conventional reprocessing technology of PUREX. The OREOX dry processing has no capability to separate fissile plutonium, thus give the impact of high nuclear proliferation resistance. When compared to once through cycle, it gives advantages of uranium saving of about 20% and spent fuel accumulation reduction of about 65%. Economic analysis indicates that the levelized cost of DUPIC cycle is cheaper by 0.073 mill$/kwh than that of once through cycle. (author)

  1. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T2 permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H2 tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations. Dose

  2. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain); Sedano, L. A. [Asociacion Euratom-Ciematpara Fusion, Av. Complutense 22, 28040 Madrid (Spain); Perlado, J. M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain)

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations

  3. Nondestructive measurements on spent fuel for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nondestructive measurements on spent fuel are being developed to meet safeguards and materials managment requirements at nuclear facilities. Spent-fuel measurement technology and its applications are reviewed

  4. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Office of Fuel Cycle Technologies... criteria or the pros and cons of any particular fuel cycle option. Opportunity for providing input on...

  5. Proceedings of the second Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 19-20 November 1996. These papers form a scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia. There are 48 papers indexed individually. (ID)

  6. Proceeding of the Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    The proceeding contains papers presented on Scientific Presentation on Nuclear Fuel Cycle held in Jakarta, 18-19 March 1996. These are 46 papers resulted from scientific works on various disciplines which have supported to nuclear fuel cycle activities both in and outside National Atomic Energy Agency of Indonesia.(ID)

  7. Nuclear energy center site survey: fuel cycle studies

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations. (DG)

  8. Securing the nuclear fuel cycle: What next?

    International Nuclear Information System (INIS)

    The greatest challenge to the international nuclear non-proliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (here after called sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials: highly enriched uranium and separated plutonium. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. Spiralling prices for hydrocarbons and prospects of their imminent extinction are encouraging more and more countries to look at nuclear energy as an alternative means to ensure their sustainable development. To this end, it's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by, in particular, preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services. With this in mind, at the IAEA General Conference in 2003, IAEA Director General Mohamed ElBaradei called for establishing an international experts group on multilateral nuclear approaches. The proposal was supported, and in February 2005 the international experts, headed by Bruno Pellaud, issued a report (published by the IAEA as INFCIRC-640; see www.iaea.org) with recommendations on different multilateral approaches. The recommendations can be generalized as follows: reinforcement of existing market mechanisms; involvement of governments and the IAEA in the assurance of supply, including the establishment of low-enriched uranium (LEU) stocks as reserves; conversion of existing national uranium enrichment and SNF reprocessing enterprises into multilateral ones under international management and control, and setting up new multilateral enterprises on regional and

  9. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  10. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  11. General overview of CANDU advanced fuel cycles program

    International Nuclear Information System (INIS)

    The R and D program for CANDU advanced fuel cycles may be roughly divided into two components which have a near-and long-term focus, respectively. The near-term focus is on the technology to implement improved once-through cycles and mixed oxide (plutonium-uranium oxides) recycle in CANDU and on technologies to separate zirconium isotopes. Included is work on those technologies which would allow a CANDU-LWR strategy to be developed in a growing nuclear power system. For the longer-term, activities are focused on those technologies and fuel cycles which would be appropriate in a period when nuclear fuel demand significantly exceeds mined uranium supplies. Fuel cycles and systems under study are thorium recycle, CANDU fast breeder systems and electro-nuclear fissile breeders. The paper will discuss the rationale underlying these activities, together with a brief description of activities currently under way in each of the fuel cycle technology areas

  12. Possibility of Different Fuel Cycles Usage in GT-MHR

    International Nuclear Information System (INIS)

    The GT-MHR reactor core is characterized by flexibility of neutronic characteristics at the given average power density and fixed geometrical dimensions of reactor core. Such flexibility makes it possible to start the reactor operation with one fuel cycle, and then to turn to another type of core fuel load without changes of main reactor elements: fuel block design, core and reflector size, control rod number etc. Preliminary analysis re-indicates the commercial viability of the GT-MHR, part of which is due to the ability to accommodate different fuel types and cycles. This paper presents the results of studies of the neutronic characteristics of reactor cores using different fuel (low- and high-enriched uranium, MOX fuel). Comparison of different fuel cycles is carried out for a three-batch refueling option with respect to following characteristics: discharged fuel burnup, reactivity change during one partial cycle of fuel burnup, consumption of fissile isotopes per unit of produced energy, power distribution, reactivity effects, control rods worth. It is shown, that the considered options of fuel loads provide the three-year fuel campaign (with accounting of capacity factor ∼ 0,8) without change of core design, number and design of control rods at transition from the one fuel type to another. (authors)

  13. Impact of the Taxes on Used Nuclear Fuel on the Fuel Cycle Economics in Spain

    OpenAIRE

    B. Yolanda Moratilla Soria; Rosario Ruiz-Sánchez; Mathilde Estadieu; Borja Belda-Sánchez; Cristina Cordón-Peralta; Paula Martín-Cañas; Laura Rodriguez-Penalonga; M. del Mar Cledera-Castro; M. Ana Sáenz-Nuño; Carlos Morales-Polo

    2015-01-01

    In 2013, the Spanish government created two new taxes on used nuclear fuel. This article aims to present the results of an economic study carried out to compare the costs of long-term storage of used nuclear fuel – open cycle strategy –, with the cost of the strategy of reprocessing and recycling used fuel– closed cycle strategy – taking into account the impact of the new taxes on the global cost of the fuel cycle. The results show that the costs of open-cycle and closed-cycle spent fuel mana...

  14. Proceedings of the Third Scientific Presentation on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    The proceeding contains papers presented in the Third Scientific Presentation on nuclear Fuel Element Cycle held on 4-5 Nov 1997 in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and nuclear fuel cycle. There are 38 papers indexed individually. (ID)

  15. Thorium fuel cycle study for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Yong; Kim, Myung Hyun [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-12-31

    A nuclear design feasibility of thorium fueled high converting PWR was investigated. Two kinds of fuel design option were tested for the comparison with conventional UO{sub 2} fuel. The first one was an application of MHTGR pyro-carbon coated particle fuels. The other design was an application of MOX fuels as a ThO{sub 2}-PuO{sub 2} ceramic pellet. In the case of carbon-coated particle fuels, there was no benefit in nuclear design aspect because enrichment of U-235 was required over 5 w/o in order to match with the K-infinite of Ulchin-3/4 fuels. However, the use of thorium based plutonium fuels in PWR gave favorable aspects in nuclear design such as flatter K-infinite curve, lower M. T. C. and lower F. T. C. than that of UO{sub 2} fuel. (author). 6 refs., 3 tabs., 6 figs.

  16. Uranium thorium dioxide fuel-cycle and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gale, J.D.; Spetz, S.W. [Framatome ANP, Inc., Lynchburg, Va. (United States)

    2001-07-01

    The fuel division of Framatome ANP (Advanced Nuclear Power) is performing a fuel-cycle analysis for uranium-thorium dioxide (U/Th) reactor fuel as part of a U.S. Department of Energy Nuclear Energy Research Initiative project titled, ''Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactor'', (DE-FC03-99SF21916). The objective is to evaluate the economic viability of the U/Th fuel cycle in commercial nuclear reactors operating in the U.S. This analysis includes formulating the evaluation methodology, validating the methodology via benchmark calculations, and performing a fuel-cycle analysis and corresponding economic evaluation. The APOLLO2-F computer program of Framatome ANP SCIENCE package was modified to incorporate the thorium decay chains and provide cross sections for the SCIENCE fuel-cycle analysis. A comparison and economic evaluation was made between UO{sub 2} and UO{sub 2}/ThO{sub 2} fuel cycles in a typical 193-fuel assembly pressurized water reactor using reload batch sizes corresponding to batch average discharge burnups of 50, 70, and 90 GWd/mtHM. Results show an increase in front-end costs for the UO{sub 2}/ThO{sub 2} cycles due primarily to the higher cost in separative work units for enriching the uranium to 19.5 wt% {sup 235}U. (author)

  17. Benefits and concerns of a closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a 'once-through' fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

  18. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  19. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs

  20. US/FRG joint report on the pebble bed high temperature reactor resource conservation potential and associated fuel cycle costs

    International Nuclear Information System (INIS)

    Independent analyses at ORNL and KFA have led to the general conclusion that the flexibility in design and operation of a high-temperature gas-cooled pebble-bed reactor (PBR) can result in favorable ore utilization and fuel costs in comparison with other reactor types, in particular, with light-water reactors (LWRs). Fuel reprocessign and recycle show considerable promise for reducing ore consumption, and even the PBR throwaway cycle is competitive with fuel recycle in an LWR. The best performance results from the use of highly enriched fuel. Proliferation-resistant measures can be taken using medium-enriched fuel at a modest ore penalty, while use of low-enriched fuel would incur further ore penalty. Breeding is possible but net generation of fuel at a significant rate would be expensive, becoming more feasible as ore costs increase substantially. The 233U inventory for a breeder could be produced by prebreeders using 235U fuel

  1. Candu advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    A primary rationale for Indonesia to proceed with a nuclear power program is to diversity its energy sources and achieve freedom from future resource constraints. While other considerations, such as economy of power supply, hedging against potential future increases in the price of fossil fuels, fostering the technological development of the Indonesia economy and minimizing greenhouse and other gaseous are important, the strategic resource issue is key. In considering candidate nuclear power technologies upon which to base such a program, a major consideration will be the potential for those technologies to be economically sustained in the face of large future increases in demand for nuclear fuels. the technology or technologies selected should be amenable to evaluation in a rapidly changing technical, economic, resource and environmental policy environment. the world's proven uranium resources which can be economically recovered represent a fairly modest energy resource if utilization is based on the currently commercialized fuel cycles, even with the use of recovered plutonium in mixed oxide fuels. In the long term, fuel cycles relying solely on the use of light water reactors will encounter increasing fuel supply constraints. Because of its outstanding neutron economy and the flexibility of on-power refueling, Candu reactors are the most fuel resource efficient commercial reactors and offer the potential for accommodating an almost unlimited variety of advanced and even more fuel efficient cycles. Most of these cycles utilize nuclear fuel which are too low grade to be used in light water reactors, including many products now considered to be waste, such as spent light water reactor fuel and reprocessing products such as recovered uranium. The fuel-cycle flexibility of the Candu reactor provides a ready path to sustainable energy development in both the short and the long terms. Most of the potential Candu fuel cycle developments can be accommodated in existing

  2. Spent fuel characteristics analysis for thorium-uranium breeding recycle in PWRs

    International Nuclear Information System (INIS)

    Spent fuel characteristics analyses of thorium-based fuel were investigated using ORIGEN-S code compared with uranium-based fuel. Such parameters as radio- activity, radiotoxicity, decay heat, and gamma ray were considered. Relative results in this work could provide some reference information for storage, reprocessing and disposal of thorium-based spent fuel. Four type fuels, thorium-based fuel U3ThOX (mixed reactor grade 233U-thorium oxide), PuThOX (mixed reactor grade plutonium-thorium oxide), uranium-based fuel UOX (uranium oxide) and MOX (mixed reactor grade plutonium-uranium oxide), on the basis of core designs for thorium-uranium breeding recycle in PWRs were investigated. The calculated results show that: 1) Due to extremely low content of transuranic nuclides, the radiotoxicity of U3ThOX is dramatically lower than that of three other types of spent fuel in 1000 years after discharge; 2) In thorium-based spent fuel the intensity of gamma ray near 2.6 MeV mainly generated by 208Tl in 232U decay chain is much stronger than that in uranium-based fuel. The intensity of γ ray near 2.6 MeV reaches a local peak in about 10 years after discharge when the reprocessing should not be performed for thorium-based spent fuel. (authors)

  3. Performance and fuel cycle cost comparisons with HEU and LEU fuels

    International Nuclear Information System (INIS)

    The objective of this study is a consistent analysis of the performance and fuel cycle costs with HEU 93%) fuel and the various LEU 20%) fuels that are under development, undergoing irradiation testing of small samples, or in the demonstration phase. All calculations were performed using the generic 10 MW reactor that has been studied extensively by a number of laboratories in the IAEA Guidebook. The conclusion of this study is that there are excellent opportunities for reducing fuel cycle costs in conversions from HEU to LEU if the LEU fuels that are being developed and tested are successful and if all safety considerations allow. The cost reductions described here are the direct result of the longer cycle lengths that can be obtained with increased 235-U loadings. Each reactor is an individual case and fuel cycle economics should, along with safety considerations, be an integral part of choosing the optimal fuel and fuel element design for conversion to LEU

  4. Performance and fuel-cycle cost comparisons with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J.E.; Daly, T.A.

    1980-01-01

    The objective of this study is a consistent analysis of the performance and fuel cycle costs with HEU (93%) fuel and the various LEU (<20%) fuels that are under development, undergoing irradiation testing of small samples, or in the demonstration phase. All calculations were performed using the generic 10 MW reactor that has been studied extensively by a number of laboratories in the IAEA Guidebook. The conclusion of this study is that there are excellent opportunities for reducing fuel cycle costs in conversions from HEU to LEU if the LEU fuels that are being developed and tested are successful and if all safety considerations allow. The cost reductions described here are the direct result of the longer cycle lengths that can be obtained with increased /sup 235/U loadings. Each reactor is an individual case and fuel cycle economics should, along with safety considerations, be an integral part of choosing the optimal fuel and fuel element design for conversion to LEU.

  5. Shutdown margin for high conversion BWRs operating in Th-{sup 233}U fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnik, Y., E-mail: shaposhy@bgu.ac.il [NRCN – Nuclear Research Center Negev, POB 9001, Beer Sheva 84190 (Israel); Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Elias, E. [Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa (Israel)

    2014-09-15

    Highlights: • BWR core operating in a closed self-sustainable Th-{sup 233}U fuel cycle. • Shutdown Margin in Th-RBWR design. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal–hydraulic analysis includes MCPR observation. - Abstract: Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-{sup 233}U fuel cycle (Th-RBWR). The studied core has an axially heterogeneous fuel assembly structure with a single fissile zone “sandwiched” between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Implementation of alternative reactivity control materials, reducing axial leakage through non-uniform enrichment distribution, use of burnable poisons, reducing number of pins as well as increasing pin diameter are also shown to be incapable of meeting the SDM requirements. Instead, an alternative assembly design, based on Rod Cluster Control Assembly with absorber rods was investigated. This design matches the reference ABWR core power and has adequate shutdown margin. The new concept was modeled as a single three-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

  6. Filling Knowledge Gaps with Five Fuel Cycle Studies

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01

    During FY 2010, five studies were conducted of technology families’ applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a “technology family” is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: • Advanced once through with uranium fuel in fast reactors (SFR), • Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), • Sustained recycle with Th/U-233 in light water reactors (LWRs), • Sustained recycle with Th/U-233 in molten salt reactors (MSR), and • Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in

  7. Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)

    International Nuclear Information System (INIS)

    This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) which has been developed by the Korea Atomic Energy Research Institute (KAERI). Categorizing various mix of nuclear reactors and fuel cycles into 11 scenario groups, the FAST calculates all the required quantities for each nuclear fuel cycle component, such as mining, conversion, enrichment and fuel fabrication for each scenario. A major advantage of the FAST is that the code employs a MS Excel spread sheet with the Visual Basic Application, allowing users to manipulate it with ease. The speed of the calculation is also quick enough to make comparisons among different options in a considerably short time. This user-friendly simulation code is expected to be beneficial to further studies on the nuclear fuel cycle to find best options for the future all proliferation risk, environmental impact and economic costs considered

  8. Two-stage fuel cycles with accelerator-driven systems

    International Nuclear Information System (INIS)

    As part of ongoing efforts to assess nuclear fuel cycle options, four fuel cycle options based on the same two reactor technologies have been studied. All four options are composed of two stages, one which contains pressurized-water reactors (PWRs), and the other, fast spectrum accelerator-driven systems (ADS). The performance characteristics and material mass flows have been determined for the fuel cycle options considered, and compared. The three major difficulties encountered when modeling and analyzing these fuel cycle options have been to maintain the PWR fuel temperature reactivity coefficient negative when multi-recycling MOX fuel, to design the ADS core to be a breeder, and to achieve a high enough keff in the ADS to avoid the accelerator power consumption to be larger than the power generated by the ADS core. The differences observed in the performance characteristics and mass flows between the four fuel cycle options analyzed are discussed in this paper. Overall it is found that despite the four fuel cycle options being based on the same reactor technologies and seemingly similar at first sight, they perform differently and offer different features: resource utilization, need for uranium enrichment, required reprocessing capacity, and material type to be stored. (author)

  9. Performance and fuel cycle cost study of the R2 reactor with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pond, R.B.; Freese, K.E.; Matos, J.E.

    1984-01-01

    A systematic study of the experiment performance and fuel cycle costs of the 50 MW R2 reactor operated by Studsvik Energiteknik AB has been performed using the current R2 HEU fuel, a variety of LEU fuel element designs, and two core-box/reflector configurations. The results include the relative performance of both in-core and ex-core experiments, control rod worths, and relative annual fuel cycle costs.

  10. Cycle Average Peak Fuel Temperature Prediction Using CAPP/GAMMA+

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam-il; Lee, Hyun Chul; Lim, Hong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a cycle average maximum fuel temperature without rigorous efforts, a neutronics/thermo-fluid coupled calculation is needed with depletion capability. Recently, a CAPP/GAMMA+ coupled code system has been developed and the initial core of PMR200 was analyzed using the CAPP/GAMMA+ code system. The GAMMA+ code is a system thermo-fluid analysis code and the CAPP code is a neutronics code. The General Atomics proposed that the design limit of the fuel temperature under normal operating conditions should be a cycle-averaged maximum value. Nonetheless, the existing works of Korea Atomic Energy Research Institute (KAERI) only calculated the maximum fuel temperature at a fixed time point, e.g., the beginning of cycle (BOC) just because the calculation capability was not ready for a cycle average value. In this work, a cycle average maximum fuel temperature has been calculated using CAPP/GAMMA+ code system for the equilibrium core of PMR200. The CAPP/GAMMA+ coupled calculation was carried out for the equilibrium core of PMR 200 from BOC to EOC to obtain a cycle average peak fuel temperature. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle average peak fuel temperature was calculated as 1181 .deg. C, which is below the design target of 1250 .deg. C.

  11. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  12. Uncertainty analysis for fuel flux calculations of fast reactors with external fuel cycle

    International Nuclear Information System (INIS)

    The paper focuses on the results of uncertainty analysis when calculating nuclide composition in fuel of fast reactors and on uncertainties of determining nuclide composition in the external fuel cycle. As demonstrated, the main contributions to the uncertainty of nuclide composition are due to: - uncertainties in operation of the reactor and in the fuel-cycle time; - uncertainties in nuclide clean-up factors at the Closed Nuclear Fuel Cycle (CNFC) stages when reprocessing spent nuclear fuel; - uncertainties in isotopic-kinetics cross-sections; - uncertainties in nuclide decay data. (author)

  13. Fuel cycle transition - A Belgian implementation scenario

    International Nuclear Information System (INIS)

    At the end of 2002 the total installed electric power in Belgium was 16,200 MWe of which 40% (6485 MWe) corresponds to the seven nuclear power plants installed on the two Belgian sites of Doel (4 power plants) and Tihange (3 power plants) and the 25% participation in the two French Units B1 and B2 at Chooz at the Belgian-French border. The nuclear installed power in Belgium is 5800 MWe. In 2003, the government decided to phase out the nuclear energy progressively by closing the Belgian NPPs after 40 years of operation. This means that the first generation units (Doel 1, Doel 2 and Tihange 1) will be closed in 2015 and the four other remaining units in 2022-2025. Nevertheless, this phase out is subject to various conditions: the guarantee of energy independence should not be affected and the engagement to respect the Kyoto agreement (reducing the CO2 production by 7.5% in 2010 as compared to the 1990 production). Thus the phase-out decision can be re-opened if the above mentioned conditions are not met. The paper has the following contents: 1. Introduction; 2. Actual fuel cycle; 3. Transition fuel cycle; 4. Calculations; 4.1. PWR modelling; 4.2. ADS modelling; 4.3. Calculation code; 5. Results; 5.1. PWR/EPR; 5.2. ADS; 6. Conclusions. In conclusion it is shown that the evaluated stock pile of waste in Belgium (with no increase of electricity demand) coming from the thermal reactors park is 4380 tons (52 t Pu, 9 t MA, 217 t FP) with phase out (i.e. between 1975, first PWR and 2025, last PWR) and 7825 tons (84 t Pu, 20 t MA, 381 t FP) without phase out (i.e. between 1975, first PWR and 2075, last EPR). According to this study, Belgium should keep all its first generation Pu for the eventual starting of the self burning FR. Indeed, the Pu needed to start the self burning FR is evaluated between 60 t and 90 t (based on 10 t to 15 t per GWe). With an homogeneous core loading, 54% of the MA could be eliminated after 24 years in three 600 MWth industrial ADS (corresponding

  14. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  15. Wastes from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    The LWR fuel cycle is represented, in the minimum detail necessary to indicate the origin of the wastes, as a system of operations that is typical of those proposed for various commercial fuel cycle ventures. The primary wastes (before any treatment) are described in terms of form, volume, radioactivity, chemical composition, weight, and combustibility (in anticipation of volume reduction treatments). Properties of the wastes expected from the operation of reactors, fuel reprocessing plants, and mixed oxide fuel fabrication plants are expressed in terms of their amounts per unit of nuclear energy produced

  16. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  17. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  18. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  19. CARA development: an Argentinean fuel cycle challenge

    International Nuclear Information System (INIS)

    The CARA is an advanced fuel element for pressurized heavy water reactors (PHWR). The present degree of its development is presented. The design allows extended burnup with good thermal hydraulic margins using a single fuel rod diameter. An additional assembly system enables the use into PHWR vertical channel reactors. The mechanical feasibility for Atucha I and Embalse, and the hydraulic compatibility were checked, verifying that the CARA can fit the Argentinean challenge: a single fuel element for two different PHWR. CARA prototypes are under fabrication with new spacer grid designs and enhanced welding between end plates and fuel rods. (author)

  20. Various problems in establishment of fuel cycle business in Japan

    International Nuclear Information System (INIS)

    Since Japan instituted the Atomic Energy Act in 1956, and organized the Atomic Energy Commission, as the fundamental policy of the peaceful use of atomic energy, the industrialization and establishment of fuel cycle technology have been advanced as well as the development of power reactors. The consistent and harmonious industrialization of uranium enrichment, fuel fabrication, reprocessing, the utilization of recovered plutonium and uranium, and the storage, treatment and disposal of wastes has been the target. As the nuclear power generation in Japan grew, the enhancement of the various factors of nuclear fuel cycle as the base of supporting nuclear power generation has become necessary. The effort of technical development has been continued in the fields of uranium enrichment, fuel reprocessing, plutonium fuel and waste treatment by the Power Reactor and Nuclear Fuel Development Corp., Japan Atomic Energy Research Institute and related industries. The plan and present status of nuclear fuel cycle business in Japan, the problems such as the roles of the government and private enterprises, technology transfer, the economy of nuclear fuel cycle business, the industrialization of mixed oxide fuel fabrication, nuclear nonproliferation policy and location are discussed. (Kako, I.)

  1. Globalization of the nuclear fuel cycle impact of developments on fuel management

    International Nuclear Information System (INIS)

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  2. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.)

  3. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    Science.gov (United States)

    Krishna, Taraknath Woddi Venkat

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear arsenal. This has driven the desire to engage India through civilian nuclear cooperation. The cornerstone of any civilian nuclear technological support necessitates the separation of military and civilian facilities. A complete nuclear fuel cycle assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three-stage nuclear power program entities and all the components of civilian and military significance were assembled into a flowsheet to allow for a macroscopic vision of the Indian fuel cycle. A detailed view of the nuclear fuel cycle opens avenues for technological collaboration. The fuel cycle that grows from this study exploits domestic thorium reserves with advanced international technology and optimized for the existing system. To utilize any appreciable fraction of the world's supply of thorium, nuclear breeding is necessary. The two known possibilities for production of more fissionable material in the reactor than is consumed as fuel are fast breeders or thermal breeders. This dissertation analyzes a thermal

  4. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  5. Determination of source term for Krsko NPP extended fuel cycle

    International Nuclear Information System (INIS)

    The activity and composition of the potential radioactive releases (source term) is important in the decision making about off-site emergency measures in case of a release into environment. Power uprate of Krsko NPP during modernization in 2000 as well as changing of the fuel type and the core design have influenced the source term value. In 2003 a project of 'Jozef Stefan' Institute and Slovenian nuclear safety administration determined a plantspecific source term for new conditions of fuel type and burnup for extended fuel cycle. Calculations of activity and isotopic composition of the core have been performed with ORIGEN-ARP program. Results showed that the core activity for extended 15 months fuel cycle is slightly lower than for the 12 months cycles, mainly due to larger share of fresh fuel. (author)

  6. A review of nuclear fuel cycle options for developing nations

    International Nuclear Information System (INIS)

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  7. Fuel cycle and waste management. 3. Analysis of PWR Equilibrium Fuel Cycles Using Nuclide Importance

    International Nuclear Information System (INIS)

    Energy generation by nuclear reactors entails production of plutonium and radioactive waste. To utilize the plutonium and to minimize the long-term radio-toxic waste, an option is a closed fuel cycle strategy employing reprocessing and recycling of actinides. Since commercial operation of fast reactors is not considered to be realized in the near future, plutonium and minor actinide recycling in light water reactors (LWRs) is considered, although LWR neutron economy is not good. In this study, uranium enrichment, natural uranium requirements, and toxicity of discharged heavy metals (HMs) are evaluated for a pressurized water reactor (PWR), whose design parameters are given in Table I. The following fuel cycles are investigated, where all fission products (FPs) and final products of HMs (Tl-Fr) are discharged from the reactor at a standard rate (25%/yr): Case 1: All HMs are discharged with the standard rate. Case 2: All HMs except Pu are discharged with the standard rate; Pu is discharged at the rate of one-half of the standard rate. Case 3: All HMs except Pu are discharged with the standard rate; Pu is confined. Case 4: All HMs except U are confined; U is discharged with the standard rate. Case 5: All HMs are confined. The infinite multiplication factor k can be expressed by using the nuclide importance (fission neutron importance fj and absorbed neutron importance aj ) as k = (Σj fj sj)/(αΣj aj sj), where sj = atomic percent of uranium isotopes (234U, 235U, and 238U ) in the supplied fuel α = correction factor for estimating neutron absorption by non-fuel-originating nuclides, such as coolant and construction materials. A detailed description of nuclide importance and calculation method is given in Ref. 1. The value k is set to be 1.02, and sj are evaluated from this equation and the following ones: s24 + s25 + s28 = 100 and 100s24 - 0.9937s25=-0.1925. The second equation is given by enrichment conditions. The group cross-section set is generated with the SRAC

  8. Development on nuclear fuel cycle business in Japan

    International Nuclear Information System (INIS)

    The Japan Nuclear Fuel Co., Ltd. (JNF) develops five businesses on nuclear fuel cycle such as uranium concentration, storage and administration of high level radioactive wastes, disposition of low level radioactive wastes, used fuel reprocessing, MOX fuel, at Rokkasho-mura in Aomori prefecture. Here were introduced on outline, construction and operation in reprocessing and MOX fuel works, outline, present state and future subjects on technical development of uranium concentration, outline and safety of disposition center on low level radioactive wastes, and storage and administration of high level radioactive wastes. (G.K.)

  9. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  10. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  11. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR)1 and Integral Fast Reactor (IF)2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  12. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  13. Economic Analysis of Different Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Won Il Ko

    2012-01-01

    Full Text Available An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT, DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX, and sodium fast reactor recycling employing pyroprocessing (Pyro-SFR. This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyrotechniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  14. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  15. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FCC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. SFR fuel cycle employing pyro processing is one promising fuel cycle option in the near future. Economics is one of the essential criteria to be considered in the determination of new fuel cycle deployment

  16. Framework for fuel-cycle approaches to IAEA safeguards

    International Nuclear Information System (INIS)

    In order to compare several nuclear-safeguards verification approaches to one another and to the conventional facility-oriented approach, we establish a framework of the classes of information routinely verifiable by IAEA safeguards inspections. For each facility type within a State nuclear fuel cycle, the classes include flow data, inventory data, and shipper and receiver data. By showing which classes of information are verified for each facility type within three fuel cycles of different complexity, we distinguish the inspection approaches from one anoter and exhibit their fuel-cycle dependence, i.e., their need for sets of safeguards inspection activities different from those required under the facility-oriented approach at similar facilities in fuel cycles of differing complexity. Tables V-1, V-2, and V-3 graphically depict these relations and give a qualitative summary of the relative effectiveness and effort requirements of the approaches classified. The zone, information-correlation, diversion-assumption-change, and randomization-over-facilities approaches depend intrinsically on the complexity of the fuel cycle: their very definition implies fuel-cycle dependence. The approaches involving randomization over activities and goal relaxations do not have such dependence

  17. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  18. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  19. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  20. Ion exchange technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The application of ion exchange has been expanded to various parts of the nuclear fuel cycle. Major applications are in uranium production facilities, nuclear power plants, spent fuel reprocessing and waste treatment. Furthermore, application to isotope separation has been under development. The appendix contains a compilation of resin data. A separate abstract was prepared for each of the 6 chapters in this technical document

  1. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  2. Effect of fuel cycle alternatives on nuclear waste management

    International Nuclear Information System (INIS)

    The nuclear fuel cycle alternatives considered here and their corresponding material flowsheets are: Pressurized water reactor (PWR) with no fuel reprocessing; PWR with reprocessing for uranium recycle and plutonium storage; PWR with reprocessing for uranium recycle and self-generated plutonium recycle; and high-temperature gas-cooled reactor with uranium recycle

  3. Approaches to reduction of risks at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    The paper contains a brief analytical overview of incidents at nuclear fuel facilities; a description of the most hazardous factors that cause these incidents; a probability calculation for accidents of various categories; data on the accident risk structure and the guidelines for risk assessment; and recommendations to ensure accident prevention at fuel cycle facilities. (author)

  4. Safety aspects of the IFR pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs

  5. Alternate fuel cycle technologies. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    This quarterly report describes studies to provide information needed to close the back end of the commercial light-water reactor (LWR) fuel cycle. These efforts are directed primarily at reprocessing and recycle of uranium and plutonium from spent LWR fuel. Research is reported in the following categories: environmental studies, fuel receipt, head-end processes, purex process, waste management, safeguards (dose rate for extraction streams), and general support.

  6. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  7. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  8. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  9. Fusion fuel cycle: material requirements and potential effluents

    International Nuclear Information System (INIS)

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described

  10. World nuclear capacity and fuel cycle requirements, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  11. The environmental impacts of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    A survey about the environmental pollution and the population exposure caused by the nuclear fuel cycle is set up. Proceeding from the environmental changes caused by the construction of plants, the author shows the hazards of the operation of the plants. The fuel cycle beginning with the mining of nuclear fuels and reaching to their reprocessing, the environmental pollution by radionuclides and the population exposure resulting from this are outlined. After indicating the advantages of the concentration of nuclear plants, the author shows comparatively the hazards caused by conventional energy sources. (ORU)

  12. World nuclear capacity and fuel cycle requirements, November 1993

    International Nuclear Information System (INIS)

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment

  13. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  14. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    International Nuclear Information System (INIS)

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  15. The economics of advanced fuel cycles in CANDU (PHW) reactors

    International Nuclear Information System (INIS)

    The economic assessments of advanced fuel cycles performed within Ontario Hydro are collated and summarized. The results of the analyses are presented in a manner designed to provide a broad perspective of the economic issues regarding the advanced cycles. The enriched uranium fuel cycle is shown to be close to competitive at today's uranium prices, and its relative position vis-a-vis the natural uranium cycle will improve as uranium prices continue to rise. In the longer term, the plutonium-topped thorium cycle is identified as being the most economically desirable. It is suggested that this cycle may not be commercially attractive until the second or third decade of the next century. (auth)

  16. Steps toward establishment of independent nuclear fuel cycle

    International Nuclear Information System (INIS)

    Effort has to be exerted to make up for the lag in the industrialization of the nuclear fuel cycle if nuclear power is to become a stable energy source in Japan. The ''Long term energy supply and demand outlook'' was revised in November, 1983, and in February, 1984, the Nuclear Subcommittee decided to review all plans in the effort to expedite the project to meet the need of the nuclear fuel cycle. The details of the requirement for the nuclear fuel cycle are given in this report. The viewpoint in the industrialization of the nuclear fuel cycle is summarized as the assurance of balance between security and cost, the policy of implementation as related to international cooperation, the proper approach to research and development, and the active private participation from related industries. The promotion of the development and import of uranium ore, the construction and operation plan for a commercial uranium enrichment plant, the basic industrialization policy of fuel reprocessing, the management and disposal of rad-wastes and the promotion of siting nuclear fuel cycle plants are reported. (Kako, I.)

  17. Optimization of the Korean nuclear fuel cycle using linear programming

    International Nuclear Information System (INIS)

    The Korean optimal nuclear fuel cycle strategy from the year 2000 to 2030 is searched using linear programming. Three criteria are considered: fuel cycle cost, economic risk, and natural uranium consumption. The three objectives are compromised by fuzzy decision technique which maximizes the minimum degree of satisfaction of the three objectives. The options of the back-end nuclear fuel cycle of Korea are direct disposal, reprocessing, and DUPIC. The annual maximum capacities of reprocessing and DUPIC are limited to 800 tons per year as a reference case and 400 tons per year as a lower case and 1,200 tons per year as a upper case. The optimal strategy of reference case is to start operation in 2010 and reach the maximum capacity in 2024. The transportation of spent fuel to interim storage starts in 2003. Considering the economic risk and natural uranium consumption as well as fuel cycle cost, the economic risk and natural uranium consumption of Korean nuclear fuel cycle strategy are reduced to 7.1% and 6.1% respectively at a cost penalty of 5.4%. In all cases the recovered uranium is recycled in CANDU

  18. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO2-PuO2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  19. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U3O8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  20. Strategic research of advanced fuel cycle technologies in JNC

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, T.; Fukushima, M.; Nomura, S. [Japan Nuclear Cycle Development Institute, Tokai Works (Japan)

    2000-07-01

    Key technologies for the future nuclear fuel cycle have been proposed and are being reviewed in JNC as a part of the Feasibility Study for an Advanced Fuel Cycle, which is to achieve a more flexible energy choice to satisfy a sustainable energy security and global environmental protection. The candidate reprocessing technologies are: 1) aqueous simplified PUREX process, 2) oxide or metallic electrowinning, and 3) fluoride volatilization for oxide, metal, or nitride fuels. The fuel fabrication methods being investigated are: 1) simplified pellet process, 2) sphere/vibro-packed process for MOX/MN fuel, and 3) casting for metal fuel. These candidate technologies are currently being compared based on past experiences, technical issues to be solved, industrial applicability for future plants, feasible options for MA/LLFP separation, and nonproliferation aspects. Alter two years of the present reviewing process, selected key technologies will be developed over the next five years to evaluate industrial applicability of reprocessing and fuel manufacturing processes for the advanced fuel cycle. (authors)

  1. Strategic research of advanced fuel cycle technologies in JNC

    International Nuclear Information System (INIS)

    Key technologies for the future nuclear fuel cycle have been proposed and are being reviewed in JNC as a part of the Feasibility Study for an Advanced Fuel Cycle, which is to achieve a more flexible energy choice to satisfy a sustainable energy security and global environmental protection. The candidate reprocessing technologies are: 1) aqueous simplified PUREX process, 2) oxide or metallic electrowinning, and 3) fluoride volatilization for oxide, metal, or nitride fuels. The fuel fabrication methods being investigated are: 1) simplified pellet process, 2) sphere/vibro-packed process for MOX/MN fuel, and 3) casting for metal fuel. These candidate technologies are currently being compared based on past experiences, technical issues to be solved, industrial applicability for future plants, feasible options for MA/LLFP separation, and nonproliferation aspects. Alter two years of the present reviewing process, selected key technologies will be developed over the next five years to evaluate industrial applicability of reprocessing and fuel manufacturing processes for the advanced fuel cycle. (authors)

  2. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  3. Fossil fuel combined cycle power system

    Science.gov (United States)

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  4. The FIT Model - Fuel-cycle Integration and Tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

    2010-09-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  5. Criticality safety aspects of spent fuel arrays from emerging nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Nuclear Technology, Kimmerria Campus, 67100 Xanthi (Greece)

    2010-07-01

    Emerging nuclear fuel cycles: fuels with Pu or minor actinides (MA) for their self-generated recycling or transmutation in PWR or FR {yields} reduction of radiotoxicity of HLW. The aim of work is to assess criticality (k{sub {infinity}}) of arrays of spent nuclear fuels from these emerging fuel cycles. Procedures: Calculations of - k{sub {infinity}}, using MCNP5 based on fresh and spent fuel compositions (infinite arrays), - spent fuel compositions using ORIGEN. Fuels considered: - commercial PWR-UO{sub 2} (R1) and -MOX (R2), [45 GWd/t] and fast reactor [100 GWd/t] (R3), - PWR self-generated Pu recycling (S1) and MA recycling (S2), FR self-generated MA recycling (S3), FR with 2% {sup 237}Np for transmutation purposes (T). Results: k{sub {infinity}} based on fresh and spent fuel compositions is shown. Fuels are clustered in two distinct families: - fast reactor fuels, - thermal reactor fuels; k{sub {infinity}} decreases when calculated on the basis of actinide and fission product inventory. In conclusions: - Emerging fuels considered resemble their corresponding commercial fuels; - k{sub {infinity}} decreases in all cases when calculated on the basis of spent fuel compositions (reactivity worth {approx}-20%{Delta}k/k), hence improving the effectiveness of packaging. (author)

  6. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  7. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  8. Impact of the Taxes on Used Nuclear Fuel on the Fuel Cycle Economics in Spain

    Directory of Open Access Journals (Sweden)

    B. Yolanda Moratilla Soria

    2015-02-01

    Full Text Available In 2013, the Spanish government created two new taxes on used nuclear fuel. This article aims to present the results of an economic study carried out to compare the costs of long-term storage of used nuclear fuel –open cycle strategy–, with the cost of the strategy of reprocessing and recycling used fuel– closed cycle strategy– taking into account the impact of the new taxes on the global cost of the fuel cycle. The results show that the costs of open-cycle and closed-cycle spent fuel management, evaluated in Spain after the introduction of the taxes, are sufficiently similar (within the bounds of uncertainty, that the choice between both is predicated on other than purely economic criteria.

  9. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    International Nuclear Information System (INIS)

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes

  10. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO2, lower sensitivity to 234U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU

  11. Ultra-long cycle SMART core design using thorium fuel

    International Nuclear Information System (INIS)

    A ultra-long cycle(5 years) SMART core design is examined using the thorium fuel. Most of design configurations of SMART core such as fuel loading pattern, control rod management strategy, and burnable absorber material remain unchanged but uranium fuel which is replaced with a homogeneous mixture of 20% enriched uranium and thorium. The number of burnable absorber pins of the thorium loaded SMART core was adjusted to control the excess reactivity during the cycle burnup. It was shown that mixing ratio of 40:60 of uranium fuel and thorium fuel is necessary to achieve a 5 year cycle length of SMART core. The results also show that the ultra-longer cycle SMART core satisfying all design constraints such as Fq less than 2.5, axial offset less than 0.3, keff less than 0.95 when refueling shutdown margin of 1% with most reactive control rod stuck, and ejected rod worth less than 250 pcm, are possible by using thorium fuel and absorber materials effectively

  12. New concept of designing combined fuel for fast reactors with closing fuel cycle

    International Nuclear Information System (INIS)

    New type of metal base fuel element is suggested for fast reactors. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a framework fuel element having a porous uranium alloy meat is filled with standard PuO2 powder of 2 powder. Framework fuel element having porous meat is fabricated by capillary impregnation method. Granules of (depleted U-Mo or U-Zr alloys) fuel and matrix (zirconium eutectic alloy) fill up fuel element cladding; fuel element is heated to a temperature 50 deg. C above the temperature of matrix melting. Matrix alloy melts down and under action of capillary forces moves into joints between fuel particles to form metallurgic bond. In this case inside the resultant framework fuel element controllable porosity (20 to 40%) is retained that subsequently accommodates Pu and MA dioxides. Zirconium matrix layer available at inner surface of fuel element cladding protects cladding from interaction with both fuel and fission products as well as from cesium induced corrosion. Properties of framework fuel element have been investigated [1]. New novel components are compatible with themselves and fuel element cladding at operating and higher temperatures. Preliminary in-pile tests of new components were carried out. As compared to MOX fuel the new one features high thermal conductivity, higher uranium content, hence, high conversion ratio, does not interact with fuel cladding and is more environmentally clean. Its principle advantage is a simple production process that is easily realized remotely, feasibility of involving high background Pu and MA isotopes into closed nuclear fuel cycle at the minimal influence on environment. Thus, new concept of designing fuel for fast reactors - minimization of process operations with Pu and employment of

  13. Regulatory cross-cutting topics for fuel cycle facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

    2013-10-01

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

  14. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configu...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.......Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...

  15. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  16. Do leucocyte profiles reflect temporal and sexual variation in body condition over the breeding cycle in Southern Rockhopper Penguins?

    OpenAIRE

    Dehnhard, Nina; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2011-01-01

    Abstract Southern Rockhopper Penguins (Eudyptes chrysocome chrysocome) have a strongly synchronised breeding cycle with a fixed pattern of nest attendance for males and females. We studied leucocyte profiles and the development of granulocyte/lymphocyte (G/L) ratios as an indicator of stress. Variation in G/L ratios were related to sex and breeding stage, but not individual body condition. G/L ratios were similar for males and females during the first part of the incubation period ...

  17. Modelling fuel behaviour in a reactor park using fuel cycle kinetics

    International Nuclear Information System (INIS)

    In this thesis the theory of fuel cycle kinetics is re-examined. The fuel cycle kinetics theory is a powerful tool to describe the time-dependent fuel behaviour of large populations of nuclear reactors. The fuel cycle kinetics theory is based on the point kinetics theory and the principles of a reactor park. The point kinetics theory is a simplification of the space-, energy-and time-dependent diffusion balance equation to only a time-dependent equation. A reactor park is the description of the interconnections between a population of nuclear reactors with various designs. In the fuel cycle kinetics theory the point kinetics theory is used as a model to simplify space- energy- and time-dependent burn-up equations of the reactors in a reactor park to a set of only time-dependent equations, one for every reactor type. The fuel cycle kinetics theory is verified by means of a number of test cases. In the first test case the same symbiotic system is used as was used by Maudlin. There is no difference between the two obtained results. The second test case is that of only Fast Breeder Reactor, FBR, deployment. Here the result of the fuel cycle kinetics equation is checked against the result obtained from TRITON. TRITON is a module of the SCALE code system that is used for depletion analysis of 3-D reactor models. With the use of the pseudo-initial condition the results of the fuel cycle kinetics and TRITON calculations are almost identical. The pseudo-initial condition is a correction on the initial condition to adjust for neglecting the time dependency of the parameters in the fuel cycle kinetics equations. In the third case a symbiotic system of FBRs and Pressurised Water Reactors, PWRs, is researched. There is only a small difference in the asymptotic growth between the fuel cycle kinetics results and the TRITON results. In the last test case the same system of FBRs and PWRs is used to investigate two demanded asymptotic growths obtained from the upper and lower

  18. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  19. A study of endometritis causing repeat breeding of cycling iraqi buffalo cows.

    Science.gov (United States)

    Azawi, O I; Omran, S N; Hadad, J J

    2008-12-01

    The objectives of this study were to determine the non-specific aerobic and anaerobic bacterial causes of endometritis causing repeat breeding of cycling Iraqi buffalo cows at Nineveh province, validate diagnostic criteria for endometritis and to evaluate the treatment efficiency of using systemic or intra-uterine infusion of antibiotics for the treatment of endometritis. Data were collected from 60 buffalo cows with history of repeat breeding in different herds. All buffaloes were subjected to detailed clinical examination including external inspection, vaginoscopy and transrectal palpation of the cervix, uterus and ovaries. Swabs for bacteriology and biopsies for histopathology were collected from the uterine lumen from each cow. Character, odour and estimation of polymorphonuclear cells (PMN) of the vaginal mucus were scored. Blood samples were collected from cows for creatine kinase (CK) and aspartate aminotransferase (AST) measurement. Treatment conducted using oxytetracycline with tylosin in local intrauterine infusion or systemically with hormonal treatment. The most pre-disposing factor for uterine infection was retained placenta (13.3%). The most prevalent bacteria in uterine lumen were E. coli (23%), Archanobacterium pyogenes (13%) and Staphylococcus aureus (10%) were mostly isolated from buffaloes with repeat breeding. Vaginal mucus character score was associated with the bacterial growth density score. The difference in PMN was highly significant (p < 0.01) in animals with repeat breeding than control groups. In addition, PMNs was significantly (p < 0.01) correlated r = 0.894 with the character of vaginal discharge. High level of PMNs observed in buffaloes infected with A. pyogenes. Buffalo cows with endometritis had higher CK (321.47 +/- 39.06 vs 162.01 +/- 16.41 U/l) and AST (133.93 +/- 12.43 vs 97.01 +/- 6.86 U/l) activities (p < 0.05) than control-heifers, but no significant difference was observed between buffalo cows with endometritis in CK (321

  20. Fossil fuel combined cycle power generation method

    Science.gov (United States)

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  1. Immunocontraception in wild horses (Equus caballus extends reproductive cycling beyond the normal breeding season.

    Directory of Open Access Journals (Sweden)

    Cassandra M V Nuñez

    Full Text Available BACKGROUND: Although the physiological effects of immunocontraceptive treatment with porcine zona pellucida (PZP have been well studied, little is known about PZP's effects on the scheduling of reproductive cycling. Recent behavioral research has suggested that recipients of PZP extend the receptive breeding period into what is normally the non-breeding season. METHODOLOGY/PRINCIPAL FINDINGS: To determine if this is the case, we compiled foaling data from wild horses (Equus caballus living on Shackleford Banks, North Carolina for 4 years pre- and 8 years post-contraception management with PZP (pre-contraception, n = 65 births from 45 mares; post-contraception, n = 97 births from 46 mares. Gestation lasts approximately 11-12 months in wild horses, placing conception at approximately 11.5 months prior to birth. Since the contraception program began in January 2000, foaling has occurred over a significantly broader range than it had before the contraception program. Foaling in PZP recipients (n = 45 births from 27 mares has consistently occurred over a broader range than has foaling in non-recipients (n = 52 births from 19 mares. In addition, current recipients of PZP foaled later in the year than did prior recipient and non-recipient mares. Females receiving more consecutive PZP applications gave birth later in the season than did females receiving fewer applications. Finally, the efficacy of PZP declined with increasing consecutive applications before reaching 100% after five consecutive applications. CONCLUSIONS/SIGNIFICANCE: For a gregarious species such as the horse, the extension of reproductive cycling into the fall months has important social consequences, including decreased group stability and the extension of male reproductive behavior. In addition, reproductive cycling into the fall months could have long-term effects on foal survivorship. Managers should consider these factors before enacting immunocontraceptive programs in new

  2. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  3. Population exposure from the fuel cycle: Review and future direction

    International Nuclear Information System (INIS)

    The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle

  4. International nuclear fuel cycle fact book: Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  5. Safety and economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    The DT, DD and DHe fusion fuel cycles are compared on the basis of safety and economics. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeder for the DT fuel cycle. The reactors are pulsed superconducting tokamaks, producing 4000 MW thermal power. The DT and DD designs are developed utilizing a plasma beta of 5%, 10% and 20%, assuming first stability scaling laws; a single value of 10% for beta is used for the DHe design. Modest extrapolations of current day technology are employed, providing a reference point for the relative ranking of the fuel cycles. Technological advances and improved understanding of the physics involved may alter the relative positions from what has been determined here. 92 figs., 59 tabs

  6. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  7. International nuclear fuel cycle fact book. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  8. International Nuclear Fuel Cycle Fact Book. Revision 12

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  9. Population exposure from the fuel cycle: Review and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1987-01-01

    The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle.

  10. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  11. Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amanda Rynes

    2010-11-01

    With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against the misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.

  12. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  13. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  14. Nuclear fuel cycle bringing about opportunity for industrial structure conversion

    International Nuclear Information System (INIS)

    Three facilities of nuclear fuel cycle, that is, uranium enrichment, fuel reprocessing and low level radioactive waste storage and burying, are being constructed by electric power industry in Rokkasho Village, Kamikita County, Aomori Prefecture. These are the large scale project of the total investment of 1.2 trillion yen. It is expected that the promotion of this project exerts not a little effect to the social economy of the surrounding districts. Agency of Natural Resources and Energy, Ministry of International Trade and Industry, carried out the social environment survey on the location of nuclear fuel cycle facilities. In this report, the outline of the economical pervasive effect due to the construction and operation of the three facilities in the report of this survey is described. The method of survey and the organization, the outline of three nuclear fuel cycle facilities, the economical pervasive effect, the effect to the local social structure, and the direction of arranging occupation, residence and leisure accompanying the location of three nuclear fuel cycle facilities are reported. (K.I.)

  15. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    This report analyzes in a preliminary way the risks to the public posed by the CANDU nuclear fuel cycle. Part 1 considers radiological risks, while part 2 (published as INFO-0141-2) evaluates non-radiological risks. The report concludes that, for radiological risks, maximum individual risks to members of the public are less than 10-5 per year for postulated accidents, are less than 1 percent of regulatory limits for normal operation and that collective doses are small, less than 3 person-sieverts. It is also concluded that radiological risks are much smaller than the non-radiological risks posed by activities of the nuclear fuel cycle

  16. Nuclear fuel cycle reprocessing and waste management technology

    International Nuclear Information System (INIS)

    In this address, the status of global and US nuclear fuel cycles is briefly reviewed. Projections for Europe and the Pacific basin include a transition towards mixed uranium and plutonium oxide (MOX) recycle in thermal and, eventually, fast reactors. Major environmental benefits could be expected by the development of fast reactor technology. Published estimates of the principal greenhouse gas emission from nuclear operations are reviewed. The final section notes the reduction in radiation dose uptake by operators and general public which can be anticipated when fast reactor and thermal reactor fuel cycles are compared. The major reduction follows elimination of the uranium mining/milling operation

  17. Fuel cycle and waste newsletter Vol. 1, No. 1

    International Nuclear Information System (INIS)

    The purpose of the NEFW Newsletter is to inform a wider audience about the activities performed in the Division, as well as to provide topical articles in the field. The News letter informs about the Symposium on Uranium Production and Raw Materials for the Nuclear Fuel Cycle - Supply and Demand, Economics, the Environment and Energy Security, held in Vienna, June 2005. In this first issue the activities in the Nuclear Fuel Cycle and Materials Section (NFCMS) and Waste Technology Section (WTS) are presented. The article 'The Promise of underground geological repositories' is presented

  18. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  19. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  20. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  1. New Concept of Designing Combined Fuel for Fast Reactors with Closed Fuel Cycles

    International Nuclear Information System (INIS)

    New type of metal base fuel element is suggested for fast reactors. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a framework fuel element having a porous uranium alloy meat is filled with standard PuO2 powder of 2 powder. Framework fuel element having porous meat is fabricated by capillary impregnation method with the use of Zr eutectic matrix alloys, which provides metallurgical bond between fuel and cladding and protects it from interaction. As compared to MOX fuel the new one features high thermal conductivity, higher uranium content, hence, high conversion ratio does not interact with fuel cladding and is more environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of combined fuel is demonstrated, which allows to separate uranium from plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. (author)

  2. Fuel cycles of WWER-440. Results of basic design modification

    Energy Technology Data Exchange (ETDEWEB)

    Saprykin, Vasiliy V.; Yasnopolskaya, Irina I.; Novikov, Andrei N. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Adeev, Valery A. [Kola NPP, Polyarnie Zori (Russian Federation)

    2013-09-15

    This paper presents the current status of works performed to date to further upgrade fuel assemblies and fuel cycle of WWER-440 reactors, and also considers some innovations - both envisaged and implemented in practice - intended to improve their neutronic and operating parameters. Reactors were assumed to operate at 100% power in a steady-state refueling mode. Trial operation of third-generation fuel assemblies (FA-3), including a comparison between some calculated and measured results, is described as an example illustrating these new developments. (orig.)

  3. Technology of the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF6, uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables

  4. Technology of the light water reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Wymer, R. G.

    1979-01-01

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF/sub 6/, uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables. (DLC)

  5. Reconsidering Tree Fruit as Candidate Crops Through the Use of Rapid Cycle Crop Breeding Technologies

    Science.gov (United States)

    Graham, Gary Thomas

    2014-01-01

    Tree fruit, although desirable from a crew nutrition and menu diversity perspective, have long been dismissed as candidate crops based on their long juvenile phase, large architecture, low short-term harvest index, and dormancy requirements. Recent developments in Rapid Cycle Crop Breeding (RCCB) have overcome these historical limitations, opening the door to a new era in candidate crop research. Researchers at the United States Department of Agriculture (USDA) have developed FT-construct (Flowering Locus T) dwarf plum lines that have a very short juvenile phase, vine-like architecture, and no obligate dormancy period. In a collaborative research effort, NASA and the USDA are evaluating the performance of these FT-lines under controlled environment conditions relevant to spaceflight.

  6. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  7. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables

  8. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  9. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  10. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  11. On-Going Comparison of Advanced Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Ralph G. Bennett; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mark Roth; J. D. Smith; Robert Hill; James Laidler; Kemal Pasamehmetoglu

    2004-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of

  12. Fuel-cycle assessment of selected bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil

  13. Selection and evaluation of nuclear fuel cycle strategies. Technical and economic aspects

    International Nuclear Information System (INIS)

    The original choices of thermal reactors and fuel cycles were largely determined by specific national circumstances and by experience and facilities acquired from defence-related programmes. These led to the development of LWRs in the USA and to the natural uranium/gas/graphite system in the United Kingdom and France, while Canada selected the HWR. Most countries with nuclear power programmes saw the plutonium-fuelled fast reactor, with its breeding potential, as the means to ensure that exhaustion of economic uranium resources would not prematurely curtail the contribution of nuclear power to world energy supplies. Fuel reprocessing was essential to this fuel cycle or indeed to other recycling options to make better use of the available uranium; it was also favoured for waste management reasons. Early expectations of nuclear power growth suggested that a transition from thermal to fast reactors would occur during the present century but the urgency has been reduced by world economic recession, slower increases in nuclear capacity and the continued availability of supplies of low-priced uranium. Reprocessing costs have risen and economics of scale favour large plants, which are therefore most likely to be built in countries with substantial thermal reactor capacities; these countries will be able to provide reprocessing services to others. As the ultimate strategic need for fast reactors has not been reduced by this slowdown it is important to continue the development and demonstration of fast-reactor technology and the associated fuel cycles. Uncertainties in future fuel prices mean that it could be advantageous to introduce fast reactors as soon as they become an economic, although not necessarily the most economic, choice. Notably, fast reactors may be installed initially when and where they become economic compared to coal-fired generation, in order to lay the foundation for more rapid expansion when economic break-even with thermal reactors occurs. (author)

  14. TALSPEAK Chemistry in Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    The separation of trivalent transplutonium actinides from fission product lanthanide ions represents a challenging aspect of advanced nuclear fuel partitioning schemes. The challenge of this separation could be amplified in the context of the AFCI-UREX+1a process, as Np and Pu will accompany the minor actinides to this stage of separation. At present, the baseline lanthanide-actinide separation method is the TALSPEAK (Trivalent Actinide - Lanthanide Separation by Phosphorus reagent Extraction from Aqueous complexes) process. TALSPEAK was developed in the late 1960's at Oak Ridge National Laboratory and has been demonstrated at pilot scale. This process relies on the complex interaction between an organic and an aqueous phase both containing complexants for selectively separating the trivalent actinide. The 3 complexing components are: the di(2-ethylhexyl) phosphoric acid (HDEHP), the lactic acid (HL) and the diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA). In this report we discuss observations on kinetic and thermodynamic features described in the prior literature and describe some results of our ongoing research on basic chemical features of this system. The information presented indicates that the lactic acid buffer participates in the net operation of the TALSPEAK process in a manner that is not explained by existing information on the thermodynamic features if the known Eu(III)-lactate species. (authors)

  15. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery

  16. LMFBR operation in the nuclear cycle without fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

    1997-12-01

    Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

  17. Estimating Externalities of Hydro Fuel Cycles, Report 6

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-12-01

    There are three major objectives of this hydropower study: (1) to implement the methodological concepts that were developed in the background document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles and, by so doing, to demonstrate their application to the hydroelectric fuel cycle (different fuel cycles have unique characteristics that need to be addressed in different ways); (2) to develop, given the time and resources, the best range of estimates of externalities associated with hydroelectric projects, using two benchmark projects at two reference sites in the US; and (3) to assess the state of the information that is available to support the estimation of externalities associated with the hydroelectric fuel cycle and, by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The main consideration in defining these objectives was a desire to have more information about externalities and a better method for estimating them. As set forth in the agreement between the US and the EC, the study is explicitly and intentionally not directed at any one audience. This study is about a methodology for estimating externalities. It is not about how to use estimates of externalities in a particular policy context.

  18. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    Science.gov (United States)

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  19. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  20. Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability

    International Nuclear Information System (INIS)

    The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

  1. Alternative Fuel Cycle Evaluation Program. Volume IV. International Fuel Service Center evaluation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, L D [comp.

    1979-11-01

    This Alternative Fuel Cycle Evaluation Program (AFCEP) study presents the technical, economic and social aspects of the International Fuel Service Center (IFSC) as an institutional approach to nuclear fuel cycle development and is provided in support of the Nonproliferation Alternative Systems Assessment program (NASAP). Four types of IFSCs are described and evaluated in terms of three different twenty-year nuclear growth scenarios. Capital costs for each IFSC and comparable dispersed facility costs are discussed. Finally, the possible impact of each scenario and IFSC on the environmental and socio-economic structure is examined. 14 refs., 33 figs., 15 tabs.

  2. Multilateral Approaches to the Back-end of the Nuclear Fuel Cycle: Challenges and Possibilities

    International Nuclear Information System (INIS)

    Various multilateral approaches to the nuclear fuel cycle have been proposed in order to suppress the expansion of sensitive fuel cycle technology. In order to prepare for the future multilaterallization of the nuclear fuel cycle, existing multilateral spent fuel management programs are analyzed. A trial multilateralization of a domestic R and D facility for the back end of the nuclear fuel cycle is proposed and its challenges, possibilities and implementation strategy are discussed

  3. Transient cycle fuel management optimization of a pressurized water reactor

    International Nuclear Information System (INIS)

    This paper concerns with how to optimally determine enrichments of fuel assembly (FA) batches of beginning-of-life (BOL) and reload cycle cores of a pressurized water reactor (PWR) plant which runs on a multi-batch, multi-cycle fuel management scheme. As a way to determine the optimum FA enrichments, a multi-cycle, multi-objective FA loading pattern (LP) optimization problem for the transient cycle cores involving the BOL and the reload cycle cores of the PWR plant is solved by the adaptively constrained discontinuous penalty function-based (ACDPF-based) multi-objective simulated annealing (MOSA) algorithm in combination with the commercial core neutronics design code ASTRA (Advanced Static and Transient Reactor Analyzer). The applicability and the effectiveness of the ACDPF-based MOSA algorithm is examined in terms of its solution to the first three transient cycle FA LP optimization problem of Yonggwang Nuclear Unit 4 (YGN4) a PWR plant in Korea. The practicality and usefulness of the ACDPF-based MOSA algorithm as an optimizer to determine optimum enrichments of BOL and reload cycle cores are discussed. (author)

  4. World nuclear capacity and fuel cycle requirements 1992

    International Nuclear Information System (INIS)

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment for the Lower and Upper Reference case scenarios were obtained from the Office of Integrated Analysis and Forecasting, Energy Information Administration. Most of these projections were developed using the World Integrated Nuclear Evaluation System (WINES) model

  5. The role of accelerators in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the use of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.

  6. The US Advanced Fuel Cycle Programme: Objectives and Accomplishments

    International Nuclear Information System (INIS)

    For approximately a decade, the United States Department of Energy has been conducting an advanced fuel cycle programme, presently named the Fuel Cycle R and D Program, devoted to lessening both the environmental burden of nuclear energy and the proliferation risk of accumulating used nuclear fuel. Currently, the programme is being redirected towards a science based, goal oriented focus with the objective of deploying successfully demonstrated technology in the 2040-2050 time frame. The present paper reports the key considerations of the science based research approach, the elements of the technical programme and the accomplishments in fast reactor research and development, the goal of which is to improve the primary issues that have inhibited fast reactor introduction in the past, namely, economics and safety. (author)

  7. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  8. Incorporation of excess weapons material into the IFR fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.; Wade, D.C.

    1993-09-01

    The Integral Fast Reactor (IFR) provides both a diversion resistant closed fuel cycle for commercial power generation and a means of addressing safeguards concerns related to excess nuclear weapons material. Little head-end processing and handling of dismantled warhead materials is required to convert excess weapons plutonium (Pu) to IFR fuel and a modest degree of proliferation protection is available immediately by alloying weapons Pu to an IFR fuel composition. Denaturing similar to that of spent fuel is obtained by short cycle (e.g. 45 day) use in an IFR reactor, by mixing which IFR recycle fuel, or by alloying with other spent fuel constituents. Any of these permanent denaturings could be implemented as soon as an operating IFR and/or an IFR recycle capability of reasonable scale is available. The initial Pu charge generated from weapons excess Pu can then be used as a permanent denatured catalyst, enabling the IFR to efficiently and economically generate power with only a natural or depleted uranium feed. The Pu is thereafter permanently safeguarded until consumed, with essentially none going to a waste repository.

  9. Status of Chinese NPP Industry and Nuclear Fuel Cycle Policy

    International Nuclear Information System (INIS)

    China still extended their experiences to both domestic and overseas so far. Chinese State Council approved its 'Medium and Long-term Nuclear Power Development Plan' in November 2007, indicating further definition for nuclear energy as indispensable energy option and future self-reliance development of nuclear industry. China intends to become self-sufficient not only in NPPs capacity, but also in the fuel production for all those plants. There are currently 17 NPPs in operation, and 28 NPPs under construction. However, domestic uranium mining supplying is currently less than a quarter of nuclear fuel demands. This paper investigated and summarized the updated status of NPP industry in China and Nuclear Fuel Cycle(NFC) policy. There still remain a number of technical innovation and comprehensive challenges for this nuclear developing country in the long-term, but its large ambitions and dramatic improvements toward future should not be ignored. As shown in this paper, the most suitable approach for China to achieve both environmentally-friendly power supplying and increasing energy demands meeting simultaneously must be considered. Nuclear energy now was recognized as the most potential and optimal way of energy supply system. In addition, to accommodate such a high-speed NPP construction in China, it should also focus on when and how spent nuclear fuel should be reprocessed. Finally, the nuclear back-end fuel cycle policy should be established, taking into accounts of all costs, uranium resource security, spent fuel management, proliferation resistance and environmental impact

  10. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties.

  11. Moving toward multilateral mechanisms for the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    2009-04-17

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEA safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.

  12. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general

  13. Nuclear fuel cycle cost analysis using a probabilistic simulation technique

    International Nuclear Information System (INIS)

    A simple approach was described to incorporate the Monte Carlo simulation technique into a fuel cycle cost estimate. As a case study, the once-through and recycle fuel cycle options were tested with some alternatives (ie. the change of distribution type for input parameters), and the simulation results were compared with the values calculated by a deterministic method. A three-estimate approach was used for converting cost inputs into the statistical parameters of assumed probabilistic distributions. It was indicated that the Monte Carlo simulation by a Latin Hypercube Sampling technique and subsequent sensitivity analyses were useful for examining uncertainty propagation of fuel cycle costs, and could more efficiently provide information to decisions makers than a deterministic method. It was shown from the change of distribution types of input parameters that the values calculated by the deterministic method were set around a 40th ∼ 50th percentile of the output distribution function calculated by probabilistic simulation. Assuming lognormal distribution of inputs, however, the values calculated by the deterministic method were set around an 85th percentile of the output distribution function calculated by probabilistic simulation. It was also indicated from the results of the sensitivity analysis that the front-end components were generally more sensitive than the back-end components, of which the uranium purchase cost was the most important factor of all. It showed, also, that the discount rate made many contributions to the fuel cycle cost, showing the rank of third or fifth of all components. The results of this study could be useful in applications to another options, such as the Dcp (Direct Use of PWR spent fuel In Candu reactors) cycle with high cost uncertainty

  14. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    A possibility is considered for use in fast reactors in place of the base pelletized type MOX or metallic U-Pu-Zr fuel, the dispersion type fuel elements (composite of metallic high uranium content fuel, U-Mo or U-Zr with PuO2 powder distributed in Zr alloy matrix). Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a frame fuel element having a porous uranium alloy meat is filled with standard PuO2 powder of less than 50 micron fractions prepared by pyrochemical or other methods. Proposed composite fuel features higher characteristics in comparison to metallic or MOX fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes with repeated use in fast, PWR or CANDU reactors, which simplifies the closing of the nuclear fuel cycle. (author)

  15. Estimating PWR fuel rod failures throughout a cycle

    International Nuclear Information System (INIS)

    A fuel performance engineer requires good prediction models for fuel conditions to help assure that any fuel repair operation he may recommend for the next refueling outage will have a minimal impact on nuclear plant operation. For nearly two decades, simple equilibrium equations have been used to provide estimates of the number of failed fuel rods in a pressurized water reactor (PWR) core. The unknown parameter is the isotopic escape rate (upsilon), which is often assumed to be --1 X 10/sup -8//s for the release of /sup 131/I from a 3- to 4-m-long PWR rod. The use of this escape rate value will generally produce end-of-cycle (EOC) predictions that are accurate within a factor of --3. When applied at the time when fuel rods initially fail, such as early in a reactor cycle, however, the prediction obtained may overestimate the number of failed rods present by a factor of 10 or more. While a goal of Combustion Engineering's (C-E's) efforts on failed fuel prediction (FFP) models over the past decade has been to increase the accuracy of the EOC estimate, recent efforts have emphasized improving prediction capability for failed rods present early in a reactor cycle. The C-E approach to modeling iodine release from failed fuel rods is based on dynamic escape rate theory that is incorporated in the C-E IODYNE (for iodine dynamic evaluation) code. This theory has been empirically modified to account for specific observed time dependencies of the release rates for /sup 131/I and /sup 133/I from a failed rod. In a current version of IODYNE, four such factors have been included in the FFP model, as described in this paper

  16. Economic Evaluation on the MOX Fuel in the Closed Fuel Cycle

    Directory of Open Access Journals (Sweden)

    Youqi Zheng

    2012-01-01

    Full Text Available The mixed oxide (MOX fuel is one of the most important fuels for the advanced reactors in the future. It is flexible to be applied either in the thermal reactor like pressurized water reactor (PWR or in the fast reactor (FR. This paper compares the two approaches from the view of fuel cost. Two features are involved. (1 The cost of electricity (COE is investigated based on the simulation of realistic operation of a practical PWR power plant and a typical fast breeder reactor design. (2 A new economic analysis model is established, considering the discount rate and the revenue of the reprocessed plutonium besides the traditional costs in the processes of fuel cycle. The sensitivity of COE to the changing parameters is also analyzed. The results show that, in the closed fuel cycle, the fuel cost of applying MOX fuels in the FBR is about 25% lower than that in the PWR at the current operating and fuel cycle level.

  17. Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Bays; Gilles Youinou

    2013-02-01

    Sodium cooled Fast Reactors (SFR) have been under consideration for production of electricity, fissile material production, and for destruction of transuranics for decades. The neutron economy of a SFR can be operated in one of two ways. One possibility is to operate the reactor in a transuranic burner mode which has been the focus of active R&D in the last 15 years. However, prior to that the focus was on breeding transuranics. This later mode of managing the neutron economy relies on ensuring the maximum fuel utilization possible in such a way as to maximize the amount of plutonium produced per unit of fission energy in the reactor core. The goal of maximizing plutonium production in this study is as fissile feed stock for the production of MOX fuel to be used in Light Water Reactors (LWR). Throughout the l970’s, this fuel cycle scenario was the focus of much research by the Atomic Energy Commission in the event that uranium supplies would be scarce. To date, there has been sufficient uranium to supply the once through nuclear fuel cycle. However, interest in a synergistic relationship Liquid Metal Fast Breeder Reactors (LMFBR) and a consumer LWR fleet persists, prompting this study. This study considered LMFBR concepts with varying additions of axial and radial reflectors. Three scenarios were considered in collaboration with a companion study on the LWR-MOX designs based on plutonium nuclide vectors produced by this study. The first scenario is a LMFBR providing fissile material to make MOX fuel where the MOX part of the fuel cycle is operated in a once-through-then-out mode. The second scenario is the same as the first but with the MOX part of the fuel cycle multi-recycling its own plutonium with LMFBR being used for the make-up feed. In these first two scenarios, plutonium partitioning from the minor actinides (MA) was assumed. Also, the plutonium management strategy of the LMFBR ensured that only the high fissile purity plutonium bred from blankets was

  18. Precedents for diversion-resistant nuclear fuel cycles

    International Nuclear Information System (INIS)

    The urgent need to limit the spread of nuclear weapons and to control the means of production of fissionable material has been the dominant force in the worldwide development of civilian nuclear power. The author follows the historical perspective for institutional control. To improve diversion resistance of the back end of the fuel recycle, the Civex process is proposed. The Civex process does not use new separation process principles or new methods for fuel fabrication. Rather, it is a combination of processes used and partially developed techniques for breeder fuel reprocessing and refabrication. Its characteristics are listed. The process steps and the design knowledge to meet these criteria, and to operate under conditions that provide maximum diversion resistance, can be adaptations of methods studied earlier and, in most cases, used for both military and civilian fuel recycle. The adaptations change the original techniques enough to make the technology different from that used for existing power reactors. The author discusses tried or partially demonstrated techniques from which Civex has been or could be fashioned. Separation processes discussed are bismuth phosphate; Purex; Thorex; fluoride volatility; pyrometallurgy. The Sol--Gel Uranium--Plutonium Spherepak and Pellet Fuels processes are discussed as candidates for Civex fuel-production methods. The author concludes that, in his opinion, the Civex process is as far as technology can go in the back end of the nuclear fuel cycle from illicit diversion of fissile materials

  19. Recycle Strategies for Fast Reactors and Related Fuel Cycle Technologies

    International Nuclear Information System (INIS)

    Fast reactors and related fuel cycle (hereafter referred to as 'fast reactor cycle') technologies have the potential to contribute to long term energy security owing to their effective use of uranium and plutonium resources, and to a reduction in the heat generation and potential toxicity of high level radioactive wastes by burning long lived minor actinides recovered from spent fuel from light water reactors and fast reactors. Further, it is likely that fast reactor cycle technologies can play a certain role in non-proliferation as addressed in the Global Nuclear Energy Partnership. With these features, the research and development towards their commercialization has been promoted vigorously and globally as a future vision of nuclear energy. The introduction of fast reactor cycle systems will be carried out independently in each country according to its national conditions and nuclear energy policy. It should then be considered important to have a globally common consensus relating to safety philosophy, concepts of proliferation resistance, transuranic element burnup and recycling and so on. For the development and utilization of fast reactor cycle systems, while respecting each country's concept, it is essential to organize the technologies and concepts which countires should have in common globally and build a framework to make them standardized. The use of existing frameworks such as the Generation IV International Forum and the International Project on Innovative Nuclear Reactors and Fuel Cycles is considered effective to achieving this. Furthermore, a vigorous promotion such as international cooperative developments enables the formation of international consensus on major technologies for the fast reactor cycle as well as the saving of resources by infrastructure sharing. (author)

  20. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  1. Description and use of NUFCOS-2 for fuel cycle analyses

    International Nuclear Information System (INIS)

    NUFCOS-2 is a continuation to the series of computerized nuclear fuel cycle models which recently have been developed at the Nuclear Engineering Laboratory of the Technical Research Centre of Finland. While the main purpose of the previous NUFCOS model was the multiobjective optimization of the light water reactor fuel cycle, the present version takes a broader view of the global development of the different fuel cycles, especially with regard to the use of plutonium as a fuel in converters or breeders. In this respect an essential feature of NUFCOS-2 is the consideration of the coupling between the consumption and the prices of natural uranium. This report describes the NUFCOS-2 model with main emphasis on the computer application. First the underlying flow equations for the nuclear material are explained in some detail and the structure of the calculation system is represented. The rest of the report, including the appendices, then describes the practical use of the computer model. An example of the input has been provided. (author)

  2. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  3. Irradiation performance of (Th,U)02 fuel designed for advanced fuel cycle applications

    International Nuclear Information System (INIS)

    The reference fabrication route for Advanced Cycle thoria-based fuel is conventional in that it produces cold-pressed and sintered pellets. However we are also evaluating alternative fuels which offer the potential for simpler fabrication in a remote facility, and in some cases improved high burnup performance. These alternatives are impregnated, spherepac, and extruded thoria-based fuels. Spherepac fuel has been irradiated at a linear power of 50-60 kW/m to about 180 MW.h/kg H.E. There have been unexplained defects in fuel with both free-standing and collapsible cladding. Impregnated fuel has operated to 650 MW.h/kg H.E. at 50-60 KW/m. An experiment examining fuel from the sol-gel extrusion process has reached 450 MW.h/kg H.E. at a maximum linear power of 60 KW/m. The latter two experiments have operated without defects and with fission gas release less than that for U02 under identical conditions. The extruded fuel has a pellet geometry similar to that for conventional fuel and is AECL's first practical demonstration of thoria-based fuel with the fissile component distributed homogeneously on an atomic scale. We will continue monitoring the extruded fuel to a burnup approaching 1000 MW.h/kg H.E., as an indicator for the performance expected from co-precipitated (Th,U)02 or mechanically-mixed (Th,U)02 with good fissile homogeneity

  4. Outline of policy related to nuclear fuel cycle in Japan

    International Nuclear Information System (INIS)

    In Japan where energy resources are scarce, and energy supply structure is weak, the development and adoption of the substitute energy for petroleum are indispensable for the stable supply of energy. Atomic energy is excellent in its stability of supply and economy and is effective for earth environment problems. Nuclear fuel cycle is composed of the front end, namely ore mining, refining, conversion, enrichment, reconversion and fuel fabrication, and the back end such as the reprocessing of spent fuel and the treatment and disposal of radioactive wastes, and when it is established in Japan and the plutonium and recovered uranium obtained by reprocessing becomes usable, atomic energy becomes semi-home produced energy, and it is very important for ensuring the energy security and effectively utilizing resources in Japan. The present status of the nuclear fuel cycle in Japan is reported. The plan of constructing the facilities for uranium enrichment, spent fuel reprocessing and low level radioactive waste disposal in Ogawara industrial development district, Rokkasho Village, Aomori Prefecture, is advanced. As the measures for supporting the construction, the Ministry of International Trade and Industry carries out the promotion of district development, the promotion of PA measures, the ensuring of construction fund, the promotion of technical development and so on. (K.I.)

  5. Fuel cycle for research reactors in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM Nuklear GmbH, Industriestrasse 13, D-63755 Alzenau, (Germany)

    1998-07-01

    In the European Union (EU) there are altogether 77 research reactors in operation, a large number of them being used for teaching and university research proposes as well as for fundamental research. The trend for the remaining and planned reactors is to enlarge their capacity by compact cores in order to increase neutron yields and power. Also the use of research reactors for the production of radioisotopes for medical diagnosis and treatment and therapeutic purposes has become more and more common. In addition to the 77 research reactors in operation (in the EU) there are a number of 72 reactors that have been shut down. To serve the needs of the research reactors in the European Union a vital and self-confident industry has been developed which also exports nuclear technology and fuel for peaceful purposes. The problems today in the fuel cycle lie in the disposal of spent research reactor fuel and the procurement of fresh fuel with U-235 assays above 20%. This paper provides a summary of specific activities by European companies in the individual steps of the fuel cycle for research reactors. (author)

  6. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  7. IAEA nuclear fuel cycle databases: Relevance to spent nuclear fuel management

    International Nuclear Information System (INIS)

    considered in the context of nuclear knowledge preservation. In addition to current inventories, historical and projected data are important for various purposes such as consistency analysis. The IAEA in its role as a focal centre of global cooperation on nuclear activities, established a variety of databases, including the Nuclear Fuel Cycle Information System (NFCIS) which encompasses a global list of nuclear fuel cycle facilities. The NFCIS database was published in hardcopy two times in the past. The database includes a long list of spent fuel storage facilities because of the large number of facilities with spent fuel inventories. It is a challenge to maintain a reliable updating of spent fuel inventory data in those storage facilities, requiring a good mechanism in place for the collection and compilation of data to be obtained from the operators or national authorities. The NFCIS is supported by a simulation software tool named Nuclear Fuel Cycle Simulation System (VISTA) which provides a method for versatile analyses of nuclear fuel cycle systems for all types of commercial nuclear power systems. It provides, among others, for the calculation of various quantities involved in the operation of nuclear fuel cycle facilities resulting from a given set of assumptions applicable to the various fuel cycles, including the statistics on the generation and management of spent nuclear fuel. The Nuclear Fuel Cycle Simulation System (VISTA) was developed to calculate fuel cycle material and service requirements. This subject was one of the key issue papers at an International Symposium. The purpose was to develop a simple and fast calculation tool in order to compare different fuel cycle options. The need for a small number of input parameters was a very critical part of the development. Later the model was expanded to enable actinide tracking. A simplified isotopic calculation program (CAIN) was added to the system. By adding CAIN, VISTA became capable of calculating the

  8. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  9. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  10. The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy

    International Nuclear Information System (INIS)

    Develops the tools to investigate the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

  11. The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy

    Energy Technology Data Exchange (ETDEWEB)

    Paul Wilson

    2009-11-02

    Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

  12. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  13. LIFE vs. LWR: End of the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  14. Back end of the nuclear fuel cycle: Strategies and options

    International Nuclear Information System (INIS)

    The International Symposium on the Back End of the Nuclear Fuel Cycle was attended by more than 200 specialists from 29 countries and 5 international organizations and included 80 scientific presentations of which 29 were posters. It provided a forum for the exchange of information on analysis and selection of spent fuel management, national strategies and incentives for international cooperation, as well as on the various technical, safety, economic, environmental, legal and regulatory aspects associated with spent fuel and high level radioactive waste management. The feasible and proven technologies have already been developed and exist for spent fuel and high level radioactive waste handling, conditioning, transportation, short and long term storage, as well as for reprocessing of spent fuel and recycling of recovered plutonium and uranium. Technological and engineering development and safety assessment of spent fuel and high level radioactive waste disposal into deep geological formations are areas in which intensive research and development are being carried out. A separate abstract was prepared for each of these papers. Refs, figs, tabs

  15. Estimating Externalities of Coal Fuel Cycles, Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-09-01

    The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

  16. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C. E., LLNL

    1997-11-18

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  17. The technical and industrial evolutions in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The fuel cycle industry is a vital part of nuclear energy generation. Producers in every step of this industry, from uranium to reprocessing are working to adapt their products and services both to the more and more competitive conditions of the market and to the utilities evoluting specific needs. For the next decade, the main trend is uranium economy and reduction of industrial costs. For the longer term, the difficult prevision of nuclear energy developments, in particular with new types of reactors necessitates a true capacity of adaptation both from the utilities and from the fuel cycle industry. Cogema has already demonstrated the ability to adapt its industrial capabilities and therefore can prepare confidently for the future challenges

  18. Recycle strategies for fast reactors and related fuel cycle technologies

    International Nuclear Information System (INIS)

    Full text: 1. Introduction Fast reactors and related fuel cycle (hereinafter referred to as 'Fast reactor cycle') technologies have the potential of contributing to long-term energy security due to effective use of uranium and plutonium resources, and reduction of the heat generation and potential toxicity of high-level radioactive wastes by burning long-lived minor actinides (MA) recovered from spent fuels of light-water reactors and fast reactors. Further, it is likely that fast reactor cycle technologies can play a certain role in non- proliferation as addressed in GNEP (Global Nuclear Energy Partnership). With these features, R and Ds toward their commercialization have been promoted vigorously and globally as a future vision of nuclear energy. 2. Recycle strategies in each country In Japan, it is determined that after burning uranium in light water reactors, plutonium is recovered from spent fuel and used for light water reactors at the moment and for fast reactors in the future. In order to make it possible, Fast Reactor Cycle Technology Development (FaCT) Project has been promoted with a combination of oxide-fueled sodium-cooled reactors, advanced aqueous reprocessing, and simplified pelletizing fuel fabrication adopted as a main concept aiming at startup of a demonstration reactor around 2025 and commercialization before around 2050. In France, a comparison of the basic specifications between an oxide-fueled sodium-cooled reactor and a carbide (or nitride)-fueled gas-cooled reactor has currently been promoted towards technological selection for a prototype reactor in 2012 in accordance with 'The 2006 planning act on the sustainable management of radioactive materials and waste (Act 2006- 739)' enacted in 2006. Based on the results, France aims at startup of the prototype reactor in 2020 and commercialization in around 2040. For reprocessing, methods which extract actinides collectively such as GANEX has been developed to enhance proliferation resistance

  19. Design study and evaluation of advanced fuel fabrication systems for FBR fuel cycle

    International Nuclear Information System (INIS)

    The conceptual design study for advanced FBR fuel fabrication system has been performed for the purpose that the feature of small-scale fabrication system in the transition stage from LWR to FBR fuel cycle. On the small-scale of 50 ton heavy metal per year fabrication system, dry type fabrication systems have superior cost performance than the wet type, although waste amount is larger. (authors)

  20. Thorium-based fuel cycles: reassessment of fuel economics andproliferation risk

    OpenAIRE

    Serfontein, Dawid E.; Mulder, Eben J.

    2014-01-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all coun...

  1. Nuclear energy and its fuel cycle, prospects to 2025

    International Nuclear Information System (INIS)

    Nuclear power will supply an increasing share of the world's electricity but will expand more slowly than had been expected, and no shortages of uranium or other fuel cycle services are foreseen before the end of the century. While exploration for new uranium deposits should continue to ensure long-term supplies, advances in reactor design and enrichment and reprocessing techniques could achieve reductions in uranium demand

  2. Fast neutron reactor fuel elements and power grid duty cycling

    International Nuclear Information System (INIS)

    The PHENIX power grid cycling operation in 1982-1983 will allow verification of the models and criteria developed in the interim. It will provide indispensible statistical data and will open the way to power grid duty for Super PHENIX beginning in 1986. Although at the present time it is impossible to resolve the question of weekly or daily load variations, it is felt that fast neutron reactor fuel subassemblies should provide satisfactory performance for primary and secondary frequency adjustments

  3. Estimation procedure for engineering margin factors of WWER fuel cycles

    International Nuclear Information System (INIS)

    The paper informs the participants of the fact that working group H elaborated a draft document 'Estimation procedure for engineering margin factors of WWER fuel cycles'. The document represents recommendations and, if approved, shall be intended for estimation of engineering margin factors of WWER-440 and WWER-1000. To enable certain approaches, the document proposes a number of alternative solutions. The document will be distributed at the Symposium and may be discussed by the members to issue a final revision. (Authors)

  4. The risks of the nuclear fission fuel cycle

    International Nuclear Information System (INIS)

    An overview is given of the title subject in comparison with other electric power generating techniques. This overview is based on reports from several foreign institutes (UNSCEAR, EPRI, US-DOE, EC, and ORNL) and Dutch institutes (VROM, COVRA, URENCO, and ECN). It appears that the Dutch nuclear power plants (Dodewaard and Borssele) and other installations of the nuclear fission fuel cycle in the Netherlands show a lower individual risk than the risk values estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The risks, outlined by UNSCEAR, is mainly determined by ore exploration and processing, the reactor operation and the breeder conversion. The total global risk of the nuclear fission fuel cycle (with 200 GWej and 100% recycling) is a factor 10,000 lower than the risk, caused by natural radiation. The main cause of risks of the cycle by accidents are nuclear power plant accidents (varying in the literature from circa 95% to more than 99%). For normal operational conditions nuclear fission, natural gas, wind and thermal solar energy are more favourable than coal, oil and photovoltaic solar cells. It is expected that the use of hydro power (dam collapse and floods) and coal (mine disasters) on average per GWje will cause the largest amount of immediate victims. A separate abstract has been prepared for the appendices in which descriptions are given of all the processes of the nuclear fission fuel cycle: mining and extraction, refining and conversion, enrichment, fission fuel elements fabrication, reactor operation, reprocessing, aboveground storage facilities, ultimate storage, and transport. 4 figs., 14 refs., 2 appendices, 17 refs

  5. Nuclear Fuel Cycle Reasoner: PNNL FY13 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Strasburg, Jana D.

    2013-09-30

    In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

  6. Analysis of Spent Fuel Characteristics in Different Scenarios of Closing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Calculation analysis of the isotope and radiation-migration characteristics of spent nuclear fuel (SNF) in the open fuel cycle of thermal reactor VVER-1000 and in closed cycle of fast reactor with lead-bismuth coolant has been fulfilled. Effects of including an accelerator-driven system (ADS) into the system for transmutation of minor actinides (MA) into the cycles studied on the SNF characteristics has been reviewed. The application of ADS-burner of MA symbiotically with operating VVER-1000 reactors has been shown to decrease the high-level wastes’ activity approximately 20 times within the interval from the end of cooling in reactor to 105 years; in this case the principle of radiation-migration balance of activity in the underground burial for ~500 years is met as well. The calculation analysis gives grounds to conclude that the use of ADS for burning minor actinides in closed fuel cycle of fast reactors with lead-bismuth coolant, where U, Pu, and MA are recycled, with natural uranium as a makeup fuel, does not provide any special advantages in terms of radiation and migration characteristics of spent fuel and its wastes. (author)

  7. Radioactive contamination at nuclear fuel cycle facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, D.E.; Grant, M.W.; Rich, D.C.; Jensen, C.M.; Macbeth, P.J.

    1982-01-01

    This report presents information to characterize uranium fuel cycle facilities (excluding reactors), levels of contamination at those facilities, and volumes and activity of wastes associated with their decontamination and decommissioning (DandD). It is one of a series of reports providing information to assist the U.S. Environmental Protection Agency in setting standards and guidelines for permissible residual levels of radioactivity from DandD. The categories of facilities covered by this report are: Uranium mines, Uranium mills, Uranium hexafluoride conversion plants, Fuel fabrication plants, including both low and high enriched uranium and mixed oxide facilities. Both active and inactive facilities are identified. The highest volumes of DandD waste (hundreds of millions of cubic meters) are associated with uranium mines, while the highest amounts of radioactivity are a result of DandD at fuel reprocessing plants.

  8. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.J. [National Renewable Energy Lab., Golden, CO (United States); Duffield, J.A. [Dept. of Agriculture, Washington, DC (United States). Office of Energy; Coulon, R.B.; Camobreco, V.J. [Ecobalance, Rockville, MD (United States)

    1996-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy and Ecobalance are carrying out a comprehensive Life Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects f the cradle-to-grave production and use of biodiesel. The purpose of the project (initiated in November 1995) is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life cycle model for petroleum diesel fuel. The two models are used to compare the life cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The results of an LCA such as this are strongly influenced by decisions made at the study outset, related to scoping, modeling, and methodology. Objectivity as well as acceptable of the results depend upon careful definition and consideration of such issues. This paper communicates the project scoping decisions which have been made in response to a series of stakeholder peer reviews. At the submission stage of this paper, no intermediate results were available for publication. They will be presented during the conference.

  9. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  10. Transportation of radioactive materials issued from the fuel cycle

    International Nuclear Information System (INIS)

    After a presentation of the context of radioactive material transportation (types of transported materials, applicable constraints), the author describes the different kinds of packaging used during the different stages of the fuel cycle in the case of light water reactors: ore concentrates, UF4 and UF6, low enriched uranium oxide, impoverished uranium oxide, plutonium oxide, new UO2 and MOX fuel assemblies, irradiated fuel assemblies aimed at processing-recycling, uranyl nitrate, warehousing of irradiated fuels before final storage, wastes (high, very low, low and medium activity). He briefly evokes packaging for the case of fast neutron or fusion reactors. He discusses the various aspects of packaging design: safety function, applicable constraints and tests, design and material choice with respect with various issues (criticality, confinement, biological protection, heat transfer, mechanical resistance and shock damping properties, radiolysis and thermolysis, interfaces with transportation installations and means). He describes how packaging is exploited: life cycle management, fabrication, exploitation, maintenance and spare parts, end of life, documentation. He addresses how transportation is organised by evoking transport means and modes, and transport commissioning

  11. Analysis of uncertainty propagation in nuclear fuel cycle scenarios

    International Nuclear Information System (INIS)

    Nuclear scenario studies model nuclear fleet over a given period. They enable the comparison of different options for the reactor fleet evolution, and the management of the future fuel cycle materials, from mining to disposal, based on criteria such as installed capacity per reactor technology, mass inventories and flows, in the fuel cycle and in the waste. Uncertainties associated with nuclear data and scenario parameters (fuel, reactors and facilities characteristics) propagate along the isotopic chains in depletion calculations, and through out the scenario history, which reduces the precision of the results. The aim of this work is to develop, implement and use a stochastic uncertainty propagation methodology adapted to scenario studies. The method chosen is based on development of depletion computation surrogate models, which reduce the scenario studies computation time, and whose parameters include perturbations of the depletion model; and fabrication of equivalence model which take into account cross-sections perturbations for computation of fresh fuel enrichment. Then the uncertainty propagation methodology is applied to different scenarios of interest, considering different options of evolution for the French PWR fleet with SFR deployment. (author)

  12. International symposium on nuclear fuel cycle and reactor strategy: Adjusting to new realities. Key issue papers

    International Nuclear Information System (INIS)

    The key issue papers review the following issues: global energy outlook; present status and environmental implications of the different fuel cycles; future fuel cycle and reactor strategies; safety, health and environmental implications of the different fuel cycles; non-proliferation and safeguards aspects; international cooperation. Refs, figs, tabs

  13. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  14. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Science.gov (United States)

    2010-10-04

    ... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY... advantages and disadvantages of adopting new fuel cycle technologies and the associated waste management... announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT) Subcommittee. The...

  15. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed...

  16. Scientific research on the back-end of the fuel cycle for the 21. century

    International Nuclear Information System (INIS)

    The aim of the Atalante-2000 conference is to present the major research axis concerning the nuclear fuel cycle back-end. The different topics are: - Present options concerning fuel cycle back-end; - Reprocessing of spent fuel; - Advanced separation for transmutation; - Processing and packaging of radioactive wastes; - Design and fabrication of targets for transmutation; and - Conversion of military plutonium into MOX fuels

  17. Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    International Nuclear Information System (INIS)

    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used. The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues

  18. Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-07-01

    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number

  19. Economy of uranium resources in a three-component reactor fleet with mixed thorium/uranium fuel cycles

    International Nuclear Information System (INIS)

    The potential for minimizing uranium consumption by using a reactor fleet with three different components and mixed thorium/uranium cycles has been investigated with a view to making nuclear power a more sustainable and cleaner means of generating energy. Mass flows of fissile material have been calculated from burnup simulations at the core-equivalent assembly level for each of the three components of the proposed reactor fleet: plutonium extracted from the spent fuel of a standard pressurised water reactor (first component) is converted to 233U in an advanced boiling water reactor (second component) to feed a deficit of multi-recycled 233U needed for the Th/233U fuel of the light/heavy water reactor (third component) which has a high breeding ratio. Although the proposed fleet cannot breed its own fuel, we show that it offers the possibility for substantial economy of uranium resources without the need to resort to innovative (and costly) reactor designs. A very high fleet breeding ratio is achieved by using only currently existing water-based reactor technology and we show that such three-component systems will become economically competitive if the uranium price becomes sufficiently high (> 300 $/kg). Another major advantage of such systems is a corresponding substantial decrease in production of minor actinide waste. (authors)

  20. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    Energy Technology Data Exchange (ETDEWEB)

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U/sub 3/O/sub 8/ saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U/sub 3/O/sub 8/ savings of 6%.

  1. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ignatiev, V. V.; Subbotin, S. A., E-mail: subbotinSA@dhtp.nrcki.ru; Tsibulskiy, V. F., E-mail: sibulskiy-VF@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  4. Lead-cooled fast reactor (BREST) with an on-site fuel cycle

    International Nuclear Information System (INIS)

    -plutonium mononitride fuel, a lead reflector, a widely spaced fuel lattice, levelled-off and stabilized lead and fuel cladding temperatures, a high breeding coefficient CBR ∼1, negative power and temperature reactivity coefficients and a negative void effect. Emergency processes have been analyzed and found not leading to prompt-neutron runaway of the reactor, loss of coolant, fires and explosions to involve fuel damage and catastrophic radioactive release even when the external barriers are broken and all active safety features fail. Perfect utilization of fuel and high efficiency, simplification of structures and elimination of complex engineered safety and accident localization systems are prerequisites for reactor economic competitiveness. Basic NPP, reactor, on-site fuel cycle and RW processing structures as well as the results of experimental studies to support the approaches taken are presented. (author)

  5. Sensitivity of water reactor fuel cycle parameters and costs to nuclear data

    International Nuclear Information System (INIS)

    Fuel cycle parameters including end-of-cycle reactivity, end-of-batch nuclide concentrations, and fuel cycle costs are sensitive to certain nuclear data. Sensitivity analyses for cross sections, fission yields, decay constants and other nuclear data indicate directions for worthwhile improvements in data and methods, and yield information important for selection of proper design margins. Considerable success has been achieved in understanding the relationships among various data uncertainties and water reactor fuel cycle costs. These relationships have been shown to be dependent on fuel cycle option and reactor type. Sensitivities depend in an intrinsic way on propagating and compensating effects that take place during the fuel cycle. Fuel cycle parameters and costs are found to be significantly dependent on particular thermal and resonance cross sections and flux disadvantage factors, on fission yields of neutrons and energy, and on certain other data. The results bring out the importance for power reactor sensitivity analysis of dealing with the full fuel cycle

  6. The choice of the fuel assembly for VVER-1000 in a closed fuel cycle based on REMIX-technology

    Directory of Open Access Journals (Sweden)

    Bobrov Evgenii

    2016-01-01

    Full Text Available This paper shows basic features of different fuel assembly (FA application for VVER-1000 in a closed fuel cycle based on REMIX-technology. This investigation shows how the change in the water–fuel ratio in the VVER FA affects on the fuel characteristics produced by REMIX technology during multiple recycling.

  7. Life cycle assessment of fuel cell vehicles: Dealing with uncertainties

    Science.gov (United States)

    Contadini, Jose Fernando

    Life cycle assessment (LCA), or "well to wheels" in transportation terms, involves some subjectivity and uncertainty, especially with new technologies and future scenarios. To analyze lifecycle impacts of future fuel cell vehicles and fuels, I developed the Fuel Upstream Energy and Emission Model (FUEEM). The FUEEM project pioneered two specific new ways to incorporate and propagate uncertainty within an LCA analysis. First, the model uses probabilistic curves generated by experts as inputs and then employs Monte Carlo simulation techniques to propagate these uncertainties throughout the full chain of fuel production and use. Second, the FUEEM process explicitly involves the interested parties in the entire analysis process, not only in the critical final review phase. To demonstrate the FUEEM process, an analysis has been made for the use of three different fuel cell vehicle technologies (direct hydrogen, indirect methanol, and indirect hydrocarbon) in 2010 within the South Coast Air Basin (SCAB) of California (Los Angeles). The analysis covered topics such as the requirement of non-renewable energy sources, emissions of CO2 and other greenhouse gases, and emissions of several criteria pollutants generated within SCAB and within other regions. The results obtained from this example show that the hydrogen option has the potential to have the most efficient energy life cycle for the SCAB, followed by the methanol and finally by the Fisher-Tropsch naphtha option. A similar pattern is observed for the greenhouse gas emissions. The results showing criteria pollutants emitted within SCAB highlight the importance of having a flexible model that is responsive to local considerations. This dissertation demonstrates that explicit recognition and quantitative analysis of the inherent uncertainty in the LCA process generates richer information, explains many of the discrepancies between results of previous studies, and enhances the robustness and credibility of LCA analyses.

  8. Nuclear power performance and safety. V.5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. Policy decisions for waste management have already been taken in many countries and the 1990s should be a period of demonstration and implementation of these policies. As ilustrated by data presented from a number of countries, many years of experience in radioactive waste management have been achieved and the technology exists to implement the national plans and policies that have been developed. The establishment of criteria, the development of safety performance methodology and site investigation work are key activities essential to the successful selection, characterization and construction of geological repositories for the final disposal of radioactive waste. Considerable work has been done in these areas over the last ten years and will continue into the 1990s. However, countries that are considering geological disposal for high level waste now recognize the need for relating the technical aspects to public understanding and acceptance of the concept and decision making activities. The real challenge for the 1990s in waste disposal will be successfully to integrate technological activities within a process which responds to institutional and public concern. Volume 5 of the Proceedings comprehends the contributions on waste management in the 1990s. Decontamination and decommissioning, waste management, treatment and disposal, nuclear fuel cycle - present and future. Enrichment services and advanced reactor fuels, improvements in reactor fuel utilization and performance, spent fuel management

  9. Environmentally important radionuclides in non-proliferative fuel cycles

    International Nuclear Information System (INIS)

    Increased emphasis in energy research is being given to the development of nonproliferative nuclear fuel cycles and to the assessment of potential release of radionuclides to the environment from these new cycles. Four radionuclides, 14C, 3H, 99Tc, and 232U, due to lack of adequate knowledge or anticipated increased production in nonproliferative fuel cycles, may require renewed consideration. Our projections indicate that releases of 14C by the global nuclear industry could exceed the natural production rate of 3.8 x 104 Ci/y by the year 2000 and could eventually stabilize at 2.3 times that rate. Tritium may become increasingly important, because recent data from fast reactors (of the nonproliferative type) have confirmed production rates up to 13 times greater than previous estimates. Present radwaste systems do not remove tritium. Recent experiments on the uptake of 99Tc reveal that soil-to-plant concentration factors for technetium appear to be two to three orders of magnitude greater than the value of 0.25 which has been adopted routinely in radiological assessments. Research is needed to determine reliable 99Tc soil-to-plant concentration factors because this radionuclide could be released at reprocessing and enrichment facilities. New calculations for certain reactors indicate that 232U may be formed in concentrations up to 4000 ppm. If accurate, such data will require careful analysis of possible releases of 232U because of external and food chain exposures. The environmental health aspects of these four radionuclides are discussed, as well as the potential for their release to the environment from nonproliferative fuel cycles. (author)

  10. Development of DUPIC fuel cycle technology - Assessment of Wolsong NPP fuel handling system for DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Na, Bok Gyun; Nam, Gung Ihn [Korea Power Engineering Company, Taejon (Korea)

    2000-04-01

    The DUPIC fuel loading and discharge path of Wolsong NPP is studied assuming that DUPIC fuel is used at Wolsong NPP. Spent DUPIC fuel discharge path is irrelevant, since it uses the same spent fuel discharge path. Number of factors such as safety, economics of design change, radiation exposure to operators, easy of operation and maintenance, etc, are considered in the evaluation of path. A more detailed analysis of cost estimation of the selected path is also carried out. The study shows that DUPIC fuel loading path following through Spent Fuel Storage Bay and Spent Fuel Discharge Port in reverse direction will minimize the design change and additional equipment and radiation exposure to operators. The estimated total cost of using DUPIC fuel in Wolsong NPP based on price index of year 2000 is around 4.5 billion won. 4 refs., 30 figs., 13 tabs. (Author)

  11. Preliminary investigation study of code of developed country for developing Korean fuel cycle code

    International Nuclear Information System (INIS)

    In order to develop Korean fuel cycle code, the analyses has been performed with the fuel cycle codes which are used in advanced country. Also, recommendations were proposed for future development. The fuel cycle codes are AS FLOOWS: VISTA which has been developed by IAEA, DANESS code which developed by ANL and LISTO, and VISION developed by INL for the Advanced Fuel Cycle Initiative (AFCI) system analysis. The recommended items were proposed for software, program scheme, material flow model, isotope decay model, environmental impact analysis model, and economics analysis model. The described things will be used for development of Korean nuclear fuel cycle code in future

  12. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO2, PuO2 or (U,Pu)O2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO2 and UO2-PuO2) or of the precipitating crystalIization (PuO2). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O2, (U,Pu,Np)O2, (U,Am)O2 and (U,Pu,Am)O2. Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  13. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    International Nuclear Information System (INIS)

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle

  14. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  15. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Science.gov (United States)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  16. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... fuel economy calculations. This section applies to data used for fuel economy labeling under Subpart...

  17. Sprainting activity of captive otters: its relationship with breeding cycle and number of animals

    Directory of Open Access Journals (Sweden)

    Claudio Prigioni

    1995-12-01

    Full Text Available Abstract The marking activity of captive otters (Lutra lutra was studied from April 1989 to August 1993 in an enclosure of 1.64 ha in size, located in the Ticino Valley Natural Park (Piemonte region, northern Italy. The number of otters in the enclosure varied from 1 to 6 and three litters of 1, 2 and 2 cubs were recorded in October 1990, 1991 and 1992. The sprainting activity, expressed as number of signs (spraints and anal secretions per day was associated to the breeding cycle and increased in relation to the number of animals present in the enclosure. These data are of particular importance in order to explain the annual variation of the marking level in wild otter populations. Riassunto Attività di marcamento di 1ontre in cattività in relazione a1 ciclo riproduttivo e a1 numero degli animali - L'attività di marcamento della lontra (Lutra lutra è stata rilevata dall'aprile 1989 all'agosto 1993 in un recinto di 1,64 ha, situato nel Parco Naturale della Valle del Ticino (regione Piemonte, provincia di Novara. I1 numero di animali presenti in tale recinto variava da 1 a 6, e la nascita di tre cucciolate, composte da 1, 2 e 2 piccoli, è stata registrata in ottobre negli anni 1990, 1991 e 1992. L'intensità di marcamento, espressa come numero di segni (feci e secrezioni anali per giorno era associata a1 ciclo riproduttivo della specie e incrementava in relazione al numero di animali presenti nel recinto. I dati acquisiti rivestono particolare importanza per interpretare le variazioni nell'arco dell'anno del livello di marcamento di popolazioni selvatiche.

  18. Cycle update : advanced fuels and technologies for emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, G. [National Research Council of Canada, Ottawa, ON (Canada)

    2009-07-01

    This paper provided a summary of key achievements of the Program of Energy Research and Development advanced fuels and technologies for emissions reduction (AFTER) program over the funding cycle from fiscal year 2005/2006 to 2008/2009. The purpose of the paper was to inform interested parties of recent advances in knowledge and in science and technology capacities in a concise manner. The paper discussed the high level research and development themes of the AFTER program through the following 4 overarching questions: how could advanced fuels and internal combustion engine designs influence emissions; how could emissions be reduced through the use of engine hardware including aftertreatment devices; how do real-world duty cycles and advanced technology vehicles operating on Canadian fuels compare with existing technologies, models and estimates; and what are the health risks associated with transportation-related emissions. It was concluded that the main issues regarding the use of biodiesel blends in current technology diesel engines are the lack of consistency in product quality; shorter shelf life of biodiesel due to poorer oxidative stability; and a need to develop characterization methods for the final oxygenated product because most standard methods are developed for hydrocarbons and are therefore inadequate. 2 tabs., 13 figs.

  19. Nuclear fuel cycle synergies and regional scenarios for Europe

    International Nuclear Information System (INIS)

    Regional strategies can provide a useful framework for implementing innovative nuclear fuel cycles. The appropriate sharing of efforts and facilities among different countries is necessary in today's context, as is taking into account proliferation concerns and resource optimisation. The preliminary studies examined in this report show that the expected benefits deriving from partitioning and transmutation (P and T), notably the reduction of radiotoxicity and heat load in a shared repository, can bring advantages to all countries of the region concerned, even when different nuclear energy policies are pursued. The studies also demonstrate that regional strategies tend to favour a nuclear renaissance in some countries. A regional approach is proposed in order to implement the innovative fuel cycles associated with partitioning and transmutation in Europe. The impact of different deployment strategies and policies in various countries is addressed. Regional facilities characteristics and potential deployment schedules are also discussed. Further studies should be undertaken to investigate practical issues (fuel transport in particular) and institutional issues which will, without doubt, be very challenging. (authors)

  20. Waste arisings from reactor and post-fission activities in selected fuel cycles

    International Nuclear Information System (INIS)

    Radioactive wastes from the two reference LWR fuel cycle strategies of the INFCE Working Group 7 are described and volume generation rates per gigawatt-year of electricity are projected. In Strategy 1, LWR once-through, wastes from uranium fuel fabrication, fuel irradiation and spent fuel packaging are discussed. In Strategy 2, LWR with U/Pu recycle, wastes from uranium and mixed oxide fuel fabrication, fuel irradiation and spent fuel reprocessing are considered

  1. Improved once-through fuel cycles for light water reactors

    International Nuclear Information System (INIS)

    This paper is being presented at this time to provide preliminary technical and economic data to INFCE for use in comparisons of alternate nuclear systems. Programs to develop improved once-through fuel cycles for the light water reactor are under way in the United States; therefore, the information presented in this report is preliminary and will be updated in the future as it becomes available. In the meantime, the following limitations should be recognized when using the information in this report: 1. The paper quantifies fuel utilization improvements which should be technically feasible in reactors now operating or under construction and indicates the approximate time frame when the necessary development and demonstration could be completed. It does not attempt to estimate the rate at which these improvements would attain acceptance and use by the industry. 2. One particular set of PWR and one particular set of BWR nuclear reactor and fuel design characteristics are used as base cases, from which many of the improvements are estimated. Many plants operating and being built throughout the world of course differ in design features, fuel management schemes, and fuel utilization efficiencies from the base cases used in this paper. The degree of improvement obtainable in these other designs, for each type of change considered, will vary with each design. 3. The changes emphasized here could all be backfitted in existing plants. Other possible improvements are limited by the need to avoid reducing the power output or capacity factor of the plants. New plants could be designed to accommodate such changes without reducing the power output or capacity factor. This could yield greater improvement in fuel utilization than can be obtained in existing plants. This longer range potential has not been examined here

  2. Optimisation Studies of Accelerator Driven Fertile to Fissile Conversion Rates in Thorium Fuel Cycle

    OpenAIRE

    Bungau, Cristian; Barlow, Roger; Cywinski, R.

    2012-01-01

    The need for proliferation-resistance, longer fuel cycles, higher burn up and improvedwaste form characteristics has led to a renewed worldwide interest in thorium-based fuels and fuel cycles. In this paper the GEANT4 Monte Carlo code has been used to simulate the Thorium-Uranium fuel cycle. The accelerator driven fertile to fissile conversion rates have been calculated for various geometries. Several new classes have been added by the authors to the GEANT4 simulation ...

  3. Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes.

    Science.gov (United States)

    Silverin, Bengt; Wingfield, John; Stokkan, Karl-Arne; Massa, Renato; Järvinen, Antero; Andersson, Nils-Ake; Lambrechts, Marcel; Sorace, Alberto; Blomqvist, Donald

    2008-06-01

    The present study determines how populations of Great Tits (Parus major) breeding in southern, mid and northern European latitudes have adjusted their reproductive endocrinology to differences in the ambient temperature during the gonadal cycle. A study based on long-term breeding data, using the Colwell predictability model, showed that the start of the breeding season has a high predictability ( approximately 0.8-0.9) at all latitudes, and that the environmental information factor (I(e)) progressively decreased from mid Italy (I(e)>4) to northern Finland (I(e)breeding season with decreasing latitude. This hypothesis was verified by exposing photosensitive Great Tits from northern Norway, southern Sweden and northern Italy to sub-maximal photo-stimulatory day lengths (13L:11D) under two different ambient temperature regimes (+4 degrees C and +20 degrees C). Changes in testicular size, plasma levels of LH and testosterone were measured. The main results were: (1) Initial testicular growth rate, as well as LH secretion, was affected by temperature in the Italian, but not in birds from the two Scandinavian populations. (2) Maximum testicular size, maximum LH and testosterone levels were maintained for a progressively shorter period of time with increasing latitude, regardless of whether the birds were kept on a low or a high ambient temperature. (3) In birds from all latitudes, the development of photorefractoriness, as indicated by testicular regression and a decrease in plasma levels of LH and testosterone, started much earlier (with the exception for LH Great Tits from northern Scandinavia) when kept on +20 degrees C than when kept on +4 degrees C. The prolonging effects of a low temperature was more pronounced in Mediterranean birds, than in birds from Scandinavia, and more pronounced in Great Tits from southern Scandinavia than in Great Tits from northern Scandinavia. Ecological implications of the results are discussed, as well as possible impact of global

  4. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  5. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  6. Improved fluoride volatility reprocessing for MOX fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M.; Fukasawa, T.; Sawa, T.; Yamashita, J.; Kamoshida, M.; Sasahira, A.; Kawamura, F. [Nuclear Systems Div., Hitachi, Ibaraki (Japan)

    2000-07-01

    Several countries had stopped developing fluoride volatility reprocessing method in the 1970's due to difficulties in recovering pure Pu. Although, nuclear societies recently favor dirty Pu (MOX). which has high proliferation resistance and needs remote fuel fabrication technologies. This situation reminded the authors to re-evaluate the fluoride volatility process. Preliminary investigation clarified that conventional fluoride volatility process could be simplified to recover dirty MOX and pure U from spent LWR fuels. Pure U is suitable to transfer it to re-enrichment (LWR cycle again), to storage certain period for future FBRs, and to dispose with relatively simple barrier. The improved process also enables to prepare directly the dirty MOX particles which are suitable for remote fuel fabrication (vibration packing). This paper describes the system of improved fluoride volatility reprocessing, and compatibility of each elemental process such as thermal decladding, two stage fluorination of U and U+Pu, U purification, direct conversion. of mixed fluoride into oxide particles and vibration packing fuel fabrication. (authors)

  7. Assessing the proliferation resistance of innovative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Full text: The National Nuclear Security Administration (NNSA) is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. A Nonproliferation Assessment Methodology (NPAM) Working Group, comprised of representatives from the DOE laboratories and academia, was established to prepare guidelines for the selection of methods and for the performance of nonproliferation assessments. The guidelines address the full scope of proliferation issues that must be addressed by NNSA in support of the development of nonproliferation policy. The guidelines were completed in November 2002 and submitted for peer review. Proliferation is defined as the 'acquisition of one or more nuclear weapons by a nation or subnational group that currently does not have them'. Nonproliferation assessments generally attempt to measure the proliferation resistance of a particular alternative or the proliferation risk of a certain action or proposition. It is important to distinguish between the two types of assessment because they rely on different measures. Proliferation Resistance - Degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons). Proliferation Risk - The likelihood of a nation or subnational group acquiring one or more nuclear weapons within a given time period. Proliferation resistance is an attribute of a nuclear system (a commercial fuel cycle, a facility, transportation of nuclear material, etc.). Proliferation risk, on the other hand, can apply to actions or activities not necessarily part of a physical nuclear system. Acquisition of specific technologies or skills, industrial capabilities, etc., can bear on the risk of proliferation. In comparing the proliferation characteristics of innovative nuclear fuel cycle systems, proliferation resistance is a more appropriate measure of performance than proliferation risk because of the focus

  8. Estimating externalities of biomass fuel cycles, Report 7

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  9. Knowledge Management in Fast Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    The 21st century is ushering in a new phase of economic and social development which can be referred as 'Knowledge Economy' in which knowledge has become the key asset in determining the organization's success or failure. Nuclear technology is very complex and a highly technical endeavor. It relies on innovative creation, storage and dissemination of knowledge. The nuclear technology is also characterized by long time scales and technological excellence. Nuclear Knowledge Management is a critical input to Nuclear Power Industry, the associated fuel cycle activities and nuclear applications in medicine, industry and agriculture. In an R and D Organization like Indira Gandhi Centre for Atomic Research (IGCAR) specializing in the areas of Fast Reactor Technology and associated Fuel Cycle Facilities, Knowledge Management plays a vital role. IGCAR is operating successfully the Fast Breeder Test Reactor (FBTR) for the last 24 years with a unique Pu-U Carbide Fuel. The paper highlights the various success stories, lessons learnt from FBTR, knowledge accrued, disseminated and reused. With intensive R and D and innovations, the processes have been developed and FBTR's spent carbide fuel of 155 GWd/t burn up has been reprocessed successfully. The paper covers the knowledge that has been created through extensive analysis and validation for the design of a 500 MWe Prototype Fast Breeder Reactor (PFBR) which is under construction at Kalpakkam. The Centre has developed world class expertise in the areas of sodium technology, material development, non-destructive evaluation, instrumentation etc. This paper gives some examples of how the knowledge generated is used for PFBR. (author)

  10. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  11. Nuclear Fuel Cycle Reasoner: PNNL FY12 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

    2013-05-03

    Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

  12. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  13. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  14. Behavior of blast wave in nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Based on some recent explosion accidents in nuclear fuel cycle facilities, the blast wave propagation in complex path and interactions between blast wave and complex media are ones of the important research topics of the safety. Then, in order to investigate the blast wave propagation in nuclear facility, optical experiment using the micro explosives and pressure measurements are conducted. And, numerical calculation is performed to compare with the experimental results. This paper describes how to conduct the experiments and results are summarized. Finally, behavior of blast wave in complex path will be discussed. (author)

  15. Proceeding of the Fourth Scientific Presentation on Nuclear Fuel Cycle: Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21-st Century

    International Nuclear Information System (INIS)

    The proceeding contains papers presented in the Fourth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Technology of Nuclear Fuel Cycle facing the Challenge of Energy Need on the 21st Century, held on 1-2 December in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 36 papers indexed individually. (ID)

  16. Sympatric Breeding Auks Shift between Dietary and Spatial Resource Partitioning across the Annual Cycle

    OpenAIRE

    Jannie Fries Linnebjerg; Jérôme Fort; Tim Guilford; Anna Reuleaux; Anders Mosbech; Morten Frederiksen

    2013-01-01

    International audience When species competing for the same resources coexist, some segregation in the way they utilize those resources isexpected. However, little is known about how closely related sympatric breeding species segregate outside thebreeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alca torda,common guillemot Uria aalge and Brünnich’s guillemot U. lomvia) breeding at the same colony in SouthwestGreenland. By combining GPS and ...

  17. Fuel cycle industrialization program prepared by N-Fuel Research Committee, ANRE

    International Nuclear Information System (INIS)

    To meet the new situation resulting from the scaling down of nuclear power development plan in Japan, and the changes due to the new U.S. nuclear non-proliferation policy, the Nuclear Fuel Research Committee of the Agency of Natural Resources and Energy of MITI has prepared the ''Interim Report on the Nuclear Fuel Cycle''. It sets out in precise terms the methods that should be followed for establishing the nuclear fuel cycle in Japan. Major items treated in this report are; uranium ore development, promotion of uranium stockpiling, construction of domestic uranium enrichment plant, promotion of the construction of a nuclear fuel park, Pu utilization and cooperation in international movement for nuclear non-proliferation, and the establishment of measures for radioactive waste management. Discussions are made from technological, economical, and political view points. Also attached are a table of the comprehensive industrialization plan up to the year 2000 and a table of estimated nuclear fuel demand and supply in Japan. (Aoki, K.)

  18. Capabilities of the BREST reactors and their fuel cycles in development of nuclear power based on fast reactors

    International Nuclear Information System (INIS)

    Summary: The inexhaustibility of fuel resources when using fast reactors (FR) in closed fuel cycles and the absence of natural Pu has formed a notion of the two-phase nuclear power evolution process. At phase 1 nuclear power relies on thermal reactors (TR) with U-fuel in an open cycle, while at phase 2 the Pu accumulated in the TR SNF as the TR initial load fuel, gives rise to a broad-scale development of nuclear power based on FRs, which later on embark on a self- evolution path through Pu breeding (BR>1), thus providing Pu not just for themselves but also for the introduction of new FRs. However, erroneous is a more than half-a-century long and still existing opinion that the development scale and pace of FR-based nuclear power are confined by the quantities of plutonium accumulated in the spent nuclear fuel of thermal reactors (TR SNF) and the plutonium breeding rate in FRs. In reality, FRs can be deployed not just based on Pu but also based on a Pu mixture with enriched U and even solely on enriched U with further conversion to U-Pu fuel in the process of U-235 burnup and Pu-239 generation. As far as the cost of natural U and its separation work is concerned, this is 4 to 5 times as profitable way to do than to generate in the TR SNF the Pu needed to start FRs. Deployment of a BREST lead-cooled FR based on the enriched uranium nitride is considered as an example. It is shown that the reactor switches to operation on (UN-PuN) fuel in three to four five-year fuel cycles, the fuel burnup-induced reactivity change not exceeding βeff even during the transition period. It is shown that, with nuclear power developing in conditions of limited resources of economically affordable natural uranium, the selection of the proper evolution scenario with allocating some of the natural uranium resources intended for TRs to the deployment of the BREST-type FRs helps more than double by the end of the 21 century the anticipated total capacity of FR-based nuclear power as

  19. Business cycles and the financial performance of fuel cell companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, I.; Sadorsky, P. [York Univ., Toronto, ON (Canada). Schulich School of Business

    2005-07-01

    Fuel cells are expected to play a major role in a hydrogen powered world. They will provide power to homes, modes of transportation and appliances. Hydrogen is the most abundant element in nature, but it must be extracted in order to be usable. It can be produced from oil, natural gas and coal or from renewable sources such as biomass, thermal or nuclear reactions. Fuel cells running on hydrogen extracted from non renewable resources have an efficiency of 30 per cent, which is twice as efficient as an internal combustion engine. The greatest barrier to mass commercialization is the cost of making hydrogen-powered auto engines. Also, an infrastructure must be developed to refill hydrogen cars. One solution is to build a hydrogen highway using the existing natural gas grid to produce hydrogen and sell it at existing filling stations. The cost of building 12,000 refueling pumps in urban areas which will provide access to 70 per cent of America's population is estimated at $10 to $15 billion. This paper described the vector autoregression (VAR) model which empirically examines the relationship between financial performance of fuel cell companies and business cycles. It was used to measure how sensitive the financial performance of fuel cell companies are to changes in macroeconomic activity. A four variable VAR model was developed to examine the relationship between stock prices, oil prices and interest rates. It was shown that the stock prices of fuel cell companies are affected by shocks to technology stock prices and oil prices, with the former having a longer lasting impact. These results add to the growing literature that oil price movements are not as important as once thought. 15 refs., 3 tabs., 3 figs.

  20. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  1. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  2. Sustainable Nuclear Fuel Cycles and World Regional Issues

    Directory of Open Access Journals (Sweden)

    Aleksandra Schwenk-Ferrero

    2012-06-01

    Full Text Available In the present paper we have attempted to associate quantified impacts with a forecasted nuclear energy development in different world regions, under a range of hypotheses on the energy demand growth. It gives results in terms of availability of uranium resources, required deployment of fuel cycle facilities and reactor types. In particular, the need to achieve short doubling times with future fast reactors is investigated and quantified in specific world regions. It has been found that a crucial feature of any world scenario study is to provide not only trends for an idealized “homogeneous” description of the global world, but also trends for different regions in the world. These regions may be selected using rather simple criteria (mostly of a geographical type, in order to apply different hypotheses for energy demand growth, fuel cycle strategies and the implementation of various reactor types for the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new significant energy demand growth is expected, but instead to provide trends and conclusions that account for the features of countries that will be major players in the world energy development in the future.

  3. A study on domino effect in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Accidents caused by domino effect are among the most severe accidents in the chemical and process industry. Although the destructive potential of these accidental scenarios is widely known, little attention has been paid to this problem in the technical literature and a complete methodology for quantitative assessment of domino accidents contribution to industrial risk is still lacking. The present study proposed a systematic procedure for the quantitative assessment of the risk caused by domino effect in chemical plants that are part of nuclear fuel cycle plants. This work is based on recent advances in the modeling of fire and explosion damage to process equipment due to different escalation vectors (heat radiation, overpressure and fragment projection). Available data from literature and specific vulnerability models derived for several categories of process equipment had been used in the present work. The proposed procedure is applied to a typical storage area of a reconversion plant situated in a complex that shelters other nuclear fuel cycle facilities. The top-events and escalation vectors are identified, their consequences estimated and credible domino scenarios selected on the basis of their frequencies. (author)

  4. NMSS handbook for decommissioning fuel cycle and materials licensees

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  5. Closing the fuel cycle - Reaching a public consensus

    International Nuclear Information System (INIS)

    There are three reasons for wanting nuclear power: it does not produce air pollution, or add to global warming; and it is effectively sustainable. What priority is attached to them? Is the possibility of alternate fuels being developed in the next 20 years large enough that mankind can afford not to develop the nuclear option as a possibility? Is the breeder reactor really needed, and when is the earliest time? Was the NAS 1994 (Panofsky) committee right that the existence of excess weapons plutonium present is a clear and present danger to the USA? If so how can we persuade the President to act? Is there a clear and present danger to other countries too? If so why are they still waiting for the U.S. to act? What are the true economic costs of reprocessing using the present PUREX process and can they be brought down? Is the extra cost of disposing of whole fuel rods vs separated waste, more or less than this? What, if any, is the difference (such as heat from Pu238) between the ease of using ''reactor grade'' plutonium and ''weapons grade'' plutonium to make an atomic bomb? Can the difference be increased, and can this difference (if any) be translated into a lower cost for protection of or greater public acceptance of reactor grade plutonium? What could be an international research effort for a better fuel cycle? e.g: Introducing an IFR fuel cycle into Beloyarsk, Monju and/or Phoenix? Introducing a thorium cycle? Has anyone carefully Recorded, Understood and Explained the past history of breeder reactor technology both of accidents, and of failures and successes? If so, where is it? If not, why not? Is the report by Clarke of NRPB in UK on plutonium toxicity that belies the claim that it is unusually toxic widely known? If not, why not? Can the MAYAK experience with misuse of plutonium be used to help in public understanding? Since India and Pakistan will not sign NPT, can more imaginative, quiet, talks with Indian and Pakistani leaders persuade them to come to a

  6. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power-producing systems. It compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. This method was applied to nuclear power-producing systems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios were investigated. For comparison purposes fossil-fuelled and solar power plants were analysed. The global results of static evaluation analysis were specifically modified according to the economic situations of countries with various levels of industrialization. The influence of energy imports upon energy analysis is also discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programmes have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons, but especially for their usefulness in showing the advantages and disadvantages of a specific power programme with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance, especially because of the frequently cited ''valuable cumulated fossil fuel savings''. (author)

  7. ENVIRONMENTAL ASSESSMENT METHODOLOGY FOR THE NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D. L.; Soldat, J. K.; McNeese, J. A.; Watson, E. C.

    1977-07-01

    This report describes the methodology for determining where environmental control technology is required for the nuclear fuel cycle. The methodology addresses routine emission of chemical and radioactive effluents, and applies to mining, milling, conversion, enrichment, fuel fabrication, reactors (LWR and BWR) and fuel reprocessing. Chemical and radioactive effluents are evaluated independently. Radioactive effluents are evaluated on the basis of maximum exposed individual dose and population dose calculations for a 1-year emission period and a 50-year commitment. Sources of radionuclides for each facility are then listed according to their relative contribution to the total calculated dose. Effluent, ambient and toxicology standards are used to evaluate the effect of chemical effluents. First, each chemical and source configuration is determined. Sources are tagged if they exceed existirrg standards. The combined effect of all chemicals is assessed for each facility. If the additive effects are unacceptable, then additional control technology is recommended. Finally, sources and their chemicals at each facility are ranked according to their relative contribution to the ambient pollution level. This ranking identifies those sources most in need of environmental control.

  8. Financing Strategies For A Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    To help meet the nation's energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the

  9. Concept for a small, colocated fuel cycle facility for oxide breeder fuels

    International Nuclear Information System (INIS)

    As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design, capital and operating cost estimates, and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years

  10. Developments in the safety of the fuel cycle

    International Nuclear Information System (INIS)

    For more than thirty years, the European Institute for Transuranium Elements has performed research and development work for the member states of the European Union. Over this period of time, objectives and duties have changed in accordance with developments in the nuclear fuel cycle. While early activities were concentrated on the metallurgy of plutonium and on studies of fuel for fast breeder reactors, two new development lines have become dominant approximately since the mid-seventies: The security of the nuclear fuel cycle, and basic research into actinides. Despite all changes, and thanks to its facilities, the Institute has always run its programs along application-oriented lines in close interaction with industry, research centers and institutions in member states and the European Commission. The present breakdown of the Institute's main activities into some 30% basic research, 40% applied research, and 30% services and work for third parties appears to be meaningful also for the future. It is good to see, in this situation, that the Institute has managed to adapt to the new framework conditions of the 4th Research Program of the European Commission. The article indicates, by quoting examples from 1995, that the Institute was quite successful in competing for third-party funds, achieving, as it did, a self-financing ratio of nearly 12%. It was quick and flexible in reacting to the changed needs of its clients. This is borne out by the adaptations, new developments, and investments into new facilities for future work. The Institute must be assigned competency in those areas in which its institutionalized role as a neutral, independent agency is objectivley useful and necessary. (orig.)

  11. Nuclear fuel cycles as reflected in the atomic energy laws

    International Nuclear Information System (INIS)

    The author measures the stations of the nuclear fuel cycles against the requirements laid down by the constitution and the Atomic Energy Act. All safety-relevant installations of the nuclear fuel cycles for LWR-type and FBR-type reactor stations are explained and defined in the first section of the book, stating facts and technical aspects including the capacity problems in connection with spent fuel management and the resulting need for interim storage facilities. The following sections on the legal aspects discuss the various installations in comparison to the legal requirements and definitions of the Atomic Energy Act. The author emphasizes the separation of competences for the determination of safety-relevant facts (natural sciences and engineering), and for weighting decisions on the required prevention of damage (state powers). The licensing requirements given in section 7, sub-sec. (2) Atomic Energy Act and their respective relationships are examined in detail. The lines of concretization emanating from section 7, sub-sec. (2), no. 3 Atomic Energy Act are followed up down to the lowest level of legislative powers, and essential deficits in the light of constitutional law are pointed out, together with suggestions for improvement. Within the frame of a constitutional interpretation of section 7, sub-sec. (2), no. 3 Atomic Energy Act, the author analyses the decisions of the Federal Constitutional Court concerning the protective obligations of the state and their validity with regard to future generations, showing that the Federal Constitutional Court applies higher safety standards than those currently used by the administrative bodies. On this basis, the author develops a national, arithmetical average of natural radiation burden to serve as a substantive criterion for determining the borderline between damage prevention and risk to be accepted. (orig./HP)

  12. Workshop on internal dosimetry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. In the case of workers exposed in nuclear fuel facilities, the normal uranium excretion from the diet is an additional difficulty in the process of assessing internal exposure. The aim of this paper is to present the main topics discussion and the conclusions of the workshop, held in the frame of the missions of the Autoridad Regulatoria Nuclear. All the personnel involved in the control of internal exposure in nuclear fuel cycle was invited to participate in the workshop to discuss about individual monitoring criteria and the available tools for assessing committed effective dose in the workers of their facilities. The lectures were presented jointly by the Nuclear Fuel Cycle Facilities Control and the Dosimetric and Radiobiological Assessment departments. It was hold at the Ezeiza Atomic Center from 23th to 24th November 2010 based on the Advanced Course on Internal Dosimetry organized on 2009 and focusing specific uranium compound internal dosimetry. A representative of each facility was invited to present the monitoring program implemented for controlling the internal exposure. It was an opportunity to discuss criteria and to share experiences on this field in the frame of the ICRP, HPA and ISO publications. The different monitoring program criteria could be analyzed and so contributing to the improvement of radiological protection. Finally, it was agreed to hold periodical meetings to assure the update on uranium measurement techniques and the handling of monitoring data for committed effective dose assessment. (authors)

  13. Future nuclear fuel cycles: main guidelines of the French program

    International Nuclear Information System (INIS)

    Nuclear energy, it's day after day more and more obvious, will play an outstanding role in the future. Many facts (economics, fossil resource possible rarefaction, fears about climate change lead us today to consider that nuclear energy should bring a significant, reliable and sustainable contribution to meet the drastically increasing energy needs of the global community. Nuclear energy, it's both nuclear power plants and the associated fuel cycle. And the fuel cycle policy, the management we decide for nuclear materials, is a key-point when we address either near-term development or long-term sustainability issues. It appears clearly that long- lasting nuclear options will be recycling options. At first, saving uranium resource lead to recycle uranium and plutonium into reactors able to take full advantage of these elements; Recycling MOX fuel into water reactors, as currently operated in France, can be seen as the first step. The next one, starting within the next decades, will be multi-recycle into fast neutron reactors (which seem better-suited to this purpose). Fast neutron reactors offer other interesting opportunities, considering waste long term toxicity; they seem able to provide also efficient burning of minor actinide, which could be multi-recycled too (but probably in a later step). All these future potential recycling options are matter of research at CEA today. This is done in the frame of an Act, voted by the French parliament in 2006, which confirms recycling as a main guideline for future nuclear systems, and presents a road map, with an assessment of the diverse foreseen systems by 2012, in view of a reactor prototype (ASTRID) which could be commissioned around 2020. (author)

  14. Estimating nuclear fuel cycle cost using a hand-held programmable calculator

    International Nuclear Information System (INIS)

    A program has been developed by which average fuel cycle cost for a single reload batch can be calculated in a few minutes using a hand-held programmable calculator. The program described uses a modification of the so-called seven-page method, wherein the method was expanded to calculate mixed oxide fuel cycle cost, and to calculate the cost of off-site spent fuel storage prior to reprocessing or final spent fuel disposal; a fuel fabrication loss factor was added for plutonium and/or uranium fuel fabrication; and a single payment was used for fuel fabrication instead of several monthly payments

  15. Environmental concentrations of an androgenic progestin disrupts the seasonal breeding cycle in male three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Svensson, Johan; Fick, Jerker; Brandt, Ingvar; Brunström, Björn

    2014-02-01

    Synthetic steroid hormones from contraceptive pharmaceuticals have become global aquatic contaminants. Progestins, the synthetic analogs to progesterone, are receiving increasing attention as contaminants and have been shown to impair reproduction in fish and amphibians at low ng L(-1) concentrations. Certain progestins, such as levonorgestrel have androgenic properties and seem to be several orders of magnitude more potent in terms of reproductive impairment in fish than non-androgenic progestins and progestagens. We recently reported that levonorgestrel has strong androgenic effects in female three-spined sticklebacks (Gasterosteus aculeatus), including induction of the normally male-specific glue protein spiggin and suppression of vitellogenesis. In light of this we investigated if exposure to levonorgestrel could disrupt the highly androgen-dependent seasonal reproductive cycle in male sticklebacks. Male sticklebacks that were in the final stage of a breeding period were exposed to various concentrations of levonorgestrel for six weeks in winter conditions in terms of light and temperature, after which reproductive status was evaluated from gross morphology, histology and key gene transcript levels. During the experimental period the controls had transitioned from full breeding condition into the non-breeding state, including regression of secondary sex characteristics, cessation of spiggin production in the kidney, and resumption of spermatogenesis in the testes. This is ascribed to the natural drop in plasma androgen levels after breeding. However, in the groups concurrently exposed to levonorgestrel, transition to the non-breeding condition was dose-dependently inhibited. Our results show that levonorgestrel can disrupt the seasonal breeding cycle in male sticklebacks. The fitness costs of such an effect could be detrimental to natural stickleback populations. Some effects occurred at a levonorgestrel concentration of 6.5 ng L(-1), well within the range of

  16. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  17. Economic performance of HTGR fuel cycles under various recycling and economic conditions

    International Nuclear Information System (INIS)

    The economic performance of High Temperature Gas Reactors (HTGRs) is dependent upon the costs of uranium; the value of bred fuel; the costs of fuel fabrication, reprocessing and refabrication; and the fuel working capital charge rate. The effects of these costs upon the total fuel cycle cost are shown comparatively for the HTGR and Light Water Reactor (LWR) systems

  18. Fuel Cycle Scenario Definition, Evaluation, and Trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

    2006-08-01

    This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives - waste management, proliferation resistance, energy recovery, and systematic management/economics/safety - using a combination of "static" calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few "control knobs" for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would

  19. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10B enriched boron etc

  20. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  1. Current status of the Japanese nuclear fuel cycle - outline of the Japanese nuclear fuel cycle strategy and transition scenario to FR cycle

    International Nuclear Information System (INIS)

    The G8 leaders declared, at the Hokkaido Toyako Summit in 2008, 'to seek to share with all Parties to the UNFCC the vision of, and together with them to consider and adopt in the UNFCCC negotiations, the goal of achieving at least 50% reduction of global emissions by 2050' [1]. They also referred to nuclear energy as 'a means to addressing climate change and energy security concerns and as an essential instrument in reducing dependence on fossil fuels and hence green gas emissions in a growing number of countries.' Japan has been aggressively utilising nuclear energy as one of the major electric power sources to fulfil its domestic energy demand, by currently operating more than 50 nuclear power plants with the total capacity of ca. 50 GWe. This energy source highly depends on the imports of natural uranium from foreign countries to supply fuel to the nuclear power plants. Since nuclear energy use is growing throughout the world; meaning much more uranium resources are to be required in the future, it is rather difficult for Japan alone to maintain the stable supply of uranium resources on a longer-term range. Therefore, the establishment of nuclear fuel cycle with plutonium recycling is indispensable to realise the efficient use of natural uranium resources. Moreover, commercialisation of fast reactors and related fuel cycle (FR cycle) system is aimed at improving drastically the efficiency of natural uranium utilisation and at the same time minimising our environmental concern on geological disposal of high-level radioactive waste. The establishment of closed FR cycle technologies is hoped to secure the long-term sustainable and stable energy supply and to help prevent global warming through reduction of greenhouse gas emissions. This paper describes the current status of nuclear energy and the scenario for the sustainable nuclear energy in Japan. (authors)

  2. Nuclear fuel cycle and reactor strategies: Adjusting to new realities. Key issue papers

    International Nuclear Information System (INIS)

    The international symposium ''Nuclear Fuel Cycle and Reactor Strategy: Adjusting to new Realities'' was organized to face the new realities in the nuclear fuel cycle and to consider options on how these new realities could be addressed. The Key Issue Papers treat the various subjects from both short and long term perspectives. In so doing, they address the likely development of all aspects concerning the nuclear fuel cycle up to the year 2050

  3. Blood haematological and biochemical parameters in normal cycling, pregnant and repeat breeding buffaloes (Bubalus bubalis) maintained in isothermic and isonutritional conditions

    Institute of Scientific and Technical Information of China (English)

    Anthony Sabasthin; Venkataswamy Girish Kumar; Sumanta Nandi

    2012-01-01

    Objective:The present study was envisaged to examine the hematological and biochemical, parameters in three different groups of buffaloes (regularly cycling, pregnant and repeat breeding) maintained in isothermic and isonutritional conditions to establish the variations in blood and/or serum components in these groups.Methods:Blood samples were analyzed for hemoglobin, PCV, TLC, neutophil, lymphocyte, eosinophil, and monocyte count, glucose, total protein, albumin, globulin, urea and cholesterol.Results:The results revealed significantly lower haemoglobin and packed cell volume value in repeat breeding when compared to pregnant and regularly cycling animals. The WBC value significantly higher in repeat breeding when compared to regularly cycling animals. The average mean values of neutrophils, lymphocyte and eosinophils revealed a no significant difference in the neutrophils, lymphocyte and eosinophils in between the group. The mean values of monocytes revealed a significantly higher value in repeat breeding animals when compared to pregnant animals. The serum glucose, total protein, cholesterol and urea levels were significantly lower in repeat breeding compared to pregnant and regularly cycling animals. The levels of albumin and globulin revealed non-significant difference among the groups.Conclusions: A significant decrease in the hemoglobin, PCV, glucose, total protein, cholesterol and urea was observed in the repeat breeding animals when compared to pregnant and regularly cycling animals.

  4. Development of Pyrochemical Reprocessing of the Spent Nuclear Fuel and Prospects of Closed Fuel Cycle

    Directory of Open Access Journals (Sweden)

    R. Tulackova

    2007-01-01

    Full Text Available Molten-Salt Reactor (MSR is a design of an advanced reactor system from the GEN IV family working in thermal or epithermal neutron spectrum and using thorium or transuranium fuel in the form of molten fluorides. It is based on the experience with the development of the molten-salt reactor technology in the Oak-Ridge National Laboratory in the United States. The MSR fuel cycle with integrated reprocessing represents one of the potential ways both for significant decrease of total amount of radioactive wastes for final deposition and for utilization of nuclear energy for electricity and heat production as effectively as possible. There are two pyrochemical reprocessing techniques studied in NRI Rez plc which are considered to be applied both for reprocessing of already existing spent fuel and for preparation and „on-line“ reprocessing of MSR fuel: (i the Fluoride Volatility Method (FVM, which performs chemical conversion of spent thermal oxide fuel components into fluorides and their consequent separation by means of their different volatility, thermal stability and chemical affinity to various sorbents; and (ii electrochemical separation of the actinides (Ans and fission products (FP, represented mainly by lanthanides (Lns, from each other by electrolytic deposition method on solid cathode in molten fluoride media.

  5. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  6. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V. [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  7. Knowledge management in fast reactors and related fuel cycles

    International Nuclear Information System (INIS)

    Full text: The 21st century is ushering in a new phase of economic and social development which can be referred as 'Knowledge Economy', in which knowledge has become the key asset in determining the organization's success or failure. The IAEA defines knowledge management as an integrated, systematic approach to identify, manage and share an organization's knowledge collectively in order to help achieve the objectives of the organization. Nuclear technology is very complex and a highly technical endeavor. It relies on innovative creation, storage and dissemination of knowledge. The nuclear energy is characterized by long time scales and technological excellence. Nuclear knowledge management is a critical input to nuclear power industry, the associated fuel cycle activities and nuclear applications in medicine, industry and agriculture. Realizing the importance of knowledge preservation in the area of fast reactor technology, IAEA had given a consultancy work to Argonne National Laboratory to study and suggest the means of knowledge management. The IAEA initiative seeks to establish a comprehensive inventory of fast reactor data and knowledge for the fast reactor development in the coming years. It was suggested that the knowledge regarding important disciplines like fuels and materials, reactor physics and core design, operations, the demonstration of safety should be preserved. Various countries have initiated the fast reactor knowledge preservation activities. In France, CEA, EDF and Framatome ANP have initiated liquid metal cooled fast reactor knowledge preservation project that deals with R and D aspects and Superphenix design. European Fast Reactor collaboration (MASURCA,SNEAK,ZEBRA) has preserved the zero power critical experimental data in the SNEDAX database. Japan has started a comprehensive knowledge preservation program including the capture of 'Human Knowledge' based on interviews. In Russia steps are initiated to preserve fast reactor knowledge

  8. Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems

    International Nuclear Information System (INIS)

    The investigation of the thorium fuel cycle (ThFC) is a collaborative INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) activity within its main area on global vision on sustainable nuclear energy for the 21st century. The current publication reports on the sustainability of nuclear power by re-examining the potential of thorium-based fuel cycles to support future large scale deployment of nuclear energy systems by increasing the availability of nuclear material. Special attention is paid to the thorium fuel cycle from the point of view of economics and proliferation resistance.

  9. Preliminary study: isotopic safeguards techniques (IST). LMFBR fuel cycles

    International Nuclear Information System (INIS)

    This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed

  10. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  11. Safety analysis and code development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Development effort of computer codes applicable to nuclear fuel cycle facilities for assisting the task of NISA has been carried out. The work consists of 1) verification of criticality safety analysis codes : MVP and SCALE, 2) studies on burn-up credit applied methods, 3) preparation of non-uniformity effect calculation for criticality safety, 4) development of the new convenient library for shielding calculation based on JENDL-3.3 nuclear data, 5) development of a numerical simulation code DYMPL for analyzing abnormal transients of PUREX processes, 6) radiation dose evaluation code development for reprocessing facilities, 7) updating the dose evaluation data for the probabilistic environmental assessment code MACCS2-JF by emergency scenario. (author)

  12. Development of innovative reactors and fuel cycles: the IAEA role

    International Nuclear Information System (INIS)

    Over the last 15 years, nuclear power's share of new capacity additions worldwide has not kept pace with either its share of electricity generated or its share of installed capacity. Unfortunately, it is a trend that is projected to continue. IAEA forecasts show nuclear's share of global capacity dropping to between 6% and 8% by 2020 and its share of electricity generation dropping to between 9% and 12% . This paper discusses the major challenges that must be dealt with successfully if nuclear power is to measure up to some of the more bullish long-term projections. It goes on to describe the work being done by INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF (Generation IV International Forum) to help meet nuclear's challenges for the twenty-first century. (author)

  13. Analysis and management of risks from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The Coordinated Research Programme (CRP) on Risk Criteria for the Nuclear Fuel Cycle was begun in 1983 with several objectives: A primary objective was to permit countries with little experience with risk assessment methods to gain familiarity with these techniques. Another objective was to support work regarding safety criteria complementary to the risk assessment work. Risk criteria expressed as quantitative safety goals or targets can be used to establish acceptable safety levels; in this respect, they define what it is that risk assessments should measure; conversely the capabilities of risk assessment must be recognized when risk criteria are established. In addition to the work by each participating country under the sponsorship of the programme, the exchange of information between the participants was an objective of the programme. Refs, figs and tabs

  14. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  15. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy

  16. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities

  17. Nuclear-fuel-cycle facility deployment and price generation

    International Nuclear Information System (INIS)

    The enrichment process and how it is to be modeled in the International Nuclear Model (INM) is described. The details of enrichment production, planning, unit price generation, demand estimation and ordering are examined. The enrichment process from both the producer's and the utility's point of view is analyzed. The enrichment separative-work-unit (SWU) contracts are also discussed. The relationship of the enrichment process with other sectors of the nuclear fuel cycle, expecially uranium mining and milling is considered. There are portions of the enrichment process that are not completely understood at the present time. These areas, which require further study, will be pinpointed in the following discussion. In many cases, e.g., the advent of SMU brokerage activities, the answers will emerge only in time. In other cases, e.g., political trends, uncertainties will always remain. It is possible to cast the uncertainties in a probabilistic framework, but this is beyond the scope of this report. INM, a comprehensive model of the international nuclear industry, simulates the market decision process based on current and future price expectations under a broad range of scenario specifications. INM determines the proper reactor mix as well as the planning, operation, and unit price generation of the attendant nuclear fuel cycle facilities. The level of detail of many of the enrichment activities presented in this report, e.g., the enrichment contracts, is too fine to be incorporated into INM. Nevertheless, they are presented in a form that is ammendable to modeling. The reasons for this are two-fold. First, it shows the level of complexity that would be required to model the entire system. Second, it presents the structural framework for a detailed, stand-alone enrichment model

  18. Optimization of fuel cycle strategies with constraints on uranium availability

    International Nuclear Information System (INIS)

    Optimization of nuclear reactor and fuel cycle strategies is studied under the influence of reduced availability of uranium. The analysis is separated in two distinct steps. First, the global situation is considered within given high and low projections of the installed capacity up to the year 2025. Uranium is regarded as an exhaustible resource whose production cost would increase proportionally to increasing cumulative exploitation. Based on the estimates obtained for the uranium cost, a global strategy is derived by splitting the installed capacity between light water reactor (LWR) once-through, LWR recycle, and fast breeder reactor (FBR) alternatives. In the second phase, the nuclear program of an individual utility is optimized within the constraints imposed from the global scenario. Results from the global scenarios indicate that in a reference case the uranium price would triple by the year 2000, and the price escalation would continue throughout the planning period. In a pessimistic growth scenario where the global nuclear capacity would not exceed 600 GW(electric) in 2025, the uranium price would almost double by 2000. In both global scenarios, FBRs would be introduced, in the reference case after 2000 and in the pessimistic case after 2010. In spite of the increases in the uranium prices, the levelized power production cost would increase only by 45% up to 2025 in the utility case provided that the plutonium is incinerated as a substitute fuel

  19. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  20. Concept of DT fuel cycle for a fusion neutron source

    International Nuclear Information System (INIS)

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 1018 neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  1. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  2. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  3. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  4. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  5. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Till, C. E.; Rudolph, R. R.; Deen, J. R.; King, M. J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies.

  6. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  7. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  8. Stress and parental care: Prolactin responses to acute stress throughout the breeding cycle in a long-lived bird.

    Science.gov (United States)

    Riou, Samuel; Chastel, Olivier; Lacroix, André; Hamer, Keith C

    2010-08-01

    While the role of corticosterone in mediating the response of birds to acute stress is well established, it has recently been proposed that a decrease in prolactin levels following stress may complement corticosterone in redirecting resources away from breeding activities and towards behaviors promoting immediate survival. Here, for the first time, we detail changes in the prolactin stress response of birds throughout the breeding cycle. We then discuss the modulation of the corticosterone and prolactin stress responses over successive stages of breeding, differing in reproductive value and parental effort. In a long-lived Procellariiform seabird, the Manx shearwater Puffinus puffinus, we found that prolactin levels decreased in response to acute stress during incubation and mid chick-rearing but increased in response to stress during late chick-rearing and in non parenting birds, a pattern similar to that previously described for mammals. The high corticosterone stress response in pre-breeders was consistent with predictions based on reproductive value, but a similar response during late chick-rearing was not. This probably reflected foraging effort and a heightened importance of the parents' own nutritional status at this stage of the season, in advance of post-breeding migration. We also found that baseline prolactin levels were maintained at high levels during chick-rearing and were only slightly lower during late chick-rearing and in failed breeders and non-breeders. These data suggest that prolactin may play a role in nestling care long beyond the brooding phase, that this is not due to birds spending long periods away from the colony and that prolactin secretion may be necessary for nest-guarding behavior.

  9. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  10. A contingency safe, responsible, economic, increased capacity spent nuclear fuel (SNF) advance fuel cycle

    International Nuclear Information System (INIS)

    The purpose of this paper is to have an Advanced Light Water (LWR) fuel cycle and an associated development program to provide a contingency plan to the current DOE effort to license once-through spent Light Water Reactor (LWR) fuel for disposition at Yucca Mountain (YM). The intent is to fully support the forthcoming June 2008 DOE submittal to the Nuclear Regulatory Commission (NRC) based upon the latest DOE draft DOE/EIS-0250F-SID dated October 2007 which shows that the latest DOE YM doses would readily satisfy the anticipated NRC and Environmental Protection Agency (EP) standards. The proposed Advance Fuel Cycle can offer potential resolution of obstacles that might arise during the NRC review and, particularly, during the final hearings process to be held in Nevada. Another reason for the proposed concept is that a substantial capacity growth of the YM repository will be necessary to accommodate the SNF of Advance Light Water Reactors (ALWRs) currently under consideration for United States (U.S.) electricity production (1) and the results of the recently issued study by the Electric Power Research Institute (EPRI) to reduce CO2 emissions (2). That study predicts that by 2030 U.S. nuclear power generation would grow by 64 Gigawatt electrical (GWe) and account for 25.5 percent of the overall U.S. electrical generation. The current annual SNF once-through fuel cycle accumulation would rise from 2000-2100 MT (Metric Tons) to about 3480 MT in 2030 and the total SNF inventory, would reach nearly 500,000 MT by 2100 if U. S. nuclear power continues to grow at 1.1 percent per year after 2030. That last projection does not account for any SNF reduction due to increased fuel burnup or any increased capacity needed 'to establish supply Global Nuclear Energy Partnership (GNEP,) arrangements among nations to provide nuclear fuel and taking back spent fuel for recycling without spreading enrichment and reprocessing technologies' (3). The anticipated capacity of 120 MT planned

  11. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems.

  12. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    International Nuclear Information System (INIS)

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems

  13. The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

    2011-06-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

  14. A concept of self-completed fuel cycle based on lead-cooled nitride-fuel fast reactors

    International Nuclear Information System (INIS)

    A concept of nuclear energy total system was studied based on the nitride fuel cycle and inherent safety lead-cooled fast reactors. In the nitride fuel reprocessing, a new concept for pyrochemical method was proposed due to reducing fuel cycle cost. The present designed lead-cooled fast reactors have higher safety, economics and minor actinide transmutation efficiency than those of MOX-fuel fast reactors. The construction of 1500 MWt plant is feasible as a result for technology studies for aseismic, steam-generator and reactor configuration systems. (author)

  15. Holistic consideration of fuel cycle systems for sustainable development

    International Nuclear Information System (INIS)

    Full text: For any modern civilized society to achieve sustainable development, the use of atomic energy is indispensable. However, in order for nuclear power to continue to provide the infrastructure essential for all the activities of a civilized society, any nuclear power system itself needs to be fully sustainable. In this discussion, I will review how the holistic system design of nuclear power generation - a principle already been established in the early days of the peaceful use of atomic energy - was waived and then distorted along with the growth of nuclear power industries incurring the deterioration of inherent nature to sustain nuclear power activities. From this viewpoint, this paper will explore and outline the goals, which the present nuclear power establishments need to aim for in order to make a sustainable contribution to the progress of civilized society. Everyday, throughout the world, from hundreds of light-water reactors generating energy, plutonium is produced and then accumulated. Simultaneously, massive amounts of the uranium are luxuriously dissipated harnessing only 1% of this precious natural resource. This situation is in vital need of improvement and if this does not happen, the sustainable nature of nuclear power will be seriously threatened from many sides; the issue of resources and the environment or the diversion of nuclear power to military ends. Those advanced countries with substantial nuclear power generation need to actively promote plutonium recycle with light-water reactors and help stop this disastrous trend. Alongside such initiatives, there is a clear need to strengthen the work of international cooperation with an ultimate goal of 'preventing the danger of nuclear power being abused for such violent purposes as war or terrorism, along with the establishment of the nuclear fuel cycle system to economically and exhaustively convert nuclear fuel resources into energy.' A steady technological break through - commercial

  16. Tritium fuel cycle in ITER and DEMO: Issues in handling large amount of fuel

    Science.gov (United States)

    Tanabe, T.

    2013-07-01

    Since tritium resources are very limited, economical conversion of fusion energy to electricity and/or heat must have an enough margin to keep self-fuel-sufficiency and simultaneously ensure tritium safety. To realize this, tritium inventory in reactor systems, which use ˜1017 Bq (a few kg) of tritium, should be kept as small as possible, under strict accountancy or regulation of a few tens Bq (˜pg). In present tokamaks, however, hydrogen retention rate is significantly large, i.e. more than 5% of fueled hydrogen is continuously piled up in their vacuum vessels, which must not be allowed in a reactor. Moreover, both fuelling and burning efficiencies are very poor, only a few % or less. Accordingly, huge amount of tritium fuel must be recycled. In the paper, after the introduction of tritium as a hydrogen radioisotope, important issues to establish safe and economical tritium fuel cycle for a fusion reactor will be summarized considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulation and tritium accountancy.

  17. Design and fuel management of PWR cores to optimize the once-through fuel cycle

    International Nuclear Information System (INIS)

    The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current light water reactors, with a specific focus on pressurized water reactors. The types of changes which have been examined are: (1) re-optimization of fuel pin diameter and lattice pitch, (2) axial power shaping by enrichment gradation in fresh fuel, (3) use of 6-batch cores with semi-annual refueling, (4) use of 6-batch cores with annual refueling, hence greater extended (approximately doubled) burnup, (5) use of radial reflector assemblies, (6) use of internally heterogeneous cores (simple seed/blanket configurations), (7) use of power/temperature coastdown at the end of life to extend burnup, (8) use of metal or diluted oxide fuel, (9) use of thorium, and (10) use of isotopically separated low sigma/sub a/ cladding material. State-of-the-art LWR computational methods, LEOPARD/PDQ-7/FLARE-G, were used to investigate these modifications

  18. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  19. Wastes from selected activities in two light-water reactor fuel cycles

    International Nuclear Information System (INIS)

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume

  20. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  1. Potential health and environmental impacts attributable to the nuclear and coal fuel cycles: Final report

    International Nuclear Information System (INIS)

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the nuclear and coal fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation during the next decade. The author concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel fycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public for the balance of this century. The potential for large impacts exists in both fuel cycles, but the potential impacts associated with a runaway Greenhouse Effect from combustion of fossil fuels, such as coal, cannot yet be reasonably quantified. Some of the potential environmental impacts of the coal fuel cycle cannot currently be realistically estimated, but those that can appear greater than those from the nuclear fuel cycle. 103 refs., 1 fig., 18 tabs

  2. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Science.gov (United States)

    2010-07-29

    ... amended. The introduction of uranium hexafluoride into any module of the National Enrichment Facility is... COMMISSION Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...: Ty Naquin, Project Manager, Uranium Enrichment Branch, Division of Fuel Cycle Safety and...

  3. 76 FR 67765 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding...

    Science.gov (United States)

    2011-11-02

    ... Energy Act of 1954, as amended. The introduction of uranium hexafluoride into any module of the National... COMMISSION Notice of Availability of Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding... CONTACT: Gregory Chapman, Project Manager, Uranium Enrichment Branch, Division of Fuel Cycle Safety...

  4. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... COMMISSION Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC... Act of 1954, as amended. The introduction of uranium hexafluoride into any module of the National... Regulatory Commission Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety...

  5. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... COMMISSION Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National... introduction of uranium hexafluoride (UF 6 ) into cascades numbered 2.9, 2.10, 2.11, 2.12, 3.1, 3.2, 3.3, 3.4..., Uranium Enrichment Branch, Division of Fuel Cycle Safety, and Safeguards Office of Nuclear Material...

  6. To Recycle or Not to Recycle? An Intergenerational Approach to Nuclear Fuel Cycles

    NARCIS (Netherlands)

    Taebi, B.; Kloosterman, J.L.

    2007-01-01

    AbstractThis paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and involv

  7. 75 FR 51025 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Science.gov (United States)

    2010-08-18

    ... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY... announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT) Subcommittee. The RFCT Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future (the Commission)....

  8. 75 FR 36648 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Science.gov (United States)

    2010-06-28

    ... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY... Department of Energy published a notice announcing an open meeting of the Reactor and Fuel Cycle Technologies (RFCT) Subcommittee, 75 FR 35001. In that notice, the date of the meeting listed under DATES was...

  9. 75 FR 35001 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee

    Science.gov (United States)

    2010-06-21

    ... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technologies Subcommittee AGENCY... announces an open meeting of the Reactor and Fuel Cycle Technologies (RFCT) Subcommittee. The RFCT Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future (the Commission)....

  10. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  11. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  12. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs

  13. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions

  14. Nuclear fuel cycle facilities in the world (excluding the centrally planned economies)

    International Nuclear Information System (INIS)

    Information on the existing, under construction and planned fuel cycle facilities in the various countries is presented. Some thirty countries have activities related to different nuclear fuel cycle steps and the information covers the capacity, status, location, and the names of owners of the facilities

  15. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  16. Degree of Sustainability of Various Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a similar evaluation

  17. Comparison of open and closed U-Pu equilibrium fuel cycles for Generation-IV fast reactors with the EQL3D procedure

    Energy Technology Data Exchange (ETDEWEB)

    Krepel, Jiri, E-mail: Jiri.Krepel@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pelloni, Sandro; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyze open and closed fuel cycle of GFR, SFR, and LFR cores by means of ERANOS based EQL3D procedure. Black-Right-Pointing-Pointer Equilibrium of open and closed fuel cycles were compared in terms of their performance and safety parameters. Black-Right-Pointing-Pointer All three cores act in equilibrium closed cycle as iso-breeder and have similar fuel composition. Black-Right-Pointing-Pointer In spite of the same fuel composition the Dopper constants and void reactivities strongly differ between the cores. Black-Right-Pointing-Pointer All three systems seem capable, from neutronics point of view, for the fuel cycle closure. - Abstract: The advanced fast reactors of the fourth generation should enable an indirect burning of poorly fissile {sup 238}U through {sup 239}Pu breeding and recycling of the actinides from their own spent fuel. The recycling or actually the fuel cycle closure can significantly reduce the amount of long-lived radioactive waste and the {sup 238}U burning can multiply the sustainability of the uranium fueled reactors. Regular periodic operation with the fuel recycling converges to an equilibrium cycle. To enable its simulation a numerical tool named equilibrium fuel cycle procedure for fast reactors (EQL3D) was developed in the FAST group of LRS at Paul Scherrer Institut. The procedure is based on the ERANOS code and can be used to yield the description of two basic situations: the equilibrium of an open fuel cycle and the equilibrium of a closed fuel cycle. The goals of the present study are (i) to apply EQL3D to the Gas-cooled Fast Reactor (GFR), Sodium-cooled Fast Reactor (SFR), and Lead-cooled Fast Reactor (LFR), (ii) to simulate and confirm the GFR, SFR, and LFR neutronics capability for closed fuel cycle, and (iii) to evaluate and compare the equilibrium cycle safety and performance parameters. The EQL3D capability enables to characterize the equilibrium cycle for complex reloading patterns

  18. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-01

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  19. Introduction of Thorium in the Nuclear Fuel Cycle. Short- to long-term considerations

    International Nuclear Information System (INIS)

    Since the beginning of the nuclear era, significant scientific attention has been given to thorium's potential as a nuclear fuel. Although the thorium fuel cycle has never been fully developed, the opportunities and challenges that might arise from the use of thorium in the nuclear fuel cycle are still being studied in many countries and in the context of diverse international programmes around the world. This report provides a scientific assessment of thorium's potential role in nuclear energy both in the short to longer term, addressing diverse options, potential drivers and current impediments to be considered if thorium fuel cycles are to be pursued. (authors)

  20. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies.

    Science.gov (United States)

    Flockhart, D T Tyler; Pichancourt, Jean-Baptiste; Norris, D Ryan; Martin, Tara G

    2015-01-01

    Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and lower extinction