WorldWideScience

Sample records for breath gas aldehydes

  1. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing gas and liquefied breathing gas containers; minimum requirements. (a) Compressed breathing gas and...

  2. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...

  3. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen. (b...

  4. Alcohol breath test: gas exchange issues.

    Science.gov (United States)

    Hlastala, Michael P; Anderson, Joseph C

    2016-08-01

    The alcohol breath test is reviewed with a focus on gas exchange factors affecting its accuracy. The basis of the alcohol breath test is the assumption that alveolar air reaches the mouth during exhalation with no change in alcohol concentration. Recent investigations have shown that alcohol concentration is altered during its transit to the mouth. The exhaled alcohol concentration is modified by interaction with the mucosa of the pulmonary airways. Exhaled alcohol concentration is not an accurate indicator of alveolar alcohol concentration. Measuring alcohol concentration in the breath is very different process than measuring a blood level from air equilibrated with a blood sample. Airway exchange of alcohol leads to a bias against certain individuals depending on the anatomic and physiologic characteristics. Methodological modifications are proposed to improve the accuracy of the alcohol breath test to become fair to all. Copyright © 2016 the American Physiological Society.

  5. 46 CFR 197.340 - Breathing gas supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  6. 21 CFR 868.5330 - Breathing gas mixer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a) Identification. A breathing gas mixer is a device intended for use in conjunction with a respiratory support...

  7. 46 CFR 197.450 - Breathing gas tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked before...

  8. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    Science.gov (United States)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  9. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromati...

  10. Electronic Nose Functionality for Breath Gas Analysis during Parabolic Flight

    Science.gov (United States)

    Dolch, Michael E.; Hummel, Thomas; Fetter, Viktor; Helwig, Andreas; Lenic, Joachim; Moukhamedieva, Lana; Tsarkow, Dimitrij; Chouker, Alexander; Schelling, Gustav

    2017-06-01

    The presence of humans in space represents a constant threat for their health and safety. Environmental factors such as living in a closed confinement, as well as exposure to microgravity and radiation, are associated with significant changes in bone metabolism, muscular atrophy, and altered immune response, which has impacts on human performance and possibly results in severe illness. Thus, maintaining and monitoring of crew health status has the highest priority to ensure whole mission success. With manned deep space missions to moon or mars appearing at the horizon where short-term repatriation back to earth is impossible the availability of appropriate diagnostic platforms for crew health status is urgently needed. In response to this need, the present experiment evaluated the functionality and practicability of a metal oxide based sensor system (eNose) together with a newly developed breath gas collecting device under the condition of altering acceleration. Parabolic flights were performed with an Airbus A300 ZeroG at Bordeaux, France. Ambient air and exhaled breath of five healthy volunteers was analyzed during steady state flight and parabolic flight maneuvres. All volunteers completed the study, the breath gas collecting device valves worked appropriately, and breathing through the collecting device was easy and did not induce discomfort. During breath gas measurements, significant changes in metal oxide sensors, mainly sensitive to aromatic and sulphur containing compounds, were observed with alternating conditions of acceleration. Similarly, metal oxide sensors showed significant changes in all sensors during ambient air measurements. The eNose as well as the newly developed breath gas collecting device, showed appropriate functionality and practicability during alternating conditions of acceleration which is a prerequisite for the intended use of the eNose aboard the International Space Station (ISS) for breath gas analysis and crew health status

  11. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  12. GAS FLOW IN UNDERWATER BREATHING INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Anca CONSTANTIN

    2017-11-01

    Full Text Available The open circuit underwater breathing apparatus can be a one or two-stage regulator used in scuba diving or a two-stage regulator used in surface supplied installations. These installations are proper in underwater sites at small depth. The pneumatic circuit of a two-stage regulator is composed mainly of a first stage regulator mounted on the air cylinders and a second stage carried by the diver in his mouth. The two regulators are linked together by a medium pressure hose. The circuit opens when the depression created by the diver’s inhalation, in the second stage body, reaches a certain value. The second stage opening causes a transient movement, namely an expansion wave that propagates through the medium pressure hose to the first stage regulator. The first stage regulator opens and the air in the cylinders is allowed to flow to the diver. The longer the hose, the greater the duration of the expansion wave propagation. Investigations on the wave propagation offer data on the inspiration unsteady motion duration which influences the respiratory effort of the diver.

  13. Development of a novel graphene/polyaniline electrodeposited coating for on-line in-tube solid phase microextraction of aldehydes in human exhaled breath condensate.

    Science.gov (United States)

    Li, Yu; Xu, Hui

    2015-05-22

    In this work, we introduced a novel graphene/polyaniline (G/PANI) electrodeposited coating for on-line in-tube solid phase microextraction (IT-SPME) for the first time. The G/PANI coating was prepared on the internal surface of stainless steel tube by a facile in-situ electrodeposition method. The morphology and formation of the composite coating were confirmed by scanning electronic microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Some important experimental parameters that could affect the extraction and separation such as the coating thickness, internal diameter of tube, sampling flow rate as well as sample volume were optimized. The extraction performance of the IT-SPME coating was evaluated systematically. The coating exhibited enhanced mechanical stability, long lifespan, large specific surface area and good biocompatibility compared with polyaniline coating. The on-line IT-SPME method showed higher enrichment efficiency, faster analysis speed and higher automation level than off-line manual mode. Six aldehydes were determined simultaneously with low limits of detection of 0.02-0.04nmolL(-1) and good linearity (R(2)≥0.9920). The method has been applied successfully for the determination of aldehydes in human exhaled breath condensates with good recovery (70-120%) and satisfied reproducibility (relative standard deviation: 1.1-11.9%). This on-line IT-SPME method provides a promising approach for the determination of trace aldehydes with approving sensitivity in human exhaled breath condensates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Breathing

    Science.gov (United States)

    ... smaller structures called bronchi. The process of breathing (respiration) is divided into two distinct phases, inspiration (inhalation) and expiration (exhalation). During inspiration, the diaphragm contracts and pulls downward while the muscles between the ribs contract and pull upward. This ...

  15. Calculation algorithms alter the breath-by-breath gas exchange values when abrupt changes in ventilation occur.

    Science.gov (United States)

    Cettolo, Valentina; Francescato, Maria Pia

    2018-05-01

    The automatic metabolic units calculate breath-by-breath gas exchange from the expiratory data only, applying an algorithm ('expiration-only' algorithm) that neglects the changes in the lung gas stores. These last are theoretically taken into account by a recently proposed algorithm, based on an alternative view of the respiratory cycle ('alternative respiratory cycle' algorithm). The performance of the two algorithms was investigated where changes in the lung gas stores were induced by abrupt increases in ventilation above the physiological demand. Oxygen, carbon dioxide fractions and ventilatory flow were recorded at the mouth in 15 healthy subjects during quiet breathing and during 20-s hyperventilation manoeuvres performed at 5-min intervals in resting conditions. Oxygen uptakes and carbon dioxide exhalations were calculated throughout the acquisition periods by the two algorithms. Average ventilation amounted to 6·1 ± 1·4 l min -1 during quiet breathing and increased to 41·8 ± 27·2 l min -1 during the manoeuvres (Pgas exchange data and noise. Conversely, during hyperventilation, the 'alternative respiratory cycle' algorithm provided significantly lower gas exchange data as compared to the values yielded by the 'expiration-only' algorithm. For the first breath of hyperventilation, the average values provided by the two algorithms amounted to 0·37 ± 0·34 l min -1 versus 0·96 ± 0·73 l min -1 for O 2 uptake and 0·45 ± 0·36 l min -1 versus 0·80 ± 0·58 l min -1 for exhaled CO 2 (Pgas exchange values as compared to the 'expiration-only' approach. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Biagini, D; Lomonaco, T; Ghimenti, S; Bellagambi, F G; Onor, M; Scali, M C; Barletta, V; Marzilli, M; Salvo, P; Trivella, M G; Fuoco, R; Di Francesco, F

    2017-11-29

    The analytical performances of needle trap micro-extraction (NTME) coupled with gas chromatography-tandem mass spectrometry were evaluated by analyzing a mixture of twenty-two representative breath volatile organic compounds (VOCs) belonging to different chemical classes (i.e. hydrocarbons, ketones, aldehydes, aromatics and sulfurs). NTME is an emerging technique that guarantees detection limits in the pptv range by pre-concentrating low volumes of sample, and it is particularly suitable for breath analysis. For most VOCs, detection limits between 20 and 500 pptv were obtained by pre-concentrating 25 ml of a humidified standard gas mixture at a flow rate of 15 ml min -1 . For all compounds, inter- and intra-day precisions were always below 15%, confirming the reliability of the method. The procedure was successfully applied to the analysis of exhaled breath samples collected from forty heart failure (HF) patients during their stay in the University Hospital of Pisa. The majority of patients (about 80%) showed a significant decrease of breath acetone levels (a factor of 3 or higher) at discharge compared to admission (acute phase) in correspondence to the improved clinical conditions during hospitalization, thus making this compound eligible as a biomarker of HF exacerbation.

  17. Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity.

    Science.gov (United States)

    Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Beasley, Kara M; Mangum, Tyler S; Hawn, Jerold A; Gladstone, Igor M; Lovering, Andrew T

    2014-09-01

    Adults with a history of very preterm birth (breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency. Copyright © 2014 the American Physiological Society.

  18. Fluorometric Sniff-Cam (Gas-Imaging System) Utilizing Alcohol Dehydrogenase for Imaging Concentration Distribution of Acetaldehyde in Breath and Transdermal Vapor after Drinking.

    Science.gov (United States)

    Iitani, Kenta; Sato, Toshiyuki; Naisierding, Munire; Hayakawa, Yuuki; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2018-02-20

    Understanding concentration distributions, release sites, and release dynamics of volatile organic compounds (VOCs) from the human is expected to lead to methods for noninvasive disease screening and assessment of metabolisms. In this study, we developed a visualization system (sniff-cam) that enabled one to identify a spatiotemporal change of gaseous acetaldehyde (AcH) in real-time. AcH sniff-cam was composed of a camera, a UV-LED array sheet, and an alcohol dehydrogenase (ADH)-immobilized mesh. A reverse reaction of ADH was employed for detection of gaseous AcH where a relationship between fluorescence intensity from nicotinamide adenine dinucleotide and the concentration of AcH was inversely proportional; thus, the concentration distribution of AcH was measured by detecting the fluorescence decrease. Moreover, the image differentiation method that calculated a fluorescence change rate was employed to visualize a real-time change in the concentration distribution of AcH. The dynamic range of the sniff-cam was 0.1-10 ppm which encompassed breath AcH concentrations after drinking. Finally, the sniff-cam achieved the visualization of the concentration distribution of AcH in breath and skin gas. A clear difference of breath AcH concentration was observed between aldehyde dehydrogenase type 2 active and inactive subjects, which was attributed to metabolic capacities of AcH. AcH in skin gas showed a similar time course of AcH concentration to the breath and a variety of release concentration distribution. Using different NADH-dependent dehydrogenases in the sniff-cam could lead to a versatile method for noninvasive disease screening by acquiring spatiotemporal information on various VOCs in breath or skin gas.

  19. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    Roy, Murari Mohon

    2008-01-01

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH 3 CHO), acrolein (H 2 C=CHCHO) and propionaldehyde (CH 3 CH 2 CHO) and one ketone, acetone (CH 3 ) 2 CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  20. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    Science.gov (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-05-05

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes

    Directory of Open Access Journals (Sweden)

    D. Rodríguez

    2005-01-01

    Full Text Available The reactions of Cl atoms with a series of unsaturated aldehydes have been investigated for the first time using a relative method. In order to obtain additional information for a qualitative structure versus reactivity discussion, we have also determined the rate coefficients for the reactions of atomic chlorine with their respective saturated aldehydes. These relative measurements were performed at room temperature and atmospheric pressure of air and N2, by using ethane, propene and 1-butene as reference compounds. The weighted average relative rate constants obtained, kCl±2σ (in units of cm3 molecule−1 s−1 were: trans-2-pentenal (1.31±0.19×10−10; trans-2-hexenal (1.92±0.22×10−10; trans-2-heptenal (2.40±0.29×10−10; n-pentanal (2.56±0.27×10−10; n-hexanal (2.88±0.37×10−10; n-heptanal (3.00±0.34×10−10. Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.

  2. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  3. Breath acetone monitoring by portable Si:WO{sub 3} gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland); Schmid, Alex; Amann, Anton [Univ.-Clinic for Anesthesia, Innsbruck Medical University, A-6020 Innsbruck (Austria); Breath Research Institute of the Austrian Academy of Sciences, A-6850 Dornbirn (Austria); Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland)

    2012-08-13

    Highlights: Black-Right-Pointing-Pointer Portable sensors were developed and tested for monitoring acetone in the human breath. Black-Right-Pointing-Pointer Acetone concentrations down to 20 ppb were measured with short response times (<30 s). Black-Right-Pointing-Pointer The present sensors were highly selective to acetone over ethanol and water. Black-Right-Pointing-Pointer Sensors were applied to human breath: good agreement with highly sensitive PTR-MS. Black-Right-Pointing-Pointer Tests with people at rest and during physical activity showed the sensor robustness. - Abstract: Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO{sub 3} nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone ({approx}20 ppb) with short response (10-15 s) and recovery times (35-70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  4. Dissolved organic carbon (DOC and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2013-05-01

    Full Text Available Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC in the aqueous phase reach concentrations on the order of ~ 10 mgC L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes and (ii the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids. We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada and in fog water in a more polluted area (Davis, CA. Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions in the aqueous phase of clouds or fogs, respectively, comprises 2–~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC increases by an order of magnitude from 7 × 103 M atm−1 to 7 × 104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are

  5. Investigation of Exhaled Breath Samples from Patients with Alzheimer's Disease Using Gas Chromatography-Mass Spectrometry and an Exhaled Breath Sensor System.

    Science.gov (United States)

    Lau, Hui-Chong; Yu, Joon-Boo; Lee, Ho-Won; Huh, Jeung-Soo; Lim, Jeong-Ok

    2017-08-03

    Exhaled breath is a body secretion, and the sampling process of this is simple and cost effective. It can be non-invasively collected for diagnostic procedures. Variations in the chemical composition of exhaled breath resulting from gaseous exchange in the extensive capillary network of the body are proposed to be associated with pathophysiological changes. In light of the foreseeable potential of exhaled breath as a diagnostic specimen, we used gas chromatography and mass spectrometry (GC-MS) to study the chemical compounds present in exhaled breath samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), and from healthy individuals as a control group. In addition, we also designed and developed a chemical-based exhaled breath sensor system to examine the distribution pattern in the patient and control groups. The results of our study showed that several chemical compounds, such as 1-phenantherol and ethyl 3-cyano-2,3-bis (2,5,-dimethyl-3-thienyl)-acrylate, had a higher percentage area in the AD group than in the PD and control groups. These results may indicate an association of these chemical components in exhaled breath with the progression of disease. In addition, in-house fabricated exhaled breath sensor systems, containing several types of gas sensors, showed significant differences in terms of the normalized response of the sensitivity characteristics between the patient and control groups. A subsequent clustering analysis was able to distinguish between the AD patients, PD patients, and healthy individuals using principal component analysis, Sammon's mapping, and a combination of both methods, in particular when using the exhaled breath sensor array system A consisting of eight sensors. With this in mind, the exhaled breath sensor system could provide alternative option for diagnosis and be applied as a useful, effective tool for the screening and diagnosis of AD in the near future.

  6. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    Science.gov (United States)

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The effect of a heat and moisture exchanger on gas flow in a Mapleson F breathing system during inhalational induction.

    Science.gov (United States)

    Da Fonseca, J M; Wheeler, D W; Pook, J A

    2000-06-01

    Heat and moisture exchangers (HMEs) humidify, warm and filter inspired gas, protecting patients and apparatus during anaesthesia. Their incorporation into paediatric anaesthetic breathing systems is recommended. We experienced delays in inhalational induction whilst using a Mapleson F breathing system with an HME. We have demonstrated that the HME significantly alters gas flow within the breathing system. Approximately half of the fresh gas flow is delivered to the patient, the remainder being wasted into the expiratory limb of the breathing system. We suggest that the HME should be removed from the Mapleson F breathing system until inhalational induction is complete, or that the reservoir bag is completely occluded until an effective seal is obtained with the mask.

  8. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  9. Impairment from gas narcosis when breathing air and enriched air nitrox underwater.

    Science.gov (United States)

    Hobbs, Malcolm B

    2014-11-01

    Nitrogen (N2) in air causes cognitive impairment from gas narcosis when breathed at increased ambient pressures. This impairment might be reduced by using enriched air nitrox (EANx) mixtures, which have a higher oxygen and lower N2 content compared to air. This study aimed to investigate if divers differed in memory ability and self-assessment when breathing air and EANx30. The effect of depth (shallow vs. deep) and breathing gas (air vs. EANx30) on memory ability and subjective ratings of impairment was compared in 20 divers. Memory performance was significantly worse in deep water (Air: M = 22.1%, SD = 21.7%; EANx30: M = 22.1%, SD = 17.2%) compared to shallow water (Air: M = 29.2%, SD = 18.3%; EANx30: M = 33.3%, SD = 18.2%), but this impairment did not differ significantly between air and EANx30. Subjective ratings of impairment increased significantly from shallow water (Air: M = 5.2, SD = 5.9; EANx30: M = 3.0, SD = 4.4) to deep water (Air: M = 36.8, SD = 25.3; EANx30: M = 24.8, SD = 16.1) when breathing both air and EANx30. However, ratings were significantly lower when breathing EANx30 compared to air when in the deep water. It was concluded EANx30 does not reduce narcotic impairment over air. Additionally, divers were able to make a correct global self-assessment they were impaired by narcosis, but were unable to make a finer assessment, leading them to erroneously believe that EANx30 was less narcotic than air.

  10. Real-time breath gas analysis of CO and CO2 using an EC-QCL

    Science.gov (United States)

    Ghorbani, Ramin; Schmidt, Florian M.

    2017-05-01

    Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10-8 cm-1 Hz-1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm-1 mode-hop-free tuning range of the EC-QCL are also demonstrated.

  11. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs for Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Mays Alhamami

    2014-04-01

    Full Text Available Metal-organic frameworks (MOFs are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses.

  12. Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.

    Science.gov (United States)

    Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G

    2010-07-01

    When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.

  13. The effect of inert gas choice on multiple breath washout in healthy infants: differences in lung function outcomes and breathing pattern.

    Science.gov (United States)

    Gustafsson, Per M; Bengtsson, Lovisa; Lindblad, Anders; Robinson, Paul D

    2017-12-01

    The detrimental effects on breathing pattern during multiple breath inert gas washout (MBW) have been described with different inhaled gases [100% oxygen (O 2 ) and sulfur hexafluoride (SF 6 )] but detailed comparisons are lacking. N 2 - and SF 6 -based tests were performed during spontaneous quiet sleep in 10 healthy infants aged 0.7-1.3 yr using identical hardware. Differences in breathing pattern pre and post 100% O 2 and 4% SF 6 exposure were investigated, and the results obtained were compared [functional residual capacity (FRC) and lung clearance index (LCI)]. During 100% O 2 exposure. mean inspiratory flow ("respiratory drive") decreased transiently by mean (SD) 28 (9)% ( P pattern of change reversed. No significant effect on breathing pattern was observed during SF 6 testing. In vitro testing confirmed that technical artifacts did not explain these changes. Mean (SD) FRC and LCI in vivo were significantly higher with N 2 vs. SF 6 washout: 216 (33) vs. 186 (22) ml ( P pattern during test performance and the functional residual capacity and lung clearance index values obtained. Data suggest the detrimental effect of breathing pattern of 100% O 2 and movement of O 2 across the alveolar capillary membrane, with direct effects on MBW outcomes. SF 6 MBW during infancy avoids this and can be further optimized by addressing the sources of technical artifact identified in this work.

  14. Gas chromatographic quantification of aliphatic aldehydes in freshly distilled Calvados and Cognac using 3-methylbenzothiazolin-2-one hydrazone as derivative agent.

    Science.gov (United States)

    Ledauphin, Jérôme; Barillier, Daniel; Beljean-Leymarie, Martine

    2006-05-19

    A new precise and sensitive method was used for the quantification of aliphatic aldehydes from C5 to C11 in highly ethanolic beverages such as freshly distilled spirits. Carbonyl compounds were derivatized using 3-methylbenzothiazolin-2-one hydrazone (MBTH) and then separated and detected by gas chromatography-mass spectrometry (GC-MS). Selective mass spectrometric detection of molecular ions of derivatives was performed to obtain a good sensibility (0.2-1.2 microg l(-1)) and a good selectivity. For a concentration of 20 microg l(-1), relative standard deviations were lower than 10% except for heaviest compounds (decanal and undecanal) where RSD were between 11 and 13%. The concentrations of aliphatic aldehydes were determined in nine samples of freshly distilled Calvados and two samples of freshly distilled Cognac with highest concentrations reported for 3-methylbutanal (from 170 to 1220 microg l(-1) in Calvados and from 1540 to 5500 microg l(-1) in Cognac). 3-Methylbutanal and hexanal, due to their low detection thresholds, could be important olfactive markers of these two products. Less than 1h30 is required to quantify the nine studied aliphatic aldehydes in freshly distilled spirits.

  15. Normobaric hypoxia training: the effects of breathing-gas flow rate on symptoms.

    Science.gov (United States)

    Artino, Anthony R; Folga, Richard V; Vacchiano, Charles

    2009-06-01

    The U.S. Navy has replaced segments of refresher low-pressure chamber instruction with normobaric hypoxia training using a reduced oxygen breathing device (ROBD). A previous training evaluation revealed that this alternative instructional paradigm is a preferred means of training experienced jet aviators to recognize and recover from hypoxia. However, findings from this earlier work also indicated that air hunger was the most commonly reported symptom during ROBD training. This finding raised concern that air hunger could have resulted from a training artifact caused by the lower breathing-gas flow rate produced by the ROBD when compared to more familiar jet aircraft breathing systems. In an effort to address this issue, a software change was made that increased ROBD mask flow from 30 to 50 L x min(-1) (LPM). The purpose of this retrospective study was to determine if there are differences in the hypoxia symptoms reported by aviators trained on the ROBD upgrade (ROBD-50) compared to those trained on the original device (ROBD-30). Hypoxia training was provided to 156 aviators using the ROBD-50, and survey results were compared to those obtained from 121 aviators trained on the ROBD-30. There was a significant decrease in the number of aviators who reported experiencing air hunger while training on the ROBD-50 (44.2%) as compared to the ROBD-30 (59.4%) [Pearson chi2 (1) = 5.45, P hunger and, therefore, may impact training fidelity.

  16. Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism

    Science.gov (United States)

    Mitsubayashi, Kohji; Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro

    2016-11-01

    A fluorometric acetone biosniffer (biochemical gas sensor) for assessment of lipid metabolism utilizing reverse reaction of secondary alcohol dehydrogenase was constructed and evaluated. The biosniffer showed highly sensitivity and selectivity for continuous monitoring of gaseous acetone. The measurement of breath acetone concentration during fasting and aerobic exercise were also investigated. The acetone biosniffer provides a novel analytical tool for noninvasive evaluation of human lipid metabolism and it is also expected to use for the clinical and physiological applications such as monitoring the progression of diabetes.

  17. Determination of breath isoprene and acetone concentration with a needle-type extraction device in gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ueta, Ikuo; Mizuguchi, Ayako; Okamoto, Mitsuyoshi; Sakamaki, Hiroyuki; Hosoe, Masahiko; Ishiguro, Motoyuki; Saito, Yoshihiro

    2014-03-20

    Isoprene in human breath is said to be related to cholesterol metabolism, and the possibility of the correlations with some clinical parameters has been studied. However, at this stage, no clear benefit of breath isoprene has been reported for clinical diagnosis. In this work, isoprene and acetone concentrations were measured in the breath of healthy and obese subjects using a needle-type extraction device for subsequent analysis in gas chromatography-mass spectrometry (GC-MS) to investigate the possibility of these compounds as an indicator of possible diseases. After measuring intraday and interday variations of isoprene and acetone concentrations in breath samples of healthy subjects, their concentrations were also determined in 80 healthy and 17 obese subjects. In addition, correlation between these breath concentrations and the blood tests result was studied for these healthy and obese subjects. The results indicated successful determination of breath isoprene and acetone in this work, however, no clear correlation was observed between these measured values and the blood test results. Breath isoprene concentration may not be a useful indicator for obesity or hypercholesterolemia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparsion of Speech Breathing Parameters between Chemical Injured Patients Due to Mustard Gas and Normal Individuals

    Directory of Open Access Journals (Sweden)

    Fatemeh Heidari

    2008-04-01

    Full Text Available Objective: The respiration role is not limited to vital function but it also important in speech process. The present research is aimed to measure different parameters of speech breathing values in patients suffering Mustard Gas injuries versus normal individual. Materials & Methods: Research was applied as case-control, cross – sectional and analytical method. The sampling pattern was convenience. Among patients, 19 were selected within injured patients from Baghiatallah hospital and 20 from those of normal individuals from welfare and rehabilitation sciences university stuffs. Normal people were matched based on their age, gender and other criterias within 30-50 years of age. ST1 Dysphonia manufactured by G.M. Instruments Ltd. was used to measure parameters of speech breathing, that include “Vital capacity”, “Phonation time”,” Phonation volume”,” Mean flow rate”,” Total expired volume”. And also,” Vocal velocity index” and “Phonation Quotient” were calculated. The independent T-test was used for data analysis.  Results: Research findings shown statistically significant difference between two groups in Vital capacity (P<0/001, Phonation time (P<0/001, Phonation volume (P<0/001, Vocal velocity index (P=0/004, Total expired volume (P<0/001 and Phonation Quotient (P=0/046, but there was no significant difference in Mean flow rate between case and control group (P=0/615.  Conclusion: present research has indicated, chemical war substance, not only has rendering effects upon vital respiration, but also has alternate patient’s speech breathing capabilities greatly. Such finding can be measured and evaluated the disturbed phonatory criteria in such patients and be a valued guide for speech & language phatologists, during treating such patients.

  19. A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout.

    Science.gov (United States)

    Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin

    2017-11-01

    For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

  20. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  1. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats

    DEFF Research Database (Denmark)

    Hyldegaard, Ole; Kerem, Dikla; Melamed, Y

    2011-01-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing...

  2. Deodorant Characteristics of Breath Odor Occurred from Favorite Foods Using Metal Oxide Gas Sensors

    Science.gov (United States)

    Seto, Shuichi; Oyabu, Takashi; Cai, Kuiqian; Katsube, Teruaki

    Three types of metal oxide gas sensors were adopted to detect the degree of breath odor. Various sorts of information are included in the odor. Each sensor has different sensitivities to gaseous chemical substances and the sensitivities also differ according to human behaviors, for example taking a meal, teeth-brushing and drinking something. There is also a possibility that the sensor can detect degrees of daily fatigue. Sensor sensitivities were low for the expiration of the elderly when the subject drank green tea. In this study, it is thought that the odor system can be incorporated into a healing robot. The robot can communicate with the elderly using several words and also connect to Internet. As for the results, the robot can identify basic human behaviors and recognize the living conditions of the resident. Moreover, it can also execute a kind of information retrieval through the Internet. Therefore, it has healing capability for the aged, and can also receive and transmit information.

  3. An evaluation of fresh gas flow rates for spontaneously breathing cats and small dogs on the Humphrey ADE semi-closed breathing system.

    Science.gov (United States)

    Gale, Elizabeth; Ticehurst, Kim E; Zaki, Sanaa

    2015-05-01

    To evaluate the fresh gas flow (FGF) rate requirements for the Humphrey ADE semi-closed breathing system in the Mapleson A mode; to determine the FGF at which rebreathing occurs, and compare the efficiency of this system to the Bain (Mapleson D) system in spontaneously breathing cats and small dogs. Prospective clinical study. Twenty-five healthy (ASA score I or II) client-owned cats and dogs (mean ± SD age 4.7 ± 5.0 years, and body weight 5.64 ± 3.26 kg) undergoing elective surgery or minor procedures. Anaesthesia was maintained with isoflurane delivered via the Humphrey ADE system in the A mode using an oxygen FGF of 100 mL kg(-1) minute(-1). The FGF was then reduced incrementally by 5-10 mL kg(-1) minute(-1) at approximately five-minute intervals, until rebreathing (inspired CO(2) >5 mmHg (0.7 kPa)) was observed, after which flow rates were increased. In six animals, once the minimum FGF at which rebreathing occurred was found, the breathing system was changed to the Bain, and the effects of this FGF delivery examined, before FGF was increased. Rebreathing did not occur at the FGF recommended by the manufacturer for the ADE. The mean ± SD FGF that resulted in rebreathing was 60 ± 20 mL kg(-1) minute(-1). The mean minimum FGF at which rebreathing did not occur with the ADE was 87 ± 39 mL kg(-1) minute(-1). This FGF resulted in significant rebreathing (inspired CO(2) 8.8 ± 2.6 mmHg (1.2 ± 0.3 kPa)) on the Bain system. The FGF rates recommended for the Humphrey ADE are adequate to prevent rebreathing in spontaneously breathing cats and dogs cats and small dogs. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  4. Do breath gas measurements hold the key to unlocking the genetics of feed efficiency in dairy cows?

    DEFF Research Database (Denmark)

    Difford, Gareth; de Haas, Yvette; Visker, M.H.P.W.

    for DMI and then used to predict breeding values for DMI along using other highly correlated traits like milk yield, body weight and chest width. Recent interest in greenhouse gases, such as methane (CH4), has seen the development of tools for measuring gas concentrations in the breath of the cow during...... has been exploited to predict CH4 production from DMI to aid in CH4 related research. Here we turn this idea around and assess the effectivity of CH4 and Carbon dioxide breath measurements for the prediction of DMI and feed efficiency in Dutch and Danish Holstein cattle. Preliminary results indicate...... a strong positive genetic correlation of 0.75 between CH4 production and DMI and a strong negative genetic correlation of -0.68 between CH4 concentration and RFI. Through the use of genomic tools we assess the added benefit of these strong correlations with large scale breath measurements...

  5. Engineering task plan for determining breathing rates in single shell tanks using tracer gas

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    The testing of single shell tanks to determine breathing rates. Inert tracer gases helium, and sulfur hexafluoride will be injected into the tanks AX-103, BY-105, C-107 and U-103. Periodic samples will be taken over a three month interval to determine actual headspace breathing rates

  6. Comparative study of minimal fresh gas flow used in Lack-Plus and Lack's circuit in spontaneously breathing anesthetized adults.

    Science.gov (United States)

    Theerapongpakdee, Sunchai; Sathitkarnmanee, Thepakorn; Tribuddharat, Sirirat; Sucher, Siwalai; Thananun, Maneerat; Nonlhaopol, Duangthida

    2016-01-01

    The Lack's circuit is a co-axial Mapleson A breathing system commonly used in spontaneously breathing anesthetized adults but still requires high fresh gas flow (FGF). The Lack-Plus circuit was invented with the advantage of lower FGF requirement. The authors compared the Lack-Plus and Lack's circuit for the minimal FGF requirement with no rebreathing in spontaneously breathing anesthetized adults. This was a randomized crossover study. We enrolled 24 adult patients undergoing supine elective surgery, with a body mass index ≤30 kg/m 2 and an American Society of Anesthesiologists physical status I-II. They were randomly allocated to group 1 (LP-L) starting with Lack-Plus then switching to Lack's circuit or group 2 (L-LP) (with the reverse pattern). After induction and intubation, anesthesia was maintained with 50% N 2 O/O 2 and desflurane (4%-6%) plus fentanyl titration to maintain an optimal respiratory rate between 10 and 16/min. Starting with the first circuit, all the patients were spontaneously breathing with a FGF of 4 L/min for 10 min, gradually decreased by 0.5 L/min every 5 min until FGF was 2.5 L/min. End-tidal CO 2 , inspired minimum CO 2 (ImCO 2 ), mean arterial pressure, and oxygen saturation were recorded until rebreathing (ImCO 2 >0 mmHg) occurred. The alternate anesthesia breathing circuit was used and the measurements were repeated. The respective minimal FGF at the point of rebreathing for the Lack-Plus and Lack's circuit was 2.7±0.8 and 3.3±0.5 L/min, respectively, p Lack-Plus circuit can be used safely and effectively, and it requires less FGF than Lack's circuit in spontaneously breathing anesthetized adults.

  7. The analysis of fresh gas flow in a circle anaesthetic breathing system, and its influence on CO2 absorbent desiccation

    Directory of Open Access Journals (Sweden)

    Miljenko Križmarić

    2012-04-01

    Full Text Available Background: If at the end of anaesthesia, the gases on the anaesthetic machine are not turned off, they continue to flow through the breathing circuit and may dry out the carbon dioxide absorbent in the absorber. At the beginning of the next anaesthetic procedure, the desiccated absorbent decomposes the volatile anaesthetic, resulting in the formation of toxic gas mixtures, which are dangerous for the patient. In such circumstances, the measured level of the volatile anaesthesic in the breathing circuit differs from the selected value. In the paper, we analyse potentially dangerous possible directions of continuous flow of fresh gas mixture in different anaesthetic breathing circuits. Methods: In the first part of the study, we simulated the continuous flow of gases in a Sulla anaesthesia machine using an experimental method in a simulation setting. In the second part, we analysed whether a retrograde flow through the absorber was possible in a convential anaesthetic breathing circuit and in the Fabius GS, Cato, Julian and Primus circuits with the Y-piece connector open or closed. Information on users’ requests for maintenance services due to discrepancies between the desired and measured levels of the volatile anaesthetic in the breathing circuit were obtained from the manufacturer’s local servicing agent. Results: In a Dräger ISO 8 circle system (Sulla anaesthetic machine with a standard gas supply connector, a retrograde flow is not possible. If the Y-piece connector is left open, the gases are vented to the outside via the absorber and the inspiratory tube. If the Y-piece connector is closed or open, the absorbent in the canister dries because of the continuous flow of gas. A retrograde flow is possible only in those Sulla anaesthetic machines where the fresh gas inlet is located below the inspiratory valve. A retrograde flow of gases causing absorbent desiccation can occur in a Cato, Julian, Fabius GS, or Primus anaesthetic machines

  8. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.

  9. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    Science.gov (United States)

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  10. THE DIFFERENCE IN RESPIRATORY AND BLOOD GAS VALUES DURING RECOVERY AFTER EXERCISE WITH SPONTANEOUS VERSUS REDUCED BREATHING FREQUENCY

    Directory of Open Access Journals (Sweden)

    Jernej Kapus

    2009-09-01

    Full Text Available Extrapolation from post-exercise measurements has been used to estimate respiratory and blood gas parameters during exercise. This may not be accurate in exercise with reduced breathing frequency (RBF, since spontaneous breathing usually follows exercise. This study was performed to ascertain whether measurement of oxygen saturation and blood gases immediately after exercise accurately reflected their values during exercise with RBF. Eight healthy male subjects performed an incremental cycling test with RBF at 10 breaths per minute. A constant load test with RBF (B10 was then performed to exhaustion at the peak power output obtained during the incremental test. Finally, the subjects repeated the constant load test with spontaneous breathing (SB using the same protocol as B10. Pulmonary ventilation (VE, end-tidal oxygen (PETO2, and carbon dioxide pressures (PETCO2 and oxygen saturation (SaO2 were measured during both constant load tests. The partial pressures of oxygen (PO2 and carbon dioxide (PCO2 in capillary blood were measured during the last minute of exercise, immediately following exercise and during the third minute of recovery. At the end of exercise RBF resulted in lower PETO2, SaO2 and PO2, and higher PETCO2 and PCO2 when compared to spontaneous breathing during exercise. Lower SaO2 and PETO2 were detected only for the first 16s and 20s of recovery after B10 compared to the corresponding period in SB. There were no significant differences in PO2 between SB and B10 measured immediately after the exercise. During recovery from exercise, PETCO2 remained elevated for the first 120s in the B10 trial. There were also significant differences between SB and B10 in PCO2 immediately after exercise. We conclude that RBF during high intensity exercise results in hypoxia; however, due to post-exercise hyperpnoea, measurements of blood gas parameters taken 15s after cessation of exercise did not reflect the changes in PO2 and SaO2 seen during

  11. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  12. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa.

    Science.gov (United States)

    da Silva, Glauber S F; Ventura, Daniela A D N; Zena, Lucas A; Giusti, Humberto; Glass, Mogens L; Klein, Wilfried

    2017-05-01

    The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O 2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg -1 , indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇ E ), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O 2 levels. While a small change in oxygen consumption (V̇O 2 ) could be noticed, the carbon dioxide release (V̇CO 2 , P=0.0003) and air convection requirement (V̇ E /V̇O 2 , P=0.0001) were significantly affected by hypoxia (7% O 2 ) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O 2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mobile Sensor System AGaMon for Breath Control: Numerical Signal Analysis of Ternary Gas Mixtures and First Field Tests

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-01-01

    Full Text Available An innovative mobile sensor system for breath control in the exhaled air is introduced. In this paper, the application of alcohol control in the exhaled air is considered. This sensor system operates semiconducting gas sensor elements with respect to the application in a thermo-cyclic operation mode. This operation mode leads to so-called conductance-over-time-profiles (CTPs, which are fingerprints of the gas mixture under consideration and can be used for substance identification and concentration determination. Especially for the alcohol control in the exhaled air, ethanol is the leading gas component to be investigated. But, there are also other interfering gas components in the exhaled air, like H2 and acetone, which may influence the measurement results. Therefore, a ternary ethanol-H2-acetone gas mixture was investigated. The establishing of the mathematical calibration model and the data analysis was performed with a newly developed innovative calibration and evaluation procedure called ProSens 3.0. The analysis of ternary ethanol-H2-acetone gas samples with ProSens 3.0 shows a very good substance identification performance and a very good concentration determination of the leading ethanol component. The relative analysis errors for the leading component ethanol were in all considered samples less than 9 %. First field test performed with the sensor system AGaMon shows very promising results.

  14. Organic Gas Sensor with an Improved Lifetime for Detecting Breath Ammonia in Hemodialysis Patients.

    Science.gov (United States)

    Chuang, Ming-Yen; Chen, Chang-Chiang; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung

    2017-12-22

    In this work, a TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-s-butylphenyl)diphenylamine)]) sensor with a cylindrical nanopore structure exhibits a high sensitivity to ammonia in ppb-regime. The lifetime and sensitivity of the TFB sensor were studied and compared to those of P3HT (poly(3-hexylthiophene)), NPB (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine), and TAPC (4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]) sensors with the same cylindrical nanopore structures. The TFB sensor outstands the others in sensitivity and lifetime and it shows a sensing response (current variation ratio) of 13% to 100 ppb ammonia after 64 days of storage in air. A repeated sensing periods testing and a long-term measurement have also been demonstrated for the test of robustness. The performance of the TFB sensor is stable in both tests, which reveals that the TFB sensor can be utilized in our targeting clinical trials. In the last part of this work, we study the change of ammonia concentration in the breath of hemodialysis (HD) patients before and after dialysis. An obvious drop of breath ammonia concentration can be observed after dialysis. The reduction of breath ammonia is also correlated with the reduction of blood urea nitrogen (BUN). A correlation coefficient of 0.82 is achieved. The result implies that TFB sensor may be used as a real-time and low cost breath ammonia sensor for the daily tracking of hemodialysis patients.

  15. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes and particulate matter during pan frying of beefsteak.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Jørgensen, Rikke Bramming; Svendsen, Kristin

    2010-04-01

    Cooking with gas or electric stoves produces fumes, especially during frying, that contain a range of harmful and potentially mutagenic compounds as well as high levels of fine and ultrafine particles. The aim of this study was to see if polycyclic aromatic hydrocarbons (PAHs) and higher mutagenic aldehydes which were collected in the breathing zone of the cook, could be detected in fumes from the frying of beefsteak. The frying was performed in a model kitchen in conditions similar to those in a Western European restaurant kitchen. The levels of PAHs (16 EPA standard) and higher aldehydes (trans,trans-2,4-decadienal, 2,4-decadienal, trans-trans-2,4-nonadienal, trans-2-decenal, cis-2-decenal, trans-2-undecenal, 2-undecenal) were measured during frying on an electric or gas stove with margarine or soya bean oil as the frying fat. The number concentration of particles <100 nm in size (ultrafine) was also measured, as well as the mass concentration of total particulate matter. Levels of naphthalene were in the range of 0.15-0.27 microg/m(3) air. Measured levels of mutagenic aldehydes were between non-detectable and 61.80 microg/m(3) air. The exposure level of total aerosol was between 1.6 and 7.2 mg/m(3) air. Peak number concentrations of ultrafine particles were in the range of 6.0x10(4)-89.6x10(4) particles/cm(3) air. Naphthalene and mutagenic aldehydes were detected in most of the samples. The levels were variable, and seemed to be dependent on many factors involved in the frying process. However, according to the present results, frying on a gas stove instead of an electric stove causes increased occupational exposure to some of the components in cooking fumes which may cause adverse health effects.

  16. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.

    Science.gov (United States)

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Beedham, Christine

    2004-10-01

    Aliphatic aldehydes have a high affinity toward aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. In addition, the oxidation of xenobiotic-derived aromatic aldehydes by the latter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase, and xanthine oxidase activities in the oxidation of substituted benzaldehydes in separate preparations. The incubation of vanillin, isovanillin, and protocatechuic aldehyde with either guinea pig liver aldehyde oxidase, bovine milk xanthine oxidase, or guinea pig liver aldehyde dehydrogenase demonstrated that the three aldehyde oxidizing enzymes had a complementary substrate specificity. Incubations were also performed with specific inhibitors of each enzyme (isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase) to determine the relative contribution of each enzyme in the oxidation of these aldehydes. Under these conditions, vanillin was rapidly oxidized by aldehyde oxidase, isovanillin was predominantly metabolized by aldehyde dehydrogenase activity, and protocatechuic aldehyde was slowly oxidized, possibly by all three enzymes. Thus, aldehyde oxidase activity may be a significant factor in the oxidation of aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. In addition, this enzyme may also have a role in the catabolism of biogenic amines such as dopamine and noradrenaline where 3-methoxyphenylacetic acids are major metabolites.

  17. Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease.

    Science.gov (United States)

    Meinardi, Simone; Jin, Kyu-Bok; Barletta, Barbara; Blake, Donald R; Vaziri, Nosratola D

    2013-03-01

    While much is known about the effect of chronic kidney disease (CKD) on composition of body fluids little is known regarding its impact on the gases found in exhaled breath or produced by intestinal microbiome. We have recently shown significant changes in the composition of intestinal microbiome in humans and animals with CKD. This study tested the hypothesis that uremia-induced changes in cellular metabolism and intestinal microbiome may modify the volatile organic metabolites found in the exhaled breath or generated by intestinal flora. SD rats were randomized to CKD (5/6 nephrectomy) or control (sham operation) groups. Exhaled breath was collected by enclosing each animal in a glass chamber flushed with clean air, then sealed for 45 min and the trapped air collected. Feces were collected, dissolved in pure water, incubated at 37 degrees C in glass reactors for 24 h and the trapped air collected. Collected gases were analyzed by gas chromatography. Over 50 gases were detected in the exhaled breath and 36 in cultured feces. Four gases in exhaled breath and 4 generated by cultured feces were significantly different in the two groups. The exhaled breath in CKD rats showed an early rise in isoprene and a late fall in linear aldehydes. The CKD animals' cultured feces released larger amounts of dimethyldisulfide, dimethyltrisulfide, and two thioesters. CKD significantly changes the composition of exhaled breath and gaseous products of intestinal flora. Analysis of breath and bowel gases may provide useful biomarkers for detection and progression of CKD and its complications.

  18. Can transcutaneous carbon dioxide pressure be a surrogate of blood gas samples for spontaneously breathing emergency patients? The ERNESTO experience.

    Science.gov (United States)

    Peschanski, Nicolas; Garcia, Léa; Delasalle, Emilie; Mzabi, Lynda; Rouff, Edwin; Dautheville, Sandrine; Renai, Fayrouz; Kieffer, Yann; Lefevre, Guillaume; Freund, Yonathan; Ray, Patrick

    2016-05-01

    It is known that the arterial carbon dioxide pressure (PaCO2) is useful for emergency physicians to assess the severity of dyspnoeic spontaneously breathing patients. Transcutaneous carbon dioxide pressure (PtcCO2) measurements could be a non-invasive alternative to PaCO2 measurements obtained by blood gas samples, as suggested in previous studies. This study evaluates the reliability of a new device in the emergency department (ED). We prospectively included patients presenting to the ED with respiratory distress who were breathing spontaneously or under non-invasive ventilation. We simultaneously performed arterial blood gas measurements and measurement of PtcCO2 using a sensor placed either on the forearm or the side of the chest and connected to the TCM4 CombiM device. The agreement between PaCO2 and PtcCO2 was assessed using the Bland-Altman method. Sixty-seven spontaneously breathing patients were prospectively included (mean age 70 years, 52% men) and 64 first measurements of PtcCO2 (out of 67) were analysed out of the 97 performed. Nineteen patients (28%) had pneumonia, 19 (28%) had acute heart failure and 19 (28%) had an exacerbation of chronic obstructive pulmonary disease. Mean PaCO2 was 49 mm Hg (range 22-103). The mean difference between PaCO2 and PtcCO2 was 9 mm Hg (range -47 to +54) with 95% limits of agreement of -21.8 mm Hg and 39.7 mm Hg. Only 36.3% of the measurement differences were within 5 mm Hg. Our results show that PtcCO2 measured by the TCM4 device could not replace PaCO2 obtained by arterial blood gas analysis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    Science.gov (United States)

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-05-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media.

  20. Detection of ethylene gas in exhaled breath of people living in landfill using CO{sub 2} laser photoacoustic spectroscopy with multicomponent analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oktafiani, Fitri, E-mail: fitri.oktafiani@mail.ugm.ac.id; Stiyabudi, Rizky; Amin, Mochamad Nurul; Mitrayana [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta, 55281 Indonesia (Indonesia)

    2016-06-17

    The photoacoustic spectrometer (PAS) had been built and the performance had been determined. The research was based on the conversion of the absorbed middle infra red (IR) radiation by gas confined in a closed PAS cell into standing acoustic wave, which could be detected by a suitable electroacoustic transducer such as a microphone. The lowest detection limit for this setup was (57,1 ± 0,3) ppb and quality factor was (14,5 ± 0,6) for ethylene gas in 10P14 CO{sub 2} laser line. Then, this PAS was used to measure of ethylene gas concentration in breath sample of people living in near the Piyungan Bantul Yogyakarta landfill. The result from multicomponent analysis showed that PAS enable to measure the lowest concentration of volatile organic compound (VOC), such as ethylene, which occured on ambien air in Piyungan landfill. Variaty of distance area applied in this research. In the range of ±0,5 km from landfill, we obtained the concentration of ethylene gas concentration for human breath was (1,520 ± 0,002) ppm, while in the range of ±45 km, the ethylene gas concentration for human breath was (0,424 ± 0,002) ppm. Ethylene gas concentrations in exhaled gas decreased along with increasing distance variation of the landfill.

  1. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Science.gov (United States)

    Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.

  2. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field

    NARCIS (Netherlands)

    García-Pérez, E.; Serra-Crespo, P.; Hamad, S.; Kapteijn, F.; Gascon, J.

    2014-01-01

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations

  3. Breathing difficulty

    Science.gov (United States)

    Shortness of breath; Breathlessness; Difficulty breathing; Dyspnea ... There is no standard definition for difficulty breathing. Some people ... even though they don't have a medical condition. Others may ...

  4. Enhanced non-eupneic breathing following hypoxic, hypercapnic or hypoxic-hypercapnic gas challenges in conscious mice.

    Science.gov (United States)

    Getsy, Paulina M; Davis, Jesse; Coffee, Gregory A; May, Walter J; Palmer, Lisa A; Strohl, Kingman P; Lewis, Stephen J

    2014-12-01

    C57BL6 mice display non-eupneic breathing and spontaneous apneas during wakefulness and sleep as well as markedly disordered breathing following cessation of a hypoxic challenge. We examined whether (1) C57BL6 mice display marked non-eupneic breathing following hypercapnic or hypoxic-hypercapnic challenges, and (2) compared the post-hypoxia changes in non-eupneic breathing of C57BL6 mice to those of B6AF1 (57BL6 dam × A/J sire) and Swiss-Webster mice, which display different ventilatory responses than C57BL6 mice. C57BL6 mice displayed marked increases in respiratory frequency and non-eupneic breathing upon return to room-air after hypoxic (10% O2, 90% N2), hypercapnic (5% CO2, 21% O2 and 74% N2) and hypoxic-hypercapnic (10% O2, 5% CO2 and 85% N2) challenges. B6AF1 mice displayed less tachypnea and reduced non-eupneic breathing post-hypoxia, whereas Swiss-Webster mice displayed robust tachypnea with minimal increases in non-eupneic breathing post-hypoxia. These studies demonstrate that non-eupneic breathing increases after physiologically-relevant hypoxic-hypercapnic challenge in C57BL6 mice and suggest that further studies with these and B6AF1 and Swiss-Webster mice will help define the genetics of non-eupneic breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Comparative study of minimal fresh gas flow used in Lack-Plus and Lack’s circuit in spontaneously breathing anesthetized adults

    Directory of Open Access Journals (Sweden)

    Theerapongpakdee S

    2016-11-01

    Full Text Available Sunchai Theerapongpakdee, Thepakorn Sathitkarnmanee, Sirirat Tribuddharat, Siwalai Sucher, Maneerat Thananun, Duangthida Nonlhaopol Department of Anesthesiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand Background: The Lack’s circuit is a co-axial Mapleson A breathing system commonly used in spontaneously breathing anesthetized adults but still requires high fresh gas flow (FGF. The Lack-Plus circuit was invented with the advantage of lower FGF requirement. The authors compared the Lack-Plus and Lack’s circuit for the minimal FGF requirement with no rebreathing in spontaneously breathing anesthetized adults.Methods: This was a randomized crossover study. We enrolled 24 adult patients undergoing supine elective surgery, with a body mass index ≤30 kg/m2 and an American Society of Anesthesiologists physical status I–II. They were randomly allocated to group 1 (LP-L starting with Lack-Plus then switching to Lack’s circuit or group 2 (L-LP (with the reverse pattern. After induction and intubation, anesthesia was maintained with 50% N2O/O2 and desflurane (4%–6% plus fentanyl titration to maintain an optimal respiratory rate between 10 and 16/min. Starting with the first circuit, all the patients were spontaneously breathing with a FGF of 4 L/min for 10 min, gradually decreased by 0.5 L/min every 5 min until FGF was 2.5 L/min. End-tidal CO2, inspired minimum CO2 (ImCO2, mean arterial pressure, and oxygen saturation were recorded until rebreathing (ImCO2 >0 mmHg occurred. The alternate anesthesia breathing circuit was used and the measurements were repeated.Results: The respective minimal FGF at the point of rebreathing for the Lack-Plus and Lack’s circuit was 2.7±0.8 and 3.3±0.5 L/min, respectively, p<0.001. At an FGF of 2.5 L/min, the respective ImCO2 was 1.5±2.0 and 4.2±2.6 mmHg, respectively, p<0.001.Conclusion: The Lack-Plus circuit can be used safely and effectively, and it requires less FGF than Lack

  6. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    Science.gov (United States)

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA.

  7. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath.

    Science.gov (United States)

    Fan, Gang-Ting; Yang, Chien-Lin; Lin, Cheng-Huang; Chen, Chien-Chung; Shih, Chung-Hung

    2014-03-01

    The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed to detect acetone, a biomarker for diabetes mellitus (DM) prediction, in human breath. Samples of exhaled breath were collected from four DM patients (one type-I and three type-II) and eight volunteers (nondiabetic healthy subjects), respectively. The gas samples, without any pretreatment, were simultaneously injected into a GC column through a Hadamard-injector based on Hadamard codes. Under optimized conditions, when cyclic S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the acetone signals were substantially improved by 8.0-, 16.0- and 22.6-fold, respectively; these improvements are in good agreement with theoretically calculated values. We found that the breath acetone concentration levels in the four DM patients and the eight volunteers ranged from 1 to 10 ppmv and 0.1 to 1 ppmv, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot and Periodic (Cheyne-Stokes Breathings and Bronchial Asthma Attack

    Directory of Open Access Journals (Sweden)

    Andrey Golov

    2017-02-01

    Full Text Available An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller airways, extended with convective transport model throughout the lung and alveolar components which were combined with the model of oxygen and carbon dioxide transport between the alveolar volume and the averaged blood compartment during pathological respiratory conditions. The novel features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation of the computed tomography (CT data; 1D−0D coupling of the models of 1D bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster (Biot and periodic (Cheyne-Stokes respirations and bronchial asthma attack. The suitability of the proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed in all these cases. In the future, these results might be integrated into research and practical studies aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of breathing patterns and alveolar gas exchange for patients with breathing problems.

  9. From breathing to respiration.

    Science.gov (United States)

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

  10. Mapleson's Breathing Systems

    OpenAIRE

    Kaul, Tej K; Mittal, Geeta

    2013-01-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where...

  11. Breathing Problems

    Science.gov (United States)

    ... getting enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense ... panic attacks Allergies If you often have trouble breathing, it is important to find out the cause.

  12. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Weiss, Tobias; Lehnert, Martin; Gawrych, Katarzyna; Kendzia, Benjamin; Harth, Volker; Henry, Jana; Pesch, Beate; Brüning, Thomas

    2012-06-01

    Concerning possible harmful components of welding fumes, besides gases and quantitative aspects of the respirable welding fumes, particle-inherent metal toxicity has to be considered.The objective of this study was to investigate the effect markers leukotriene B4 (LTB4),prostaglandin E2 (PGE2) and 8-isoprostane (8-Iso PGF2α) as well as the acid–base balance(pH) in exhaled breath condensate (EBC) of 43 full-time gas metal arc welders (20 smokers) in relation to welding fume exposure. We observed different patterns of iron, chromium and nickel in respirable welding fumes and EBC. Welders with undetectable chromium in EBC(group A, n = 24) presented high iron and nickel concentrations. In this group, higher 8-isoPGF2α and LTB4 concentrations could be revealed compared to welders with detectable chromium and low levels of both iron and nickel in EBC (group B): 8-iso PGF2α443.3 pg mL−1 versus 247.2 pg mL−1; p = 0.001 and LTB4 30.5 pg mL−1 versus 17.3 pgmL−1; p = 0.016. EBC-pH was more acid in samples of group B (6.52 versus 6.82; p = 0.011).Overall, effect markers in welders were associated with iron concentrations in EBC according to smoking habits--non-smokers/smokers: LTB4 (rs = 0.48; p = 0.02/rs = 0.21; p = 0.37),PGE2 (rs = 0.15; p = 0.59/rs = 0.47; p = 0.07), 8-iso PGF2α (rs = 0.18; p = 0.54/rs = 0.59;p = 0.06). Sampling of EBC in occupational research provides a matrix for the simultaneous monitoring of metal exposure and effects on target level. Our results suggest irritative effects in the airways of healthy welders. Further studies are necessary to assess whether these individual results might be used to identify welders at elevated risk for developing a respiratory disease.

  13. Formyl-d aromatic aldehydes

    International Nuclear Information System (INIS)

    Chancellor, T.; Quill, M.; Bergbreiter, D.E.; Newcomb, M.

    1978-01-01

    A simple exchange reaction for preparation of aldehydes labeled with deuterium at the formyl carbon is described. It can be successfully accomplished with several aromatic aldehydes, a catalytic or stoichiometric amount of either potassium cyanide or a thiazolium salt, a weak Lewis base, and deuterium oxide as the deuterium source

  14. First general methods toward aldehyde enolphosphates.

    Science.gov (United States)

    Barthes, Nicolas; Grison, Claude

    2012-02-01

    We herein report two innovative methods toward aldehyde enolphosphates and the first saccharidic aldehyde enolphosphates. Aldehyde enolphosphate function is worthwhile to be considered as a good phosphoenolpyruvate analogue. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Comparative study of minimal fresh gas flow used in Lack-Plus and Lack’s circuit in spontaneously breathing anesthetized adults

    Science.gov (United States)

    Theerapongpakdee, Sunchai; Sathitkarnmanee, Thepakorn; Tribuddharat, Sirirat; Sucher, Siwalai; Thananun, Maneerat; Nonlhaopol, Duangthida

    2016-01-01

    Background The Lack’s circuit is a co-axial Mapleson A breathing system commonly used in spontaneously breathing anesthetized adults but still requires high fresh gas flow (FGF). The Lack-Plus circuit was invented with the advantage of lower FGF requirement. The authors compared the Lack-Plus and Lack’s circuit for the minimal FGF requirement with no rebreathing in spontaneously breathing anesthetized adults. Methods This was a randomized crossover study. We enrolled 24 adult patients undergoing supine elective surgery, with a body mass index ≤30 kg/m2 and an American Society of Anesthesiologists physical status I–II. They were randomly allocated to group 1 (LP-L) starting with Lack-Plus then switching to Lack’s circuit or group 2 (L-LP) (with the reverse pattern). After induction and intubation, anesthesia was maintained with 50% N2O/O2 and desflurane (4%–6%) plus fentanyl titration to maintain an optimal respiratory rate between 10 and 16/min. Starting with the first circuit, all the patients were spontaneously breathing with a FGF of 4 L/min for 10 min, gradually decreased by 0.5 L/min every 5 min until FGF was 2.5 L/min. End-tidal CO2, inspired minimum CO2 (ImCO2), mean arterial pressure, and oxygen saturation were recorded until rebreathing (ImCO2 >0 mmHg) occurred. The alternate anesthesia breathing circuit was used and the measurements were repeated. Results The respective minimal FGF at the point of rebreathing for the Lack-Plus and Lack’s circuit was 2.7±0.8 and 3.3±0.5 L/min, respectively, p<0.001. At an FGF of 2.5 L/min, the respective ImCO2 was 1.5±2.0 and 4.2±2.6 mmHg, respectively, p<0.001. Conclusion The Lack-Plus circuit can be used safely and effectively, and it requires less FGF than Lack’s circuit in spontaneously breathing anesthetized adults. PMID:27877068

  16. XPS study of organic/MoO3 hybrid thin films for aldehyde gas sensors. Correlation between average Mo valance and sensitivity

    International Nuclear Information System (INIS)

    Itoh, Toshio; Matsubara, Ichiro; Shin, Woosuck; Izu, Noriya; Nishibori, Maiko

    2010-01-01

    We investigate the formaldehyde gas sensing properties of poly(5,6,7,8-tetrahydro-1-naphthylamine)-intercalated MoO 3 thin films ((PTHNA) x MoO 3 ). The resistance responses of (PTHNA) x MoO 3 to formaldehyde increase with increasing intercalation temperature. X-ray photoelectron spectroscopy reveals that the molar ratio of Mo 5+ decreases with increasing intercalation temperature. (author)

  17. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats.

    Science.gov (United States)

    Souza, George M P R; Kanbar, Roy; Stornetta, Daniel S; Abbott, Stephen B G; Stornetta, Ruth L; Guyenet, Patrice G

    2018-04-18

    The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO 2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO 2 homeostasis and breathing during sleep or wake. RTN Nmb positive neurons were killed with targeted microinjections of substance-P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4 % cell loss) had normal blood pressure (BP) and arterial pH but were hypoxic (-8 mmHg PaO 2 ) and hypercapnic (+10 mmHg PaCO 2 ). In resting conditions, minute-volume (V E ) was normal but breathing frequency (f R ) was elevated and tidal volume (V T ) reduced. Resting O 2 consumption and CO 2 production were normal. The hypercapnic ventilatory reflex in 65% FiO 2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO 2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep (SWS), especially under hyperoxia, but apneas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but HVR persists and sighing and the state-dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in V E but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnea during SWS, even under hyperoxia. Background: the retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO 2 but its role during various states of vigilance needed clarification. New result: Under normoxia, RTN lesions increase the arterial PCO 2 set-point, lower the PO 2 set-point and reduce alveolar ventilation relative to CO 2 production. Tidal volume is

  18. Alcohol, Aldehydes, Adducts and Airways

    Directory of Open Access Journals (Sweden)

    Muna Sapkota

    2015-11-01

    Full Text Available Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA adduct and hybrid malondialdehyde-acetaldehyde (MAA protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  19. Improving Systems Dynamics by Means of Advanced Signal Processing – Mathematical, Laboratorial and Clinical Evaluation of Propofol Monitoring in Breathing Gas

    Directory of Open Access Journals (Sweden)

    Dammon ZIAIAN

    2015-10-01

    Full Text Available Electrochemical sensors are used in various gas measurement applications and are available for different gases. Depending on the application, the sensor might need to be installed far away from the actual measurement site, requiring the use of long sampling lines. Examples are portable gas measurement devices in which remote locations like tanks and chemical reactors need to be monitored. But also medical applications, where the sensors cannot be positioned in close vicinity to the patient, are common like, e.g., the side-stream measurement of breathing gas. Due to the characteristics of electrochemical sensors and to the adsorption and desorption behavior of sampling lines for different gases, the electrical sensor signal may indicate long response times. In this paper, we propose an on-line signal processing algorithm which is capable to significantly improve the performance. After characterizing the dynamic behavior of the sensor system, a properly designed deconvolution filter is used to reduce response time and signal noise. Within this article, we also provide an example of this algorithm for a novel electrochemical sensor for the measurement of the anesthetic agent propofol in exhaled air. For this application, the acceleration is prerequisite for the measurement chain to be of practical use in a clinical setting. Our goals, to establish measurement dynamics to record the physiologic parameter and to reduce non-physiological disturbances, were achieved with additional reserves. This article is based on 1 and is extended by original clinical data. As an example, we present propofol monitoring in breath of one patient in order to demonstrate the performance of the introduced algorithm in a real clinical application. We proved that the electrochemical sensor, associated with the provided algorithm, is capable for real-time monitoring in a clinical setting.

  20. Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome: An Alternative to Mechanical Ventilation?

    Science.gov (United States)

    2014-03-01

    Alveolar minute ventilation (L/min) 5.7 ± 2.7 2.7 ± 1.5 0.003 Dead space fraction 0.44 ± 0.10 0.81 ± 0.10 < 0.001 Pulmonary shunt fraction 0.01 ± 0.01 0.25...ventilation expressed as % of control values, MVALV reduction = reduction in alveolar minute ventilation expressed as percentage of control values...Data are expressed as mean ± sd. Online Laboratory Investigations Critical Care Medicine www.ccmjournal.org e217 of spontaneous breathing: preserved

  1. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).

    Science.gov (United States)

    Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika

    2018-02-15

    Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  3. Breath sounds

    Science.gov (United States)

    ... described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They occur when air is blocked or air flow becomes rough through the large airways. Stridor. Wheeze-like sound heard when a person breathes. Usually it is ...

  4. 14 CFR 121.337 - Protective breathing equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in paragraph...

  5. Bad Breath

    Science.gov (United States)

    ... fresh and healthy. Tips for preventing bad breath: Brush your teeth (and tongue!) for at least two minutes twice ... and drinks. This helps prevent damage to your teeth and is great for your overall health. Brush after sweets. If you eat or drink sugary ...

  6. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  7. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  8. Aldehyde dehydrogenases and cell proliferation.

    Science.gov (United States)

    Muzio, G; Maggiora, M; Paiuzzi, E; Oraldi, M; Canuto, R A

    2012-02-15

    Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of

  9. In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas.

    Science.gov (United States)

    Oliveira, Diego F M; Leonel, Edson D

    2012-06-01

    Some dynamical properties for a time dependent Lorentz gas considering both the dissipative and non dissipative dynamics are studied. The model is described by using a four-dimensional nonlinear mapping. For the conservative dynamics, scaling laws are obtained for the behavior of the average velocity for an ensemble of non interacting particles and the unlimited energy growth is confirmed. For the dissipative case, four different kinds of damping forces are considered namely: (i) restitution coefficient which makes the particle experiences a loss of energy upon collisions; and in-flight dissipation given by (ii) F=-ηV(2); (iii) F=-ηV(μ) with μ≠1 and μ≠2 and; (iv) F=-ηV, where η is the dissipation parameter. Extensive numerical simulations were made and our results confirm that the unlimited energy growth, observed for the conservative dynamics, is suppressed for the dissipative case. The behaviour of the average velocity is described using scaling arguments and classes of universalities are defined.

  10. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.

    Directory of Open Access Journals (Sweden)

    Jui-Lin Fan

    Full Text Available Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF. We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation ([Formula: see text]E during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF, [Formula: see text]E, end-tidal PCO2, respiratory compensation threshold (RC and ventilatory response to exercise ([Formula: see text]E slope in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10 with and without augmenting the fraction of inspired CO2 (FICO2. During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset and[Formula: see text]E slope below RC (P0.05. The [Formula: see text]E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05. We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.

  11. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.

    Science.gov (United States)

    Fan, Jui-Lin; Kayser, Bengt

    2013-01-01

    Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation ([Formula: see text]E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), [Formula: see text]E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise ([Formula: see text]E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset and[Formula: see text]E slope below RC (Phypoxia, MCAv and [Formula: see text]E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (Phypoxia increased [Formula: see text]E at RC (PE slope below RC (P>0.05). The [Formula: see text]E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.

  12. Chromate reduction by rabbit liver aldehyde oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.B.; Cooke, R.T. Jr.

    1986-05-29

    Chromate was reduced during the oxidation of 1-methylnicotinamide chlorine by partially purified rabbit liver aldehyde oxidase. In addition to l-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors or aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.

  13. Measurement of area and personal breathing zone concentrations of diesel particulate matter (DPM) during oil and gas extraction operations, including hydraulic fracturing.

    Science.gov (United States)

    Esswein, Eric J; Alexander-Scott, Marissa; Snawder, John; Breitenstein, Michael

    2018-01-01

    Diesel engines serve many purposes in modern oil and gas extraction activities. Diesel particulate matter (DPM) emitted from diesel engines is a complex aerosol that may cause adverse health effects depending on exposure dose and duration. This study reports on personal breathing zone (PBZ) and area measurements for DPM (expressed as elemental carbon) during oil and gas extraction operations including drilling, completions (which includes hydraulic fracturing), and servicing work. Researchers at the National Institute for Occupational Safety and Health (NIOSH) collected 104 full-shift air samples (49 PBZ and 55 area) in Colorado, North Dakota, Texas, and New Mexico during a four-year period from 2008-2012. The arithmetic mean (AM) of the full shift TWA PBZ samples was 10 µg/m 3 ; measurements ranged from 0.1-52 µg/m 3 . The geometric mean (GM) for the PBZ samples was 7 µg/m 3 . The AM of the TWA area measurements was 17 µg/m 3 and ranged from 0.1-68 µg/m 3 . The GM for the area measurements was 9.5 µg/m 3 . Differences between the GMs of the PBZ samples and area samples were not statistically different (P > 0.05). Neither the Occupational Safety and Health Administration (OSHA), NIOSH, nor the American Conference of Governmental Industrial Hygienists (ACGIH) have established occupational exposure limits (OEL) for DPM. However, the State of California, Department of Health Services lists a time-weighted average (TWA) OEL for DPM as elemental carbon (EC) exposure of 20 µg/m 3 . Five of 49 (10.2%) PBZ TWA measurements exceeded the 20 µg/m 3 EC criterion. These measurements were collected on Sandmover and Transfer Belt (T-belt) Operators, Blender and Chemical Truck Operators, and Water Transfer Operators during hydraulic fracturing operations. Recommendations to minimize DPM exposures include elimination (locating diesel-driven pumps away from well sites), substitution, (use of alternative fuels), engineering controls using advanced emission control

  14. 42 CFR 84.1132 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.1132 Section 84.1132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Gas Masks § 84.1132 Breathing tubes; minimum requirements. (a) Flexible breathing tubes used in...

  15. 42 CFR 84.115 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.115 Section 84.115 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... § 84.115 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with gas...

  16. 42 CFR 84.122 - Breathing resistance test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; minimum requirements. 84... Masks § 84.122 Breathing resistance test; minimum requirements. (a) Resistance to airflow will be measured in the facepiece or mouthpiece of a gas mask mounted on a breathing machine both before and after...

  17. Breath holding spell

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000967.htm Breath holding spell To use the sharing features on this page, please enable JavaScript. Some children have breath holding spells. This is an involuntary stop in breathing ...

  18. Deep breathing after surgery

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000440.htm Deep breathing after surgery To use the sharing features on ... way to do so is by doing deep breathing exercises. Deep breathing keeps your lungs well-inflated ...

  19. Breathing difficulty - lying down

    Science.gov (United States)

    ... short of breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea; Heart failure - orthopnea ... Heart failure Obesity (does not directly cause difficulty breathing while lying down but often worsens other conditions ...

  20. Apolo Ohno: Breathing Easier

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Breathing Easier Apolo Ohno: Breathing Easier Past Issues / Fall 2013 Table of Contents ... training, I started experiencing decreased exercise endurance, trouble breathing, and coughing. These symptoms affected my ability to ...

  1. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  2. Breathing and Relaxation

    Science.gov (United States)

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  3. Breathing difficulties - first aid

    Science.gov (United States)

    Difficulty breathing - first aid; Dyspnea - first aid; Shortness of breath - first aid ... Breathing difficulty is almost always a medical emergency. An exception is feeling slightly winded from normal activity, ...

  4. Traveling with breathing problems

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000066.htm Traveling with breathing problems To use the sharing features on this page, please enable JavaScript. If you have breathing problems and you: Are short of breath most ...

  5. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    Science.gov (United States)

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  6. Breathing - slowed or stopped

    Science.gov (United States)

    ... bradypnea. Labored or difficult breathing is known as dyspnea. ... Premature birth Seizures Common causes of breathing trouble (dyspnea) in adults include: Allergic reaction that causes tongue, ...

  7. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  8. Emissions of odorous aldehydes from alkyd paint

    Science.gov (United States)

    Chang, John C. S.; Guo, Zhishi

    Aldehyde emissions are widely held responsible for the acrid after-odor of drying alkyd-based paint films. The aldehyde emissions from three different alkyd paints were measured in small environ-mental chambers. It was found that, for each gram of alkyd paint applied, more than 2 mg of aldehydes (mainly hexanal) were emitted during the curing (drying) period. Since no measurable hexanal was found in the original paint, it is suspected that the aldehydes emitted were produced by autoxidation of the unsaturated fatty acid esters in the alkyd resins. The hexanal emission rate was simulated by a model assuming that the autoxidation process was controlled by a consecutive first-order reaction mechanism. Using the emission rate model, indoor air quality simulation indicated that the hexanal emissions can result in prolonged (several days) exposure risk to occupants. The occupant exposure to aldehydes emitted from alkyd paint also could cause sensory irritation and other health concerns.

  9. Monitoring of tumor oxygenation changes in head-and-neck carcinoma patients breathing a hyperoxic hypercapnic gas mixture with a noninvasive MRI technique

    International Nuclear Information System (INIS)

    Kotas, Markus; Flentje, Michael; Schmitt, Markus; Jakob, Peter M.

    2009-01-01

    Purpose: to implement and evaluate a noninvasive functional MRI technique for measuring tumor tissue oxygenation changes in head-and-neck carcinoma patients. Patients and methods: tissue oxygenation changes were determined quantitatively in 13 patients with head-and-neck cancer. The MR examinations were performed on a clinical MR scanner at 1.5 T. Different breathing gases (air, 2% CO 2 and 98% O 2 , 100% oxygen) were administered to induce oxygenation changes. A multigradient echo sequence was used for quantification of the apparent transverse relaxation time T2*. Results: pixel-by-pixel analysis of the T2* values in tumors showed a shift toward higher values corresponding to oxygenation increase and correlated with a median shift toward positive values in the ΔT2* fraction under carbogen and oxygen breathing in most but not all patients. A slightly pronounced T2* increase breathing oxygen compared with 2% CO 2 /98% O 2 was found. Furthermore, a statistically significant difference in the heterogeneity of oxygenation changes induced by oxygen or 2% CO 2 /98% O 2 breathing was seen. Conclusion: measurement of oxygenation changes in head-and-neck tumor patients is feasible by the presented MRI technique. Tumor oxygenation and oxygenation changes were heterogeneous among the investigated patients. To the authors' knowledge, they are the first to describe a statistically significant difference in the heterogeneity of oxygenation changes induced by oxygen or 2% CO 2 /98% O 2 breathing using a noninvasive MRI technique. (orig.)

  10. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for use as protection against gas leaking from a refrigeration unit. (b) The self-contained breathing...

  11. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 195.30-15 Section... Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for use as protection against gas leaking from a refrigeration unit. (b) The self-contained breathing...

  12. Exposure to mutagenic aldehydes and particulate matter during panfrying of beefsteak with margarine, rapeseed oil, olive oil or soybean oil.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Svendsen, Kristin

    2008-11-01

    The aim of the study was to see if a cook could be exposed to mutagenic aldehydes in fumes from frying of beefsteak using margarine, rapeseed oil, soybean oil or virgin olive oil as frying fat. In addition, levels of particle exposure were measured to make the results comparable to other studies. The levels of higher aldehydes and total particles were measured in the breathing zone of the cook during the panfrying of beefsteak with the four different frying fats. In addition, the number of particles in the size intervals 0.3-0.5, 0.5-0.7 and 0.7-1.0 microm in the kitchen was registered. Measured levels of mutagenic aldehydes were between non-detectable and 25.33 microg m(-3) air. The exposure level of total aerosol was between 1.0 and 11.6 mg m(-3). Higher aldehydes were detected in all samples from this study, and mutagenic aldehydes were detected in most of the samples. Frying with margarine gave statistically significantly higher levels of mutagenic aldehydes and particles in all three size fractions than frying with the three different kinds of oil.

  13. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  14. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT-MS)

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2009-01-01

    Roč. 280, 1-3 (2009), s. 128-135 ISSN 1387-3806 R&D Projects: GA AV ČR IAA400400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : ion-molecule association * adduct ion * SIFT-MS * breath analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009

  15. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chapter 18 (Part 2): Aldehydes & Ketones

    OpenAIRE

    Christiansen, Mike A

    2012-01-01

    In this video I'll teach you about what happens when we add acetylide, cyanide, and Grignard reagents to aldehydes and ketones. I also provide in-depth coverage on the reaction of aldehydes, ketones, carboxylic acids, esters, amides, and acyl (acid) chlorides with sodium borohydride (NaBH4), lithium aluminum hydride (LiAlH4), and DIBAL-H (or "diisobutyl aluminum hydride). --Dr. Mike Christiansen from Utah State University

  17. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  18. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  19. Comparison of work of breathing using drawover and continuous flow anaesthetic breathing systems in children.

    Science.gov (United States)

    Bell, G T; McEwen, J P J; Beaton, S J; Young, D

    2007-04-01

    We compared the work of breathing under general anaesthesia in children using drawover and continuous flow anaesthetic systems. A pilot study was conducted in four children weighing > 20 kg in whom it would usually be considered appropriate to use breathing systems designed for adult anaesthesia. The pilot study compared work of breathing using the Mapleson D breathing system and the Triservice Anaesthetic Apparatus (TSAA). Work of breathing was calculated using the modified Campbell technique that calculates work using a pressure volume loop derived from oesophageal pressure and airway gas volume measurements. We found no difference in the work of breathing when comparing the Mapleson D and the TSAA in children > 20 kg. Following completion of the pilot study, we conducted a study on 10 children weighing between 10 and 20 kg comparing work of breathing using the Mapleson F breathing system and the TSAA. We found no significant difference in the work of breathing between the Mapleson F and the TSAA for these children. The TSAA can therefore be recommended for use down to a lower weight limit of 10 kg.

  20. What Causes Bad Breath?

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo ... through your mouth. Smoking is also a major cause of bad breath. There are lots of myths ...

  1. Breath-Holding Spells

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Breath-Holding Spells KidsHealth / For Parents / Breath-Holding Spells What's in ... Spells Print en español Espasmos de sollozo About Breath-Holding Spells Many of us have heard stories about stubborn ...

  2. Effect of bioactive aldehydes on gelatin properties

    Directory of Open Access Journals (Sweden)

    I. P. Krysyuk

    2015-04-01

    Full Text Available Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each and their combinations in 0.1 M Na-phosphate buffer (pH 7.4 containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated the fluorescent properties of these samples and their molecular weight distribution by electrophoresis. It has been revealed that formed adducts had different fluorescence spectra. According to fluorescence intensity these aldehydes were put in order: formaldehyde < methylglyoxal < acrolein < ribose < deoxy­ribose < glyoxal. The electrophoresis results showed fragments of gelatin molecular weight redistribution. By this index, the aldehydes rating was as follows: ribose < deoxyribose < acrolein < glyoxal < formaldehyde < methylglyoxal. Comparison of these two ratings indicates that aldehydes with a lower ability to form fluorescent adducts have higher abili­ty to form intermolecular crosslinks. Therefore, the traditional clinical fluorescent test of a patients’ skin surface for collagen crosslinks determination has to be verified by other tests for proteins postsynthetic modifications.

  3. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Amann, Anton

    2016-01-01

    The stability of 41 selected breath constituents in three types of polymer sampling bags, Tedlar, Kynar, and Flexfilm, was investigated using solid phase microextraction and gas chromatography mass spectrometry. The tested molecular species belong to different chemical classes (hydrocarbons, ketones, aldehydes, aromatics, sulphurs, esters, terpenes, etc.) and exhibit close-to-breath low ppb levels (3–12 ppb) with the exception of isoprene, acetone and acetonitrile (106 ppb, 760 ppb, 42 ppb respectively). Stability tests comprised the background emission of contaminants, recovery from dry samples, recovery from humid samples (RH 80% at 37 °C), influence of the bag’s filling degree, and reusability. Findings yield evidence of the superiority of Tedlar bags over remaining polymers in terms of background emission, species stability (up to 7 days for dry samples), and reusability. Recoveries of species under study suffered from the presence of high amounts of water (losses up to 10%). However, only heavier volatiles, with molecular masses higher than 90, exhibited more pronounced losses (20–40%). The sample size (the degree of bag filling) was found to be one of the most important factors affecting the sample integrity. To sum up, it is recommended to store breath samples in pre-conditioned Tedlar bags up to 6 hours at the maximum possible filling volume. Among the remaining films, Kynar can be considered as an alternative to Tedlar; however, higher losses of compounds should be expected even within the first hours of storage. Due to the high background emission Flexfilm is not suitable for sampling and storage of samples for analyses aiming at volatiles at a low ppb level. PMID:23323261

  4. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  5. Simulation of Aldehyde Emissions from an Ethanol Fueled Spark Ignition Engine and Comparison with FTIR Measurements

    International Nuclear Information System (INIS)

    Zaránte, Paola Helena Barros; Sodre, Jose Ricardo

    2016-01-01

    This paper presents a mathematical model that calculates aldehyde emissions in the exhaust of a spark ignition engine fueled with ethanol. The numerical model for aldehyde emissions was developed using FORTRAN software, with the input data obtained from a dedicated engine cycle simulation software, AVL BOOST. The model calculates formaldehyde and acetaldehyde emissions, formed from the partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained by Fourier Transform Infrared Spectroscopy (FTIR). The experiments were performed with a mid-size sedan powered by a 1.4-liter spark ignition engine on a chassis dynamometer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. A reasonable agreement between simulated and measured values was achieved. (paper)

  6. [EFFECT OF BIOACTIVE ALDEHYDES ON GELATIN PROPERTIES].

    Science.gov (United States)

    Krysyuk, I P; Dzvonkevych, N D; Volodina, T T; Popova, N N; Shandrenko, S G

    2015-01-01

    Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM) were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each) and their combinations in 0.1 M Naphosphate buffer (pH 7.4) containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated the fluorescent properties of these samples and their molecular weight distribution by electrophoresis. It has been revealed that formed adducts had different fluorescence spectra. According to fluorescence intensity these aldehydes were put in order: formaldehyde acrolein acrolein test of a patients' skin surface for collagen crosslinks determination has to be verified by other tests for proteins postsynthetic modifications.

  7. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Ultrasensitive Plasmonic Nanosensor for Aldehydes.

    Science.gov (United States)

    Li, Meng; Shi, Lei; Xie, Tao; Jing, Chao; Xiu, Guangli; Long, Yi-Tao

    2017-02-24

    Glucose is the most common but important aldehyde, and it is necessary to create biosensors with high sensitivity and anti-interference to detect it. Under the existence of silver ions and aldehyde compounds, single gold nanoparticles and freshly formed silver atoms could respectively act as core and shell, which finally form a core-shell structure. By observing the reaction between glucose and Tollens' reagent, metallic silver was found to be reduced on the surface of gold nanoparticles and formed Au@Ag nanoparticles that lead to a direct wavelength shift. Based on this principle and combined with in situ plasmon resonance scattering spectra, a plasmonic nanosensor was successfully applied in identifying aldehyde compounds with excellent sensitivity and specificity. This ultrasensitive sensor was successfully further utilized to detect blood glucose in mice serum samples, exhibiting good anti-interference ability and great promise for future clinical application.

  9. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss.

    Science.gov (United States)

    Kundu, S K; Bruzek, J A; Nair, R; Judilla, A M

    1993-01-01

    Acetone, a metabolite of fat catabolism, is produced in excessive amounts in subjects on restricted-calorie weight-loss programs. Breath acetone measurements are useful as a motivational tool during dieting and for monitoring the effectiveness of weight-loss programs. We have developed a simple, easy-to-read method that quantifies the amount of acetone in a defined volume of exhaled breath after trapping the sample in a gas-analyzer column. The concentration of acetone, as measured by the length of a blue color zone in the analyzer column, correlates with results obtained by gas chromatography. Using the breath acetone analyzer to quantify breath acetone concentrations of dieting subjects, we established a correlation between breath acetone concentration and rate of fat loss (slope 52.2 nmol/L per gram per day, intercept 15.3 nmol/L, n = 78, r = 0.81). We also discussed the possibility of using breath acetone in diabetes management.

  10. Effect of bioactive aldehydes on gelatin properties

    OpenAIRE

    I. P. Krysyuk; N. D. Dzvonkevych; T. T. Volodina; N. N. Popova; S. G. Shandrenko

    2015-01-01

    Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM) were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated t...

  11. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  12. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone ...

    Indian Academy of Sciences (India)

    Vol. 126, No. 5, September 2014, pp. 1547–1555. c Indian Academy of Sciences. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties. PIYALI PAUL and SAMARESH BHATTACHARYA. ∗. Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, ...

  13. Aldehyde dehydrogenase protein superfamily in maize.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.

  14. Air sampling unit for breath analyzers

    Science.gov (United States)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  15. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for the...

  16. How to breathe when you are short of breath

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000053.htm How to breathe when you are short of breath ... Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps to ...

  17. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  18. Workplace Breathing Rates: Defining Anticipated Values and Ranges for Respirator Certification Testing

    National Research Council Canada - National Science Library

    Caretti, David M; Gardner, Paul D; Coyne, Karen M

    2004-01-01

    .... For air-purifying respirators (APRs), the primary performance tests most affected by airflow rate are filter gas-life capacity, particulate filter efficiency, and respirator breathing resistances...

  19. Eldercare at Home: Breathing Problems

    Science.gov (United States)

    ... Join our e-newsletter! Resources Eldercare at Home: Breathing Problems Caregiving How Tos Understanding the Problem As ... However, aging sometimes brings on other more serious breathing problems including incapacitating shortness of breath, chest discomfort, ...

  20. Aldehyde-induced xanthine oxidase activity in raw milk.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  1. Breath alcohol test (image)

    Science.gov (United States)

    The breath alcohol test measures the amount of alcohol in the blood by testing exhaled air. The test is performed by blowing ... breath machine 15 minutes after alcohol consumption. The test determines how much alcohol it takes to raise the blood-alcohol level ...

  2. Minimizing Shortness of Breath

    Science.gov (United States)

    ... is also placed on proper use of the abdominal muscles to better control episodes of shortness of breath, limit overuse of the accessory muscles and manage respiratory symptoms. Monitor Breathing During an activity, it is important to pause frequently to check ...

  3. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    249-250, - (2006), s. 230-239 ISSN 1387-3806 R&D Projects: GA ČR GA202/03/0827 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube * mass spectrometry * SIFT-MS * trace gas analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2006

  4. Aldehyde decarbonylation catalysis under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C.M.; Rathmill, S.E.; Park, Y.J.; Chen, J.; Crabtree, R.H.; Liable-Sands, L.M.; Rheingold, A.L.

    1999-12-06

    Reaction of [RhCl(NBD)]{sub 2} with 2.0 equiv of triphos (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine; NBD = bicyclo[2.2.1]hepta-2,5-diene) in THF solution at room temperature affords [Rh(NBD)(triphos)][Cl] (4a), which was isolated as [Rh(NBD)(triphos)][SbF{sub 6}] (4b) in 67% yield. Treatment of 4b with aqueous formaldehyde in THF solution at 80 C forms [Rh(CO)(triphos)][SbF{sub 6}] (2a), which reversibly binds a second equivalent of CO{sub (g)} to give [Rh(CO){sub 2}(triphos)][SbF{sub 6}] (2b). The complex [Rh(CO)(triphos)][SbF{sub 6}] has been found to be an effective aldehyde decarbonylation catalyst for primary and aryl aldehydes at temperatures as low as that of refluxing dioxane, with little or no undesirable side products resulting from {beta} elimination or radical rearrangement.

  5. Formation of Aldehyde and Ketone Compounds during Production and Storage of Milk Powder

    Directory of Open Access Journals (Sweden)

    Weijun Wang

    2012-08-01

    Full Text Available Certain aldehyde and ketone compounds can be used as indicators, at a molecular level, of the oxidized flavor of milk powder instead of sensory evaluation. This study investigated the formation of aldehyde and ketone compounds as affected by the heat-related processing and storage of milk powder. The compounds were extracted by solid phase microextraction fiber and determined using gas chromatography-mass spectrometry. In the results, higher contents of hexanal, 2-heptanone, octanal and 3-octen-2-one were detected in concentrated milk and fresh milk powders than in raw milk and heated milk. The levels of these compounds increased with increasing time of storage of milk powder. Meanwhile, the DPPH radical scavenging activity decreased and peroxide value increased during the production and storage of milk powder. In addition, the pore volume distribution of milk powder particle was determined by nitrogen isotherm adsorption. The porosity of milk powder was significantly correlated to the changes of aldehyde and ketone compounds during storages periods of 3 months (r > 0.689, p < 0.05 and 6 months (r > 0.806, p < 0.01. Therefore attention should be paid to the detectable aldehyde and ketone molecules to control the oxidized flavor, which was influenced by pre-heating as well as concentration and drying during milk powder production.

  6. Shortness of Breath

    Science.gov (United States)

    ... enough air. Shortness of breath — known medically as dyspnea — is often described as an intense tightening in ... properly. Schwartzstein RM. Approach to the patient with dyspnea. http://www.uptodate.com/home. Accessed Feb. 4, ...

  7. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length.

    Science.gov (United States)

    Bao, Luyao; Li, Jian-Jun; Jia, Chenjun; Li, Mei; Lu, Xuefeng

    2016-01-01

    Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. Based on the crystal structures of cADOs (cyanobacterial ADO) with substrate analogs bound, some amino acids affecting the substrate specificity of cADO were identified, including the amino acids close to the aldehyde group and the hydrophobic tail of the substrate and those along the substrate channel. Using site-directed mutagenesis, selected amino acids were replaced with bulky ones introducing steric hindrance to the binding pocket via large functional groups. All mutants were overexpressed, purified and kinetically characterized. All mutants, except F87Y, displayed dramatically reduced activity towards C14,16,18 aldehydes. Notably, the substrate preferences of some mutants towards different chain-length substrates were enhanced: I24Y for n-heptanal, I27F for n-decanal and n-dodecanal, V28F for n-dodecanal, F87Y for n-decanal, C70F for n-hexanal, A118F for n-butanal, A121F for C4,6,7 aldehydes, V184F for n-dodecanal and n-decanal, M193Y for C6-10 aldehydes and L198F for C7-10 aldehydes. The impact of the engineered cADO mutants on the change of the hydrocarbon profile was demonstrated by co-expressing acyl-ACP thioesterase BTE, fadD and V184F in E. coli, showing that n-undecane was the main fatty alkane. Some amino acids, which can control the chain-length selectivity of substrates of cADO, were identified. The substrate specificities of cADO were successfully changed through structure-guided protein engineering, and some mutants displayed different chain-length preference. The in vivo experiments of V184F in genetically engineered E. coli proved the importance of engineered cADOs on the distribution of the

  8. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  9. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    Directory of Open Access Journals (Sweden)

    Chuanjun Liu

    2017-02-01

    effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.

  10. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    Science.gov (United States)

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.

  11. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    Science.gov (United States)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo

    2015-11-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.

  12. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    International Nuclear Information System (INIS)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Hu, Chenguo; Shi, Haofei

    2015-01-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices. (paper)

  13. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  14. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  15. Reduction of Aldehydes Using Sodium Borohydride under Ultrasonic Irradiation

    Directory of Open Access Journals (Sweden)

    Maulidan Firdaus

    2016-08-01

    Full Text Available A simple, energy efficient, and relatively quick synthetic procedure for the reduction of aldehydes under ultrasonic irradiation is reported. Satisfactorily isolated yields (71-96% were achieved confirming that the preparation of alcohol by aldehyde reduction is possible in green and sustainable fashion.

  16. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  17. A new method for the chemoselective reduction of aldehydes and ...

    Indian Academy of Sciences (India)

    Abstract. A chemoselective Meerwein–Ponndorf–Verley reduction process of various aliphatic and allylic α,β-unsaturated aldehydes and ketones is described. This chemoselective reduction is catalysed by boron tri- isopropoxide B(Oi Pr)3. Kinetics of reduction of aldehydes and ketones to corresponding alcohols were also.

  18. Reduction of Aldehydes and Ketones by Sodium Dithionite

    NARCIS (Netherlands)

    Vries, Johannes G. de; Kellogg, Richard M.

    1980-01-01

    Conditions have been developed for the effective reduction of aldehydes and ketones by sodium dithionite, Na2S2O4. Complete reduction of simple aldehydes and ketones can be achieved with excess Na2S2O4 in H2O/dioxane mixtures at reflux temperature. Some aliphatic ketones, for example, pentanone and

  19. A new method for the chemoselective reduction of aldehydes and ...

    Indian Academy of Sciences (India)

    A chemoselective Meerwein-Ponndorf-Verley reduction process of various aliphatic and allylic ,-unsaturated aldehydes and ketones is described. This chemoselective reduction is catalysed by boron triisopropoxide B(OPr)3. Kinetics of reduction of aldehydes and ketones to corresponding alcohols were also examined ...

  20. Threshold responses in cinnamic-aldehyde-sensitive subjects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, K E; Rastogi, Suresh Chandra

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patc...

  1. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...... temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method...

  2. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  3. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  4. Exhaled breath analysis: physical methods, instruments, and medical diagnostics

    International Nuclear Information System (INIS)

    Vaks, V L; Domracheva, E G; Sobakinskaya, E A; Chernyaeva, M B

    2014-01-01

    This paper reviews the analysis of exhaled breath, a rapidly growing field in noninvasive medical diagnostics that lies at the intersection of physics, chemistry, and medicine. Current data are presented on gas markers in human breath and their relation to human diseases. Various physical methods for breath analysis are described. It is shown how measurement precision and data volume requirements have stimulated technological developments and identified the problems that have to be solved to put this method into clinical practice. (instruments and methods of investigation)

  5. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  6. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  7. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  8. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  9. Radon-in-breath measurement

    International Nuclear Information System (INIS)

    Leach, V.A.

    1981-01-01

    A review of literature on the area of radon breath measurements has shown that respiratory factors have been largely ignored. The history of breathing room-air radon concentrations and the variations in respiratory parameters for each individual have been the major contributing factors for poor reproducibility in radon breath measurements performed by past researchers

  10. Emissions of odorous aldehydes from an alkyd paint

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.S. [Environmental Protection Agency, Research Triangle Park, NC (United States); Guo, Z. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1998-12-31

    Odorous aldehyde emissions from a commonly used alkyd paint were measured and characterized. Initial formulation analysis indicated no measurable aldehydes in the liquid paint. However, small environmental chamber tests showed that, for each gram of the alkyd paint applied, more than 2 mg of aldehydes (mainly hexanal) were emitted during the curing (drying) period. The emission profiles of Aldehydes were very different from those of other volatile organic compounds such as alkanes and aromatics. Since no measurable aldehydes were found in the original point, it is suspected that the aldehydes emitted were produced by autoxidation of the unsaturated fatty acid esters in the alkyd resins. It was found that the hexanal emission rate can be simulated by a mathematical model assuming that the autoxidation process was controlled by a consecutive first-order reaction mechanism. The mathematical model was used to predict the indoor air hexanal concentrations for a typical application of the alkyd paint tested. The result indicated that the aldehyde emissions can result in prolonged (several days) exposure risk to occupants.

  11. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    Science.gov (United States)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  12. Comparison of bioactive aldehydes modifying action on human albumin

    OpenAIRE

    I. P. Krysiuk; A. J. Knaub; S. G. Shandrenko

    2014-01-01

    Protein’s postsynthetic modifications are a cause and a consequence of many diseases. Endogenous aldehydes are one of the main factors of these modifications formation. The human albumin’s modification under some aldehydes influence in in vitro experiment has been investigated. Human albumin (20 mM) was incubated with following aldehydes: ribose, glyoxal, methylglyoxal and formaldehyde (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) with 0.02% sodium azide at 37 °C i...

  13. Isopropanol interference with breath alcohol analysis: a case report.

    Science.gov (United States)

    Logan, B K; Gullberg, R G; Elenbaas, J K

    1994-07-01

    The presence of interfering substances, particularly acetone, has historically been a concern in the forensic measurement of ethanol in human breath. Although modern infrared instruments employ methods for distinguishing between ethanol and acetone, false-positive interferant results can arise from instrumental or procedural problems. The case described gives the analytical results of an individual arrested for driving while intoxicated and subsequently providing breath samples in two different BAC Verifier Datamaster infrared breath alcohol instruments. The instruments recorded ethanol results ranging from 0.09 to 0.17 g/210 L with corresponding interferant results of 0.02 to 0.06 g/210 L over approximately three hours. Breath and venous blood specimens collected later were analyzed by gas chromatography and revealed in the blood: isopropanol 0.023 g/100 mL, acetone 0.057 g/100 mL and ethanol 0.076g/100 mL. Qualitative analysis of the breath sample by GCMS also showed the presence of all three compounds. This individual had apparently consumed both ethanol and isopropanol with acetone resulting from the metabolism of isopropanol. An important observation is that the breath test instruments detected the interfering substances on each breath sample and yet they did not show tendencies to report false interferences when compared with statewide interferant data.

  14. Nocturnal breathing in cyanotic congenital heart disease.

    Science.gov (United States)

    Legault, Sylvie; Lanfranchi, Paola; Montplaisir, Jacques; Nielsen, Tore; Dore, Annie; Khairy, Paul; Marcotte, François; Mercier, Lise-Andrée

    2008-08-18

    Sleep disordered breathing is frequently observed in patients with cardiovascular disease. Even in the absence of heart disease, acute and chronic hypoxia have been shown to promote sleep-related periodic breathing with central apnea characterized by a repetitive reduction or lack of respiratory activity. Cyanotic congenital heart disease (CCHD) is associated with chronic hypoxia, regardless of whether an increase in pulmonary artery pressures coexists. Sleep aggravated hypoxia has been observed in many such patients, but it remains to be determined whether sleep disordered breathing is contributory. We, therefore, sought to assess sleep-related breathing pattern in patients with CCHD. Adults with CCHD, resting arterial oxygen saturation 40% were prospectively enrolled in a cross-sectional study. To assess sleep and respiratory indices, subjects underwent a standardized clinical appraisal that included arterial blood gas analysis and a comprehensive sleep study with an ambulatory device. An apnea-hypopnea index (AHI) >or=5/h was considered to indicate sleep apnea. Ten adults with CCHD, aged 38+/-11 years, completed the study. Seven patients had elevated pulmonary artery pressures, with a mean systolic pressure of 86.3+/-18.1 mm Hg. All patients demonstrated normal sleep parameters. Oxygen saturation further declined in 5 patients during sleep. However, no associated alteration in respiratory parameters was observed and no significant arrhythmia. The mean AHI was 1.1+/-1.0/h. No subject met the pre-defined criterion for sleep apnea. Although further oxygen desaturation may be observed during sleep in patients with CCHD, it occurs in the absence of sleep disordered breathing.

  15. Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach.

    Science.gov (United States)

    Nagaki, Aiichiro; Tsuchihashi, Yuta; Haraki, Suguru; Yoshida, Jun-ichi

    2015-07-14

    Reductive lithiation of benzyl halides bearing aldehyde carbonyl groups followed by reaction with subsequently added electrophiles was successfully accomplished without affecting the carbonyl groups by taking advantage of short residence times in flow microreactors.

  16. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  17. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  18. [TMJ, eating and breathing].

    Science.gov (United States)

    Cheynet, F

    2016-09-01

    The study of the relationship between temporomandibular joints (TMJ), mastication and ventilation and the involvement of these two functions in the genesis of primary Temporomandibular Disorders (TMD) and in some dentofacial deformities, was initiated in France, more than 30years, by Professor Raymond Gola. Once criticized the weakness of the scientific literature in this domain, the originality of the TMJ within the masticatory system is recalled with its huge adaptation potential to very different biomechanical constraints according to the age and masticatory activities during the day. But the biomechanics of the masticatory system does not stop at night and the positions of the mandible and head during sleep should be studied carefully. In case of nocturnal mouth breathing with open mouth, the predominant sleeping position (generating small but long-term strengths) may be deleterious to the condyle-disc complex, to the surrounding muscles and the occlusal relationships. Some condyle-disc displacements and asymmetric malocclusions occur in this long portion of life what sleep, especially as oral breathing leads to a lot of dysfunctions (low position of the tongue, labio-lingual dysfunctions, exacerbation of bruxism sleep…). The aim of this work was to share our multidisciplinary experience of the biomechanical consequences of the nocturnal mouth breathing on the face involving orthodontists, maxillofacial surgeons, ENT, allergists, speech therapists, physiotherapists and radiologists. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. The Lack, Magill and Bain anaesthetic breathing systems: a direct comparison in spontaneously-breathing anaesthetized adults.

    OpenAIRE

    Humphrey, D

    1982-01-01

    The performances of the Lack (Mapleson A), Magill (Mapleson A) and Bain (Mapleson D) anaesthetic breathing systems were compared in each of 20 anaesthetized adult patients breathing spontaneously with fresh gas flows of 70 ml kg-1 min-1. In every patient the Lack system caused the least rebreathing, as seen by the lowest inspired and end-expired CO2 tensions using capnography. The Magill caused more rebreathing than the Lack though less than the Bain. Comparative fresh gas flows for each syst...

  20. Odor Detection by Humans of Lineal Aliphatic Aldehydes and Helional as Gauged by Dose–Response Functions

    OpenAIRE

    Cometto-Muñiz, J. Enrique; Abraham, Michael H.

    2010-01-01

    We have measured concentration detection (i.e., psychometric) functions to determine the odor detectability of homologous aliphatic aldehydes (propanal, butanal, hexanal, octanal, and nonanal) and helional. Subjects (16 ≤ n ≤ 18) used a 3-alternative forced-choice procedure against carbon-filtered air (blanks), under an ascending concentration approach. Generation, delivery, and control of each vapor were achieved via an 8-station vapor delivery device. Gas chromatography served to quantify t...

  1. Exhaled Carbon Dioxide and Neonatal Breathing Patterns in Preterm Infants after Birth.

    Science.gov (United States)

    Nicoll, Jessica; Cheung, Po-Yin; Aziz, Khalid; Rajani, Vishaal; O'Reilly, Megan; Pichler, Gerhard; Schmölzer, Georg M

    2015-10-01

    To examine the amount of exhaled carbon dioxide (ECO2) with different breathing patterns in spontaneously breathing preterm infants after birth. Preterm infants had a facemask attached to a combined carbon dioxide/flow sensor placed over their mouth and nose to record ECO2 and gas flow. A breath-by-breath analysis of the first 5 minutes of the recording was performed. Thirty spontaneously breathing preterm infants, gestational age (mean ± SD) 30 ± 2 weeks and birth weight 1635 ± 499 g were studied. ECO2 from normal breaths and slow expirations was significantly larger than with other breathing patterns (P breath also increased with gestational age P breathing pattern both during the first minute of recording and overall. Breathing pattern proportions also varied by gestational age. Finally, ECO2 from the fifth minute of recording was significantly greater than that produced during the first 4 minutes of recording (P ≤ .029). ECO2 varies with different breathing patterns and increases with gestational age and over time. ECO2 may be an indicator of lung aeration and that postnatal ECO2 monitoring may be useful in preterm infants in the delivery room. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango

    2016-01-01

    Full Text Available Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia.

  3. Modeling of breath methane concentration profiles during exercise on an ergometer*

    Science.gov (United States)

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  4. Aldehyde oxidase activity in fresh human skin.

    Science.gov (United States)

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Markers of Lipid Oxidative Damage in the Exhaled Breath Condensate of Nano TiO2 Production Workers.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Zíková, Naděžda; Komarc, M.; Fenclová, Z.; Vlčková, Š.; Schwarz, Jaroslav; Makeš, Otakar; Syslová, K.; Navrátil, Tomáš; Turci, F.; Corazzari, I.; Zakharov, S.; Bello, D.

    2017-01-01

    Roč. 11, č. 1 (2017), s. 52-63 ISSN 1743-5390 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : exhaled breath condensate * aldehydes * oxidative stress * occupational exposure * monitoring Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health ; Physical chemistry (UFCH-W) Impact factor: 6.428, year: 2016

  6. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke; Plunkett, Mary H.; Nixon, Peter; Serratore, Nicholas A.; Douglas, Christopher J.; Aihara, Hideki; Barney, Brett M.; Parales, Rebecca E.

    2017-04-07

    ABSTRACT

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes fromMarinobacter aquaeoleiVT8 and an additional enzyme fromAcinetobacter baylyiwere heterologously expressed inEscherichia coliand shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no.WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) fromM. aquaeoleiVT8. Crystals were independently treated with both the NAD+cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.

    IMPORTANCEThis study provides a comparison of multiple enzymes with the ability

  7. Fiber-Optic Bio-sniffer (Biochemical Gas Sensor) Using Reverse Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde.

    Science.gov (United States)

    Iitani, Kenta; Chien, Po-Jen; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2018-02-23

    Volatile organic compounds (VOCs) exhaled in breath have huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath samples can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed. In the AcH bio-sniffer, a reverse reaction of alcohol dehydrogenase (ADH) was employed for reducing AcH to ethanol and simultaneously consuming a coenzyme, reduced form of nicotinamide adenine dinucleotide (NADH). The concentration of AcH can be quantified by fluorescence detection of NADH that was consumed by reverse reaction of ADH. The AcH bio-sniffer was composed of an ultraviolet light-emitting diode (UV-LED) as an excitation light source, a photomultiplier tube (PMT) as a fluorescence detector, and an optical fiber probe, and these three components were connected with a bifurcated optical fiber. A gas-sensing region of the fiber probe was developed with a flow-cell and an ADH-immobilized membrane. In the experiment, after optimization of the enzyme reaction conditions, the selectivity and dynamic range of the AcH bio-sniffer were investigated. The AcH bio-sniffer showed a short measurement time (within 2 min) and a broad dynamic range for determination of gaseous AcH, 0.02-10 ppm, which encompassed a typical AcH concentration in exhaled breath (1.2-6.0 ppm). Also, the AcH bio-sniffer exhibited a high selectivity to gaseous AcH based on the specificity of ADH. The sensor outputs were observed only from AcH-contained standard gaseous samples. Finally, the AcH bio-sniffer was applied to measure the concentration of AcH in exhaled breath from healthy subjects after ingestion of alcohol. As a result, a significant difference of AcH concentration between subjects with different aldehyde dehydrogenase type 2 (ALDH2) phenotypes was observed. The AcH bio-sniffer can be

  8. Electronic response to nuclear breathing mode

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Hendrik; Ruffini, Remo [ICRANet, P.zza della Repubblica 10, I-65122 Pescara, Italy Dipartimento di Fisica and ICRA, Sapienza Università di Roma P.le Aldo Moro 5, I-00185 Rome (Italy); ICRANet, University of Nice-Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France); Xue, She-Sheng [ICRANet, P.zza della Repubblica 10, I-65122 Pescara, Italy Dipartimento di Fisica and ICRA, Sapienza Università di Roma P.le Aldo Moro 5, I-00185 Rome (Italy)

    2015-12-17

    Based on our previous work on stationary oscillation modes of electrons around giant nuclei, we show how to treat a general driving force on the electron gas, such as the one generated by the breathing mode of the nucleus, by means of the spectral method. As an example we demonstrate this method for a system with Z = 10{sup 4} in β-equilibrium with the electrons compressed up to the nuclear radius. In this case the stationary modes can be obtained analytically, which allows for a very speedy numerical calculation of the final result.

  9. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Comparison of bioactive aldehydes modifying action on human albumin

    Directory of Open Access Journals (Sweden)

    I. P. Krysiuk

    2014-04-01

    Full Text Available Protein’s postsynthetic modifications are a cause and a consequence of many diseases. Endogenous aldehydes are one of the main factors of these modifications formation. The human albumin’s modification under some aldehydes influence in in vitro experiment has been investigated. Human albumin (20 mM was incubated with following aldehydes: ribose, glyoxal, methylglyoxal and formaldehyde (20 mM each and their combinations in 0.1 M Na-phosphate buffer (pH 7.4 with 0.02% sodium azide at 37 °C in the dark for up to 30 days. We have determined the fluorescent properties of the samples, the content of protein’s carbonyl groups and the redistribution of protein’s molecular weight. The following ratings of aldehydes from the lowest to the highest effect have been obtained. Fluo­rescent albumin adducts formation: formaldehyde, methylglyoxal, ribose, glyoxal; carbonylation of the protein: ribose, formaldehyde, glyoxal, methyl­glyoxal; polymerization of albumin – the formation of intermolecular crosslinks: ribose, methylglyoxal, glyoxal, formaldehyde. The results indicate that these aldehydes have different capability for protein’s modifications. For example, formaldehyde, having the lowest ability to form fluorescent adducts, shows the highest ability to form protein’s intermolecular crosslinks. Therefore, methods and parame­ters in order to evaluate the protein postsynthetic modification intensity have to be chosen correctly according to carbonyl stress peculiarity in order to evaluate the protein’s postsynthetic modification intensity.

  11. [Comparison of bioactive aldehydes modifying action on human albumin].

    Science.gov (United States)

    Krysiuk, I P; Knaub, A Ia; Shandrenko, S H

    2014-01-01

    Protein's postsynthetic modifications are a cause and a consequence of many diseases. Endogenous aldehydes are one of the main factors of these modifications formation. The human albumin's modification under some aldehydes influence in in vitro experiment has been investigated. Human albumin (20 mM) was incubated with following aldehydes: ribose, glyoxal, methylglyoxal and formaldehyde (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) with 0.02% sodium azide at 37 degrees C in the dark for up to 30 days. We have determined the fluorescent properties of the samples, the content of protein's carbonyl groups and the redistribution of protein's molecular weight. The following ratings of aldehydes from the lowest to the highest effect have been obtained. Fluorescent albumin adducts formation: formaldehyde, methylglyoxal, ribose, glyoxal; carbonylation of the protein: ribose, formaldehyde, glyoxal, methylglyoxal; polymerization of albumin--the formation of intermolecular crosslinks: ribose, methylglyoxal, glyoxal, formaldehyde. The results indicate that these aldehydes have different capability for protein's modifications. For example, formaldehyde, having the lowest ability to form fluorescent adducts, shows the highest ability to form protein's intermolecular crosslinks. Therefore, methods and parameters in order to evaluate the protein postsynthetic modification intensity have to be chosen correctly according to carbonyl stress peculiarity in order to evaluate the protein's postsynthetic modification intensity.

  12. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    breathing through walls. Other remote breath tracking systems has been presented that are based on the Ultra-wideband radar technique. However, these systems have two drawbacks. Firstly, they penetrate walls. It is therefore harder to contain the emitted radiation and they could be used for unsolicited...

  13. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  14. Investigation into breath meditation: Phenomenological ...

    African Journals Online (AJOL)

    This integral heuristic phenomenological investigation records participants' experiences of a single session of breath meditation with special reference to psychotherapy and sport psychology. There were 8 participants, 4 men and 4 women, with mean age of 45 years and age range from 31 to 62 years. Various breathing ...

  15. Portable breathing system. [a breathing apparatus using a rebreathing system of heat exchangers for carbon dioxide removal

    Science.gov (United States)

    Lovell, J. S. (Inventor)

    1979-01-01

    A semiclosed-loop rebreathing system is discussed for use in a hostile environment. A packed bed regenerative heat exchanger providing two distinct temperature humidity zones of breathing gas with one zone providing cool, relatively dry air and the second zone providing hot, moist air is described.

  16. Preparation of 1-C-glycosyl aldehydes by reductive hydrolysis.

    Science.gov (United States)

    Sipos, Szabolcs; Jablonkai, István

    2011-09-06

    Reductive hydrolysis of various protected glycosyl cyanides was carried out using DIBAL-H to form aldimine alane intermediates which were then hydrolyzed under mildly acidic condition to provide the corresponding aldehyde derivatives. While 1-C-formyl glycal and 2-deoxy glycosyl derivatives were stable during isolation and storage 1-C-glycosyl formaldehydes in the gluco, galacto and manno series were sensitive and decomposition occurred by 2-alkyloxy elimination. A one-pot method using N,N'-diphenylethylenediamine to trap these aldehydes in stable form was developed. Reductive hydrolysis of glycosyl cyanides offers valuable aldehyde building blocks in a convenient way which can be applied in the synthesis of complex C-glycosides. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  18. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  19. [New theory of holistic integrative physiology and medicine. I: New insight of mechanism of control and regulation of breathing].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    The modern systemic physiology, based on limit-understand functional classification, has significant limitation and one-sidedness. Human being is organic; we should approach the mechanism of control and regulation of breathing integrating all the systems. We use new theory of holistic integrative physiology and medicine to explain the mechanism of control and regulation of breathing. Except the mean level information, the up-down "W" waveform information of arterial blood gas (ABG) is core signal to control and regulate breathing. In order to do so, we must integrate all systems together. New theory will help to explain some unanswered questions in physiology and medicine, for example: fetal does not breathing; how first breath generate; how respiratory rhythm and frequency generate, etc. Breathing is the sign of life. Mechanism of control and regulation of breathing has to integrate respiration, circulation, nerves, metabolism, exercise, sleep and digestion, absorption and elimination and etc altogether.

  20. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  1. The additional work of breathing imposed by Mapleson A systems.

    Science.gov (United States)

    Ooi, R; Pattison, J; Soni, N

    1993-07-01

    The additional work attributable to breathing through five Mapleson A anaesthetic breathing systems (Magill, Lack, Parallel Lack, Humphrey ADE and Enclosed Magill) was studied using a lung model. With all five systems, the additional work was found to be a function of fresh gas flow, respiratory flow as well as system geometry. Within the range of fresh gas flow and respiratory flow studied, the additional work ranged between 80 mJ.l-1 and 182 mJ.l-1. Expiratory work was always greater than the inspiratory workload. Increasing fresh gas inflow into the system increases expiratory work, both resistive and elastic components. The Magill system posed the least work expenditure. The values for the additional work obtained with the lung model were of the same order of magnitude when measurements were taken in volunteers.

  2. The use of aldehyde indicators to determine glutaraldehyde and alkaline glutaraldehyde contamination in chemical protective gloves.

    Science.gov (United States)

    Vo, Evanly; Zhuang, Zhenzhen

    2009-07-01

    The aim of this study was to assess the use of aldehyde indicator pads for detection of glutaraldehyde and alkaline glutaraldehyde permeation through chemical protective gloves under simulated in-use conditions. The quantitative analysis of glutaraldehyde permeation through a glove material was determined for Metricide, Wavicide, and 50% glutaraldehyde following a solvent-desorption process and gas chromatographic analysis. All glutaraldehyde solutions exhibited >99% adsorption (including both the glutaraldehyde oligomers of the reaction product and the excess glutaraldehyde) on the pads over the spiking range 0.05-5.0 microL. Breakthrough times for protective gloves were determined using the Thermo-Hand test method, and found to range from 76 to 150, from 170 to 230, and from 232 to 300 min for Metricide, Wavicide, and 50% glutaraldehyde, respectively. Glutaraldehyde recovery was calculated and ranged from 61 to 80% for all glutaraldehyde solutions. The mass of glutaraldehyde in these solutions at the time of breakthrough detection ranged from 17 to 18, from 18 to 19, and from 19 to 20 microg/cm(2) for Wavicide, 50% glutaraldehyde solution, and Metricide, respectively. Aldehyde indicator pads and the Thermo-Hand test method together should find utility in detecting, collecting, and quantitatively analyzing glutaraldehyde permeation samples through chemical protective gloves under simulated in-use conditions.

  3. Sensitive Determination of Volatile Organic Compounds and Aldehydes in Tattoo Inks.

    Science.gov (United States)

    Lim, Hyun-Hee; Shin, Ho-Sang

    2017-02-01

    As the popularity of body art including tattoo ink has increased, the safety associated with it has become an important interest. In this study, twenty volatile organic compounds (VOCs) and two aldehydes in tattoo inks were identified and quantified. Headspace and gas chromatography-mass spectrometry (HS GC-MS) for the VOCs and HS GC-MS based on derivatization with 2,2,2-trifluoroethylhydrazine (TFEH) for aldehydes was developed. Benzene, chloroform, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, propylbenzene, chlorobenzene, tert-butylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,4-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and isopropyl alcohol were detected with the concentration range of 0.02-207,000 mg/kg in 16 different tattoo inks. Formaldehyde and acetaldehyde were detected with the concentration range of 0.4-308 mg/kg in the same samples. Our analytical results represent solvents used intentionally or non-intentionally in tattoo inks, and thus they may provide important information for national regulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities.

    Science.gov (United States)

    Nypelö, Tiina; Amer, Hassan; Konnerth, Johannes; Potthast, Antje; Rosenau, Thomas

    2018-03-12

    Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.

  5. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of distillates containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... the fermentation of wine and then returned to the distilled spirits plant from which distillates were...

  6. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  7. The Reduction of Nitriles to Aldehydes: Applications of Raney Nickel ...

    African Journals Online (AJOL)

    NJD

    The three title reductant systems have significant advantages in generating aldehydes from nitriles. These include: the utilization of convenient hydrogen sources, namely, sodium hypophosphite monohydrate and formic acid, respectively, and of the relatively inexpensive Raney nickel and Raney (Ni/Al) alloy; the ...

  8. Reaction of benzoxasilocines with aromatic aldehydes: Synthesis of homopterocarpans

    Directory of Open Access Journals (Sweden)

    Rodríguez-García Ignacio

    2007-02-01

    Full Text Available Abstract Condensation of 2H-benzo[g][1,2]oxasilocines with aromatic aldehydes in the presence of boron trifluoride affords mixtures of cis/trans 2-phenyl-3-vinylchromans with moderate yields. These can be transformed into homopterocarpans, a synthetic group of substances homologous to the natural isoflavonoid pterocarpans.

  9. Detection of aldehyde dehydrogenase activity in human corneal extracts

    NARCIS (Netherlands)

    Gondhowiardjo, T. D.; van Haeringen, N. J.; Hoekzema, R.; Pels, L.; Kijlstra, A.

    1991-01-01

    The major soluble protein in bovine corneal epithelial extracts is a 54 kD protein (BCP 54) which has recently been identified as the corneal aldehyde dehydrogenase. Although ALDH activity has been reported in human corneal extracts it was not yet clear whether this was identical with the 54 kD

  10. Changes in nonpolar aldehydes in bean cotyledons during ageing

    Czech Academy of Sciences Publication Activity Database

    Wilhelmová, Naděžda; Domingues, P.; Srbová, M.; Fuksová, H.; Wilhelm, J.

    2006-01-01

    Roč. 50, č. 4 (2006), s. 559-564 ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ageing * aldehydes * lipid peroxidation * lipofuscin-like pigments (LFP) Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  11. Breath analysis using external cavity diode lasers: a review

    Science.gov (United States)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  12. Practice It: Deep Conscious Breathing Exercise

    Science.gov (United States)

    No time to sit and breathe? No problem; take your breathing practice with you! Deep conscious breathing can also be done with the eyes open wherever you happen to be—simply pause and take two to three full deep breaths (inhale deeply and exhale completely).

  13. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    Science.gov (United States)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  14. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  15. [Investigation of the structure breathing pattern in competitive exercises have athletes kettlebell Lifters].

    Science.gov (United States)

    Tikhonov, V F; Agafonkina, T V

    2014-01-01

    The aim of the research is to determine the breathing pattern characteristics of kettlebell athletes. The main indicators were identified: breathing frequency (f), tidal volume (VT), minute ventilation (VE). We also searched for the dependence of these parameters using the weight of kettlebells and skill of the athletes.We used the spirograph SMP-21/01-"R-D" for qualitative and quantitative evaluation of the miain indicators of kettlebell athletes breathing patterns. Athletes who achieved Masters of Sports (MS) and candidate masters of sport (CMS), their changes in breathing during exercise occurs mainly on two parameters--the frequeincy of breathing and tidal yolume. We found out while the weight of the kettlebell increases the breathing frequen- cy increases and tidal volume decreases. Athletes who achieved International Masters of Sports (MSIC), they dominated the change of one parameter of breathing--on the tidalivolume, which increases from 0.7 +/- 0.11 to 1.2 +/- 0.11 (p Kettlebell sport. In our opinion high performance level of athletes is related to undergoing breathing regulation, trying constantly to keep same level of gas composition in functional residual capacity (FRC) at a time ofperforming competition exercises. This research highlights the importance of improving breathing patterns for Kettlebell athletes if they want to improve performance.

  16. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes...

  17. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  18. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    Science.gov (United States)

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  19. Biogenetic studies in Syringa vulgaris L.: synthesis and bioconversion of deuterium-labeled precursors into lilac aldehydes and lilac alcohols.

    Science.gov (United States)

    Kreck, Mirjam; Püschel, Susen; Wüst, Matthias; Mosandl, Armin

    2003-01-15

    Syringa vulgaris L. inflorescences were fed with aqueous solutions of regioselectively deuterated compounds assumed to be precursors of lilac aldehyde and lilac alcohol, respectively. Volatiles were extracted by stir bar sorptive extraction (SBSE) and analyzed using enantioselective multidimensional gas chromatography/mass spectrometry (enantio-MDGC/MS); deuterium-labeled lilac aldehydes and lilac alcohols were separated from unlabeled stereoisomers on a fused silica capillary column, coated with heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin (DIME-beta-CD) (30%) in SE 52 (70%), as the chiral stationary phase. Feeding experiments with [5,5-(2)H(2)]mevalonic acid lactone 22 and [5,5-(2)H(2)]deoxy-d-xylose 23 indicate that the novel mevalonate independent 1-deoxy-d-xylose 5-phosphate/2C-methyl-d-erythritol 4-phosphate pathway is the dominant metabolic route for biosynthesis in lilac flowers. Additionally, bioconversion of deuterium-labeled d(5)-(R/S)-linalool 3, d(6)-(R)-linalool 21, d(5)-(R/S)-8-hydroxylinalool 6, d(5)-(R/S)-8-oxolinalool 7, d(5)-lilac aldehydes 8-11 and d(5)-lilac alcohols 12-15 into lilac during in vivo feeding experiments was investigated and the metabolic pathway is discussed. Incubation of petals with an aqueous solution of deuterated d(5)-(R/S)-linalool 3 indicates an autonomic terpene biosynthesis of lilac flavor compounds in the flower petals of lilac.

  20. Circle (CO2 reabsorbing) breathing systems: Human applications.

    Science.gov (United States)

    Magee, Patrick

    2017-07-01

    Artificial breathing systems to help humans survive extreme environments are used over a range of ambient pressures, using various gases of different volumetric concentrations. These activities include anaesthesia and intensive care activity, high-altitude mountaineering, firefighting, aerospace extravehicular space activity and underwater diving operations. A circle breathing system is one in which the exhaled carbon dioxide is absorbed by an alkali substance and the remaining unused gases are recirculated, usually for the sake of economy and environment. This allows the flow of the fresh gas to be considerably reduced, thereby saving on fresh-gas supply. Circle systems are often used in the circumstances cited above, although not always at low fresh-gas flows. The circle system used in anaesthesia and intensive care has the least engineering demands made on it, although it is used on patients who are highly vulnerable; it usually provides a mixture of air and oxygen, and perhaps a breathable anaesthetic gas, all at sea-level pressure. Mountaineering and firefighting applications involve an extreme earthbound environment, with the user undergoing extreme physical work. The astronaut's spacesuit and life support system contains a high-flow circle system, the breathing gases themselves pressurising the suit as well as providing respiratory life support and thermal comfort; the gas provided is pure oxygen at about a third of sea-level atmosphere. There are numerous varieties of breathing systems for diving, including a circle system, often for clandestine naval activity; the gases used are a combination of oxygen, nitrogen and helium, to minimise the possibility of decompression sickness, nitrogen narcosis and oxygen toxicity and must be provided at a varying pressure and concentration appropriate to depth.

  1. Glyceraldehyde and glycolaldehyde in interstellar ice analogues and the role of aldehydes in cosmochemical evolution

    Science.gov (United States)

    Meierhenrich, U.; de Marcellus, P.; Meinert, C.; Myrgorodska, I.; Nahon, L.; Buhse, T.; d'Hendecourt, L.

    2015-10-01

    Our understanding of the molecular origin of life is based on amino acids, ribose, and nucleobases that - after their selection by prebiotic processes - initiated the evolutionary assembly of catalytic and informational polymers, being proteins and ribonucleic acids. Following previous amino acid identifications in the room-temperature residues of simulated circumstellar/interstellar ices [1,2] we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected ten aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde - two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment.

  2. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    Science.gov (United States)

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  3. Methyltrioxorhenium as catalyst of a novel aldehyde olefination

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wang Mei (Academia Sinica, Dalian Inst. of Chemical Physics (China))

    1991-12-01

    From aldehydes or cyclic ketones, diazoalkanes, and teritiary phosphanes, olefins may be prepared with MTO as catalyst. In particular, diazoacetates and -malonates (R{sup 2}, R{sup 3} = H, CO{sub 2}Et, or 2 x CO{sub 2}Me) can be transformed into olefins with aliphatic and aromatic aldehydes (R{sup 1} = iPr, trans-PhCH=CH, Ph, 4-NO{sub 2}C{sub 6}H{sub 4}, etc.). Readily accessible starting materials, easy handling, mild reaction conditions, and good yields characterize the new synthesis method. (R' = Ph, 3-C{sub 6}H{sub 4}SO{sub 3}Na, nBu.) (orig.).

  4. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    ). Egg hatching rates decreased after 4 d in all diatom treatments, irrespective of the egg production rate and without any relationship to diatom aldehyde production. Similarly, no evidence was found that diatoms are per se nutritionally inferior to nondiatom food. The lack of a distinct mechanism......We investigated whether reduced reproductive success of copepods fed with diatoms was related to nutritional imbalances with regard to essential lipids or to the production of inhibitory aldehydes. In 10-d laboratory experiments, feeding, egg production, egg hatching success, and fecal pellet...... at high rates, they yielded a variable egg production response in copepods, ranging from high egg production in four species (two strains of Thalassiosira rotula, Chaetoceros affinis, and Thalassiosira weissflogii) to low egg production in two species (Leptocylindricus danicus and Skeletonema costatum...

  5. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    OpenAIRE

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactiv...

  6. Aqueous Barbier Allylation of Aldehydes Mediated by Tin

    OpenAIRE

    Ivani Malvestiti; Lothar W. Bieber; Marcelo Navarro; Fernando Hallwass; Lívia N. Cavalcanti; Maria Ester S. B. Barros; Dimas J. P. Lima; Ricardo L. Guimarães

    2007-01-01

    The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols...

  7. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    OpenAIRE

    Ma, Yu-mei; Zhao, Shan

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addi...

  8. Gastric cytoprotective activity of ilicic aldehyde: structure-activity relationships.

    Science.gov (United States)

    Donadel, Osvaldo J; Guerreiro, Eduardo; María, Alejandra O; Wendel, Graciela; Enriz, Ricardo D; Giordano, Oscar S; Tonn, Carlos E

    2005-08-01

    A series of sesquiterpene compounds possessing both eudesmane and eremophilane skeletons were tested as gastric cytoprotective agents on male Wistar rats. The presence of an alpha,beta-unsaturated aldehyde on the C-7 side chain together with a hydroxyl group at C-4 is the requirement for the observed antiulcerogenic activity. In an attempt to establish new molecular structural requirements for this gastric cytoprotective activity, a structure-activity study was performed.

  9. Effect of positioning on the breathing pattern of preterm infants.

    OpenAIRE

    Heimler, R; Langlois, J; Hodel, D J; Nelin, L D; Sasidharan, P

    1992-01-01

    Respiration, as judged by gas exchange and pulmonary function, is improved in preterm infants kept in the prone rather than the supine position. The influence of position on the breathing pattern as documented by the pneumogram was studied in 14 stable preterm infants with recent clinical apnoea. Ten of the infants had oximetry and nasal flow studies simultaneously with the impedance pneumogram. Each infant had consecutive nocturnal pneumograms, one in the prone, one in the supine position. T...

  10. Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Qianqian Wan

    2017-01-01

    Full Text Available A lot of useful information is contained in the human breath gases, which makes it an effective way to diagnose diseases by detecting the typical breath gases. This work investigated the adsorption of typical lung cancer breath gases: benzene, styrene, isoprene, and 1-hexene onto the surface of intrinsic and Ni-doped single wall carbon nanotubes through density functional theory. Calculation results show that the typical lung cancer breath gases adsorb on intrinsic single wall carbon nanotubes surface by weak physisorption. Besides, the density of states changes little before and after typical lung cancer breath gases adsorption. Compared with single wall carbon nanotubes adsorption, single Ni atom doping significantly improves its adsorption properties to typical lung cancer breath gases by decreasing adsorption distance and increasing adsorption energy and charge transfer. The density of states presents different degrees of variation during the typical lung cancer breath gases adsorption, resulting in the specific change of conductivity of gas sensing material. Based on the different adsorption properties of Ni-SWCNTs to typical lung cancer breath gases, it provides an effective way to build a portable noninvasive portable device used to evaluate and diagnose lung cancer at early stage in time.

  11. Breathing and sense of self: visuo-respiratory conflicts alter body self-consciousness.

    Science.gov (United States)

    Adler, Dan; Herbelin, Bruno; Similowski, Thomas; Blanke, Olaf

    2014-11-01

    Bodily self-consciousness depends on the processing of interoceptive and exteroceptive signals. It can be disrupted by inducing signal conflicts. Breathing, at the crossroad between interoception and exteroception, should contribute to bodily self-consciousness. We induced visuo-respiratory conflicts in 17 subjects presented with a virtual body or a parallelepidedal object flashing synchronously or asynchronously with their breathing. A questionnaire detected illusory changes in bodily self-consciousness and breathing agency (the feeling of sensing one's breathing command). Changes in self-location were tested by measuring reaction time during mental ball drop (MBD). Synchronous illumination changed the perceived location of breathing (body: p=0.008 vs. asynchronous; object: p=0.013). It resulted in a significant change in breathing agency, but no changes in self-identification. This was corroborated by prolonged MBD reaction time (body: +0.045s, 95%CI [0.013; 0.08], p=0.007). We conclude that breathing modulates bodily self-consciousness. We also conclude that one can induce the irruption of unattended breathing into consciousness without modifying respiratory mechanics or gas exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  13. Exhaled Breath Analysis for the Monitoring of Elderly COPD Patients Health-state

    Science.gov (United States)

    Pennazza, Giorgio; Scarlata, Simone; Santonico, Marco; Chiurco, Domenica; D'Amico, Arnaldo; Incalzi, Raffaele Antonelli

    2011-09-01

    This pilot study assesses how effectively a gas sensors array can follow the evolution of elderly patients with COPD, the most common chronic respiratory disease. In particular, reproducibility of breath analysis (calculated for each subject along three weekly measurements) resulted comparable to spirometry, except for a larger spread for breath analysis, whose patterns was significantly correlated with other heath status parameters (such as eosinophiles and Barthel index).

  14. Blue breath holding is benign.

    Science.gov (United States)

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life threatening event' deserve immense understanding and help, and it behoves investigators to exercise extreme care and self criticism in the presentation of new knowledge which may bear upon their management and their morale. PMID:2001115

  15. Quantification of volatile organic compounds in exhaled human breath. Acetonitrile as biomarker for passive smoking. Model for isoprene in human breath

    International Nuclear Information System (INIS)

    Prazeller, P.

    2000-03-01

    concentration increases within a few seconds after starting exercise or awakening during the night as a result of a rapid increase in heart rate, and then reaches a lower steady state when breath rate stabilizes. A gas exchange model was developed and shows excellent fit to breath isoprene measured during exercise. We demonstrated that atorvastatin therapy leads to a decrease in serum cholesterol and LDL levels and a parallel decrease in breath isoprene levels. This work suggests that there is constant endogenous production of isoprene during the day and night, and reaffirms the possibility that breath isoprene can be a non-invasive marker of cholesterologenesis, if care is taken to measure breath isoprene under standard conditions. The third part of the thesis presents results out of the field of food chemistry. The effectiveness of thermal deactivation of the enzyme allinase is demonstrated using breath analysis after eating garlic. With highly time resolved measurements we succeeded in monitoring reactions occurring when garlic is crushed and in distinguishing between aerobic and anaerobic steps. (author)

  16. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  17. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  18. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  19. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  20. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  1. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  2. 14CO2 in breath

    International Nuclear Information System (INIS)

    Rabinowitz, J.L.; Lopez-Majano, V.

    1981-01-01

    The diagnosis of metabolic disorders can be made by detecting 14 CO 2 in the breath. This is possible because 14 CO 2 can label any organic compound without any deteriorations in the nature of the compound. This type of analysis is dependable, noninvasive and simple to perform with a scintillation counter. (orig.)

  3. Submarines, Spacecraft, and Exhaled Breath

    Science.gov (United States)

    The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled b...

  4. Breathing retraining: a rational placebo?

    NARCIS (Netherlands)

    Garssen, B.; de Ruiter, C.; van Dyck, R.

    1992-01-01

    Breathing retraining of patients with Hyperventilation Syndrome (HVS) and/or panic disorder is discussed to evaluate its clinical effectiveness and to examine the mechanism that mediates its effect. In relation to this theoretical question, the validity of HVS as a scientific model is discussed and

  5. Functional Analysis and Intervention for Breath Holding.

    Science.gov (United States)

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  6. 21 CFR 868.5620 - Breathing mouthpiece.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing mouthpiece. 868.5620 Section 868.5620...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5620 Breathing mouthpiece. (a) Identification. A breathing mouthpiece is a rigid device that is inserted into a patient's mouth and that...

  7. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  8. Breath psychotherapy | Edwards | Inkanyiso: Journal of Humanities ...

    African Journals Online (AJOL)

    Breath psychotherapy is an approach that makes direct use of the breath in healing. There are many forms of breathbased healing: basic breathing and relaxation methods, with or without the practice of psychological skills such as imagery, centring and concentration; expressive physical and emotional techniques; ...

  9. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    Science.gov (United States)

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  10. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  11. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  12. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

    OpenAIRE

    Smit, B.A.; Engels, W.J.M.; Smit, G.

    2009-01-01

    Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in literature. This paper reviews aspects influencing the formation of these aldehydes at the level of metabolic conversions, microbial and food composition. Special emphasis was on 3-methyl butanal and i...

  13. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  14. Diabetes Impairs the Aldehyde Detoxifying Capacity of the Retina.

    Science.gov (United States)

    McDowell, Rosemary E; McGahon, Mary K; Augustine, Josy; Chen, Mei; McGeown, J Graham; Curtis, Tim M

    2016-09-01

    We studied whether the accumulation of advanced lipoxidation end-products (ALEs) in the diabetic retina is linked to the impairment of lipid aldehyde detoxification mechanisms. Retinas were collected from nondiabetic and diabetic rats and processed for conventional and quantitative RT-PCR (qRT-PCR), Western blotting, immunohistochemistry, and aldehyde dehydrogenase (ALDH) activity assays. The effect of the ALDH1a1 inhibitor, NCT-501, on ALE accumulation and cell viability in cultured Müller glia also was investigated. The rat retina expressed a range of lipid aldehyde detoxifying ALDH and aldo-keto reductase (AKR) genes. In diabetes, mRNA levels were reduced for 5 of 9 transcripts tested. These findings contrasted with those in the lens and cornea where many of these enzymes were upregulated. We have reported previously accumulation of the acrolein (ACR)-derived ALE, FDP-lysine, in retinal Müller glia during diabetes. In the present study, we show that the main ACR-detoxifying ALDH and AKR genes expressed in the retina, namely, ALDH1a1, ALDH2, and AKR1b1, are principally localized to Müller glia. Diabetes-induced FDP-lysine accumulation in Müller glia was associated with a reduction in ALDH1a1 mRNA and protein expression in whole retina and a decrease in ALDH1a1-immunoreactivity specifically within these cells. No such changes were detected for ALDH2 or AKR1b1. Activity of ALDH was suppressed in the diabetic retina and blockade of ALDH1a1 in cultured Müller glia triggered FDP-lysine accumulation and reduced cell viability. These findings suggest that downregulation of ALDH and AKR enzymes, particularly ALDH1a1, may contribute ALE accumulation in the diabetic retina.

  15. The carbon isotopic composition of ecosystem breath

    Science.gov (United States)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance

  16. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  17. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  18. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  19. An evaluation of Fourier transform infrared (FTIR) spectroscopy for detecting organic solvents in expired breath.

    Science.gov (United States)

    Yost, Michael G; Rose, Martin A; Morgan, Michael S

    2003-03-01

    The aim of this study was to test the performance of gas-phase FTIR analysis on human breath samples. Ten volatile organic compounds (VOC) were examined for applicability to FTIR spectroscopy (ethanol, ethylbenzene, n-hexane, methyl ethyl ketone, methyl tert-butyl ether, m-xylene, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and toluene). Three sets of detection limits (LOD) were determined for comparison. LOD(1) were generated from partial least squares (PLS) calibration methods using spectroscopic software, LOD(2) from spiked breath samples, and LOD(3) from blank breath samples. Mixed expired breath samples from four subjects were spiked at varying levels with four different VOC (hexane, methyl ethyl ketone, m-xylene and 1,1,1-trichloroethane) to validate spectral data and test overall accuracy. Breath samples spiked with m-xylene also were validated by GC/FID analysis. PLS-derived LOD(1) ranged from 0.06-2.47 ppm. Spiked breath sample LOD(2) ranged from 0.52-1.21 ppm. Blank breath LOD(3) measurements ranged from 0.17-1.70 ppm, except for ethanol, which had an LOD of 11.2 ppm. Predicted concentrations for carbon dioxide (slope = 1.06), m-xylene (slopes = 1.19, 1.21), and methyl ethyl ketone (slope = 0.93) were fairly accurate, while concentrations were underpredicted for n-hexane (slope = 0.69) and 1,1,1-trichloroethane (slopes = 0.58-0.66).

  20. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  1. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    Science.gov (United States)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  2. [Stahl, Leibniz, Hoffmann and breathing].

    Science.gov (United States)

    Carvallo, Sarah

    2006-01-01

    At the beginning of the XVIII th century, Wilhelm Gottfried Leibniz and Friedrich Hoffmann criticize Georg Ernst Stahl's medical theory. They differenciate between unsound and true reasonings. Namely, they validate Stahl's definition of breath but extracting it from its animist basis and placing it in an epistemology obeying to the principle of sufficient reason and to the mechanical model. The stahlian discovery consists in understanding breath as a calorific ventilation against the ancient conception; the iatromechanists recognize its accuracy, but they try then to transpose it to a mechanical model of ventilation. Using it in a different epistemological context implies that they analyze the idea of discovery "true" in its contents, but "wrong" in its hypothesis. It impels to examine the epistemology of medical knowledge, as science and therapeutics, and in its links with the other scientific theories. Thus, if Leibniz as philosopher and Hoffmann as doctor consider Stahl's animism so important, it is because its discoveries question the fundamental principles of medicine.

  3. Sugar and Aldehyde Content in Flavored Electronic Cigarette Liquids.

    Science.gov (United States)

    Fagan, Pebbles; Pokhrel, Pallav; Herzog, Thaddeus A; Moolchan, Eric T; Cassel, Kevin D; Franke, Adrian A; Li, Xingnan; Pagano, Ian; Trinidad, Dennis R; Sakuma, Kari-Lyn K; Sterling, Kymberle; Jorgensen, Dorothy; Lynch, Tania; Kawamoto, Crissy; Guy, Mignonne C; Lagua, Ian; Hanes, Sarah; Alexander, Linda A; Clanton, Mark S; Graham-Tutt, Camonia; Eissenberg, Thomas

    2017-11-22

    Sugars are major constituents and additives in traditional tobacco products, but little is known about their content or related toxins (formaldehyde, acetaldehyde, and acrolein) in electronic cigarette (e-cigarette) liquids. This study quantified levels of sugars and aldehydes in e-cigarette liquids across brands, flavors, and nicotine concentrations (n = 66). Unheated e-cigarette liquids were analyzed using liquid chromatography mass spectrometry and enzymatic test kits. Generalized linear models, Fisher's exact test, and Pearson's correlation coefficient assessed sugar, aldehyde, and nicotine concentration associations. Glucose, fructose and sucrose levels exceeded the limits of quantification in 22%, 53% and 53% of the samples. Sucrose levels were significantly higher than glucose [χ2(1) = 85.9, p regulation of specific flavor constituents in tobacco products as a strategy to protect young people from using e-cigarettes, while balancing FDA's interest in how these emerging products could potentially benefit adult smokers who are seeking to safely quit cigarette smoking. The data can also be used to educate consumers about ingredients in products that may contain nicotine and inform future FDA regulatory policies related to product standards and accurate and comprehensible labeling of e-cigarette liquids. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Aqueous Barbier allylation of aldehydes mediated by tin.

    Science.gov (United States)

    Guimarães, Ricardo L; Lima, Dimas J P; Barros, Maria Ester S B; Cavalcanti, Lívia N; Hallwass, Fernando; Navarro, Marcelo; Bieber, Lothar W; Malvestiti, Ivani

    2007-08-29

    The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols in high yields. Aliphatic aldehydes give moderate to excellent yields with reaction times ranging from 30 to 60 minutes. Under these conditions, crotylation gives exclusively the gamma-product and the syn isomer is formed preferentially. For 2-methoxybenzaldehyde, an equilibration of the isomers to a syn/anti ratio of 1:1 can be observed after several hours. Control experiments with radical sources or scavengers give no support for radical intermediates. NMR studies suggest a mechanism involving an organotin intermediate. The major organotin species formed depends on the reaction medium and the reaction time. The use of acidic solution reduces the reaction times, due to the acceleration of the formation of the allyltin(IV) species.

  5. Aqueous Barbier Allylation of Aldehydes Mediated by Tin

    Directory of Open Access Journals (Sweden)

    Ivani Malvestiti

    2007-08-01

    Full Text Available The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols in high yields. Aliphatic aldehydes give moderate to excellent yields with reaction times ranging from 30 to 60 minutes. Under these conditions, crotylation gives exclusively the γ-product and the syn isomer is formed preferentially. For 2-methoxybenzaldehyde, an equilibration of the isomers to a syn/anti ratio of 1:1 can be observed after several hours. Control experiments with radical sources or scavengers give no support for radical intermediates. NMR studies suggest a mechanism involving an organotin intermediate. The major organotin species formed depends on the reaction medium and the reaction time. The use of acidic solution reduces the reaction times, due to the acceleration of the formation of the allyltin(IV species.

  6. The Complete Molecular Geometry of Salicyl Aldehyde from Rotational Spectroscopy

    Science.gov (United States)

    Dorosh, O.; Bialkowska-Jaworska, E.; Kisiel, Z.; Pszczolkowski, L.; Kanska, M.; Krygowski, T. M.; Maeder, H.

    2013-06-01

    Salicyl aldehyde is a well known planar molecule containing an internal hydrogen bond. In preparing the publication of our previous report of the study of its rotational spectrum we have taken the opportunity to update the structure determination of this molecule to the complete r_e^{SE} geometry. The molecule contains 15 atoms and we have used supersonic expansion FTMW spectroscopy to obtain rotational constants for a total 26 different isotopic species, including all singly substitued species relative to the parent molecule. The ^{13}C and ^{18}O substitutions were measured in natural abundance, while deuterium substitutions were carried out synthetically. The r_e^{SE} determination requires the calculation of vibration-rotation changes in rotational constants from an ab initio anharmonic force field, which necessitates some compromises in the level of calculation for a molecule of the size of salicyl aldehyde. For this reason we studied the five lowest vibrationally excited states, by using the combination of room-temperature mm-wave spectroscopy and waveguide Fourier transform cm-wave spectroscopy. The experimental excited state rotational constants were then used to calibrate the anharmonic force field calculation. The resulting r_e^{SE} geometry is compared with other types of geometry determination possible from this data, with emphasis on the effect of the near zero principal coordinate of the important C_2 atom. Z.Kisiel et al., 61^{st} OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2006, RI-12.

  7. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Science.gov (United States)

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  8. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  9. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  10. Fluorescein Tri-Aldehyde Promotes the Selective Detection of Homocysteine.

    Science.gov (United States)

    Barve, Aabha; Lowry, Mark; Escobedo, Jorge O; Thainashmuthu, Josephrajan; Strongin, Robert M

    2016-03-01

    Elevated homocysteine levels are a well-known independent risk factor for cardiovascular disease. To date, relatively few selective fluorescent probes for homocysteine detection have been reported. The lack of sensing reagents and remaining challenges largely derive from issues of sensitivity and/or selectivity. For example, homocysteine is a structural homologue of the more abundant (ca, 20-25 fold) aminothiol cysteine, differing only by an additional methylene group side chain. Fluorescein tri-aldehyde, described herein, has been designed and synthesized as a sensitive and selective fluorophore for the detection of homocysteine in human plasma samples. It responds to analytes selectively via a photoinduced electron transfer (PET) inhibition process that is modulated by predictable analyte-dye product hybridization and ionization states. Mulliken population analysis of fluorescein tri-aldehyde and its reaction products reveals that the characteristic formation of multiple cationic of homocysteine-derived heterocycles leads to enhanced relative negative charge build up on the proximal phenolate oxygen of the fluorophore as a contributing factor to selective emission enhancement.

  11. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    Science.gov (United States)

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly.

  12. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    Science.gov (United States)

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  13. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  14. Apparatus for delivering and receiving radioactive gas

    International Nuclear Information System (INIS)

    Dansky, B.; Epifano, L.; Farella, R.

    1980-01-01

    An apparatus for delivering and receiving gas to and from a patient, such as for lung ventilation studies. In accordance with the invention there is provided a restrictive breathing chamber adapted for coupling to the patient's breathing organs. A system, including a first check valve, is provided for coupling the breathing chamber to an inflatable gas receptacle so as to allow flow only toward the inflatable gas receptacle. Active gas input apparatus, including a second check valve, is also coupled to the breathing chamber, the second check valve allowing flow only toward the breathing chamber means. First and second auxiliary tubes and a gas filter are also provided. A system is provided for coupling the first auxiliary tube from the inflatable receptacle through the gas filter and to an ambient air environment. The second auxiliary tube is coupled from the inflatable receptacle to an ambient air environment. Finally, a gas pump is switchably coupled as between the first and second auxiliary tubes and operative to selectively cause gas flow in the first auxiliary tube toward the ambient environment, and in the second auxiliary tube toward the inflatable receptacle. A gas trap structure is also disclosed

  15. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  16. Work of breathing as a tool to diagnose severe fixed upper airway obstruction.

    Science.gov (United States)

    Khirani, S; Pierrot, S; Leboulanger, N; Ramirez, A; Breton, D; Couloigner, V; Fauroux, B

    2014-03-01

    A 4-year-old girl with bilateral vocal fold palsy was successfully decannulated from tracheotomy after seven laryngeal procedures. But an important stridor and dyspnea recurred 13 months after decannulation. Nocturnal gas exchange was normal but her daytime work of breathing was increased by fourfold, without any beneficial effect of nasal noninvasive continuous positive airway pressure ventilation (CPAP), reflecting a severe fixed airway obstruction. Endoscopic examination confirmed the work of breathing findings showing glottic and supraglottic stenosis. This upper airway obstruction was successfully treated with a recannulation. In conclusion, the major message of this case report is that measurement of the work of breathing was able to document the "fixed" nature of the airway obstruction, by showing no improvement even with highest tolerated levels of nasal CPAP. As such, the work of breathing may be proposed as a screening tool to quantify and assess the reversibility of severe upper airway obstruction in children. © 2013 Wiley Periodicals, Inc.

  17. Biogenetic studies in Syringa vulgaris L.: bioconversion of (18)O(2H)-labeled precursors into lilac aldehydes and lilac alcohols.

    Science.gov (United States)

    Burkhardt, Dirk; Mosandl, Armin

    2003-12-03

    Syringa vulgaris L. inflorescences, petals, and chloroplasts, isolated from lilac flower petals, were fed with aqueous solutions of (18)O-labeled linalool and [5,5-(2)H(2)]-deoxy-d-xylose (DOX). The chloroplasts of lilac flower petals were isolated after feeding experiments with labeled precursors. Volatiles from the chloroplasts were extracted by stir bar sorptive extraction (SBSE) and analyzed using enantioselective multidimensional gas chromatography-mass spectrometry (enantio-MDGC-MS). Feeding experiments with DOX indicate that the novel mevalonate-independent 1-deoxy-d-xylose 5-phosphate/2C-methyl-d-erythritol 4-phosphate (DOX/MEP) is the decisive pathway of lilac aldehyde and lilac alcohol, respectively. Bioconversion of [(18)O]linalool into lilac aldehyde and lilac alcohol during in vivo feeding experiments was monitored, and the metabolic pathways are discussed.

  18. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox.

    Science.gov (United States)

    Germonpré, Peter; Balestra, Costantino; Hemelryck, Walter; Buzzacott, Peter; Lafère, Pierre

    2017-05-01

    Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed. Identification of the breathing gas was not possible on subjective assessment alone, while cognitive assessments showed significantly better performance while breathing EANx. Before the dives, breathing air, mean time to complete the task was 1795 ms for MathProc and 1905 ms for Ptrail. When arriving at depth MathProc took 1616 ms on air and 1523 ms on EANx, and Ptrail took 1318 ms on air and and 1356 ms on EANx, followed 15 min later by significant performance inhibition while breathing air during the ascent and the postdive phase, supporting the concept of late dive/postdive impairment. The results suggest that EANx could protect against decreased neuro-cognitive performance induced by inert gas narcosis. It was not possible for blinded divers to identify which gas they were breathing and differences in postdive fatigue between air and EANx diving deserve further investigation.Germonpré P, Balestra C, Hemelryck W, Buzzacott P, Lafère P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp Med Hum Perform. 2017; 88(5):469-475.

  19. Can breath isoprene be measured by ozone chemiluminescence?

    Science.gov (United States)

    Ohira, Shin-Ichi; Li, Jianzhong; Lonneman, William A; Dasgupta, Purnendu K; Toda, Kei

    2007-04-01

    Isoprene, involved in the biosynthetic pathway to cholesterol, is the prevalent hydrocarbon in breath. Breath isoprene measurement is of great interest as a measure of basal cholesterol production rate. We investigated the merits and pitfalls of isoprene measurement via its chemiluminescence (CL) reaction with ozone. For many subjects, apparent concentrations measured are higher than those obtained by a gas chromatography (GC) reference method that can be traced to ozone-induced CL with simultaneously present lower olefins and sulfur compounds. A warm column preconcentration method eliminates the lower olefins and greatly improves sensitivity while a silver-form, ion-exchange resin can remove the sulfur gases. The breath sample is captured on a miniature synthetic carbon sorbent column maintained at 55 degrees C, under which conditions ethylene, propylene, and water vapor are not significantly captured while the preconcentration process greatly improves the limit of detection for isoprene to 0.6 ppbv (S/N=3). The captured isoprene is released by heating the column to 150 degrees C. Breath samples from different subjects were collected both before and after meals and analyzed in a double-blind fashion in two laboratories, with the second laboratory performing quantitation by cryofocusing GC-flame ionization detection with parallel measurement by mass spectrometry to provide identity confirmation. For all individuals studied, the CL and the GC results agreed when both warm column preconcentration and passage through Ag+-form cation-exchange resin, which removes divalent sulfur gases, were implemented prior to CL measurement. The intensity of CL from the reaction with ozone can be much higher for some sulfur gases than for isoprene. Even though present at lower concentrations than isoprene, unless removed prior to CL measurement, for some individuals sulfur gases can cause unacceptably large (up to 500%) errors, making the sulfur gas removal step critical.

  20. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  1. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  2. The cessation of breathing in the chicken embryo during cold-hypometabolism.

    Science.gov (United States)

    Ide, Ryoji; Ide, Satoko Tomita; Mortola, Jacopo P

    2017-08-01

    The avian embryo toward end-incubation combines gas exchange through the chorioallantoic membrane (CAM) and pulmonary ventilation (V˙E). The main experiments examined breathing activity during cold-hypometabolism. Chicken embryos close to hatching were prepared for simultaneous measurements of oxygen consumption ( [Formula: see text] ) and carbon dioxide production ( [Formula: see text] ; open-flow methodology) and breathing frequency (f; barometric technique). As ambient (Ta) and egg temperature (Tegg) dropped, breathing eventually ceased at ∼18°C, when [Formula: see text] and [Formula: see text] were 22-28% of the normothermic values. With the eggshell experimentally covered to reduce CAM gas exchange breathing ceased at slightly lower [Formula: see text] and [Formula: see text] (17-18% of normothermia). Once breathing had stopped, egg exposure to hypoxia (10% or 5% O 2 ) or hypercapnia (3% or 8% CO 2 ) did not resume breathing, which recovered with re-warming. In normothermia, 10% O 2 caused hypometabolism and tachypnea; differently, in 5% O 2 [Formula: see text] dropped as much as with hypothermia and breathing stopped, to recover upon return in air. Correlation analysis among Ta, Tegg, [Formula: see text] , [Formula: see text] and f during cooling and re-warming indicated that f followed more closely the changes in [Formula: see text] and, especially, in [Formula: see text] than the changes in Ta or Tegg. Some considerations suggest that in this experimental model the cessation of breathing in hypothermia or severe hypoxia may be due to hypometabolism, while the lack of chemo-responses may have a different mechanistic basis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    International Nuclear Information System (INIS)

    Tasayco, M.L.; Prestwich, G.D.

    1990-01-01

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, [3H](Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes

  4. Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.

    Science.gov (United States)

    Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa

    2015-03-01

    Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

  5. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123 ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2015

  6. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patc...

  7. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    Science.gov (United States)

    Stam, Mette K.; van Vulpen, Marco; Barendrecht, Maurits M.; Zonnenberg, Bernard A.; Intven, Martijn; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2013-04-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney.

  9. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  10. Air-breathing changes the pattern for temperature-induced pH regulation in a bimodal breathing teleost.

    Science.gov (United States)

    Damsgaard, Christian; Thomsen, Mikkel Thy; Bayley, Mark; Wang, Tobias

    2017-11-09

    It is well established that ectothermic vertebrates regulate a lower arterial pH when temperature increases. Typically, water-breathers reduce arterial pH by altering plasma [HCO 3 - ], whilst air-breathers rely on ventilatory adjustments to modulate arterial PCO 2 . However, no studies have investigated whether the shift from water- to air-breathing within a species changes the mechanisms for temperature-induced pH regulation. Here, we used the striped catfish Pangasianodon hypophthalmus to examine how pH regulation is affected by water- versus air-breathing, since P. hypophthalmus can accommodate all gas exchange by its well-developed gills in normoxic water, but achieves the same metabolic rate with aerial oxygen uptake using its the swim-bladder when exposed to aquatic hypoxia. We, therefore, measured arterial acid-base status in P. hypophthalmus as temperature changed between 20 and 35 °C in either normoxic or severely hypoxic water. In normoxic water, where P. hypophthalmus relied entirely on branchial gas exchange, P. hypophthalmus exhibited the typical teleost reduction in plasma [HCO 3 - ] and arterial pH when temperature rose. However, when forced to increase air-breathing in hypoxic water, arterial PCO 2 fell due to a branchial hyperventilation, but it increased with temperature most likely due to passive CO 2 retention. We propose that the rise in arterial PCO 2 reflects a passive consequence of the progressive transition to air breathing at higher temperatures, and that this response fortuitously matches the new regulated pH a , relieving the requirement for branchial ion exchange.

  11. Gas in Attack and Gas in Defense

    Science.gov (United States)

    1919-07-01

    to get a much larger number of projectors to this point than a French Gas Company in that vicinity, the American8 were given the job of making the...portiondtely grezAtar tAm6. Ir, is also effactive but withi a rapid- ly decressing rnt’io down to Q~Q part in 2Q0,ciOO after which it may be breathed

  12. L-proline-catalyzed enantioselective one-pot cross-Mannich reaction of aldehydes.

    Science.gov (United States)

    Hayashi, Yujiro; Urushima, Tatsuya; Tsuboi, Wataru; Shoji, Mitsuru

    2007-01-01

    This protocol describes a procedure for the synthesis of syn-beta-amino alpha-substituted aldehydes, versatile intermediates in synthetic organic chemistry, via asymmetric, direct, one-pot, three-component, cross-Mannich reaction of two different aldehydes. The reaction consists of two steps; one is the formation of imine by the reaction of aldehyde and p-anisidine in the presence of Pro, and the second step is the enantioselective addition reaction of enamine generated from the other aldehyde and Pro with the imine generated in the first step. As the aldehyde easily racemizes, gamma-amino alcohol was isolated and characterized after reduction. The yield and diastereo- and enantioselectivities are generally excellent. It will take approximately 26 h to complete the protocol: 0.5 h to set up the reaction, 20.5 h for the reaction and 5 h for the isolation and purification.

  13. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  14. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    Science.gov (United States)

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactive with glucose, galactose and xylose. The enzyme also exhibits low activity towards alpha,beta-unsaturated carbonyl-containing compounds. Determination of the apparent Km reveals that AFAR has highest affinity for 9,10-phenanthrenequinone and succinic semialdehyde, and low affinity for glyoxal and DL-glyceraldehyde. PMID:8526867

  15. DNA-Templated Introduction of an Aldehyde Handle in Proteins

    DEFF Research Database (Denmark)

    Kodal, Anne Louise Bank; Rosen, Christian Bech; Mortensen, Michael Rosholm

    2016-01-01

    Many medical and biotechnological applications rely on labeling of proteins, but one key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by mere residue-specific random labeling, but requires genetic engineering. Using site-selective DNA......-templated reductive amination we create DNA-protein conjugates with control over labeling stoichiometry without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing coupling of a second reactive DNA strand to the vicinity of a protein metal......-binding site. Here, we demonstrate DNA-templated reductive amination for His6-tagged proteins and native metal-binding proteins, including IgG1 antibodies. We also use a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde to proteins. This functions as a handle...

  16. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    Science.gov (United States)

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. Georg Thieme Verlag KG Stuttgart · New York.

  17. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  18. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    International Nuclear Information System (INIS)

    Vaidyanathan, Ganesan; Song, Haijing; Affleck, Donna; McDougald, Darryl L.; Storms, Robert W.; Zalutsky, Michael R.; Chin, Bennett B.

    2009-01-01

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [ 125 I]FMIC and [ 125 I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  19. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.72...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with breathing apparatus shall be designed and constructed to prevent: (a) Restriction...

  20. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to gasoline...

  1. Environmental contamination and breathing disease

    International Nuclear Information System (INIS)

    Cardona A, Jose D

    2003-01-01

    The atmospheric contamination is the main component of the environmental contamination and it can be defined as the presence in the atmosphere of an or several substances in enough quantity to produce alterations of the health, it is presented in aerosol form, with its gassy and specific components, altering the quality of the population's life and the degradation of the ecosystems. The main pollutant, as much for the frequency as for the importance of its effects, is the smoke of cigarettes. The paper mentions other types of polluting agents and their effects in the breathing apparatus

  2. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  3. [Effects of panthenol and carnitine on aldehyde metabolic enzymes in rats with tetrachloromethane-induced liver injury].

    Science.gov (United States)

    Satanovskaia, V I; Pron'ko, P S; Gaĭshmanova, A V; Miskevich, D A

    2009-01-01

    Tetrachloromethane (2 g/kg, intragastric) produced a decrease in the activity of NAD- and NADH- dependent aldehyde dehydrogenases with high Km for aldehydes in rat liver. Panthenol and L-carnitine administered separately normalized the activity of aldehyde dehydrogenases, while a combination of the drugs did not produce any significant effect.

  4. Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process.

    Science.gov (United States)

    Zhang, Qing; Wan, Chong; Wang, Chenzhi; Chen, Hong; Liu, Yaowen; Li, Suqing; Lin, Derong; Wu, Dingtao; Qin, Wen

    2018-03-15

    To investigate the non-aldehyde volatile profile resulting from deep-fat frying, volatile compounds formed during the processes of heating soybean oil (SO), frying wheat dough (WD), and frying chicken breast meat (CBM) were comparatively studied. By using gas chromatography-mass spectrometry and internal standard method, alkanes, alkenes, alkynes, alcohols, ketones, nitrogen-containing volatiles (NCVs), and other volatiles were qualitatively and relatively quantitatively detected. NCVs were detected only in CBM-fried oil samples. Some volatiles (e.g. 2-pentylfuran and 2-pentylpyridine) were observed to increase in concentration, whereas others (e.g. 4-methyl-1,4-heptadiene and 7-methyl-3,4-octadiene) were observed to first increase and then decrease in concentration as the heating or frying time increased. Reduced quantity and concentrations of volatiles were observed in the food-fried oil samples which might be related to the intensified reactions induced by food components. The detection of some harmful volatiles in considerable concentrations indicated further attention might be paid to the safety of deep-fat frying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The changes in the volatile aldehydes formed during the deep-fat frying process.

    Science.gov (United States)

    Zhang, Qing; Qin, Wen; Lin, Derong; Shen, Qun; Saleh, Ahmed S M

    2015-12-01

    Volatile aldehydes (VAs) formed during soybean oil (SBO) heating, wheat dough (WD) frying, and chicken breast meat (CBM) frying processes were comparatively investigated by solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS). The results showed that relative amounts (RAs) of the most detected VAs were firstly increased to maximum values in oil samples collected at the second hour of the seventh day and the values were then decreased with the increase in the time of oil heating process (control). However, for food frying processes, the time needed for reaching maximum RAs of VAs was shorter and the values were decreased with the increase in frying time. Significant change in contents of the VAs was observed for oil samples fried with CBM due to the high contents of water, protein, and lipid content compared to oil samples fried with WD. Based on the obtained results, free radical reaction, particularly positional isomerization and cis-trans isomerization, was deduced to occur when WD or CBM was fried in SBO. The relatively high RAs of VAs formed during the deep-fat frying process presented certain invaluable measures for evaluating of frying oil and fried food quality and safety.

  6. Monitoring aldehyde production during frying by reversed-phase liquid chromatography.

    Science.gov (United States)

    Lane, R H; Smathers, J L

    1991-01-01

    Acrolein (2-propenal) and other low molecular weight aldehydes (LMWAs) formed by degradation of the frying medium (triglycerides) were monitored by liquid chromatography (LC) during preparation of fried items. LMWA contents of coatings from codfish and of doughnuts and their volatiles that codistill with steam are monitored by trapping the vapors and distillate from the food matrix in a 2,4-dinitrophenylhydrazine solution. The resulting hydrazones are partitioned from the aqueous phase, first into isooctane and then into acetonitrile for LC analysis. The hydrazones are separated and quantified on a C18 reversed-phase column with acetonitrile-water as the mobile phase. LMWAs are confirmed by gas chromatography/mass spectrometry. No difference was found in LMWA content in coatings from fish fillets fried at 182 or 204 degrees C. Cake doughnuts were higher in acrolein content than yeast-raised doughnuts prepared under similar conditions. Freshness of the frying medium, frying time, and batch size did not seem to influence LMWA production from doughnuts. Results indicated that most of the LMWAs formed codistilled with steam during frying rather than remaining with the food item.

  7. Oxygen and carbogen breathing following simulated submarine escape.

    Science.gov (United States)

    Gennser, Mikael; Loveman, Geoff; Seddon, Fiona; Thacker, Julian; Blogg, S Lesley

    2014-01-01

    Escape from a disabled submarine exposes escapers to a high risk of decompression sickness (DCS). The initial bubble load is thought to emanate from the fast tissues; it is this load that should be lowered to reduce risk of serious neurological DCS. The breathing of oxygen or carbogen (5% CO2, 95% O2) post-surfacing was investigated with regard to its ability to reduce the initial bubble load in comparison to air breathing. Thirty-two goats were subject to a dry simulated submarine escape profile to and from 240 meters (2.5 MPa). On surfacing, they breathed air (control), oxygen or carbogen for 30 minutes. Regular Doppler audio bubble grading was carried out, using the Kisman Masurel (KM) scale. One suspected case of DCS was noted. No oxygen toxicity or arterial gas embolism occurred. No significant difference was found between the groups in terms of the median peak KM grade or the period before the KM grade dropped below III. Time to disappearance of bubbles was significantly different between groups; oxygen showed faster bubble resolution than carbogen and air. This reduction in time to bubble resolution may be beneficial in reducing decompression stress, but probably does not affect the risk of fast-tissue DCS.

  8. Breath holding during the turn in competitive swimming.

    Science.gov (United States)

    Craig, A B

    1986-08-01

    Breath holding times were measured during competition and averaged 5.0 sec in the breaststroke events, 4.3 sec in freestyle, 3.7 sec in butterfly, and 3.3 sec in backstroke. These times represented approximately 30% of the total time of swimming breaststroke and freestyle races but only 20% of the time of backstroke and butterfly events. Pulmonary gas exchanges of O2 and CO2 were studied in eight male swimmers during the first turn after the start of a swim and during the third turn after continuous swimming. It was concluded that biomechanical considerations of optimizing a turn are in most circumstances not limited by the increased PCO2 and the decreased PO2 in the alveoli related to the brief period of breath holding. In turns which last longer than about 5.5 s, the swimmers may experience a strong urge to breathe. This "breaking point" sensation is brief and need not compromise the conclusion of a well-executed turn.

  9. Knowing what we breathe: Sentinel 4: a geostationary imaging UVN spectrometer for air quality monitoring

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Gulde, S.; Kolm, M. G.; Smith, D. J.; Maurer, R.

    2017-09-01

    Sentinel-4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus DS under ESA contract in the frame of the joint EU/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications - hence the motto of Sentinel-4 "Knowing what we breathe".

  10. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  11. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    Science.gov (United States)

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  12. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli.

    Science.gov (United States)

    Zaldivar, J; Martinez, A; Ingram, L O

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, we have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains KO11 and LY01). Aromatic aldehydes were at least twice as toxic as furfural or 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study. Copyright 1999 John Wiley & Sons, Inc.

  13. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  14. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality

    Directory of Open Access Journals (Sweden)

    Ioannis Konstantinos Karabagias

    2018-03-01

    Full Text Available The objectives of the present study were: (a to evaluate the aroma evolution of raw lamb packaged in multi-layer coating film and stored at 4 ± 1 °C, with respect to storage time and (b to investigate whether specific aldehyde ratios could serve as markers of lamb meat freshness and degree of oxidation. Volatile compounds were determined using headspace solid phase microextraction coupled to gas chromatography/mass spectrometry. Results showed that the most dominant volatiles were 2,2,4,6,6-pentamethyl-heptane, hexanal, 1-octen-3-ol, 1-hexanol, carbon disulfide and p-cymene. Volatile compound content was increased during storage time. However, statistically significant differences were recorded only for hexanal, heptanal, and nonanal (p < 0.05. Additionally, the evolution of aldehydes during storage recorded a positive Pearson’s correlation (r (p < 0.05, whereas hexanal to nonanal, heptanal to nonanal, octanal to nonanal ratios, along with the sum of aldehydes to nonanal ratio, were positively correlated (r = 0.83–1.00 with the degree of oxidation (mg malonic dialdehyde per kg of lamb meat. A perfect Pearson’s correlation (r = 1 was obtained for the ratio hexanal to nonanal. Therefore, this ratio is proposed as an indicator of lamb meat freshness and overall quality.

  15. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Method for breathing related ECG triggering

    Energy Technology Data Exchange (ETDEWEB)

    Waters, W.; Neeb, W.; Wellner, U.

    1984-02-01

    A method for breathing related ECG triggering has been developed. It can be applied in radionuclid-angiocardioscintigraphy promising new insights into the physiology and pathophysiology of breathing related heart function without invasive manipulations. High resolution images of the heart can be obtained using this method by steering the NMR (nuclear magnetic resonance) or the cine CT (ultrafast transmission computerized tomography) acquisition.

  17. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  18. Breathing Better with a COPD Diagnosis

    Science.gov (United States)

    ... out of the lungs. Normal luNg CoPD luNg breathiNg better with a CoPD DiagNosis 3 DiagNosis aND ... Using a machine called a spirometer, this noninvasive breathing test measures the amount of air a person ...

  19. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia.

    Directory of Open Access Journals (Sweden)

    Martina Mosing

    Full Text Available This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT. Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding, the fraction of total tidal ventilation within each of four stacked regions of interest (ROI (distribution of ventilation and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia.

  20. Risk of Neurological Insult in Competitive Deep Breath-Hold Diving.

    Science.gov (United States)

    Tetzlaff, Kay; Schöppenthau, Holger; Schipke, Jochen D

    2017-02-01

    It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades. A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives. A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult. This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

  1. The effect of breath freshener strips on two types of breath alcohol testing instruments.

    Science.gov (United States)

    Moore, Ronald L; Guillen, Jennifer

    2004-07-01

    The potential for breath freshener strips to interfere with the accuracy of a breath alcohol test was studied. Twelve varieties of breath freshener strips from five manufacturers were examined. Breath tests were conducted using the infrared based BAC DataMaster or the fuel cell based Alco-Sensor IV-XL, 30 and 150 seconds after placing a breath strip on the tongue. No effect was observed using the Alco-Sensor system. Some of the strips gave a small reading at 30 seconds (less than or equal to 0.010 g/210 L apparent alcohol) using the DataMaster. Readings on the DataMaster returned to zero by the 150 second test. A proper pre-test observation and deprivation period should prevent any interference from breath freshener strips on breath alcohol testing.

  2. Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism.

    Science.gov (United States)

    Wang, Meng; Beissner, Mirko; Zhao, Huimin

    2014-02-20

    Aryl-aldehydes are a common feature in fungal polyketides, which are considered to be exclusively generated by the R domain of nonreducing polyketide synthases (NR-PKSs). However, by cloning and heterologous expression of both cryptic NR-PKS and nonribosomal peptide synthase (NRPS)-like genes from Aspergillus terreus in Saccharomyces cerevisiae, we identified a distinct mechanism for aryl-aldehyde formation in which a NRPS-like protein activates and reduces an aryl-acid produced by the accompanying NR-PKS to an aryl-aldehyde. Bioinformatics study indicates that such a mechanism may be widely used throughout the fungi kingdom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  4. Facile palladium-mediated conversion of ethanethiol esters to aldehydes and ketones

    International Nuclear Information System (INIS)

    Tokuyama, Hidetoshi; Yokoshima, Satoshi; Yamashita, Tohru; Shao-Cheng, Lin; Leping, Li; Fukuyama, Tohru

    1998-01-01

    Treatment of ethanethiol esters with triethylsilane and palladium on carbon at ambient temperature furnished aldehydes. In addition, a variety of ketones have been prepared by a palladium-catalyzed reaction of ethanethiol esters with organo zinc reagents. Various functional groups, including esters, ketones, aromatic halides and aldehydes, tolerate both transformation reactions. These novel reactions can also be applied to the synthesis of α-amino aldehyde and α-amino ketone derivatives using the corresponding L-α-amino thiol esters without causing racemization. (author)

  5. Pattern of breathing in brachycephalic dogs.

    Science.gov (United States)

    Amis, T C; Kurpershoek, C

    1986-10-01

    The pattern of breathing was assessed in 19 brachycephalic dogs, using tidal breathing flow-volume loop (TBFVL) analysis. Fifteen dogs had TBFVL consistent with a fixed-type upper airway obstruction, whereas 4 dogs had a TBFVL indicative of a nonfixed upper airway obstruction. The dogs did not have a TBFVL shape the same as that considered normal for healthy nonbrachycephalic dogs. Tidal breathing flow-volume loops from brachycephalic dogs that were considered to have a normal respiratory tract (n = 11) were similar to those of dogs with clinical signs of upper airway obstruction (n = 8). Respiration was monitored continuously for short periods (20 to 50 minutes) in 3 brachycephalic dogs resting in a cage in a quiet, darkened laboratory; 2 of these dogs had periodic breathing patterns characterized by multiple episodes of alternating hypopnea and arousal. Brachycephalic dogs may be at risk for the development of disordered breathing during sleep.

  6. BREATH OF USE AND VOCAL TRAINING

    Directory of Open Access Journals (Sweden)

    Nuran ACAR

    2016-10-01

    Full Text Available Breathable, who escorted us in every aspect of our lives and our survival is our primary activity, allowing for quality of life in a healthy way. quality of breaths taken the right technique, you need both health professional sense should perhaps take advantage of individuals who want to achieve success in life is the primary rule. When the diaphragm is born with assisted breathing lungs of every person's life starts to grow to keep up with the flurry lose this special and important skills. First and foremost, which is important for our body health, including every aspect of proper breathing, especially correct use of the voice carries particular importance. In this article, breathing subject discussed, correct breathing and our lives have tried to give us information about the benefits of both vocal training.

  7. Rapid eye movement sleep in breath holders.

    Science.gov (United States)

    Kohyama, J; Hasegawa, T; Shimohira, M; Fukumizu, M; Iwakawa, Y

    2000-07-01

    One-night polysomnography was performed on seven subjects suffering from breath-holding spells, including one whose death was suggested to be a consequence of a breath-holding spell. The fatal case showed no rapid eye movements (REMs) during REM sleep, although he exhibited REMs during wakefulness. The average numbers of both REMs and bursts of REMs in REM sleep in the other six breath holders were significantly lower than those in age-matched controls. The breath holders showed no airway obstruction, desaturation, or sleep fragmentation. Since the rapid ocular activity in REM sleep is generated in the brain stem, we hypothesized that a functional brainstem disturbance is involved in the occurrence of breath-holding spells.

  8. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  9. Sleep disordered breathing in children.

    Science.gov (United States)

    Sinha, Deepti; Guilleminault, Christian

    2010-02-01

    Sleep disordered breathing (SDB) is increasingly being recognised as a cause of morbidity even in young children. With an estimated prevalence of 1 to 4 per cent, SDB results from having a structurally narrow airway combined with reduced neuromuscular tone and increased airway collapsibility. SDB in children differs from adults in a number of ways, including presenting symptoms and treatment. Presentation may differ according to the age of the child. Children have a more varied presentation from snoring and frequent arousals to enuresis to hyperactivity. Those with Down syndrome, midface hypoplasia or neuromuscular disorders are at higher risk for developing SDB. First line definitive treatment in children involves tonsillectomy and adenoidectomy. Rapid maxillary expansion, allergy treatment and continuous positive airway pressure (CPAP) are other options. As untreated SDB results in complications as learning difficulties, memory loss and a long term increase in risk of hypertension, depression and poor growth, it is important to diagnose SDB.

  10. Time Breath of Psychological Theories

    DEFF Research Database (Denmark)

    Tateo, Luca; Valsiner, Jaan

    2015-01-01

    Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well...

  11. The indoor air we breathe.

    Science.gov (United States)

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions.

  12. Interspecies variation in the metabolism of zoniporide by aldehyde oxidase.

    Science.gov (United States)

    Dalvie, Deepak; Xiang, Cathie; Kang, Ping; Zhou, Sue

    2013-05-01

    1. Aldehyde oxidase (AO) is a cytosolic enzyme that contributes to the Phase I metabolism of xenobiotics in human and preclinical species. 2. Current studies explored in vitro metabolism of zoniporide in various animal species and humans using S9 fractions. The animal species included commonly used pharmacology and toxicology models and domestic animals such as the cat, cow or bull, pig and horse. 3. In addition, gender and strain differences in some species were also explored. 4. All animals except the dog and cat converted zoniporide to 2-oxozoniporide (M1). 5. Michael-Menten kinetic studies were conducted in species that turned over zoniporide to M1. 6. Marked differences in KM, Vmax and Clint were observed in the oxidation of zoniporide. 7. Although the KM and Vmax of zoniporide oxidation in male and female human S9 was similar, some gender difference was observed in animals especially, in Vmax. 8. The domestic animals also showed marked species differences in the AO activity and affinity toward zoniporide.

  13. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  15. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  16. Study of the Human Breathing Flow Profile in a Room with three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Olmedo, Ines; Nielsen, Peter V.; de Adana, Manuel Ruiz

    2010-01-01

    This study investigates the characteristics of human exhalation through the mouth with three different ventilation strategies: displacement ventilation, mixing ventilation and without ventilation. Experiments were conducted with one breathing thermal manikin in a full scale test room where...... the exhalation airflow was analyzed. In order to simulate the gaseous exhaled substances in human breathing, N2O was used as a tracer gas. The concentration of N2O and the velocity of the exhaled flow were measured in the center line of the exhalation flow. The velocity decay of the exhalation flow versus...

  17. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.

    Science.gov (United States)

    Burcham, Philip C; Kaminskas, Lisa M; Fontaine, Frank R; Petersen, Dennis R; Pyke, Simon M

    2002-12-27

    Elevated levels of reactive alpha,beta-unsaturated aldehydes (e.g. malondialdehyde, 4-hydroxynonenal and acrolein) in the affected tissues of various degenerative conditions suggest these substances are active propagators of the disease process. One experimental approach to attenuating damage by these intermediates employs 'aldehyde-sequestering drugs' as sacrificial nucleophiles, thereby sparing cell macromolecules and perhaps slowing disease progression. Drugs with demonstrated trapping activity toward lipid-derived aldehydes include various amine compounds such as aminoguanidine, carnosine and pyridoxamine. We have focused on identifying scavengers of acrolein, perhaps the most toxic aldehyde formed during lipid peroxidation cascades. Various phthalazine compounds (hydralazine and dihydralazine) were found to trap acrolein readily, forming hydrazone derivatives in a rapid Schiff-type reaction. These compounds strongly protect against acrolein-mediated toxicity in isolated hepatocytes.

  18. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  19. ENVIRONMENTAL TECHNOLOGY PROTOCOL VERIFICATION REPORT, EMISSIONS OF VOCS AND ALDEHYDES FROM COMMERCIAL FURNITURE (WITH APPENDICES)

    Science.gov (United States)

    As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...

  20. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  1. Samarium Barbier reactions of alpha-iodomethyloxazoles and thiazoles with aliphatic aldehydes.

    Science.gov (United States)

    Williams, David R; Berliner, Martin A; Stroup, Bryan W; Nag, Partha P; Clark, Michael P

    2005-09-15

    [reaction: see text] The reductive coupling of substituted alpha-iodomethyloxazoles and thiazoles with aliphatic aldehydes under Barbier conditions provides an effective method for the direct incorporation of intact heterocyclic systems.

  2. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  3. Solvent-free oxidation of aldehydes to acids by TBHP using ...

    Indian Academy of Sciences (India)

    free oxidation of aldehydes to acids by TBHP using environmental-friendly MnO 4 − 1 -exchanged Mg-Al hydrotalcite catalyst ... Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411 008, India ...

  4. Immediate effects of breath holding maneuvers onto composition of exhaled breath.

    Science.gov (United States)

    Sukul, Pritam; Trefz, Phillip; Schubert, Jochen K; Miekisch, Wolfram

    2014-09-01

    Rapid concentration changes due to physiological or pathophysiological effects rather than appearance of unique disease biomarkers are important for clinical application of breath research. Simple maneuvers such as breath holding may significantly affect breath biomarker concentrations. In this study, exhaled volatile organic compound (VOC) concentrations were assessed in real time before and after different breath holding maneuvers. Continuous breath-resolved measurements (PTR-ToF-MS-8000) were performed in 31 healthy human subjects in a side-stream sampling mode. After 1 min of tidal breathing participants held their breath for 10, 20, 40, 60 s and as long as possible. Afterwards they continued to breathe normally for another minute. VOC profiles could be monitored in real time by assigning online PTR-ToF-MS data to alveolar or inspired phases of breath. Sudden and profound changes of exhaled VOC concentrations were recorded after different breath holding maneuvers. VOC concentrations returned to base line levels 10-20 s after breath holding. Breath holding induced concentration changes depended on physico-chemical properties of the substances. When substance concentrations were normalized onto end-tidal CO2 content, variation of acetone concentrations decreased, whereas variations of isoprene concentrations were not affected. As the effects of breathing patterns on exhaled substance concentrations depend on individual substance properties, sampling procedures have to be validated for each compound by means of appropriate real-time analysis. Normalization of exhaled concentrations onto exhaled CO2 is only valid for substances having similar physico-chemical properties as CO2.

  5. Breathing changes accompanying balance improvement during biofeedback.

    Science.gov (United States)

    Hirjaková, Zuzana; Neumannová, Kateřina; Kimijanová, Jana; Šuttová, Kristína; Janura, Miroslav; Hlavačka, František

    2017-06-09

    The aim of this study was to determine whether respiration would be altered during visual biofeedback condition while standing on a foam surface. Fifty young, healthy subjects (24 men, 26 women) were divided into a spirometry group, in which additional spirometry analysis was performed, and a control group. All subjects were tested in two conditions: 1) standing on a foam surface and 2) standing on a foam surface with visual biofeedback (VF) based on the centre of pressure (CoP). CoP amplitude and velocity in anterior-posterior (Aap, Vap) and medial-lateral (Aml, Vml) directions were measured by the force platform. Breathing movements were recorded by two pairs of 3D accelerometers attached on the upper chest (upper chest breathing - UCB) and the lower chest (lower chest breathing - LCB). Results showed that significant decreases of CoP amplitude and velocity in both directions were accompanied by a significant decrease of lower chest breathing, and an increase of LCB frequency was seen during VF condition compared to control condition in both groups. Moreover, a significant decrease in tidal volume and increased breathing frequency during VF condition were confirmed by spirometric analysis. Reduced breathing movements and volumes as well as increased breathing frequency are probably part of an involuntary strategy activated to maximize balance improvement during VF condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A new co-axial breathing system. A combination of the benefits of Mapleson A, D and E systems.

    Science.gov (United States)

    Burchett, K R; Bennett, J A

    1985-02-01

    A new, simple, versatile co-axial breathing system combining the features of Mapleson A, D and E type systems is described. The change from an A system to a D/E system is effected by a single switch and without reversal of the gas flow. Fresh gas flows in the order of 70 ml/kg/min are required for both spontaneous ventilation in the Mapleson A mode and controlled ventilation in the Mapleson D mode. The co-axial configuration offers the advantages of a single, lightweight breathing system with easy scavenging of anaesthetic gases, while the ability to switch between the A and D or E configurations offers the economic advantages of low fresh gas flows and the need for a single anaesthetic breathing system for all situations.

  7. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    OpenAIRE

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  8. Role of aldehydes in the toxic and mutagenic effects of nitrosamines

    OpenAIRE

    Peterson, Lisa A.; Urban, Anna M.; Vu, Choua C.; Cummings, Meredith E.; Brown, Lee C.; Warmka, Janel K.; Li, Li; Wattenberg, Elizabeth V.; Patel, Yesha; Stram, Daniel O.; Pegg, Anthony E.

    2013-01-01

    α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activity of three model methylating agents were compared in Chinese hamster ovary cells expressing human O6-alkylguanine DNA alkyltransferase (AGT) or not. N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN) and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)...

  9. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  10. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  11. N-heterocyclic carbene catalyzed additions of 3-trimethylsilyl propiolate to aldehydes

    Directory of Open Access Journals (Sweden)

    Guang-Fen Du

    2016-03-01

    Full Text Available A N-heterocyclic carbene (NHC catalyzed addition reaction of 3-trimethylsilyl propiolate with aldehydes has been developed. Under the catalysis of 2 mol% NHCs, benzaldehyde, furfural, β-naphthaldehyde, meta- and para-substituted aromatic aldehydes reacted with 3-trimethylsilyl propiolate to afford β-acylated MBH adducts in good yield with excellent stereoselectivity. While ortho-substituted benzaldehydes coupled with 3-trimethylsilyl propiolate to give alkynylation products as the sole products under the same reaction conditions.

  12. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  13. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zaldivar, J.; Ingram, L.O. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science; Martinez, A. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science]|[Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Biotecnologia

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  14. In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase.

    Science.gov (United States)

    Zientek, Michael; Jiang, Ying; Youdim, Kuresh; Obach, R Scott

    2010-08-01

    The ability to predict in vivo clearance from in vitro intrinsic clearance for compounds metabolized by aldehyde oxidase has not been demonstrated. To date, there is no established scaling method for predicting aldehyde oxidase-mediated clearance using in vitro or animal data. This challenge is exacerbated by the fact that rats and dogs, two of the laboratory animal species commonly used to develop in vitro-in vivo correlations of clearance, differ from humans with regard to expression of aldehyde oxidase. The objective of this investigation was to develop an in vitro-in vivo correlation of intrinsic clearance for aldehyde oxidase, using 11 drugs known to be metabolized by this enzyme. The set consisted of methotrexate, XK-469, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]pyrimidine (RS-8359), zaleplon, 6-deoxypenciclovir, zoniporide, O(6)-benzylguanine, N-[(2'-dimethylamino)ethyl]acridine-4-carboxamide (DACA), carbazeran, PF-4217903, and PF-945863. These compounds were assayed using two in vitro systems (pooled human liver cytosol and liver S-9 fractions) to calculate scaled unbound intrinsic clearance, and they were then compared with calculated in vivo unbound intrinsic clearance. The investigation provided a relative scale that can be used for in vitro-in vivo correlation of aldehyde oxidase clearance and suggests limits as to when a potential new drug candidate that is metabolized by this enzyme will possess acceptable human clearance, or when structural modification is required to reduce aldehyde oxidase catalyzed metabolism.

  15. The Lack, Magill and Bain anaesthetic breathing systems: a direct comparison in spontaneously-breathing anaesthetized adults.

    Science.gov (United States)

    Humphrey, D

    1982-01-01

    The performances of the Lack (Mapleson A), Magill (Mapleson A) and Bain (Mapleson D) anaesthetic breathing systems were compared in each of 20 anaesthetized adult patients breathing spontaneously with fresh gas flows of 70 ml kg-1 min-1. In every patient the Lack system caused the least rebreathing, as seen by the lowest inspired and end-expired CO2 tensions using capnography. The Magill caused more rebreathing than the Lack though less than the Bain. Comparative fresh gas flows for each system at the point where rebreathing started to occur were examined in 10 further patients. The Lack system required approximately 51 ml kg-1 min-1, the Magill 72 ml kg-1 min-1 while the Bain required 153 ml kg-1 min-1. Of the three systems the Lack is concluded to be the most efficient and economical system for spontaneous respiration in adults, with the additional advantages of convenient access to the exhaust valve, easy scavenging and low expiratory resistance. In addition, it also offers many useful advantages over the circle absorber system. Images Figure 1. PMID:6806473

  16. Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives

    DEFF Research Database (Denmark)

    Cristescu, S M; Marchenko, D; Mandon, J

    2012-01-01

    Optical methods based on quantum cascade lasers (QCLs) are becoming popular in many life science applications. We report on two trace gas detection schemes based on continuous wave QCLs for on-line detection of nitric oxide (NO) at the sub-part-per-billion level by volume (ppbv, 1:10−9), using...... wavelength modulation spectroscopy (WMS) and Faraday rotation spectroscopy (FRS) at 1894cm−1 and 1875.73cm−1, respectively. Several technical incremental steps are discussed to further improve the sensitivity of these methods. Examples are included to demonstrate the merits of WMS-based sensor: direct...... monitoring of NO concentrations in exhaled breath, and from plants under pathogen attack. A simple hand-held breath sampling device that allows single breath collection at various exhalation flows (15, 50, 100 and 300mL/s, respectively) is developed for off-line measurements and validated in combination...

  17. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals.

    Science.gov (United States)

    Cumeras, Raquel; Cheung, William H K; Gulland, Frances; Goley, Dawn; Davis, Cristina E

    2014-09-12

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  18. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    Directory of Open Access Journals (Sweden)

    Raquel Cumeras

    2014-09-01

    Full Text Available We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs. Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap. The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME and gas chromatography/mass spectrometry (GC/MS. A total of 70 chemicals were identified (58 positively identified in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  19. 14 CFR 25.1439 - Protective breathing equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall be...

  20. 42 CFR 84.90 - Breathing resistance test; inhalation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; inhalation. 84.90...-Contained Breathing Apparatus § 84.90 Breathing resistance test; inhalation. (a) Resistance to inhalation airflow will be measured in the facepiece or mouthpiece while the apparatus is operated by a breathing...

  1. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation...-circuit apparatus with a breathing machine as described in § 84.88, and the exhalation resistance shall...

  2. 42 CFR 84.88 - Breathing bag test.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated with...

  3. 21 CFR 868.5270 - Breathing system heater.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a) Identification. A breathing system heater is a device that is intended to warm breathing gases before they enter...

  4. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7. cap alpha. -hydroxykaurenoic acid and biggerellin A/sub 12/-aldehyde. [Pisum sativum

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, T.J.; Reid, J.B.

    1987-04-01

    The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA/sub 12/-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7..cap alpha..-hydroxykaurenoic acid and GA/sub 12/-aldehyde in the na mutant. Feeds of ent(/sup 3/H)kaurenoic acid and (/sup 2/H)GA/sub 12/-aldehyde to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize(/sup 2/H)GA/sub 12/-aldehyde to a number of (/sup 2/H)C/sub 19/-GAs including GA/sub 1/. However, there was no indication in na genotypes for the metabolism of ent-(/sup 3/H)kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolized ent-(/sup 3/H)kaurenoic acid to radioactive compounds that co-chromatographed with GA/sub 1/, GA/sub 8/, GA/sub 20/, and GA/sub 29/. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-(/sup 3/H)kaurenoic acid were similar for both Na and na plants and contained ent-16..cap alpha..,17-dihydroxykaurenoic acid and ent-6..cap alpha..,7..cap alpha..,16..beta..,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7..cap alpha..-hydroxylation.

  5. Analysis for drugs in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive techniques for sample collection were evaluated. Having subjects simply spit into a specially prepared glass vial was found to be an efficient, inexpensive and simple way to collect ...

  6. Analysis for drug in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive : techniques for sample collection were evaluated. Having subjects simply : spit into a specially prepared glass vial was found to be an efficient, : inexpensive and simple way to co...

  7. Healthy Living: Helping Your Child Breathe Easier

    Science.gov (United States)

    ... Breathe Easier Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition Exercise Coming Of Age Older Adults Allergy ... through these narrowed airways can produce a wheezing sound. Other forms the allergy may take are sneezing, ...

  8. Breath-holding spells in infants.

    Science.gov (United States)

    Goldman, Ran D

    2015-02-01

    I have children in my clinic who experience seizurelike episodes in which they cry and hold their breath to the point of cyanosis and loss of consciousness. Their examination or investigation findings are normal and referral to a pediatric specialist results in no further investigation. Are breath-holding spells common, and what type of investigation is needed? A breath-holding spell is a benign paroxysmal nonepileptic disorder occurring in healthy children 6 to 48 months of age. The episodes start with a provocation such as emotional upset or minor injury, and might progress to breath holding, cyanosis, and syncope. The episodes are extremely frightening to watch but have benign consequences. Once a clinical diagnosis is made, it is recommended to conduct an electrocardiogram and to rule out anemia, but no further investigation or referral is warranted. Copyright© the College of Family Physicians of Canada.

  9. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    Science.gov (United States)

    Humidifiers: Air moisture eases skin, breathing symptoms Humidifiers can ease problems caused by dry air. But they need regular maintenance. Here ... that emit water vapor or steam to increase moisture levels in the air (humidity). There are several ...

  10. Seeking Allergy Relief: When Breathing Becomes Bothersome

    Science.gov (United States)

    ... Issues Subscribe June 2016 Print this issue Seeking Allergy Relief When Breathing Becomes Bothersome En español Send ... Preschoolers Benefit from Peanut Allergy Therapy Wise Choices Allergy Symptoms Runny or stuffy nose Sneezing Itchy nose, ...

  11. Atmospheric Breathing Electric Thruster for Planetary Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will investigate the development of an atmosphere-breathing electric propulsion solar-powered vehicle to explore planets such as Mars. The vehicle would...

  12. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms.

    Directory of Open Access Journals (Sweden)

    Michael Phillips

    Full Text Available BACKGROUND: Previous studies have reported volatile organic compounds (VOCs in breath as biomarkers of breast cancer and abnormal mammograms, apparently resulting from increased oxidative stress and cytochrome p450 induction. We evaluated a six-minute point-of-care breath test for VOC biomarkers in women screened for breast cancer at centers in the USA and the Netherlands. METHODS: 244 women had a screening mammogram (93/37 normal/abnormal or a breast biopsy (cancer/no cancer 35/79. A mobile point-of-care system collected and concentrated breath and air VOCs for analysis with gas chromatography and surface acoustic wave detection. Chromatograms were segmented into a time series of alveolar gradients (breath minus room air. Segmental alveolar gradients were ranked as candidate biomarkers by C-statistic value (area under curve [AUC] of receiver operating characteristic [ROC] curve. Multivariate predictive algorithms were constructed employing significant biomarkers identified with multiple Monte Carlo simulations and cross validated with a leave-one-out (LOO procedure. RESULTS: Performance of breath biomarker algorithms was determined in three groups: breast cancer on biopsy versus normal screening mammograms (81.8% sensitivity, 70.0% specificity, accuracy 79% (73% on LOO [C-statistic value], negative predictive value 99.9%; normal versus abnormal screening mammograms (86.5% sensitivity, 66.7% specificity, accuracy 83%, 62% on LOO; and cancer versus no cancer on breast biopsy (75.8% sensitivity, 74.0% specificity, accuracy 78%, 67% on LOO. CONCLUSIONS: A pilot study of a six-minute point-of-care breath test for volatile biomarkers accurately identified women with breast cancer and with abnormal mammograms. Breath testing could potentially reduce the number of needless mammograms without loss of diagnostic sensitivity.

  13. Oxygen breathing accelerates decompression from saturation at 40 msw in 70-kg swine.

    Science.gov (United States)

    Petersen, Kyle; Soutiere, Shawn E; Tucker, Kathryn E; Dainer, Hugh M; Mahon, Richard T

    2010-07-01

    Submarine disaster survivors can be transferred from a disabled submarine at a pressure of 40 meters of seawater (msw) to a new rescue vehicle; however, they face an inherently risky surface interval before recompression and an enormous decompression obligation due to a high likelihood of saturation. The goal was to design a safe decompression protocol using oxygen breathing and a trial-and-error methodology. We hypothesized that depth, timing, and duration of oxygen breathing during decompression from saturation play a role to mitigate decompression outcomes. Yorkshire swine (67-75 kg), compressed to 40 msw for 22 h, underwent one of three accelerated decompression profiles: (1) 13.3 h staged air decompression to 18 msw, followed by 1 h oxygen breathing, then dropout; (2) direct decompression to 18 msw followed by 1 h oxygen breathing then dropout; and (3) 1 h oxygen prebreathe at 40 msw followed by 1 h mixed gas breathing at 26 msw, 1 h oxygen breathing at 18 msw, and 1 h ascent breathing oxygen. Animals underwent 2-h observation for signs of DCS. Profile 1 (14.3 h total) resulted in no deaths, no Type II DCS, and 20% Type I DCS. Profile 2 (2.1 h total) resulted in 13% death, 50% Type II DCS, and 75% Type I DCS. Profile 3 (4.5 h total) resulted in 14% death, 21% Type II DCS, and 57% Type I DCS. No oxygen associated seizures occurred. Profile 1 performed best, shortening decompression with no death or severe DCS, yet it may still exceed emergency operational utility in an actual submarine rescue.

  14. Efficacy and tolerability of yoga breathing in patients with chronic obstructive pulmonary disease: a pilot study.

    Science.gov (United States)

    Pomidori, Luca; Campigotto, Federica; Amatya, Tara Man; Bernardi, Luciano; Cogo, Annalisa

    2009-01-01

    Yoga-derived breathing has been reported to improve gas exchange in patients with chronic heart failure and in participants exposed to high-altitude hypoxia. We investigated the tolerability and effect of yoga breathing on ventilatory pattern and oxygenation in patients with chronic obstructive pulmonary disease (COPD). Patients with COPD (N = 11, 3 women) without previous yoga practice and taking only short-acting beta2-adrenergic blocking drugs were enrolled. Ventilatory pattern and oxygen saturation were monitored by means of inductive plethysmography during 30-minute spontaneous breathing at rest (sb) and during a 30-minute yoga lesson (y). During the yoga lesson, the patients were requested to mobilize in sequence the diaphragm, lower chest, and upper chest adopting a slower and deeper breathing. We evaluated oxygen saturation (SaO2%), tidal volume (VT), minute ventilation (E), respiratory rate (i>f), inspiratory time, total breath time, fractional inspiratory time, an index of thoracoabdominal coordination, and an index of rapid shallow breathing. Changes in dyspnea during the yoga lesson were assessed with the Borg scale. During the yoga lesson, data showed the adoption of a deeper and slower breathing pattern (VTsb L 0.54[0.04], VTy L 0.74[0.08], P = .01; i>fsb 20.8[1.3], i>fy 13.8[0.2], P = .001) and a significant improvement in SaO2% with no change in E (SaO2%sb 91.5%[1.13], SaO2%y 93.5%[0.99], P = .02; Esb L/min 11.2[1.1], Ey L/min 10.2[0.9]). All the participants reported to be comfortable during the yoga lesson, with no increase in dyspnea index. We conclude that short-term training in yoga is well tolerated and induces favorable respiratory changes in patients with COPD.

  15. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  16. Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding.

    Science.gov (United States)

    Bruce, Christina D; Steinback, Craig D; Chauhan, Uday V; Pfoh, Jamie R; Abrosimova, Maria; Vanden Berg, Emily R; Skow, Rachel J; Davenport, Margie H; Day, Trevor A

    2016-12-01

    What is the central question of this study? We developed and validated a 'stimulus index' (SI; ratio of end-tidal partial pressures of CO 2 and O 2 ) method to quantify cerebrovascular reactivity (CVR) in anterior and posterior cerebral circulations during breath holding. We aimed to determine whether the magnitude of CVR is correlated with breath-hold duration. What is the main finding and its importance? Using the SI method and transcranial Doppler ultrasound, we found that the magnitude of CVR of the anterior and posterior cerebral circulations is not positively correlated with physiological or psychological break-point during end-inspiratory breath holding. Our study expands the ability to quantify CVR during breath holding and elucidates factors that affect break-point. The central respiratory chemoreflex contributes to blood gas homeostasis, particularly in response to accumulation of brainstem CO 2 . Cerebrovascular reactivity (CVR) affects chemoreceptor stimulation inversely through CO 2 washout from brainstem tissue. Voluntary breath holding imposes alterations in blood gases, eliciting respiratory chemoreflexes, potentially contributing to breath-hold duration (i.e. break-point). However, the effects of cerebrovascular reactivity on break-point have yet to be determined. We tested the hypothesis that the magnitude of CVR contributes directly to breath-hold duration in 23 healthy human participants. We developed and validated a cerebrovascular stimulus index methodology [SI; ratio of end-tidal partial pressures of CO 2 and O 2 (P ET ,CO2/P ET ,O2)] to quantify CVR by correlating measured and interpolated values of P ET ,CO2 (r = 0.95, P breath hold. The MCAv CVR magnitude was larger than PCAv (P = 0.001; +70%) during breath holding. We then correlated MCAv and PCAv CVR with the physiological (involuntary diaphragmatic contractions) and psychological (end-point) break-point, within individuals. There were significant inverse but modest relationships

  17. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia.

    Science.gov (United States)

    Mosing, Martina; Waldmann, Andreas D; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H; Bettschart-Wolfensberger, Regula; Bardell, David

    2016-01-01

    This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at pbreath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia.

  18. Long-term monitoring of breath methane.

    Science.gov (United States)

    Polag, Daniela; Keppler, Frank

    2018-05-15

    In recent years, methane as a component of exhaled human breath has been considered as a potential bioindicator providing information on microbial activity in the intestinal tract. Several studies indicated a relationship between breath methane status and specific gastrointestinal disease. So far, almost no attention has been given to the temporal variability of breath methane production by individual persons. Thus here, for the first time, long-term monitoring was carried out measuring breath methane of three volunteers over periods between 196 and 1002days. Results were evaluated taking into consideration the health status and specific medical intervention events for each individual during the monitoring period, and included a gastroscopy procedure, a vaccination, a dietary change, and chelate therapy. As a major outcome, breath methane mixing ratios show considerable variability within a person-specific range of values. Interestingly, decreased breath methane production often coincided with gastrointestinal complaints whereas influenza infections were mostly accompanied by increased breath methane production. A gastroscopic examination as well as a change to a low-fructose diet led to a dramatic shift of methane mixing ratios from high to low methane production. In contrast, a typhus vaccination as well as single chelate injections resulted in significant short-term methane peaks. Thus, this study clearly shows that humans can change from high to low methane emitters and vice versa within relatively short time periods. In the case of low to medium methane emitters the increase observed in methane mixing ratios, likely resulting from immune reactions and inflammatory processes, might indicate non-microbial methane formation under aerobic conditions. Although detailed reaction pathways are not yet known, aerobic methane formation might be related to cellular oxidative-reductive stress reactions. However, a detailed understanding of the pathways involved in human

  19. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Nguyen, Ha Thi-Hoang; Takenaka, Norimichi; Bandow, Hiroshi; Maeda, Yasuaki; Oliva, S.T. de; Botelho, M.M.; Tavares, T.M.

    2001-01-01

    The use of alcohol fuel has received much attention since the 1980s. In Brazil, ethanol-fuelled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol and isoproponal concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used and from 3 to 9 February 1998 in Sao Paulo, Brazil, where ethanol was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8 ± 3.8, 8.2 ± 4.6, and 7.2 ± 5.9ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1± 9.2, 176.3 ± 38.1, and 44.2 ± 13.7ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average measured in Osaka was 1.9± 0.9ppbv, and the average acetaldehyde concentration was 1.5 ± 0.8ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0 ± 2.8 and 5.4 ± 2.8ppbv, respectively. The C 2 H 5 OH/CH 3 OH and CH 3 CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fuelled vehicles, these ratios, especially C-2H 5 OH/CH 3 OH, are much higher in Brazil than those measured elsewhere in the world. (Author)

  20. Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells

    International Nuclear Information System (INIS)

    Choudhary, S.; Xiao, T.; Srivastava, S.; Zhang, W.; Chan, L.L.; Vergara, L.A.; Van Kuijk, F.J.G.M.; Ansari, N.H.

    2005-01-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H 2 O 2 , 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H 2 O 2 -, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H 2 O 2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3 H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST) (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD

  1. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  2. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  3. Periodic breathing and apnea in preterm infants.

    Science.gov (United States)

    Barrington, K J; Finer, N N

    1990-02-01

    The relationship between periodic breathing and idiopathic apnea of prematurity was investigated. We recorded respiratory impedance, heart rate, pulse oximetry and end-tidal CO2 from 68 untreated infants of less than or equal to 34 wk gestation with a diagnosis of idiopathic apnea of prematurity. Mean birth wt was 1476 g (SD 420) and mean gestational age was 29.9 wk (SD 2.6). Apneas of more than 15 s duration that were associated with hypoxemia or bradycardia were identified by semiautomated analysis of computerized records. A total of 1116 significant apneic spells were identified, only one of which occurred during an epoch of periodic breathing, five others occurred within 2 min of the end of an epoch of periodic breathing. Less than 0.6% of significant apneic spells occur within 2 min of periodic breathing. In all of the 12 infants that were monitored starting in the first 12 h of life, significant apneic spells were identified before 36 h of age and no precipitating factors were identified. Periodic breathing did not occur during the first 48 h of life, a finding that supports the concept that the peripheral chemoreceptor is inactive in the first 48 h of life. Periodic breathing in the premature infant is not a precursor to significant apnea.

  4. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  5. Volatile Organic Compounds in Exhaled Breath of Idiopathic Pulmonary Fibrosis for Discrimination from Healthy Subjects.

    Science.gov (United States)

    Yamada, Yu-Ichi; Yamada, Gen; Otsuka, Mitsuo; Nishikiori, Hirotaka; Ikeda, Kimiyuki; Umeda, Yasuaki; Ohnishi, Hirofumi; Kuronuma, Koji; Chiba, Hirofumi; Baumbach, Jörg Ingo; Takahashi, Hiroki

    2017-04-01

    Purpose Human breath analysis is proposed with increasing frequency as a useful tool in clinical application. We performed this study to find the characteristic volatile organic compounds (VOCs) in the exhaled breath of patients with idiopathic pulmonary fibrosis (IPF) for discrimination from healthy subjects. Methods VOCs in the exhaled breath of 40 IPF patients and 55 healthy controls were measured using a multi-capillary column and ion mobility spectrometer. The patients were examined by pulmonary function tests, blood gas analysis, and serum biomarkers of interstitial pneumonia. Results We detected 85 VOC peaks in the exhaled breath of IPF patients and controls. IPF patients showed 5 significant VOC peaks; p-cymene, acetoin, isoprene, ethylbenzene, and an unknown compound. The VOC peak of p-cymene was significantly lower (p VOC peaks of acetoin, isoprene, ethylbenzene, and the unknown compound were significantly higher (p VOC peaks with clinical parameters, negative correlations with VC (r =-0.393, p = 0.013), %VC (r =-0.569, p VOCs in the exhaled breath of IPF patients. Among them, the VOC peaks of p-cymene were related to the clinical parameters of IPF. These VOCs may be useful biomarkers of IPF.

  6. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis

    Directory of Open Access Journals (Sweden)

    Yue Qiao

    2014-01-01

    Full Text Available Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−, 2 (±, 3 (+, 4 (++, or 5 (+++ according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis.

  7. Potential effect of alcohol content in energy drinks on breath alcohol testing.

    Science.gov (United States)

    Lutmer, Brian; Zurfluh, Carol; Long, Christopher

    2009-04-01

    Since the advent of energy drinks in the U.S. marketplace, some defendants have claimed that positive breath alcohol test results have occurred due to the ingestion of non-alcoholic energy drinks. A variety of energy drinks were tested by gas chromatography and some 88.9% (24 of 27) were found to contain low concentrations of ethanol (5-230 mg/dL). Drinks were then consumed (24.6-32 oz) by volunteers to determine the extent of reaction that could be achieved on a portable breath-testing instrument. Eleven of 27 (40.7%) beverages gave positive results on a portable breath-testing instrument (0.006-0.015 g/210 L) when samples were taken within 1 min of the end of drinking. All tests taken by portable breath test, DataMaster, and Intox EC/IR II at least 15 min after the end of drinking resulted in alcohol-free readings (0.000 g/210 L). Affording subjects a minimum 15-min observation period prior to breath-alcohol testing eliminates the possibility that a small false-positive alcohol reading will be obtained.

  8. Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies' homes.

    Science.gov (United States)

    Dassonville, C; Demattei, C; Laurent, A-M; Le Moullec, Y; Seta, N; Momas, I

    2009-08-01

    Exposure to indoor chemical air pollutants expected to be potentially involved in allergic respiratory diseases in infants is poorly documented. A specific environmental investigation included in a birth cohort study was carried out to first assess indoor airborne aldehyde levels, using passive devices and their variability within 1 year (1, 6, 9 and 12 months) in the bedroom of 196 Paris infants, and second, to identify predictors for aldehyde concentrations using interviewer administered questionnaires about housing factors. Comfort parameters and carbon dioxide levels were measured simultaneously. Aldehydes were detected in almost all dwellings and geometric mean levels (geometric standard deviation) at the first visit were respectively for formaldehyde, acetaldehyde, hexanal, and pentanal 19.4 (1.7) microg/m(3), 8.9 (1.8) microg/m(3), 25.3 (3.1) microg/m(3), 3.7 (2.3) microg/m(3), consistent with earlier published results. Generalized Estimating Equation multivariate analyses showed that, apart from comfort parameters, aeration and season, the main indoor aldehyde sources were either continuous (building materials and coverings especially when they were new) or discontinuous (smoking, use of air fresheners and cleaning products, DIY etc...). Finally, the data collected by questionnaires should be sufficient to enable us to classify each infant in our cohort study according to his/her degree of exposure to the main aldehydes. This analysis contributed to document indoor aldehyde levels in Parisian homes and to identify factors determining these levels. In the major part of newborn babies' homes, indoor formaldehyde levels were above the guideline value of 10 microg/m(3) proposed by the French Agency for Environmental and Occupational Health Safety for long-term exposure. Given this result, it is essential to study the health impact of exposure to aldehydes especially formaldehyde on the incidence of respiratory and allergic symptoms, particularly during the

  9. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  10. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  11. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of exhaust-gas composition. 36.43... TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be..., hydrogen, methane, nitrogen, oxides of nitrogen, and aldehydes, or any other constituent prescribed by MSHA...

  12. Chemo- and Diastereoselective N-Heterocyclic Carbene-Catalyzed Cross-Benzoin Reactions Using N-Boc-α-amino Aldehydes.

    Science.gov (United States)

    Haghshenas, Pouyan; Gravel, Michel

    2016-09-16

    N-Boc-α-amino aldehydes are shown to be excellent partners in cross-benzoin reactions with aliphatic or heteroaromatic aldehydes. The chemoselectivity of the reaction and the facial selectivity on the amino aldehyde allow cross-benzoin products to be obtained in good yields and good diastereomeric ratios. The developed method is utilized as the key step in a concise total synthesis of d-arabino-phytosphingosine.

  13. Rebreathing, resistance and external work of breathing in three different coaxial Mapleson D systems.

    Science.gov (United States)

    Jonsson, L O; Zetterström, H

    1989-01-01

    Using a lung model, rebreathing characteristics, resistance against gas flow and the external work of breathing were tested in three different coaxial Mapleson D systems: the Medicvent D system, the Bain original system and the Coax-II system. The rebreathing characteristics were found to be similar in all systems in both spontaneous and controlled ventilation. The Bain system was found to have the lowest resistance and work of breathing and the Coax-II system the highest. The differences were small and clinically insignificant. Both the resistance and the work of breathing increased with fresh gas flow. The resistance against expiration was found to be in the range 135-160 Pa at a total gas flow of 31 1.min-1, which is well within the acceptable level. The resulting end-expiratory pressure was never above 100 Pa (1 cmH2O) in any system. We concluded that there was no clinically significant difference among the three systems despite differences in design. The coaxial Mapleson D systems can also be used safely with high fresh gas flows with regard to resistance and end-expiratory pressures.

  14. Aldehyde Dehydrogenase 2 Polymorphism Is a Predictor of Smoking Cessation.

    Science.gov (United States)

    Masaoka, Hiroyuki; Gallus, Silvano; Ito, Hidemi; Watanabe, Miki; Yokomizo, Akira; Eto, Masatoshi; Matsuo, Keitaro

    2017-09-01

    Smoking cessation has been known to be associated with drinking behaviors, which are influenced by polymorphisms in genes encoding alcohol metabolizing enzymes. The aim was to evaluate the impact of aldehyde dehydrogenase 2 (ALDH2, rs671) and alcohol dehydrogenase 1B (ADH1B, rs1229984) polymorphisms together with drinking behaviors on smoking cessation. We conducted a cross-sectional study with 1137 former smokers and 1775 current smokers without any cancer at Aichi Cancer Center Hospital between 2001 and 2005. Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for successful smoking cessation by comparing former smokers (quitters) with current smokers (non-quitters). Older age, lower amount of cumulative smoking exposure, lower number of cigarettes per day, younger age of smoking initiation, shorter smoking duration, longer time to first cigarette in the morning, and lower amount of drinking among ever drinkers were predictors of smoking cessation. After careful adjustment for age, sex, smoking patterns, and drinking status, the ORs for smoking cessation among subjects with ALDH2 Glu/Lys and Lys/Lys were 1.02 (95% CI 0.84-1.23) and 1.78 (95% CI 1.23-2.58) compared with those with ALDH2 Glu/Glu, respectively Mediation analyses confirmed that the effect of ALDH2 Lys/Lys on smoking cessation was independent by dinking behaviors. No statistically significant association between ADH1B polymorphism and smoking cessation was observed. In our Japanese population, ALDH2 polymorphism predicts smoking cessation, independent by drinking behaviors. Interventions for promoting smoking cessation by ALDH2 polymorphism may be useful in Asian populations. We newly show that subjects with ALDH2 Lys/Lys genotype in a functional polymorphism, rs671, are more likely to quit smoking than those with ALDH2 Glu allele in a Japanese population. Our finding suggests that ALDH2 polymorphism may be useful for promoting smoking

  15. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.

    Science.gov (United States)

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng

    2018-03-21

    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  16. Direct site-specific immobilization of protein A via aldehyde-hydrazide conjugation.

    Science.gov (United States)

    Zang, Berlin; Ren, Jun; Xu, Li; Jia, Lingyun

    2016-01-01

    Immobilization of affinity ligands on supporting matrices is a key step for the preparation of affinity chromatography resins, and an efficient coupling strategy can significantly improve the validity and cost of the affinity system, especially for systems that employ expensive recombinant proteins or antibodies as affinity ligands. This study described a simple method for obtaining site-specific immobilization of protein A (the ligand) via aldehyde-hydrazide conjugation and its application in antibody purification via protein A chromatography. An aldehyde group was generated at the N-terminus of protein A in vivo by co-expressing a formylglycine-generating enzyme (FGE) and recombinant protein A containing a FGE recognizing sequence (aldehyde tag) in Escherichia coli. The resulting aldehyde allowed direct immobilization of protein A onto the hydrazide-modified agarose matrices under mild condition. We found that 100mM aniline was most effective for catalyzing the coupling reaction, and the recombinant protein A could be coupled with high selectivity, directly from a crude cell extract. The site-specific immobilized protein A showed good capacity for antibody purification. The specificity of the aldehyde-hydrazide reaction not only allowed site-specific immobilization of affinity ligands, but also improved the cost of the process by employing unpurified ligands, a method that might be of great use to industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...... at the surface. Air breathing is a common behaviour in many fish species when exposed to hypoxia, although certain species perform air-breathing in normoxia to fill their swim bladders for buoyancy control and/or sound transduction. Hoplosternum littorale is an air-breathing freshwater catfish found in South...... America. Field video observations reveal that their air-breathing behaviour consists of a fast air-gulping motion at the surface, followed by swimming towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of spontaneous air-gulping performed by H. littorale in normoxia...

  18. Determination of Volatile Aroma Compounds of Ganoderma Lucidum by Gas Chromatography Mass Spectrometry (HS-GC/MS)

    OpenAIRE

    Taşkın, Hatıra; Kafkas, Ebru; Çakıroğlu, Özgün; Büyükalaca, Saadet

    2012-01-01

    This study was conducted at Horticulture Department of Cukurova University, Adana, Turkey during 2010–2011. Fresh sample of Ganoderma lucidum collected from Mersin province of Turkey was used as material. Volatile aroma compounds were performed by Headspace Gas Chromatography (HS-GC/MS). Alcohols, aldehydes, acids, phenol, L-Alanine, d-Alanine, 3Methyl, 2-Butanamine, 2-Propanamine were determined. 1-Octen-3-ol (Alcohol) and 3-methyl butanal (Aldehyde) were identified as major aroma compounds.

  19. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  20. Decreased chewing activity during mouth breathing.

    Science.gov (United States)

    Hsu, H-Y; Yamaguchi, K

    2012-08-01

    This study examined the effect of mouth breathing on the strength and duration of vertical effect on the posterior teeth using related functional parameters during 3 min of gum chewing in 39 nasal breathers. A CO(2) sensor was placed over the mouth to detect expiratory airflow. When no airflow was detected from the mouth throughout the recording period, the subject was considered a nasal breather and enrolled in the study. Electromyographic (EMG) activity was recorded during 3 min of gum chewing. The protocol was repeated with the nostrils occluded. The strength of the vertical effect was obtained as integrated masseter muscle EMG activity, and the duration of vertical effect was also obtained as chewing stroke count, chewing cycle variation and EMG activity duration above baseline. Baseline activity was obtained from the isotonic EMG activity during jaw movement at 1.6 Hz without making tooth contact. The duration represented the percentage of the active period above baseline relative to the 3-min chewing period. Paired t-test and repeated analysis of variance were used to compare variables between nasal and mouth breathing. The integrated EMG activity and the duration of EMG activity above baseline, chewing stroke count and chewing cycle significantly decreased during mouth breathing compared with nasal breathing (Pbreathing was significantly greater than nasal breathing (Pbreathing reduces the vertical effect on the posterior teeth, which can affect the vertical position of posterior teeth negatively, leading to malocclusion. © 2012 Blackwell Publishing Ltd.

  1. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  2. The clinical value of breath hydrogen testing.

    Science.gov (United States)

    Yao, Chu K; Tuck, Caroline J

    2017-03-01

    Breath hydrogen testing for assessing the presence of carbohydrate malabsorption is frequently applied to refine dietary restrictions on a low fermentable carbohydrate (FODMAP) diet. Its application has also been extended for the detection of small intestinal bacterial overgrowth. Recently, several caveats of its methodology and interpretation have emerged. A review of the evidence surrounding its application in the management of patients with a functional bowel disorder was performed. Studies were examined to assess limitations of testing methodology, interpretation of results, reproducibility, and how this relates to clinical symptoms. A wide heterogeneity in testing parameters, definition of positive/negative response, and the use of clinically irrelevant doses of test carbohydrate were common methodological limitations. These factors can subsequently impact the sensitivity, specificity, and false positive or negative detection rates. Evidence is also increasing on the poor intra-individual reproducibility in breath responses with repeated testing for fructose and lactulose. On the basis of these limitations, it is not surprising that the diagnosis of small intestinal bacterial overgrowth based on a lactulose breath test yields a wide prevalence rate and is unreliable. Finally, symptom induction during a breath test has been found to correlate poorly with the presence of carbohydrate malabsorption. The evidence suggests that breath hydrogen tests have limited clinical value in guiding clinical decision for the patient with a functional bowel disorder. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. Improvement in Limit of Detection of Enzymatic Biogas Sensor Utilizing Chromatography Paper for Breath Analysis.

    Science.gov (United States)

    Motooka, Masanobu; Uno, Shigeyasu

    2018-02-02

    Breath analysis is considered to be an effective method for point-of-care diagnosis due to its noninvasiveness, quickness and simplicity. Gas sensors for breath analysis require detection of low-concentration substances. In this paper, we propose that reduction of the background current improves the limit of detection of enzymatic biogas sensors utilizing chromatography paper. After clarifying the cause of the background current, we reduced the background current by improving the fabrication process of the sensors utilizing paper. Finally, we evaluated the limit of detection of the sensor with the sample vapor of ethanol gas. The experiment showed about a 50% reduction of the limit of detection compared to previously-reported sensor. This result presents the possibility of the sensor being applied in diagnosis, such as for diabetes, by further lowering the limit of detection.

  4. Improvement in Limit of Detection of Enzymatic Biogas Sensor Utilizing Chromatography Paper for Breath Analysis

    Directory of Open Access Journals (Sweden)

    Masanobu Motooka

    2018-02-01

    Full Text Available Breath analysis is considered to be an effective method for point-of-care diagnosis due to its noninvasiveness, quickness and simplicity. Gas sensors for breath analysis require detection of low-concentration substances. In this paper, we propose that reduction of the background current improves the limit of detection of enzymatic biogas sensors utilizing chromatography paper. After clarifying the cause of the background current, we reduced the background current by improving the fabrication process of the sensors utilizing paper. Finally, we evaluated the limit of detection of the sensor with the sample vapor of ethanol gas. The experiment showed about a 50% reduction of the limit of detection compared to previously-reported sensor. This result presents the possibility of the sensor being applied in diagnosis, such as for diabetes, by further lowering the limit of detection.

  5. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    Energy Technology Data Exchange (ETDEWEB)

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  6. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    Science.gov (United States)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  7. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.

    2017-01-01

    performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae. Results: A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which......Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... are cyanobacterial ADs, from Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn-1 alkanes and alkenes. The CwADO showed the highest alkane titer (0.13 mg/L/OD600) and the lowest fatty alcohol production (0.55 mg/L/OD600). However, no measurable alkanes and alkenes were...

  8. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu

    2016-08-01

    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  9. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  10. Formation and accumulation of acetaldehyde and Strecker aldehydes during red wine oxidation

    Science.gov (United States)

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-02-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L-1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L-1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity towards ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity towards ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this makes that this aldehyde accumulates with intensity, particularly in young wines, shortly after wine

  11. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation

    Directory of Open Access Journals (Sweden)

    Mónica Bueno

    2018-02-01

    Full Text Available The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L−1 and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L−1, respectively. Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some

  12. Aldehyde stress-mediated novel modification of proteins: epimerization of the N-terminal amino acid.

    Science.gov (United States)

    Kajita, Ryo; Goto, Takaaki; Lee, Seon Hwa; Oe, Tomoyuki

    2013-12-16

    Various kinds of aldehyde-mediated chemical modifications of proteins have been identified as being exclusively covalent. We report a unique noncovalent modification: the aldehyde-mediated epimerization of the N-terminal amino acid. Epimerization of amino acids is thought to cause conformational changes that alter their biological activity. However, few mechanistic studies have been performed, because epimerization of an amino acid is a miniscule change in a whole protein. Furthermore, it does not produce a mass shift, making mass spectrometric analysis difficult. Here, we have demonstrated epimerization mediated by endogenous aldehydes. A model peptide, with an N-terminal l- or d-FMRFamide, was incubated with an endogenous or synthetic aldehyde [acetaldehyde, methylglyoxal, pyridoxal 5'-phosphate (PLP), 4-oxo-2(E)-nonenal, 4-hydroxy-2(E)-nonenal, d-glucose (Glc), 4- or 2-pyridinecarboxaldehyde] under physiological conditions. Each reaction mixture was analyzed by liquid chromatography with ultraviolet detection and/or electrospray ionization mass spectrometry. Considerable epimerization occurred after incubation with some endogenous aldehydes (PLP, 40.6% after 1 day; Glc with copper ions, 6.5% after 7 days). Moreover, the epimerization also occurred in whole proteins (human serum albumin and PLP, 26.3% after 1 day). Tandem mass spectrometric studies, including deuterium labeling and sodium borohydride reduction, suggested that the epimerization results from initial Schiff base formation followed by tautomerization to ketimine that causes the chirality to be lost. This suggests that the epimerization of the N-terminal amino acid can also occur in vivo as a post-translational modification under a high level of aldehyde stress.

  13. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation

    Science.gov (United States)

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-01-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L−1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L−1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this makes that this aldehyde accumulates with intensity, particularly in young wines, shortly after

  14. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes

    International Nuclear Information System (INIS)

    Hershko, A.; Rose, I.A.

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. The authors examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125 I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: (i) Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown; (ii) release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent; (iii) direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown

  15. A mass balance model for the Mapleson D anaesthesia breathing system.

    Science.gov (United States)

    Lovich, M A; Simon, B A; Venegas, J G; Sims, N M; Cooper, J B

    1993-06-01

    A mathematical model is described which calculates the alveolar concentration of CO2(FACO2) in a patient breathing through a Mapleson D anaesthesia system. The model is derived using a series of mass balances for CO2 in the alveolar space, dead space, breathing system limb volume and reservoir. The variables included in the model are tidal volume (VT), respiratory rate, fresh gas flow rate (Vf), dead space volume, I:E ratio, and expiratory limb volume (Vl) time constant of lung expiration, and carbon dioxide production rate. The model predictions are compared with measurements made using a mechanical lung simulator in both spontaneous and controlled ventilation. Both the model and the experimental data predict that at high fresh gas flow rates and low respiratory rates, FACO2 is independent of Vf; at low fresh gas flow rates and high respiratory rates, FACO2 is independent of respiratory rate. The model and the data show that the VT influences FACO2, independent of minute ventilation alone, during both partial re-breathing and non-rebreathing operation. Therefore, describing the operation in terms of minute ventilation is ambiguous. It is also shown that Vl influences FACO2 such that, for any combination of patient and breathing-system variables, there is a Vl that minimizes the Vf required to maintain FACO2. In addition, expiratory resistance can increase the fresh gas flow rate required to maintain a given FACO2. The respiratory patterns observed with spontaneous and controlled ventilation are responsible for the difference in Vf required with each mode of ventilation.

  16. Helping Babies Breathe implementation in Zanzibar, Tanzania.

    Science.gov (United States)

    Wilson, Gina Marie; Ame, Ame Masemo; Khatib, Maimuna Mohamed; Rende, Elizabeth K; Hartman, Ann Michelle; Blood-Siegfried, Jane

    2017-08-01

    To assess the efficacy and feasibility of implementing Helping Babies Breathe, a neonatal resuscitation programme for resource-limited environments. This quality improvement project focused on training midwives on Helping Babies Breathe to address high rates of neonatal mortality secondary to birth asphyxia. The convenience sample was 33 midwives in Zanzibar, Tanzania. The train-the-trainer strategy with repeated measures design was used to assess knowledge and skills at 3 time points. Observations were completed during "real-time" deliveries, and a focused interview generated feedback regarding satisfaction and sustainability. Knowledge scores and resuscitation skills significantly improved and were sustained, P < .05. Of the 62 birth observations, 19% needed intervention. All were appropriately resuscitated and survived. Results indicate that participants retained knowledge and skills and used them in clinical practice. Observations demonstrated that participants took appropriate actions when presented with a baby who was not breathing. © 2017 John Wiley & Sons Australia, Ltd.

  17. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet

    NARCIS (Netherlands)

    Baranska, Agnieszka; Tigchelaar, Ettje; Smolinska, Agnieszka; Dallinga, Jan W.; Moonen, Edwin J. C.; Dekens, Jackie A. M.; Wijmenga, Cisca; Zhernakova, Alexandra; van Schooten, Frederik J.

    In the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry

  18. Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretuline, and valparicine enabled by intramolecular cycloadditions of Zincke aldehydes.

    Science.gov (United States)

    Martin, David B C; Nguyen, Lucas Q; Vanderwal, Christopher D

    2012-01-06

    A full account of the development of the base-mediated intramolecular Diels-Alder cycloadditions of tryptamine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed.

  19. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...

  20. Tandem Three-Component Reactions of Aldehyde, Alkyl Acrylate, and Dialkylmalonate Catalyzed by Ethyl Diphenylphosphine

    Directory of Open Access Journals (Sweden)

    Utpal Das

    2012-03-01

    Full Text Available A new highly efficient three-component reaction of alkyl acrylate, aldehyde and dialkyl malonate using ethyl diphenylphosphine as organocatalyst has been described. Various highly functional compounds bearing hydroxyl groups and the ester functions can be easily prepared in moderate to good yields according to our one-step procedure. The reactions are believed to proceed via Morita-Baylis-Hillman reactions of alkyl acrylate and aldehydes, followed by the Michael addition reactions of dialkyl malonates. Our reactions indicated that the intermediate species formed in the phosphine-catalyzed MBH reaction are an effective organic base to catalyze the Michael addition reactions of dialkyl malonates to the preformed MBH adducts.

  1. Protective vaccination against murine visceral leishmaniasis using aldehyde-containing Quillaja saponaria sapogenins.

    Science.gov (United States)

    Palatnik de Sousa, C B; Santos, W R; Casas, C P; Paraguai de Souza, E; Tinoco, L W; da Silva, B P; Palatnik, M; Parente, J P

    2004-06-23

    The presence of aldehyde groups at C-23 and C-24 of the triterpen aglycon moiety was disclosed in 1H NMR spectra of both the Riedel de Haen saponin (R) (delta 9.336) and Quillaja saponaria QuilA saponin (delta 9.348). The sign of the C-28 acylated linked moiety (delta 176) was present in both saponins, while the delta 171 at C-28 (carboxy group) corresponding to the deacylated saponin, was only detected in the QuilA preparation, indicating 50% of hydrolysis of the ester moiety, probably due to the storage in aqueous solution. The normoterpen moiety was present in both saponins (signals at delta 14-18). The chemical removal of saponin glicidic moieties gave rise to their sapogenin fractions. Their 1H NMR spectra showed the presence of two signals (delta 9.226 and 9.236) for sapogenin R and two signals (delta 9.338 and 9.352) for the QuilA sapogenin. The intensity of the signals suggested two conformational isomers of sapogenin R in the ratio 53% of equatorial aldehyde group to 47% of axial aldehyde group, and two conformational isomers of QuilA sapogenin in the ratio 76% of equatorial aldehyde group to 24% of axial aldehyde group. The chemical treatment abolished the saponin slight in vivo toxicity, reduced their hemolytic potential, did not affect their aldehyde contents, but gave rise to an enriched axial aldehyde-containing sapogenin R with enhanced potential on antibody humoral response (anti-IgM, IgG, IgG1, IgG2a, IgG2b and IgG3) and to an enriched equatorial aldehyde-containing QuilA-sapogenin that induced a mainly cellular specific immune response (increased intradermal response to leishmanial antigen and IFNgamma sera levels) and effective protection against murine infection by L. donovani (77% reduction in liver parasitic load). Our results suggest that the Riedel de Haen saponin is probably a Quillaja saponaria saponin.

  2. Synthesis and SAR Study of Novel Peptide Aldehydes as Inhibitors of 20S Proteasome

    Directory of Open Access Journals (Sweden)

    Lihe Zhang

    2011-09-01

    Full Text Available Based on the analysis of the crystal structure of MG101 (1 and 20S proteasomes, a new series of peptide aldehyde derivatives were designed and synthesized. Their ability to inhibit 20S proteasome was assayed. Among them, Cbz-Glu(OtBu-Phe-Leucinal (3c, Cbz-Glu(OtBu-Leu-Leucinal (3d, and Boc-Ser(OBzl-Leu-Leucinal (3o exhibited the most activity, which represented an order of magnitude enhancement compared with MG132 (2. The covalent docking protocol was used to explore the binding mode. The structure-activity relationship of the peptide aldehyde inhibitors is discussed.

  3. Advanced three-dimensional imaging reveals the arterial vasculature in the head region of the air-breathing swamp eel, Monopterus albus

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Pedersen, Michael; Huong, Do T

    Air-breathing fish exhibit many anatomical modifications that allow for oxygen uptake directly from air. This is certainly the case for the tropical swamp eels, Synbranchidae, where various structural adaptations of the vasculature within the buccopharyngeal region mediate an amphibious lifestyle....... In Synbranchus, the rigid gills allow for aerial gas exchange, while the Asian swamp eels rely on various air-breathing organs (ABO) within the buccopharyngeal cavity. The air-breathing organs of the commercially important Asian rice field eel, Monopterus albus (Zuiew, 1793), is not well known...

  4. Changes in breathing variables during a 30-minute spontaneous breathing trial.

    Science.gov (United States)

    Figueroa-Casas, Juan B; Connery, Sean M; Montoya, Ricardo

    2015-02-01

    Spontaneous breathing trials (SBTs) are increasingly performed. Significant changes in monitored breathing variables and the timing of those changes during the trial have important implications for its outcome determination and supervision. We aimed to study the magnitude and timing of change in breathing variables during the course of a 30-min SBT. Breathing variables were continuously measured and averaged by minute during the SBT in 32 subjects with trial success and 8 subjects with trial failure from a general ICU population. Percentage changes in breathing variables during the trial and proportions of subjects showing a ≥20% change at different time points relative to the second minute of the trial were calculated. The commonly monitored breathing variables (frequency, tidal volume, their ratio, and minute ventilation) showed median coefficients of variation of breathing variables remain relatively constant, and potentially significant changes in these variables after 10 min into the trial are uncommon. These findings should be considered when addressing aspects of duration and supervision of SBTs in weaning protocols. Copyright © 2015 by Daedalus Enterprises.

  5. Acoustic signal classification of breathing movements to virtually aid breath regulation.

    Science.gov (United States)

    Abushakra, Ahmad; Faezipour, Miad

    2013-03-01

    Monitoring breath and identifying breathing movements have settled importance in many biomedical research areas, especially in the treatment of those with breathing disorders, e.g., lung cancer patients. Moreover, virtual reality (VR) revolution and their implementations on ubiquitous hand-held devices have a lot of implications, which could be used as a simulation technology for healing purposes. In this paper, a novel method is proposed to detect and classify breathing movements. The overall VR framework is intended to encourage the subjects regulate their breath by classifying the breathing movements in real time. This paper focuses on a portion of the overall VR framework that deals with classifying the acoustic signal of respiration movements. We employ Mel-frequency cepstral coefficients (MFCCs) along with speech segmentation techniques using voice activity detection and linear thresholding to the acoustic signal of breath captured using a microphone to depict the differences between inhale and exhale in frequency domain. For every subject, 13 MFCCs of all voiced segments are computed and plotted. The inhale and exhale phases are differentiated using the sixth MFCC order, which carries important classification information. Experimental results on a number of individuals verify our proposed classification methodology.

  6. Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2017-07-01

    The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial. This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system. The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset. The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069. The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gaia's breath - Global methane exhalations

    Science.gov (United States)

    Kvenvolden, K.A.; Rogers, B.W.

    2005-01-01

    Methane (CH4) is the most abundant organic compound in the Earth's atmosphere, where it acts as a greenhouse gas and thus has implications for global climate change. The current atmospheric CH4 budget, however, does not take into account geologically-sourced CH4 seepage. Geological sources of CH4 include natural macro- and micro-seeps, mud volcanoes, and other miscellaneous sources such as gas hydrates, magmatic volcanoes, geothermal regions, and mid-ocean ridges. Macro-seeps contribute ???25 Tg (teragrams) CH4/yr to the atmosphere, whereas, micro-seepage contributes perhaps 7 Tg CH4/yr. Mud volcanoes emit ???5 Tg CH4/yr, and miscellaneous sources emit ???8 Tg CH4/yr to the atmosphere. Thus, the total contribution to the atmosphere from geological sources is estimated to be 45 Tg CH4/yr, which is significant to the atmospheric organic carbon cycle and should be included in any global inventory of atmospheric CH4. We argue that the atmospheric CH4 global inventory of the Interplanetary Panel on Climate Change must be adjusted in order to incorporate geologically-sourced CH4 from naturally occurring seepage.

  8. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    Science.gov (United States)

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  9. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    Energy Technology Data Exchange (ETDEWEB)

    Su, T.-H. [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Beijing (China); Jin, E.-H., E-mail: erhujin1@hotmail.com [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Beijing (China); Shen, H. [GE China Company Ltd, Healthcare, General Electric Company, Beijing (China); Zhang, Y.; He, W. [Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Beijing (China)

    2012-07-15

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ({sup 1}H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using {sup 1}H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=-2.646, p = 0.008) and Cho peak visible status (Z=-2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9-4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p < 0.05). In the breath-holding spectra, there were significant positive correlations between Lip peak height, area, and age (r = 0.491 and 0.521, p = 0.007 and 0.004), but not between Lip peak area and BMI. There was no statistical difference in Cho resonances between males and females. The Lip peak height and area were significantly higher in the Cho peak invisible group than in the Cho peak visible group (t = 2.661 and 2.353, p = 0.030 and 0.043). Conclusion: In vivo{sup 1}H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. {sup 1}H MRS during breath-holding acquisition is superior to that during free-breathing

  10. Kinetics of forming aldehydes in frying oils and their distribution in French fries revealed by LC-MS-based chemometrics

    Science.gov (United States)

    Aldehydes are major secondary lipid oxidation products (LOPs) from heating vegetable oils and deep frying. The routes and reactions that generate aldehydes have been extensively investigated, but the sequences and kinetics of their formation in oils are poorly defined. In this study, a platform comb...

  11. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  12. Evaluation of N95 respirator use with a surgical mask cover: effects on breathing resistance and inhaled carbon dioxide.

    Science.gov (United States)

    Sinkule, Edward James; Powell, Jeffrey Bryon; Goss, Fredric Lee

    2013-04-01

    For pandemic influenza outbreaks, the Institute of Medicine has recommended using a surgical mask cover (SM) over N95 filtering facepiece respirators (FFRs) among healthcare workers as one strategy to avoid surface contamination of the FFR which would extend its efficacy and reduce the threat of exhausting FFR supplies. The objective of this investigation was to measure breathing air quality and breathing resistance when using FFRs with US Food and Drug Administration-cleared SM and without SM. Thirty National Institute for Occupational Safety and Health (NIOSH)-approved FFR models with and without SM were evaluated using the NIOSH Automated Breathing and Metabolic Simulator (ABMS) through six incremental work rates. Generally, concentrations of average inhaled CO(2) decreased and average inhaled O(2) increased with increasing O(2) consumption for FFR+SM and FFR-only. For most work rates, peak inhalation and exhalation pressures were statistically higher in FFR+SM as compared with FFR-only. The type of FFR and the presence of exhalation valves (EVs) had significant effects on average inhaled CO(2), average inhaled O(2), and breathing pressures. The evidence suggests that placement of an SM on one type of FFR improved inhaled breathing gas concentrations over the FFR without SM; the placement of an SM over an FFR+EV probably will prevent the EV from opening, regardless of activity intensity; and, at lower levels of energy expenditure, EVs in FFR do not open either with or without an SM. The differences in inhaled gas concentrations in FFR+SM and FFR-only were significant, especially at lower levels of energy expenditure. The orientation of the SM on the FFR may have a significant effect on the inhaled breathing quality and breathing resistance, although the measurable inhalation and exhalation pressures caused by SM over FFR for healthcare users probably will be imperceptible at lower activity levels.

  13. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    International Nuclear Information System (INIS)

    McDonald, C.W.

    1963-11-01

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  14. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    Science.gov (United States)

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. © 2013 American Institute of Chemical Engineers.

  15. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  16. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  17. Iron and zinc levels in breath-holding spells

    OpenAIRE

    DEDA, Gülhis; AKAR, M. Nejat; CİN, Şükrü; GENÇGÖNÜL, Handan

    2002-01-01

    Breath-Holding spells are a dramatic and commonly observed clinical phenomenon in childhood. The underlyingpathophysiologic mechanisms in breath-holding spells are result from autonomic nervous system dysregulation.Cerebral anoxia is the ultimate factor responsible for the loss of consciousness observed in the severe forms of breath-holding spells.It’s known that, there is relationbetween breath-holding spells and iron-deficiency anemia, and the spells resolve after oral iron supplemantation....

  18. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    Science.gov (United States)

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  19. Oral breathing and speech disorders in children.

    Science.gov (United States)

    Hitos, Silvia F; Arakaki, Renata; Solé, Dirceu; Weckx, Luc L M

    2013-01-01

    To assess speech alterations in mouth-breathing children, and to correlate them with the respiratory type, etiology, gender, and age. A total of 439 mouth-breathers were evaluated, aged between 4 and 12 years. The presence of speech alterations in children older than 5 years was considered delayed speech development. The observed alterations were tongue interposition (TI), frontal lisp (FL), articulatory disorders (AD), sound omissions (SO), and lateral lisp (LL). The etiology of mouth breathing, gender, age, respiratory type, and speech disorders were correlated. Speech alterations were diagnosed in 31.2% of patients, unrelated to the respiratory type: oral or mixed. Increased frequency of articulatory disorders and more than one speech disorder were observed in males. TI was observed in 53.3% patients, followed by AD in 26.3%, and by FL in 21.9%. The co-occurrence of two or more speech alterations was observed in 24.8% of the children. Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Application of stable isotope to breath test

    International Nuclear Information System (INIS)

    Sasaki, Yasuto

    1988-01-01

    Needles to say, radioisotopes have good characteristics as a tracer for examining biological functions. In fact, scyntigraphy is widely used over Japan. It is true, however, that there are some difficulties in applying radioisotopes to humans. Thus, greater attention began to be attracted to stable isotopes in the late 1960s, because these substances can be used for infants and pregnant women. They can be stored for a long period of time since they do not suffer damping as in the case of radioisotopes. In addition to serving as a tracer, stable isotopes can provide structural-chemical information including the position of isotope labels, and the mass and atomic composition of fragment ions. Such techniques as NMR spectroscopy is employed for this purpose. The method is currently used to perform examinations of congenital metabolic disorders. The carbon isotopes of 13 C and 14 C are used for breath test. Compounds labeled with these isotopes are administered and their ratio to the total CO 2 in breath is measured to diagnose diseases. In the early 1970s, 13 C has come into use for breath test. Similar breath test is applied to diagnosis of the bacterial overgrowth syndrome and ileal dysfunction syndrome. (Nogami, K.)

  1. Multi-layered breathing architectural envelope

    DEFF Research Database (Denmark)

    Lund Larsen, Andreas; Foged, Isak Worre; Jensen, Rasmus Lund

    2014-01-01

    A multi layered breathing envelope is developed as a method of natural ventilation. The two main layers consist of mineral wool and air permeable concrete. The mineral wool works as a dynamic insulation and the permeable concrete as a heat recovery system with a high thermal mass for heat storage...

  2. Extreme breathing excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Nikolaev, V.A.; Petkov, I.Zh.

    1984-01-01

    In the present paper collective breathing nuclear states, that appear in the framework of the coherent density fluctuation model (CFM) are taken into consideration. Their excitation energies are large and comparable with the binding nuclear energies. The basic CFM equation obtain in the generator-coordinate method. The possible mechanisms for the excitations for the excitations of the breathing states are deeply inelastic interactions of particles (e - , p, etc.) with nuclei, the π - -absorbtion from nuclei. It should be noted, that the energy of the Roper-resonance is comparable with the breathing nuclear excitation energies. Therefore the decay of this resonance, in principle, can lead to the breathing nuclear vibrations. The results of this work, as well as the results of some papers, obtained by means of a similar method but related to different quantum-mechanical systems, give an evidence, that the structure in detail and the character of the forces between the particles are not decisive for the considered type of excitations

  3. Pulmonary Function Responses to Active Cycle Breathing ...

    African Journals Online (AJOL)

    Chronic heart failure patients experience restrictive respiratory dysfunction, resulting in alterations of FEV1, FVC and FEV /FVC as demonstrated in exercise 1 intolerance, dyspnoea and poor quality of life (QoL). Active Cycle of Breathing Techniques (ACBT) is traditionally used by Physiotherapists in the management of ...

  4. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  5. CONTINUOUS EXHALED BREATH ANALYSIS ON THE ICU

    International Nuclear Information System (INIS)

    Bos, Lieuwe D. J.; Sterk, Peter J.; Schultz, Marcus J.

    2011-01-01

    During admittance to the ICU, critically ill patients frequently develop secondary infections and/or multiple organ failure. Continuous monitoring of biological markers is very much needed. This study describes a new method to continuously monitor biomarkers in exhaled breath with an electronic nose.

  6. Breathing easier: Indonesia works towards cleaner air

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2015-01-01

    Indonesians can look forward to breathing cleaner air following upcoming changes in regulations introduced as a result of a study conducted using nuclear analytical techniques. Lead pollution and other fine particulate matter in the air is now, for the first time, being accurately monitored and is giving Indonesian officials a good understanding of their air pollution problem and how to manage it.

  7. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    47. Pulmonary Function Responses to Active Cycle. Breathing Techniques in Heart Failure Patients at the. University Teaching Hospital (UTH), Lusaka, Zambia. 1. 1. 2. 3. Charity Kapenda Muselema *, Methuselah Jere , Gershom Chongwe , Fastone M. Goma. 1Ministry of Community Development Mother and Child Health, ...

  8. A breath actuated dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne; Frijlink, Henderik W.; Hagedoorn, Paul

    2015-01-01

    A breath actuated dry powder inhaler with a single air circulation chamber for de-agglomeration of entrained powdered medicament using the energy of the inspiratory air stream. The chamber has a substantially polygonal sidewall, a plurality of air supply channels entering the chamber substantially

  9. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  10. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  11. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  12. Substituent effect of phenolic aldehyde inhibition on alcoholic fermentation by Saccharomyces cerevisiae

    Science.gov (United States)

    Rui Xie; Maobing Tu; Thomas Elder

    2016-01-01

    Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...

  13. Sorption kinetics for the removal of aldehydes from aqueous streams with extractant impregnated resins

    NARCIS (Netherlands)

    Babic, K.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2008-01-01

    The sorption kinetics for the removal aldehydes from aqueous solutions with Amberlite XAD-16 and MPP particles impregnated with Primene JM-T was investigated. A model, accounting for the simultaneous mass transfer and chemical reaction, is developed to describe the process. It is based on the

  14. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    NICO

    1,1-Diacetates, sulfonic acid functionalized silica, acetalization, solvent-free reaction, SiO2-Pr-SO3H. 1. Introduction. Protection of aldehydes is a frequently used and important method in organic chemistry. Many procedures have been developed for this aim. For the acetalization of carbonyl groups, acetic anhydride can be ...

  15. Efficient Method for Aromatic-Aldehyde Oxidation by Cleavage of Their Hydrazones Catalysed by Trimethylsilanolate

    Czech Academy of Sciences Publication Activity Database

    Bürglová, K.; Okorochenkov, S.; Buděšínský, Miloš; Hlaváč, J.

    2017-01-01

    Roč. 2017, č. 2 (2017), s. 389-396 ISSN 1434-193X R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : aldehydes * oxidation * hydrazones * solid-phase synthesis * reaction mechanisms Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  16. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    1,1-Diacetates are prepared in excellent yields from aldehydes and acetic anhydride under solvent-free conditions at room temperature in short reaction times using catalytic amount of sulfonic acid functionalized silica (SiO2-Pr-SO3H) which could be easily handled and removed from the mixture of reaction. Keywords: 1 ...

  17. Reduction of Aldehydes and Ketones to Corresponding Alcohols Using Diammonium Hydrogen Phosphite and Commercial Zinc Dust

    Directory of Open Access Journals (Sweden)

    K. Anil Kumar

    2011-01-01

    Full Text Available A mild and an efficient system has been developed for the reduction of aromatic aldehydes and ketones to their corresponding alcohols in good yield using inexpensive commercial zinc dust as catalyst and diammonium hydrogen phosphite as a hydrogen donor.

  18. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  19. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Science.gov (United States)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  20. The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Quax, W.J.; Hiroyuki, O.; Toshiya, M.; Kayser, O.; Bouwmeester, H.J.

    2010-01-01

    A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic

  1. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144 ISSN 0936-5214 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  2. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy

    Science.gov (United States)

    Ismahil, Mohamed Ameen; Hamid, Tariq; Haberzettl, Petra; Gu, Yan; Chandrasekar, Bysani; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-01-01

    Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (∼2.2-fold increased myocyte area, P acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure. PMID:21908791

  3. Solvent-free oxidation of aldehydes to acids by TBHP using ...

    Indian Academy of Sciences (India)

    chromic acid, potassium permanganate in acidic, basic and neutral solution, bromine and nitric acid are not suitable for the large scale preparation of carboxylic acid because of the formation of hazardous waste. Balicki Roman3 achieved mild oxidation of aromatic and heteroaromatic aldehydes to the corresponding.

  4. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hessler, F.; Korotvička, A.; Nečas, D.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 2014, č. 12 (2014), s. 2543-2548 ISSN 1434-193X Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : synthetic methods * asymmetric catalysis * organocatalysis * allylation * aldehydes * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  5. An Alumino-Mannich Reaction of Organoaluminum Reagents, Silylated Amines, and Aldehydes.

    Science.gov (United States)

    Tarasewicz, Anika; Ensan, Deeba; Batey, Robert A

    2018-03-08

    A multi-component coupling using organoaluminum reagents, silylated amines, and aldehydes results in the formation of tertiary amines. Both alkenyl- and alkylaluminum reagents undergo reaction with iminium ion substrates for which the corresponding Petasis borono-Mannich reactions are unsuccessful. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin Biosynthesis in Artemisia annua

    NARCIS (Netherlands)

    Ryden, Anna-Margareta; Ruyter-Spira, Carolien; Quax, Wim J.; Osada, Hiroyuki; Muranaka, Toshiya; Kayser, Oliver; Bouwmeester, Harro

    2010-01-01

    A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic

  7. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions

    Science.gov (United States)

    C. Yao; F. Wang; Z. Cai; X. Wang

    2016-01-01

    Nanoscale sorption is a promising strategy for catalyst and purification system design. In this paper, cellulose nanofibrils (CNFs) were densely attached with aldehyde functional groups on the surface via a mild periodate oxidation process, and then applied as mesoporous sorbents to remove Cu(II) and Pb(II) from aqueous solutions. In the studied concentration range (0....

  8. Human respiratory deposition of particles during oronasal breathing

    Science.gov (United States)

    Swift, David L.; Proctor, Donald F.

    Deposition of particles in the tracheobronchial and pulmonary airways is computed as a function of particle size, correcting for deposition in the parallel nasal and oral airways with oronasal breathing. Thoracic deposition is lower at all sizes for oronasal breathing than for mouth breathing via tube, and is negligible for aerodynamic equivalent diameters of 10 μm or larger.

  9. Oral Breathing Challenge in Participants with Vocal Attrition

    Science.gov (United States)

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2003-01-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (P[subscript th]) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is…

  10. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  11. 46 CFR 108.703 - Self-contained breathing apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as...

  12. 42 CFR 84.132 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.132 Section 84.132 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Respirators § 84.132 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with...

  13. 42 CFR 84.195 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.195 Section 84.195 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... Cartridge Respirators § 84.195 Breathing tubes; minimum requirements. Flexible breathing tubes used in...

  14. 46 CFR 169.736 - Self-contained breathing apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED...

  15. 46 CFR 154.1852 - Air breathing equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  16. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent: (a...

  17. 46 CFR 108.635 - Self-contained breathing apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED...

  18. The response of the vena cava to abdominal breathing.

    Science.gov (United States)

    Byeon, Kyeongmin; Choi, Jin-Oh; Yang, Jeong Hoon; Sung, Jidong; Park, Seung Woo; Oh, Jae K; Hong, Kyung Pyo

    2012-02-01

    Recently, abdominal-breathing or diaphragmatic-breathing methods have increased in popularity. Little is known how abdominal breathing affects the circulatory system. This study was designed to determine the impact of the respiratory pattern on central venous flow using echocardiography. The superior vena cava (SVC) and inferior vena cava (IVC) were observed in people who had practiced abdominal breathing for at least 2 years, while they were breathing in three different techniques: slow respiration, slow respiration with inspiratory pause, or normal respiration. In addition, the observation during normal respiration was compared with that of a control group. The abdominal-breathing group consisted of 20 people with mean duration of training of 9.6 years. The respiratory collapsibility index of IVC during slow respiration with inspiratory pause was 62±19% compared with 48±19% during normal respiration (p=0.012) in the abdominal-breathing group. The abdominal-breathing group had a higher IVC collapsibility index compared to the control group during normal respiration (48±19% versus 26±12%, pbreathing patterns or between groups. The IVC of people who practice abdominal breathing has a greater degree of collapse than those of normal people, suggesting that abdominal-breathing exercise can positively affect venous return via IVC. For those who practice abdominal breathing, the collapsibility of the IVC is the best during slow respiration with inspiratory pause. The SVC did not seem to be affected by abdominal-breathing training.

  19. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from the...

  20. 14 CFR 29.1439 - Protective breathing equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b) For...

  1. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Veronique Sousa

    2017-07-01

    Conclusion: Statistically significant associations were established between the breathing pattern and the horizontal alignment of acromions, as well as the horizontal and vertical alignment of the head; between the pattern of breathing and swallowing with occlusal relationship anteroposterior and occlusal relationship vertical and also between breathing pattern and swallowing with digital sucking habits and pacifier use.

  2. 21 CFR 862.3050 - Breath-alcohol test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened...

  3. The best breathing command for abdominal PETCT

    International Nuclear Information System (INIS)

    Berthold, T.; Goerres, G.; Burger, C.

    2002-01-01

    Aim: To evaluate the best breathing command for combined PETCT scanning on a in-line system (Discovery LS, GEMS). Material and Methods: Eight patients underwent FDG PET and CT for attenuation correction and image co-registration on a combined PETCT scanner. CT was acquired during maximum inspiration (MaxInsp) with a starting point at the level of the head. Patients kept their breath for approximately 20 seconds. Then, a CT scan was acquired during normal expiration (NormExp), which corresponded to the respiratory level reached when the patient first inhaled and then exhaled without forcing expiration. Again, CT started at the head and patients kept their breath for approximately 20 seconds. In a third run, patients performed again the NormExp breathing manoeuvre but the breathing command was given after the start of the CT scan. Using this respiration protocol, the hold on time for the patients was between 10 and 15 seconds. All PET images were corrected for attenuation using the CT-based attenuation maps acquired with these three respiration protocols and then were reconstructed using an iterative algorithm. Results: In all patients, attenuation correction of the PET image using the CT scan acquired during MaxInsp caused mis-correction, which mimicked a decrease of FDG concentration in the base of the lungs. During MaxInsp the upper abdominal organs change their position and air filling of the lower lung zone is increased, thus, causing an underestimation of correction values. Subtraction images of the CT scans acquired during MaxInsp and NormExp illustrate the range of organ movements. Subtraction images of the attenuation corrected PET scans illustrate the deterioration of the final PET image. CT acquisition during NormExp provides better PET and co-registered PET/CT images. Using the shorter breath hold time the visual image quality was good in all patients. Conclusion: CT based attenuation correction can severely deteriorate PET image quality, if the CT scan

  4. Substrate-Controlled Diastereoselectivity Reversal in NHC-Catalyzed Cross-Benzoin Reactions Using N-Boc-N-Bn-Protected α-Amino Aldehydes.

    Science.gov (United States)

    Haghshenas, Pouyan; Quail, J Wilson; Gravel, Michel

    2016-12-16

    The effectiveness of utilizing N-Bn-N-Boc-α-amino aldehydes in cross-benzoin reactions with heteroaromatic aldehydes is demonstrated. The reaction is both chemoselective and syn-selective, making it complementary to the anti-selective cross-benzoin reaction of NHBoc-α-amino aldehydes. Good diastereoselectivity is obtained for a variety of amino aldehydes, including nonhindered ones. A Felkin-Anh model can be used to rationalize the observed diastereoselectivity.

  5. Volatile Organic Compounds in the Breath of Oral Squamous Cell Carcinoma Patients: A Pilot Study.

    Science.gov (United States)

    Hartwig, Stefan; Raguse, Jan D; Pfitzner, Dorothee; Preissner, Robert; Paris, Sebastian; Preissner, Saskia

    2017-12-01

    Objective To assess the feasibility of detecting signature volatile organic compounds in the breath of patients with oral squamous cell carcinoma. Study Design Prospective cohort pilot study. Setting University hospital. Subjects and Methods Using gas chromatography and mass spectrometry, emitted volatile organic compounds in the breath of patients before and after curative surgery (n = 10) were compared with those of healthy subjects (n = 4). It was hypothesized that certain volatile organic compounds disappear after surgical therapy. A characteristic signature of these compounds for diseased patients was compiled and validated. Results Breath analyses revealed 125 volatile organic compounds in patients with oral cancer. A signature of 8 compounds that were characteristic for patients with oral cancer could be detected: 3 from this group presented were absent after surgery. Conclusion The presented results confirmed the hypothesis of an absence of cancer-associated volatile organic compounds in the breath after therapy. In this pilot study, we proved the feasibility of this test approach. Further studies should be initiated to establish protocols for usage in a clinical setting.

  6. Contribution of ALDH1A1 isozyme to detoxification of aldehydes present in food products.

    Science.gov (United States)

    Sołobodowska, Sylwia; Giebułtowicz, Joanna; Wolinowska, Renata; Wroczyński, Piotr

    2012-01-01

    Even though food awareness is so developed and more and more people pay attention to what their diet is composed of, it is not possible to exclude all potentially dangerous substances present in our diet. One group of such compounds may be aldehydes as several studies indicate that they can be mutagenic, carcinogenic, genotoxic and cytotoxic. These relatively reactive organic molecules are natural constituents of food. They are also extensively used by food industry as additives giving aroma and taste. Fortunately many enzyme systems were developed to protect us against these toxic compounds, one of which is aldehyde dehydrogenase enzyme superfamily. As mouth is the first part of digestive system it seems crucial for detoxifying toxic substances introduced with our diet. The only ALDH isozyme present in saliva is ALDH3A1, which has very high affinity towards aromatic aldehydes commonly found in food. However, because of hyposalivation, which is not uncommon nowadays, the effectiveness of this barrier can be drastically diminished. As another member of this enzyme family, isozyme ALDH1A1 is also present in digestive system its possible contribution to detoxification of "food" aldehydes was addressed. Kinetic parameters (Km, Vmax) of recombinant ALDH1A1 towards several aliphatic and aromatic aldehydes occurring in food products (vanillin, citral, furfural, cinnamaldehyde, anisaldehyde, benzaldehyde and trans-hexenal) were determined by measuring the increase of NADH fluorescence after adding various concentrations of aldehyde substrates. Rates were used to construct the Lineweaver-Burk plot from which Km and Vmax (measured relative to that of benzaldehyde which was assigned the value of 100) values were calculated. The following results were obtained: 0.04 +/- 0.06 microM and 277 +/- 81 for anisaldehyde, 0.86 +/- 0.03 mciroM and 50 +/- 3 for vanillin, 0.18 +/- 0.05 mciroM and 93 +/- 9 for trans-2-hexenal, 0.17 +/- 0.03 microM and 201 +/- 32 for cinnamaldehyde, 5

  7. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    Directory of Open Access Journals (Sweden)

    Karel Roubík

    Full Text Available Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1 to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2 to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume, but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2 and peripheral oxygen saturation (SpO2 between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2 or never (for FICO2. The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  8. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    Science.gov (United States)

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  9. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  10. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    Science.gov (United States)

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  11. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  12. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Science.gov (United States)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  13. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    International Nuclear Information System (INIS)

    Kaspera, Rüdiger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-01-01

    Highlights: ► Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k cat ∼ 25 min −1 ). ► Reduction is a direct hydride transfer from R-NADP 2 H to the carbonyl moiety. ► P450 domain variants enhance reduction through potential allosteric/redox interactions. ► Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k cat of ∼25 min −1 was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP 2 H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP 2 H but not D 2 O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  14. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  15. Occupational exposure of aldehydes resulting from the storage of wood pellets.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K

    2017-06-01

    An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.

  16. Role of aldehydes in the toxic and mutagenic effects of nitrosamines.

    Science.gov (United States)

    Peterson, Lisa A; Urban, Anna M; Vu, Choua C; Cummings, Meredith E; Brown, Lee C; Warmka, Janel K; Li, Li; Wattenberg, Elizabeth V; Patel, Yesha; Stram, Daniel O; Pegg, Anthony E

    2013-10-21

    α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide. NMUr does not form an aldehyde, whereas AMMN generates formaldehyde, and NNK-4-OAc produces 4-oxo-1-(3-pyridyl)-1-butanone (OPB). Since these compounds were likely to alkylate DNA to different extents, the toxic and mutagenic activities of these compounds were normalized to the levels of the most cytotoxic and mutagenic DNA adduct, O⁶-mG, to assess if the aldehydes contributed to the toxicological properties of these methylating agents. Levels of 7-mG indicated that the differences in cytotoxic and mutagenic effects of these compounds resulted from differences in their ability to methylate DNA. When normalized against the levels of O⁶-mG, there was no difference between these three compounds in cells that lacked AGT. However, AMMN and NNK-4-OAc were more toxic than NMUr in cells expressing AGT when normalized against O⁶-mG levels. In addition, AMMN was more mutagenic than NNK-4-OAc and MNUr in these cells. These findings demonstrate that the aldehyde decomposition products of nitrosamines can contribute to the cytotoxic and/or mutagenic activity of methylating nitrosamines.

  17. Aldehyde modification and alum coadjuvancy enhance anti-TNF-α autovaccination and mitigate arthritis in rat.

    Science.gov (United States)

    Bavoso, Alfonso; Ostuni, Angela; De Vendel, Jolanda; Bracalello, Angelo; Shcheglova, Tatiana; Makker, Sudesh; Tramontano, Alfonso

    2015-05-01

    Experimental vaccination to induce antibodies (Abs) capable of cytokine antagonism shows promise as a novel immunotherapy for chronic inflammatory disease. We prepared a hybrid antigen consisting of residues 141-235 of rat TNF-α fused to the C-terminus of glutathione-S-transferase (GST), chemically modified to incorporate aldehyde residues, for development of an auto-vaccine eliciting anti-rTNF-α Abs. In rat immunization the soluble aldehyde-modified fusion protein did not generate observable Ab responses. By contrast, vaccination with the aldehyde-modified fusion protein adsorbed on alum induced anti-TNF-α autoAbs with high titer and neutralizing activity. Induction of adjuvant arthritis in rats pre-immunized with unmodified fusion protein or a control protein in alum resulted in severe inflammation and joint damage, whereas the disease induced in rats immunized with the aldehyde-bearing fusion protein in alum was markedly attenuated. Similar results were obtained in a collagen-induced rat arthritis model. Anti-collagen II IgG Ab titers did not deviate significantly in groups pre-immunized with modified fusion protein and control protein, suggesting that anti-TNF vaccination did not skew the immune response related to disease induction. This study demonstrates synergy between particulate alum and protein bound carbonyl residues for enhancement of protein immunogenicity. The antigen-specific co-adjuvant system could prove advantageous for breaking tolerance in emerging auto-vaccination therapies targeting inflammatory cytokines as well as for enhancing a broader category of subunit vaccines. Aldehyde adduction introduces a minimal modification which, together with the established use of alum as a safe adjuvant for human use, could be favorable for further vaccine development. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  18. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath

    International Nuclear Information System (INIS)

    Riess, Ulrich; Tegtbur, Uwe; Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen; Salthammer, Tunga

    2010-01-01

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO x , total volatile organic compounds (TVOC PAS ), carbon dioxide (CO 2 ), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO x signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC PAS are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  19. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NO{sub x} in exhaled human breath

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Ulrich; Tegtbur, Uwe [Hannover Medical School, Sports Physiology and Sports Medicine, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany); Salthammer, Tunga, E-mail: tunga.salthammer@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany)

    2010-06-11

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO{sub x}, total volatile organic compounds (TVOC{sub PAS}), carbon dioxide (CO{sub 2}), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO{sub x} signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC{sub PAS} are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  20. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    Science.gov (United States)

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.